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In this paper, a physics-informed machine learning approach is applied to improve the
accuracy of the Reynolds stresses modeled by Reynolds-averaged Navier-Stokes (RANS)
for high-speed flat-plate turbulent boundary layers using an existing DNS database. In the
machine-learning technique, the DNS dataset of a Mach 2.5 adiabatic turbulent boundary
layer is used as the training flow to construct the invariant basis for learning the functional
form of the discrepancy in RANS modeled Reynolds stresses. The functional thus con-
structed is in turn used to correct the RANS prediction of Reynolds stresses for turbulent
boundary layers under two cold-wall hypersonic conditions with nominal freestream Mach
numbers of 6 and 8. The study shows that the RANS-modeled Reynolds normal stresses,
the turbulent kinetic energy, and the Reynolds-stress anisotropy can be significantly im-
proved using the machine-learning technique. Such a study lays the foundation towards
better physics-based turbulence modeling for high-Mach-number turbulent flows.

Nomenclature

heat capacity at constant pressure, J/(K-kg)

heat capacity at constant volume, J/(K-kg)

shape factor, H = ¢*/6, dimensionless

Mach number, dimensionless

Prandtl number, Pr = 0.71, dimensionless

ideal gas constant, R = 287, J/(K-kg), or radius of the axisymmetric nozzle, m

Reynolds number based on momentum thickness and freestream viscosity, Reg = M,

’ ) oo
dimensionless

Reynolds number based on momentum thickness and wall viscosity, Res, = £ °°MU°°9

Reynolds number based on shear velocity and wall viscosity, Re, = "“;tifif‘;, dimensionless
root mean square

temperature, K

recovery temperature, T, = T (1 + 0.9 * %Mgo), K

freestream velocity, m/s

speed of sound, m/s

pressure, Pa

dynamic pressure, Pa

radial coordinate

streamwise velocity, m/s

, dimensionless
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friction velocity, m/s

wall-normal velocity, m/s

spanwise velocity, m/s

streamwise direction of the right-hand Cartesian coordinate
wall-normal direction of the right-hand Cartesian coordinate
spanwise direction of the right-hand Cartesian coordinate
viscous length, z, = vy, /u,, m

specific heat ratio, v = C,/C,, dimensionless

boundary layer thickness, m

displacement thickness, m

thermal conductivity, k = uCp/Pr, W/(m-K)

momentum thickness, m

ﬂmu@&ge\‘z

SO

*

dynamic viscosity, u = 1.458 X 10*6%, kg/(m-s)
kinematic viscosity, v = u/p, m?-s

density, kg/m3

frequency, rad/s

Subscripts

i inflow station for the domain of direct numerical simulations
rms Toot mean square

w wall variables

oo freestream variables

t stagnation quantities

Superscripts

+ inner wall units

() averaged variables

perturbation from averaged variable

EDI T D=

()
()
I. Introduction

The information of the full Reynolds-stress tensor of a high-speed turbulent boundary layer is of theo-
retical and practical importance. Understanding the physics of the Reynolds stress and its dependence on
boundary-layer parameters is critical for theoretical development of advanced compressibility corrections for
Reynolds-Averaged Navier-Stokes (RANS) models.! The information is also useful for imposing the inflow
boundary condition for high-fidelity simulations like direct numerical simulations (DNS) and large-eddy sim-
ulations (LES) if a synthetic turbulence-generation technique is used.? So far, there is only limited data for
turbulent boundary layers in the high-Mach-number regime. Most of the experimental measurements are
limited to basic turbulence quantities, such as the skin friction and Stanton number, the mean and root mean
square (r.m.s.) fluctuations of velocity and temperature.® Existing DNS or LES studies are limited to low
Reynolds numbers. As a result, the information of the full Reynolds-stress tensor in the high-Mach-number
and high-Reynolds-number regimes is largely unknown.

