
QAGView: Interactively Summarizing High-Valued Aggregate
!ery Answers

Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang
Department of Computer Science, Duke University

Durham, North Carolina
ywen@cs.duke.edu,willzxd@gmail.com,{sudeepa,junyang}@cs.duke.edu

ABSTRACT

Methods for summarizing and diversifying query results have

drawn significant attention recently, because they help present

query results with lots of tuples to users in more informative ways.

We present QAGView (Quick AGgregate View), which provides a

holistic overview of high-valued aggregate query answers to the

user in the form of summaries (showing high-level properties that

emerge from subsets of answers) with coverage guarantee (for a

user-specified number of top-valued answers) that is both diverse

(avoiding overlapping or similar summaries) and relevant (focus-

ing on high-valued aggregate answers). QAGView allows users to

view the high-level summaries as clusters, and to expand individual

clusters for their constituent result tuples. Users can fine-tune the

behavior of QAGView by specifying a number of parameters accord-

ing their preference. To help users choose appropriate parameters

interactively, QAGView employ a suite of optimizations that enable

quick preview of how the quality of the summaries changes over

wide ranges of parameter settings, as well as real-time visualization

of how the summaries evolve in response to parameter updates.

CCS CONCEPTS

•Human-centered computing→ Information visualization;

• Information systems→ Clustering; Top-k retrieval in databases;

KEYWORDS

Database visualization; database usability; clustering; data mining

ACM Reference Format:

Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang. 2018. QAGView: In-

teractively Summarizing High-Valued Aggregate Query Answers. In SIG-

MOD’18: 2018 International Conference on Management of Data, June 10–

15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3183713.3193566

1 INTRODUCTION

Summarization and diversification of query results have recently

drawn significant attention in databases and other applications such

as keyword search, recommendation systems, and online shopping.

The goal of both result summarization and result diversification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193566

Rank hdec age gender occupation val

1 1975 20s M Student 4.24

2 1980 20s M Programmer 4.13

3 1980 10s M Student 3.96

4 1980 20s M Student 3.91

5 1985 20s M Programmer 3.86

6 1980 20s M Engineer 3.83

7 1985 10s M Student 3.77

8 1985 20s M Student 3.76

9 1995 30s F Educator 370

10 1985 20s M Engineer 3.65

.

41 1995 60s M Retired 3.09

42 1995 30s M Scientist 3.07

43 1995 30s M Marketing 3.02

44 1995 20s M Technician 2.92

45 1995 30s M Entertainment 2.91

46 1995 20s M Executive 2.91

47 1995 30s F Librarian 2.84

48 1995 30s M Student 2.81

49 1995 20s M Writer 2.51

50 1995 20s F Healthcare 1.98

Figure 1: Tuples in the result of the query in Example 1.1.

is to make a large set of query result tuples more informative to

the user, since the user is unlikely to view results beyond a small

number. In this demonstration, we present QAGView (Quick AGgre-

gate View), which produces an “overview” of high-valued tuples

in the result of an aggregate database query as a set of clusters,

with compact and user-interpretable summaries of their constituent

result tuples. QAGView helps users find the desired clustering that

meet the following (often competing) goals simultaneously: 1) the

clusters must provide good coverage, i.e., covering at least a spec-

ified number of top-valued result tuples; 2) they must be diverse,

i.e., avoiding overlapping clusters and/or penalizing similar sum-

maries; and 3) they must be relevant, i.e., avoiding dilution caused

by covering low-valued result tuples.

Example 1.1. Suppose an analyst is using the movie ratings data

fromMovieLens [2] to investigate average movie ratings across genres

by different groups of users over time. The analyst first joins several

relations from this dataset (information about movies, ratings, users,

and their occupations) into one relation R, extracts some additional

features from the original attributes (age group, decade, half-decade),

and then runs the following aggregate query on R (we omit the join

for simplicity). In this query, hdec denotes disjoint five-year windows

of half-decades, e.g., 1990 for 1990–94, 1995 for 1995–99, etc.; agegrp

denotes age groups of users, e.g., 10s for 10–19, 20s for 20–29, etc.

