
Directionally Convolutional Networks for 3D Shape Segmentation

Haotian Xu, Ming Dong, Zichun Zhong

Department of Computer Science, Wayne State University

Detroit, MI, USA

htxu@wayne.edu, mdong@wayne.edu, zichunzhong@wayne.edu

Abstract

Previous approaches on 3D shape segmentation mostly

rely on heuristic processing and hand-tuned geometric de-

scriptors. In this paper, we propose a novel 3D shape rep-

resentation learning approach, Directionally Convolutional

Network (DCN), to solve the shape segmentation problem.

DCN extends convolution operations from images to the

surface mesh of 3D shapes. With DCN, we learn effec-

tive shape representations from raw geometric features, i.e.,

face normals and distances, to achieve robust segmentation.

More specifically, a two-stream segmentation framework is

proposed: one stream is made up by the proposed DCN

with the face normals as the input, and the other stream

is implemented by a neural network with the face distance

histogram as the input. The learned shape representations

from the two streams are fused by an element-wise prod-

uct. Finally, Conditional Random Field (CRF) is applied

to optimize the segmentation. Through extensive experi-

ments conducted on benchmark datasets, we demonstrate

that our approach outperforms the current state-of-the-arts

(both classic and deep learning-based) on a large variety of

3D shapes.

1. Introduction

Segmentation over 3D shapes, also known as composi-

tional part-based reasoning on 3D shapes, plays an impor-

tant role in computer graphics and computer vision. It has

been applied to various applications, such as 3D modeling

[32], 3D object detection [17, 27], 3D scene understand-

ing [13], and human pose estimation [24]. In the past few

years, many methods have been proposed to segment 3D

shapes into semantic parts. Among these approaches, they

either rely on heuristic processing and hand-engineering ge-

ometric features [2, 19], or apply co-segmentation schemes

based on geometric characteristics of 3D shapes [26, 14].

More recently, (convolutional) neural networks have been

applied to 3D shape segmentation [31, 9].

Inspired by the remarkable success of applying Convolu-

tional Neural Network (CNN) in image recognition tasks, a

few approaches have been proposed to extent convolution to

graphs [5, 8, 7], most of which operate convolutions in the

spectral domain - taking convolution as a linear operator in

the Fourier space of a graph. However, as mentioned in [7],

a convolution filter defined in the spectral domain is not nat-

urally localized and the translations are very costly. For ap-

proaches that define convolution in the spatial domain, they

require relatively weak regularity assumptions on the graph

and utilize the advantage of graphs, i.e., having localized

neighborhoods. However, the method in [5] only works for

a given domain as eigenbases vary arbitrarily from shape to

shape.

In this paper, we propose Directionally Convolutional

Network (DCN) that extends convolution operations from

images to the surface mesh in the spatial domain. As a spe-

cial case of graphs, polygon meshes inherit the advantage

of being natural to define localized neighborhoods. Fur-

thermore, we introduce a two-stream framework combining

proposed DCN and a neural network (NN) for segmentation

of 3D shapes. Instead of fusing the two streams by a simple

concatenation, we take our framework as an approximation

of a directed graph and combine the probabilities inferred

by the two streams with an element-wise product. Finally,

Conditional Random Field (CRF) is applied to optimize the

surface mesh segmentation. The main contributions of this

paper are summarized as follows:

• By defining rotation-invariant convolution and pooling

operation on the surface of 3D shapes, we learn ef-

fective shape representations from raw geometric fea-

tures, i.e., face normals and distances, to achieve ro-

bust segmentation of 3D shapes.

• Based on the proposed DCN, we introduce a two-

stream framework (shown in Fig. 1) to classify each

face of a given mesh into predefined semantic parts.

Our approach achieves state-of-the-art segmentation

results on a large variety of 3D shapes.

In the rest of the paper, we first review related work in

Section 2. Then, we describe details of DCN in Section 3.
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feature φ with a kernel w on mesh face fi as follows:

(φ ∗ w)(i) =
1

K

∑

j∈Nn(i)

w(j)φ(j), (3)

where φ can be a scale or vector function based on the mesh

face features, such as normal, curvature, shape diameter,

etc. In this paper, we only use the face normal vectors as

the feature. Face normals are computed in Eq. (1). The

kernel w weighs the participation of neighbouring faces fj ,

which will be learned during the optimization of DCN. K is

the normalization factor, i.e., K =
∑

j∈Nn(i)
w(j). Nn(i)

is the set of neighbors of face fi. n is the index of ring for

face neighbors. The order of neighbors is computed as in

Section 3.2.