RANS turbulence modeling offers a potential way for exacting information of Reynolds stresses. In
RANS, the turbulence stresses can be derived, for instance, using the mean rate-of-strain tensor and the
eddy viscosity from the turbulence models. Although large model-form uncertainties are known to exist in
standard RANS models for Reynolds stress closure, the accuracy and predictability of the RANS models
can be improved by data-driven turbulence modeling using existing data (e.g., from DNS simulation or
experiment). So far , a number of data-driven techniques have been proposed to assist the standard RANS
modeling. For example, Dow and Wang® used DNS data to infer and correct the full-field discrepancy in
the turbulent viscosity and applied it for a range of channel flows. Parish et al.5 also tried to improve the
RANS model by adding a full-field discrepancy function into the production term of the turbulence transport
equation. As far as the prediction of Reynolds stresses are concerned, Xiao et al.” proposed a model-form
uncertainty reduction framework by inferring the discrepancy of Reynolds stress based on sparse data of
velocities. Ling et al.® used Random Forests classifier to predict when RANS assumptions would fail. Wang
et al.% recently proposed a physics-informed, machine-learning (ML) approach to predict the discrepancy
of RANS modeled Reynolds stress based on a group of training flows with data. Since the functional form
of Reynolds stress discrepancy is learned in the mean flow feature space, it can be extrapolated to different

2 of 13

American Institute of Aeronautics and Astronautics



flows (at different Reynolds numbers or/and in modified geometries) without data. The effectiveness of
the physics-informed ML approach for improving the prediction of Reynolds stress tensor based on RANS
predicted mean flow fields has been demonstrated in multiple low-speed flows, including scenarios where the
training flow has the same geometry as the prediction flow but is different in Reynolds numbers and scenarios
where the training flow differs from the prediction flow not only in Reynolds numbers but also in geometry.
The performance of the ML approach for high-speed flows has not been fully studied yet.

The primary objective of the present paper is to leverage an existing DNS database of high-speed flat-
plate turbulent boundary layers and apply the physics-informed ML approach by Wang et al.® to evaluate
the prediction of Reynolds stresses for high-Mach-number boundary-layer flows.

The paper is structured as follows. The methodology of ML approach is given in Section II, including a
brief description of the DNS database to be used (Section A), the simulation details of the baseline RANS
(Section B), and the detailed procedures of the ML approach (Section C). Results of applying the physics-
informed ML approach for predictive turbulence modeling are shown in Section III. Summaries are given in
Section IV.

II. Methodology

A. DNS Database of High-Speed Turbulent Boundary Layers

Relevant flow conditions of the DNS database that is utilized for the current analysis are summarized in
Table 1, which provides the boundary-layer parameters at a selected location where the turbulence statistics
are gathered. The database includes DNS of spatially-developing turbulent boundary layers over a wide
range of freestream Mach numbers (M, = 2.5 — 7.9). All the DNS cases have a similar Karman number of
Re. =~ 400. The details of the DNS database, including the numerical methodology and boundary conditions
are described in multiple previous publications.!013

Figures 1 shows the general computational setup for Case M6Tw076. The computational setup of the
other cases parallels that of Case M6Tw076. For all cases, a long streamwise domain length with a large
rescaling length (> 500;) for inflow turbulence generation is used to minimize any artificial effects of the
rescaling procedure and to increase the streamwise extent and the Reynolds-number range of the DNS.
Table 2 summarizes the domain sizes and grid resolutions for DNS cases. The DNS dataset will be used
either as the training data in the physics-informed ML technique or as the validation data for testing the
prediction of the ML technique.

Table 1. Boundary layer properties at the station selected for the analysis for various DNS cases.