SELECT hdec, agegrp, gender, occupation, avg(rating) as val

FROM R

GROUP BY hdec, agegrp, gender, occupation

WHERE genres_adventure = 1

HAVING count(*) > 50

ORDER BY score DESC

The top 10 and bottom 10 results from this query are shown in

Figure 1. Suppose the analyst has no patience or interest to go over all

SIGMOD’18, June 10–15, 2018, Houston, TX, USA Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang

50 result tuples; instead, we get to deliver 4 rows of information that

will best help the analyst understand viewers and time periods with

high ratings for the adventure genre.

The obvious option is to output the top 4 result tuples from Figure 1,

but they do not summarize the common properties of the intended

viewers/times periods. In addition, despite having high scores, they

have attribute values that are close to each other (e.g., male students

in their 20s) leading to repetition of information and sub-optimal

use of the designated space of 4 rows. More importantly, the top 4

original result tuples may give a wrong impression on the common

properties of high-valued tuples even if they all share those properties.

For instance, all top 4 tuples share the properties (20s, M), but it is

misleading, since a closer look at Figure 1 reveals that many tuples

with low values (49th, 46th, 44th) share these properties too, suggesting

that male viewers in their 20s may or may not give high rating to the

adventure genre. A corollary to the above observation is that simply

running a standard clustering algorithm on the high-valued result

tuples may not work, because some resulting clusters may include

low-valued result tuples and hence are misleading.

QAGView provides solutions to such scenarios and helps the user

see summaries of high-valued result tuples with relevance, coverage,

and diversity. Each summary cluster is described by a pattern that

sets a subset of the group-by attributes to specific values while leav-

ing others to “don’t-cares” (denoted by ∗). Based on their preference,

users use three parameters to control the behavior of QAGView. The

size parameter k specifies the number of clusters desired (k = 4

in Example 1.1). The coverage parameter L denotes the number of

top-valued result tuples (as ranked by the original aggregate query)

that must be covered by the k clusters. The diversity parameter D

ensures that the clusters should be at least “distance” D from each

other; i.e., between any two cluster patterns, there are at least D

attributes for which they do not set identical specific values.

Notably, QAGView presents three interfaces for users to explore

and understand aggregate query results.

1. Exploring high-valued result tuples via summary clus-

ters. Once QAGView summarizes the query result given k ,L,D, it

shows each summary cluster as a row; users can then click on the

row to expand the cluster to reveal its constituent result tuples.

For example, suppose we run QAGView for the query in Exam-

ple 1.1 with k = 4,L = 8, and D = 2; i.e., the user would like to

see at most 4 clusters, these clusters should cover the top 8 tuples

from Figure 1, and any two clusters should disagree on at least two

attributes. QAGView would produce the four clusters shown in the

top of Figure 2, with their patterns as well as average values of their

constituent tuples. The user can investigate any of these clusters

further by expanding them (clicking on !). The bottom of Figure 2

shows when all four clusters are expanded. Here, it happens that

clusters are disjoint and cover no other tuples outside the top 8; in

general, the clusters may overlap and contain lower-valued tuples,

although QAGView will attempt to avoid such cases.

The above example illustrates several advantages and features

of QAGView in providing a meaningful and holistic summary of

high-valued aggregate query answers. First, the properties that

summarize multiple top result tuples are clearly highlighted by the

summary clusters, whereas the original top 8 result tuples are still

accessible by expanding the clusters. Second, the summary clusters

hdec agegrp gender occupation avg val

1975 20s M Student 4.24 !

1980 ∗ M ∗ 3.96 !

1985 20 M Programmer 3.86 !

1985 ∗ M Student 3.76 !

hdec agegrp gender occupation avg val rank

1975 20s M Student 4.24 !

1975 20s M Student 4.24 1

1980 ∗ M ∗ 3.96 !

1980 20s M Programmer 4.13 2

1980 10s M Student 3.96 3

1980 20s M Student 3.91 4

1980 20s M Engineer 3.83 6

1985 20 M Programmer 3.86 !

1985 20s M Programmer 3.86 5

1985 ∗ M Student 3.76 !

1985 20s M Student 3.76 7

1985 10s M Student 3.76 8

Figure 2: Collapsed (top) vs. expanded (bottom) views of the sum-

mary clusters.

are diverse, each contributing some extra novelty to the answer.

