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ABSTRACT

Although supercritical CO2 (sCO>) heat transfer has been employed in industrial process
since the 1960s, the underlying transport phenomenon in high-flux microscale geometries, as
could be employed in concentrating solar receivers, is poorly understood. To date, nearly all
experimental studies and simulations of supercritical convective heat transfer have focused on
large diameter vertical channel and tube bundle flows, which may differ dramatically from
microscale supercritical convection. Computational studies have primarily employed Reynolds
averaged (RANS) turbulence modeling approaches, which may not capture effects from the
sharply varying property trends of supercritical fluids. In this study, large eddy simulation (LES)
turbulence modeling techniques are employed to study heat transfer characteristics of sCO: in
microscale heat exchangers. The simulation geometry consists of a microchannel of 750 umx737
pum cross-section and 5 mm length, heated from all four sides. Simulation cases are evaluated at
reduced pressure P. = 1.1, mass flux G = 1000 kg m~2 s~1, heat flux ¢ = 1.7 — 8.9 W cm~2, and
varying inlet temperature: 20— 100°C. Computational results reveal thermal transport
mechanisms specific to microscale sCO: flows. Results have been compared with available
supercritical convection correlations [1-3] to identify the most applicable heat transfer models for
engineering of microchannel sCO» heat exchangers.

INTRODUCTION

High heat flux thermal management technologies are critical enabling components of
many engineering systems, including microelectronic devices [4,5] and solar-thermal power
production [6]. Existing cooling approaches based on single-phase liquid or two-phase boiling
convective heat transfer are not sufficient to meet emerging thermal management needs, such
as heat fluxes =150 W cm for solar thermal power receivers [7]. Supercritical Brayton cycles
have emerged as a national strategic focus for highly efficient solar thermal, geothermal, nuclear,
and clean fossil energy systems [8]. These systems are capable of using high temperature solar-
thermal heat more efficiently than conventional steam cycle power plants, and are more compact
than equivalent steam power plants [9].

sCO: heat transfer has been employed in industrial process since the 1960s [10], initially for
power engineering applications. However, transport behavior has only been characterized
empirically and for narrow operating ranges. Prior experiments with sCO- [11-14] have focused
on large diameter (4.08 < D < 22.7 mm), uniformly heated circular tubes at low heat fluxes (0.05
< q""< 330 W cm?). Lumped wall-to-bulk property difference correction factors have been
developed for plain large-diameter channel flow at low heat fluxes [11,15-17]. Some
experimental heat transfer investigations have been performed in compact flow geometries, but
these have been limited primarily to low-flux [18—20] heat rejection applications relevant to the



HVACA&R industry [21-23] (i.e., supercritical gas coolers in transcritical refrigeration cycles). In
such components energy is removed from the boundary layer, and the flow physics are expected
to be significantly different than in heat acquisition. Thus, it is difficult to apply insights from
supercritical cooling to heating applications. No data exists for the range of diameters (D1 < 1
mm) and high heat fluxes required to enable new applications in high-flux power production and
electronics cooling. Therefore, the aim of this work is to elucidate the underlying transport
processes and investigate the effects of individual parameters on microscale supercritical heat
transfer phenomena.

Advances in computational resources and Reynolds-Averaged (RANS) turbulence modeling
techniques led to increased activity in supercritical convection simulations in the 1990s and
2000s. These studies were motivated by applications in supercritical power cycles, and thus
focused on moderate heat flux (< 100 W cm?) water and CO: flows in large hydraulic diameter
vertical tubes and rod bundles. Almost all such studies employed two-equation RANS turbulence
models, primarily k — € [24,20,25] and k — w [26,27] based formulations. Nearly all such studies
employed steady 2-D simulations, which cannot capture key supercritical phenomena such as
intrinsic pulsations identified by Bishop et al. [28] and mixed forced and free convection (i.e.,
pseudo-boiling). In response to these limitations and discrepancies between existing RANS-
based turbulence modeling studies of supercritical heat transfer, a number of investigators have
recommended and performed 3D unsteady turbulence resolving simulations of supercritical flow
heat transfer [29-33]. To the best of our knowledge, the only available numerical study on
supercritical heat transfer at the microchannel scale was been conducted by Asinari [34], using
k —e RANS formulation, which cannot resolve unsteady 3D complex turbulent structures.
Detailed turbulence resolving simulations are therefore needed to advance understanding of
supercritical fluid heat transfer in microchannels, and inform the selection of engineering heat
transfer correlations for these conditions.