Case Mo Tw/T.  Reg Re.  Res, O(mm) H 6(mm) z:(um) wur(m/s)
M25 2.5 1.0 2268.8 380.0 1326.1 0.47 2.6 5.5 14.5 42.1
M6Tw076 5.86 0.76  9655.5 436.3 1880.2 093 135 230 52.6 45.0
M8Tw053 7.87 0.53 84452 380.2 1607.0 0.87 191  26.3 69.0 53.3

Table 2. Grid resolutions and domain sizes for direct numerical simulations. L,, L, and L. are
the domain size in the streamwise, wall-normal, and spanwise directions, respectively. Az* and
AzT are the uniform grid spacing in the streamwise and spanwise directions, respectively; Ay:{“.n
and Ay, are the minimum and maximum wall-normal grid spacing. The grid resolutions are
normalized by the viscous length at the location where the turbulence statistics are gathered.

Case Ny x Ny x N, L,/6; L,/6; L./6; Azt Azt Ayt Ayt
M25 1760 x 400 x 800  57.3 41.0 15.6 9.0 5.4 0.6 9.0
M6Tw076 1920 x 500 x 320 74.4 39.7 6.3 9.6 5.1 0.52 5.32
M8Tw053 3000 x 500 x 320  64.1 32.4 5.5 5.0 4.0 0.37 3.84
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Recycling
plane

39.75,

Figure 1. Computational domain and simulation setup for DNS of a Mach 6 turbulent boundary
layer (Case M6Tw076)."* The reference length §; is the thickness of the boundary layer (based on
99% of the freestream velocity) at the inlet plane. An instantaneous flow is shown in the domain,
visualized by iso-surface of the magnitude of density gradient, |Ap|d;/poc = 0.9825, colored by the
streamwise velocity component (with levels from 0 to U, blue to red).

B. Baseline RANS of High-Speed Turbulent Boundary Layers

For RANS simulations of high-speed turbulent boundary layers, the Reynolds-averaged Navier Stokes equa-
tions are solved using ANSYS Fluent (V15.0)!5 with the shear-stress transport (SST) k—w model of Menter. !¢
The SST based k —w model differs from the standard k —w models in that it undergoes a gradual transition
to the k — € model in the outer part of the boundary layer. No low-Reynolds correction is used as the k —w
based model can be directly integrated from the wall.

Figure 2 shows a schematic of RANS computational domain under the condition of Case M6Tw076
along with the boundary conditions setup in the Fluent solver. Grid points of 561 x 150 are used in the
streamwise and wall-normal directions. The streamwise and wall-normal domain sizes are approximately
L,/6. x L,/6, = 180 x 80, respectively, where ¢, is approximately the boundary-layer thickness at the
center of the domain. Uniform grids are used in the streamwise direction with a resolution of Az/é, ~ 0.3.
Geometric grids with a stretching ratio of less than 1.05 are used in the wall-normal direction. The wall-
normal grid resolution is Ay™ ~ 0.8 at the wall and Ay* =~ 20 near the boundary-layer edge . Systematic
grid refinement in each direction has been conducted to verify the grid convergence of the RANS results
(Figure 3). The computational setup for RANS of other cases parallels that of the Case M6Tw076.

C. Physics-informed Machine Learning Approach

In this section, the physics-informed ML approach by Wang et al® is briefly summarized. The general idea
of the ML approach is that given a set of training flows with data, the functional form of the discrepancy in
the Reynolds stress modeled by RANS can be learned in the mean flow feature space. Based on the learned
regression function of Reynolds stress discrepancy, a new flow with a different configuration or a different flow
condition can be predicted. The mean flow features q as regression inputs are constructed by raw mean flow
quantities such as pressure P, mean velocity U, fluid density p, and rate of strain tensor S. The complete
list of mean flow features for incompressible flows can be found in Wang et al.” 17 As the response of the
regression, the discrepancy AT of Reynolds stress is in its physical projections but not in its components.
To obtain the physically meaningful projections of Reynolds stress, the following eigen-decomposition is
performed:

T =2k (;I + A) =2k <;I + VAVT) : (1)
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Figure 2. 2D computational setup and boundary conditions. §, is approximately the boundary-
layer thickness at the center of the domain.
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Figure 3. Grid convergence study of RANS for Case M6Tw076.
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The physical projections are magnitude k, shape A, and orientation V of Reynolds stress tensor.
The overview procedure is shown in Figure 4 and is summarized as follows:

1. Perform baseline RANS simulations on both the training flows and the test (prediction) flow.

2. Compute the fields of “feature” vectors q(z) (e.g., pressure gradient and streamline curvature, among
others) based on the RANS predicted mean flow fields for each flow.