We define the filter size as n-r×n-r, which means that a

face and its first n rings of neighbors are convolved by the

filter. If n = 0, then only one face is convolved by the con-

volution filter. Since neighboring face number in n-ring of

different faces varies, we choose the average neighbor num-

ber as filter size for n-ring, and pad zeros for faces without

enough neighbors (or omit redundant neighbors).

3.4. Pooling on Mesh

Classic pooling layers in CNN make use of the natu-

ral multi-scale clustering of grid: they input all the feature

maps over a cluster, and output a single feature for that clus-

ter [5]. On surface mesh, we define a cluster as a face and its

1- to n-ring neighbors. Thus, given such a cluster, the pool-

ing is manipulated by a downsampling strategy of a clus-

ter of faces to 1 and denoted as n-r×n-r pooling. For max

pooling, the maximum value of feature maps in the cluster

is taken as output. Similarly, the mean normal value is taken

as the output for average pooling.

3.5. Generalization to Cloud Points

Although meshes and point clouds are two different rep-

resentations of 3D objects, we can easily modify the pro-

posed method to segment 3D point clouds. Specifically, we

can first use principal component analysis to compute the

local point normal and curvatures1. Then, we define the

point neighbors by finding the k nearest points. Finally, we

can employ the proposed directional convolution on point

clouds, same as on meshes.

4. 3D Segmentation with DCN

In this section, we describe our shape segmentation ap-

proach in detail (see Fig. 1). First, we compute normals

and distances for faces in a given 3D shape. Second, we

feed these raw features to the proposed two-stream frame-

work with DCN and NN, and then fuse the two streams by

1http://pointclouds.org/documentation/

tutorials/normal_estimation.php

an element-wise product and softmax. Finally, the segmen-

tation is optimized by CRF.

4.1. Input Features

In our approach, we aim to learn an effective 3D shape

representation, robust for a large variety of shapes. Two

types of input geometric features, face normals and distance

histogram, are utilized in order to ensure local precision and

global spatial consistency, respectively.

4.1.1 Face normal as local features

Normal is one of the most fundamental geometric features

to describe the shape of a surface mesh. We select face

normals to ensure the local precision of the segmentation.

To capture the local shape information of a surface at a

higher level of details, we extract a patch of the target face

and its first n rings of neighbors. Generally, taking a very

small patch as the input is insufficient to accurately describe

the local geometry. A larger patch will help but typically

leads to inefficiency in computing. Empirically, we choose

n = 6. The normals of faces in the patch are used as the lo-

cal input features of the surface patch centered on the target

face.

4.1.2 Distance histogram as global features

For segmentation over the same category of 3D shapes, se-

mantic parts consistently preserve the same relative posi-

tions in all the models. Thus, including global information

is likely to yield improvements. Although simply increas-

ing the size of local patches would cover larger part of a 3D

shape, it is computationally inefficient. Another strategy is

to use the coordinates of face centroids, but this scheme is

not shift-, scale-, or rotation-invariant. In this paper, we use

normalized histograms of the pairwise face distances to en-

sure the global spatial consistency.

To define pairwise distances, we first denote an input 3D

shape dataset of M models as D = {S1, S2, . . . , SM}. For

a 3D shape Sm with Nm faces to segment, we denote each

face as fSm

i , where m ∈ [1,M ] and i ∈ [1, Nm]. We build

a dual graph S
′

m with Nm vertices, in which each vertex

corresponds to a face of Sm and two vertices are connected

by an edge if and only if the two corresponding faces share

at least one vertex in Sm. The pairwise distance between

two faces fSm

i and fSm

j is denoted as di,j , which is the

shortest distance between corresponding vertices v
S

′

m

i and

v
S

′

m

j in the dual graph S
′

m. Since our input is “water-tight”

polygon meshes, every two vertices in the same 3D shape

are connected by one or more edges. Thus, the existence of

the pairwise distance between every two faces in the same

shape is guaranteed.
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