In the present investigation, high resolution large eddy simulations (LES) are performed of
sCO: flows in microchannels at high mass fluxes (G = 1000 kgm ~2s~1) (G = 1000 W m?) and
moderate heat fluxes (q”’ = 1.7 —8.9 W cm™2). This represents the first step in a simulation
campaign that will approach much higher heat fluxes. Results are used to assess the applicability
of heat transfer correlations for these conditions.

SIMULATION APPROACH

The corresponding simulation geometry consists of a single microchannel test section of
750 pm X 737 um cross section, and 5 mm length. The schematic of the simulation geometry is
represented in Fig. 1, and all the corresponding dimensions are listed in Table 1, below. The flow
is heated from all four sides with uniform constant temperature.
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Figure 1. Schematic of the simulation geometry



Table 1. Dimensions of the simulated microchannel

Section Size
Channel Width (W) 750.02 pm
Channel Height (H) 737.32 ym
Total Length (Ltota1) 5 mm

The governing continuity, momentum, and energy equations are summarized as follows
for the implicitly filtered mean velocity (u), pressure (p), and enthalpy (k) fields.
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Here, uscs and aggs represent the LES turbulence model contributions to momentum and
thermal energy transport, respectively, and stand for modeled sub-grid scale (SGS) eddy effects.
Fluid thermophysical properties (p,cy,, u, k) are evaluated at each time step, using explicit
formulations (i.e., Peng-Robinson equation of state [35]) for sCO. density and appropriate
correlations for other fluid properties. Curve fits were developed for specific heat (c,), dynamic
viscosity (u), and Prandtl number (Pr) for the considered reduced pressures of B. = 1.1. The
average absolute deviations of the fits to property values for c,, u, and Pr [36,37] are less than 5%,
1%, and 2%, respectively.

A velocity-pressure-enthalpy coupled unsteady compressible flow solver in OpenFOAM
v1612+ [38] is employed (buoyantPimpleFoam). Low Mach number behavior is assumed, as in
most prior sCO. simulation studies, such as the DNS study of Bae et al. [29]. The coupled
momentum and pressure equations are solved with the PIMPLE algorithm, which is a combination
of SIMPLE (Semi-Implicit Method for Pressure-Linked equations) [39] and PISO (Pressure Implicit
Splitting Operator) [40] algorithms. The wall-adapting local eddy-viscosity (WALE) LES model [41]
is used to model subgrid-scale eddy viscosity and diffusivity.

A second order implicit scheme is adopted for time discretization. Cubic interpolation is
used for gradient terms (third order). Second order linear interpolation schemes are used for the
divergence and Laplacian terms. Overall, this approach should yield second order accuracy for
all time and spatial terms. Relevant LES studies in the literature were consulted to design the
mesh structure in the computational domain [42,43]. Therefore, all the simulation test cases are
designed such that the mesh near the wall region is sufficiently resolved (first cell y* = 0.33).
Uniform cell size is used in the flow direction.

Constant temperature boundary condition were applied to all walls. An advective
temperature boundary condition was employed for the outflow. The inflow temperature field was
specified with a turbulent law of the wall profile. No-slip velocity boundary conditions were
imposed on all the channel walls. A mapped velocity boundary condition was imposed at the inlet
which maps the velocity field from 4 mm downstream to the inlet face. This essentially results in
a fully developed turbulent velocity field throughout the domain. A generic 0-gradient velocity
boundary condition (inletOutlet) was selected for the flow outlet. Turbulent eddy viscosity v,, and



turbulent diffusivity a, were also mapped from 4 mm downstream to the inlet, and an advective
outlet boundary condition was imposed for both fields. A fixed-zero-flux pressure boundary
condition was imposed on all the walls. Fixed-value pressure inlet and outlet boundary conditions
were imposed to obtain the target mass flux of ~1000 kg m2 s™.