3. Compute the discrepancies field A7 (x) in the RANS modeled Reynolds stresses for the training flows
based on the high-fidelity data.

4. Construct regression functions AT = f(q) for the discrepancies based on the training data prepared
in Step 3.

5. Compute the Reynolds stress discrepancies for the test (prediction) flow by evaluating the regression
functions. The Reynolds stresses can subsequently be obtained by correcting the baseline RANS
predictions with the evaluated discrepancies.

(a) training: high-fidelity
data of elementary flows

separate rated flows
e, T

(b) trained discrepancy
functions
(e.g., random forests,
or neural network)

(c) prediction:
complex, realistic flows

'\
c*l "
attached boundary layers

|| »\\\%’fﬁ

’ free shear flows

S S2  FS3
other flow categories ... ...

prediction with

ML-assisted

RANS simulation
query: feature q'

training with |

machine learning
algorithms

data: features g

: /
responses AT corrections A7'to

RANS Reynolds stress

- -

Figure 4. Overview of the Physics-Informed Machine Learning (ML) framework for predictive
turbulence modeling. Data from training flows (panel a) are used to construct discrepancy func-
tions of Reynolds stresses At(q) with respect to the mean flow features q by using machine
learning algorithms (panel b). These functions are queried to provide Reynolds stress corrections
in RANS simulations of complex flows (panel c). Panel (d) shows a feature space view of the
training data provided by different classes of flows. Only two features (mean flow curvature and
pressure gradient) are shown for illustration purposes.

The current study extends the aforementioned ML technique to high-speed boundary-layer flows. As
an initial step towards the extension, we apply the machine-learning technique to high-Mach-number, zero-
pressure-gradient, flat-plate turbulent boundary layers using the DNS database listed in Table 1. Table 3 lists
the raw mean flow variable to construct the invariant basis used as the regression input vector q for learning
the functional form of the discrepancy in RANS modeled Reynolds stress. The mean-flow features used in
this particular study consist of only a subset of the full list given in Wang et al.,%'7 and the temperature
gradient VT is added to the incompressible-flow features in order to account for variations in thermodynamic
quantities in compressible flows.

ITI. Results

In this study, we focus on demonstrating the physics-informed ML technique on cases where training
and prediction flows have the same geometry of a flat plate (with different spatial domain sizes) but are
different in flow conditions (e.g. the freestream Mach number M., and the wall-to-recovery temperature
ratio T, /T,). Table 4 summarizes the two machine-learning scenarios. In each scenario, we use the DNS
data of a lower-Mach-number turbulent boundary layer as the training flow to build the random forest
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Table 3. Raw mean flow features used as the regression input vector q to construct the invariant
basis for learning the functional form of the discrepancy in RANS modeled Reynolds stress. The
normalized feature ¢§; is obtained by normalizing each element of the corresponding raw input
¢; with normalization factor ¢; according to ¢ = ¢:/(|¢:| + |¢i|). Notations are as follows: U is
mean velocity vector, k is turbulent kinetic energy (TKE), T is temperature, p is fluid density, ¢
is the turbulence dissipation rate, S is the strain rate tensor, C, is the heat capacity at constant

pressure, 2 is the rotation rate tensor, || - || indicate matrix norm.
Normalized raw o . .
input ¢ description raw input g; normalization factor ¢;

N ) €

S strain rate tensor S A

Q rotation rate tensor 0 [1€2]]
. €

Vk dient of TKE Vk 7

gradient o NG

. temperature
T . T U.-VU

v gradient v Iu-vull/c,

regressor. The random forest regressor thus built is in turn used to correct the RANS prediction of Reynolds
stresses for a turbulent boundary layer at a higher Mach number (i.e. the prediction flow). The RANS
results, after corrected by the ML technique, are tested and validated against DNS at the condition of the
prediction flow.