Third, the clustering captures the properties of the top result tuples

that distinguish them from those with low values (e.g., (20s, M) is

not chosen as discussed in Example 1.1), which cannot be achieved

by applying standard clustering methods to the top L tuples.

2. Guiding the selection of clustering parameters. Natu-

rally, selecting the right values of k (number of clusters), L (tuples

to cover), and D (distance to ensure diversity) is non-trivial, and

highly dependent on how users intend to use the aggregate query

result. Thus, instead of imposing automatically chosen parameter

settings on users, QAGView aims to help users select appropriate

settings via interactive exploration. For instance, there may be sce-

narios when users would like to find a certain parameter setting

that produces a moderate number of well-separated clusters that do

not include too many low-valued tuples. Finding such settings by

repeatedly tweaking parameters can be time-consuming. QAGView

allows users to quickly preview, as line plots, the effect of parame-

ters on clustering quality over a wide range of parameter settings,

so that users can visually and quickly identify specific settings of

interest. For example, QAGView can produce the visualization in Fig-

ure 4 to show how clustering quality—as measured by the overall

average value among all covered tuples (including those outside

the top L)—changes with k and D.

3. Visualizing the evolution of clusters as parameters

change. Besides producing the overall preview of how parameter

settings affect clustering quality, QAGView also helps users visualize

how clusters changes at a more fine-grained level between two

parameter settings. Upon tweaking some parameters, users can

visually compare the old versus clusters side by side. An example

is shown in Figure 5. With this visualization, users can quickly

get summary information about the clusters, see how result tuples

get redistributed, and find out which clusters remain the same and

which ones are merged, split, or reorganized.

Related work. There has been work on diversifying a set of

result tuples by selecting a subset of them. For example, diversified

top-k [4] takes into account diversity and relevance while selecting

top result tuples. DisC diversity [1] considers similarity with the

tuples that are not selected as well as and diversity and relevance

among the selected ones. In contrast, we intend to produce sum-

marized information on the result tuples to give the user a holistic

view of the result tuples with high value. Another line of related

QAGView: Interactively Summarizing High-Valued Aggregate !ery Answers SIGMOD’18, June 10–15, 2018, Houston, TX, USA

work is smart drill-down [3], which explores and summarizes inter-

esting tuples in a database (not aggregate answers) using a notion

of diversity called “marginal counts.” These previous approaches

all consider different problem definitions and usage scenarios from

ours; we refer interested readers to [5] for a detailed discussion.

2 QAGVIEW SYSTEM DETAILS

In this section we discuss some of the system details of QAGView.

QAGView is a web-based application coded in Java, Scala, and

JavaScript, based on Play Framework 2.6 with D3 for visualiza-

tion and PostgreSQL as the database backend. In the following, we

highlight some algorithmic and optimization challenges in support-

ing interactivity. For additional details, please see [5].

Computing summary clusters. Given an aggregate query Q

on a database D, where the query hasm group-by attributes and

each tuple t in the output Q (D) has an aggregate value val(t)

(score of the tuple, higher is better), QAGView outputs a set of (pos-

sibly overlapping) clusters O for the tuples in Q (D), where each

cluster is defined by a pattern that sets a subset of them group-by

attributes to specific values while leaving others to “don’t-cares”

(denoted by ∗). A feasible solution is a set of clusters O that satisfy

the following requirements: 1) size k: the number of clusters in

O is at most k ; 2) diversity D: the distance d (C1,C2) between any

two clustersC1,C2 is at least D, i.e.,C1 andC2’s patterns cannot set

identical specific (non-∗) values for more thanm − D group-by at-

tributes; 3) coverage L: the output clusters cover the original top-L

tuples inQ (D); and 4)minimality: no cluster in O should contain

another in O. The goal is to find a solution with highest quality,

defined as the average aggregate value among all result tuples

covered by the solution: val(O) =
(

∑

t ∈cov(O) val(t)
)

/|cov(O) |.

Here, cov(C) denotes the result tuples covered by cluster C , and

cov(O) =
⋃

C ∈O cov(C) are the tuples covered by all clusters in

O. Note that cov(O) may contain tuples outside the desired top L

tuples, potentially lowering the solution quality.