RESULTS AND DISCUSSION

A representative case was selected with reduced pressure of P. = 1.1, mass flux G =
1000 kg m~%s™! (Repy = 25,360), and inlet temperature T, = 34.9 °C was evaluated to verify
that the meshing approach (i.e., first cell y* = 0.33) yielded mesh convergence. Four mesh cases
were selected and designed (Fine, Finer, XFine and XXFine). The number of mesh cells for each
case is listed in Table 2. All simulations were conducted with constant temperature condition for
all the wall boundaries, where T,, — Tf ;;, = 0.8 °C . Convergence was observed for average wall
heat flux value by the XFine case (q" is within +1.5% from XXFine case), indicating that no
further refinement is necessary. Based on the results from the three finest mesh resolutions, the
empirical rate of convergence for average wall heat flux is greater than second order. The
velocity and temperature fields from this representative case are shown in Fig. 2, below.

Table 2. Summary of results for mesh independence study

Re Case No. of mesh elements Qiapg|W m™2]
(xXyxz)
25,360 Fine 2,744,000 (140x140x140) 13,450
Finer 7,529,536 (196x196x196) 15,600
XFine | 20,570,824 (274x274x274) 16,880
XXFine | 56,623,104 (384x384x384) 17,100

b.

Figure 2. Simulation results for convergence test case. a. Cross-section velocity
magnitude, with detail view of pseudo-boiling near lower wall. b. Channel cross-section
temperature field with detail view of thermal boundary layer (lower 5% of channel).



In this study, five test cases, as shown in Table 3, were simulated. Following the method
of [53] the results of three mesh resolutions were utilized to obtain Richardson-extrapolated
value for average heat flux corresponding to each simulation case. Finally, the extrapolated
values have been compared to available supercritical heat transfer correlations in the literature
[1-3] (see Table 4).

Table 3. Specifications of selected simulation test cases. All studies at G = 1000 kg m? s
and P, =1.1ina 750 ym x 737 ym x 5 mm channel.

Case # Re Tin [°Cl  Twau [°Cl | qgygextrapotated [Wm™?]
1 11,840 20.1 26.2 35,680 £ 11,030
2 15,110 29.9 32.4 22,350 £ 7,270
3 25,360 34.9 35.7 17,150 + 60
4 37,470 69.9 84.7 69,780 £ 16,110
5 35,870 99.9 116.7 88,940 + 20,910

Table 4. Comparison of the simulation results against predictions from supercritical correlations

Case # Re qil,vg,extrapolated [W/mz] q;’,etukhov [W/mz] q}’ackson [W/mz] qiliao [W/mz]
(1] [2] [3]
1 11,840 35,680 = 11,030 59,990 46,080 41,790
2 15,110 22,350 £ 7,270 33,130 24,840 20,570
3 25,360 17,150 £ 60 25,710 22,210 15,580
4 37,470 69,780 £ 16,110 68,790 56,860 33,400
5 35,870 88,940 £ 20,910 70,190 57,660 30,580

Out of the three considered empirical correlations from the literature [1-3], only the model
of Liao and Zhao [3] was developed using data for microchannel supercritical heat transfer (tube
diameter of d = 0.7 — 2.16 mm). This model yields the closest agreement with simulation heat
fluxes in cases 1-3 (maximum deviation of +15%, Table 4). Poorer agreement is found with the
model of Liao and Zhao [3] at higher fluid temperatures (cases 4 and 5 with (T, = 70 °C). This
may be expected, as the model of Liao and Zhao [3] only incorporated microchannel data for
bulk temperatures < 54°C.

Petukhov et al. [1] studied supercritical heat transfer in a tube with fixed diameter D =
6.7 mm, 2 X 10* < Re < 8.6 x 10°,and 0.85 < Pr < 65. Jackson and Hall [2] collected data from
various sources, but no specific range of applicability was recommended for their correlation.
The model of Petukhov et al. [1] results in closer agreement for heat flux with these microchannel
simulations (maximum deviation of +22%).



At these higher fluid temperatures, sCO: is outside of the pseudocritical regime, and
scale dependent mixed convection and boundary layer effects may be less significant. This may
explain why closer agreement is obtained with larger channel diameter-based models than at
lower fluid temperatures. However, there is not yet sufficient data to provide general
recommendations for microchannel sCO- heat transfer correlations at high fluid temperatures.

The authors aim to expand the test case studies to investigate a full range of reduced
pressure, wall heat flux, and the individual role of thermo-physical properties on supercritical
heat transfer. The final objective is to inform new heat transfer correlations for microchannel
supercritical heat transfer that incorporate highly resolved flow and temperature field data.
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