Table 4. Summary of machine-learning scenarios.

Scenarios Training flow Prediction flow
SI Case M25 Case M6Tw076
SII Case M25 Case M8Tw053

In Scenario SI, Case M25 (My = 2.5, T\,/T, = 1.0) is used as the training flow to correct the RANS
results under the condition of Case M6Tw076 (M., = 5.86, T,,/T, = 0.76). Figure 5 shows a comparison
of the Reynolds normal and shear stresses against DNS. The normal stresses (pufu}) corrected by ML have
shown significant improvement over those of the baseline RANS. The improvement for the shear stress pu/v’
is comparatively minor given that Menter’s SST k — w model used in the baseline RANS has already been
well-tuned to give good predictions of the Reynolds shear stress for canonical flows like the attached flat-
plate turbulent boundary layers at high speeds. Similar trend of the Reynolds-stress components is seen for
Scenario S2 where the same DNS (i.e. Case M25) is used as the training flow to correct the RANS results
under an even higher Mach number of Case M8Tw053 (M, = 7.87, T,,/T, = 0.53), as shown in Figure 6.
Note that in this scenario, the training and prediction flows differ significantly in both the freestream Mach
number and the wall-to-recovery temperature ratio.

Figures 7a and 7b show the turbulent kinetic energy (TKE) for Cases M6Tw076 and M8Tw053, respec-
tively. Consistent with the Reynolds normal stresses, the TKE shows significantly better comparison with
the DNS after corrected by ML.

To visualize the Reynolds-stress anisotropy, Figures 8 and 9 plot the Barycentric map at multiple stream-
wise locations for Scenarios SI and SII. The Reynolds-stress anisotropy shows significant improvement after
corrected by the ML technique.

IV. Summary

In this paper, a physics-informed machine learning approach is applied to improve RANS modeled
Reynolds stresses for high-speed flat-plate turbulent boundary layers using an existing DNS database. The
effectiveness of the ML technique for improving Reynolds stresses is demonstrated on two scenarios where
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Figure 5. Comparison of RANS-predicted Reynolds stresses with the DNS for Case M6TwO076.
(Scenario SI: Training flow: Case M25; Prediction flow: Case M6TwO076). (a) pu/v’/Tw; (b) pv'v" /Tw;

(¢) pw'n’ /T (d) pu'v’ /T
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Figure 6. Comparison of RANS-predicted Reynolds stresses with the DNS for Case M8Tw053.

(Scenario SII: Training flow: Case M25; Prediction flow: Case M8TwO053).
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Figure 7. Comparison of RANS-predicted turbulent kinetic energy k/uf with the DNS. (a) Case
M6TwO076 (Scenario SI: Training flow: Case M25; Prediction flow: Case M6TwO076); (b) Case
M8TwO053. (Scenario SII: Training flow: Case M25; Prediction flow: Case M8Tw053).

training and prediction flows have the same geometry of a flat plate but are different in the freestream Mach
number M, and the wall-to-recovery temperature ratio Ty, /T,. The study shows that the RANS predicted
Reynolds normal stresses, the TKE, and the Reynolds-stress anisotropy of cold-wall hypersonic turbulent
boundary layers (Case M6Tw076 and Case M8Tw053) can be significantly improved using the ML technique
based upon a training flow of a supersonic boundary layer with an adiabatic wall (Case M25). Such a study
lays the foundation toward better physics-based turbulence modeling for high-Mach-number turbulent flows.
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(Training flow: Case M25; Prediction flow: Case M6Tw076). The corrected results (red circle)
on four streamwise locations (i.e., z/d = 32.97,33.41, 33.84, 34.27) are plotted in panels (a), (b), (c),

and (d). Corresponding baseline results (blue triangle) and benchmark results (black square) are
also plotted for comparison.
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