The optimization problem above is NP-hard even when some

of the constraints involving k ,L,D are relaxed [5]. We have de-

signed efficient heuristic algorithms that exploit the semilattice

structure of the clusters and its properties (e.g., merging two clus-

ters does not violate the diversity constraint involving D). Two

natural approaches are bottom-up (starting with the set of singleton

clusters each containing an individual top-L tuple, and greedily

merging clusters until all solution constraints are met), and fixed-

order (starting with an empty solution, adding one singleton cluster

containing an individual top-L tuple at a time in some order, and

merging clusters greedily whenever solution constraints are vio-

lated). Through experiments, we have found that bottom-up tends

to generate solutions with higher quality but fixed-order is better in

terms of efficiency. So in QAGView, we take the advantages of both

in a hybrid algorithm, which runs the faster fixed-order with a tar-

get number of clusters k ′ > k , and then switch to the more careful

bottom-up (now with much fewer starting number of clusters) to

obtain the final solution (details and pseudocodes in [5]).

Guiding the selection of clustering parameters. Users typi-

cally have some idea about how to set L (i.e., what aggregate values

are consider high), but need help setting k and D. To produce visu-

alizations such as the one in Figure 4, we must quickly compute, for

a given L, clustering solutions for all possible combinations of k and

D values. Independently computing a solution for each (k ,D) pair

would take too much time. Instead, we adapt the hybrid algorithm

such that given L and D, with one execution, it can compute (and

remember) solutions for all k values of interest. Briefly, given L

and D, in the first phase of hybrid, we use fixed-order to compute a

solution with a sufficiently large number of clusters. Then, in the

second phase, we use bottom-up to decrease the number of clusters

gradually by greedily merging clusters; each step of bottom-up pro-

duces a solution for a different k value. Instead of remembering the

clusters in every solution, we note that each cluster always exists

in the solutions for a range of consecutive k values. Hence, we can

efficiently store and index all solutions by associating each cluster

with a range of k values.

In our experiments [5], we have found that using the above

method to precompute and index solutions for all k values takes

less than twice as long as computing the solution for a single k

value. On the other hand, it supports production of visualizations

such as Figure 4 in real time. Furthermore, with the solution index

it creates, a solution for any given k can be produced much faster

(more than 200 times faster than computing it from scratch), which

enables interactive user adjustments to clustering parameters.

Other optimizations to improve interaction speed.

QAGView implements a number of other optimizations to ensure

fast response time especially when challenged by large result sets.

Incremental evaluation of greedy objective. Each greedy step in our

algorithms considers all possible cluster merges, which is expensive

since the resulting solution quality needs to be computed for each

possibility. Noting that changes to solution quality come from new

result tuples not yet covered by existing clusters, we have devised

a method that avoids recomputing a cluster’s effect on solution

quality from scratch in every greedy step, by remembering and

incrementally computing this effect as needed. Our experiments

show about 30× speed-up using this method.

Better cluster enumeration and matching. When the number of

group-by attributes is high, simply enumerating all possible clus-

ters would be impractical. Instead, we ensure that our algorithms

consider only clusters that contain at least one top-L result tuple.

Moreover, finding all result tuples covered by a given cluster is often

more expensive than finding clusters covering a given result tuple,

because the latter requires only examining the tuple’s attribute

values to generate cluster patterns. Optimizations based on these

ideas bring another factor of 100–1000× speed-up.

Hashing strings to integers. In many datasets, a large fraction of

attributes are strings; storing, manipulating, and matching these

strings as part of the cluster patterns can create considerable over-

head. Thus, we establish a hash-based mapping between strings

and integers, allowing string-valued attributes to be internally pro-

cessed efficiently as integer-value ones. This optimization brings

about 50× speed-up.

Details of our experiments can be found in [5]. We evaluated

our algorithms and optimizations on a large TPC-D dataset for

scalability. With about 50k result tuples and L = 2000, QAGView

takes about 3.5 seconds to precompute solutions for all (k ,D) values

of interest and generate the visualization to guide their selection;

subsequently, viewing the solution for a specific (k,D) pair takes

only a few milliseconds.

