Demonstrations

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

QAGView: Interactively Summarizing High-Valued Aggregate
Query Answers

Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, Jun Yang
Department of Computer Science, Duke University
Durham, North Carolina
ywen@cs.duke.edu, willzxd@gmail.com,{sudeepa,junyang}@cs.duke.edu

ABSTRACT

Methods for summarizing and diversifying query results have
drawn significant attention recently, because they help present
query results with lots of tuples to users in more informative ways.
We present QAGView (Quick AGgregate View), which provides a
holistic overview of high-valued aggregate query answers to the
user in the form of summaries (showing high-level properties that
emerge from subsets of answers) with coverage guarantee (for a
user-specified number of top-valued answers) that is both diverse
(avoiding overlapping or similar summaries) and relevant (focus-
ing on high-valued aggregate answers). QAGView allows users to
view the high-level summaries as clusters, and to expand individual
clusters for their constituent result tuples. Users can fine-tune the
behavior of QAGView by specifying a number of parameters accord-
ing their preference. To help users choose appropriate parameters
interactively, QAGView employ a suite of optimizations that enable
quick preview of how the quality of the summaries changes over
wide ranges of parameter settings, as well as real-time visualization
of how the summaries evolve in response to parameter updates.
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1 INTRODUCTION

Summarization and diversification of query results have recently
drawn significant attention in databases and other applications such
as keyword search, recommendation systems, and online shopping.
The goal of both result summarization and result diversification
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Rank hdec age gender occupation val
1 1975 20s M Student 4.24
2 1980 20s M Programmer 4.13
3 1980 10s M Student 3.96
4 1980 20s M Student 3.91
5 1985 20s M Programmer 3.86
6 1980 20s M Engineer 3.83
7 1985 10s M Student 3.77
8 1985 20s M Student 3.76
9 1995 30s F Educator 370
10 1985 20s M Engineer 3.65

41 1995 60s M Retired 3.09
42 1995 30s M Scientist 3.07
43 1995 30s M Marketing 3.02
44 1995 20s M Technician 2.92
45 1995 30s M Entertainment 2.91
46 1995 20s M Executive 2.91
47 1995 30s F Librarian 2.84
48 1995 30s M Student 2.81
49 1995 20s M Writer 2.51
50 1995 20s F Healthcare 1.98

Figure 1: Tuples in the result of the query in Example 1.1.

is to make a large set of query result tuples more informative to
the user, since the user is unlikely to view results beyond a small
number. In this demonstration, we present QAGView (Quick AGgre-
gate View), which produces an “overview” of high-valued tuples
in the result of an aggregate database query as a set of clusters,
with compact and user-interpretable summaries of their constituent
result tuples. QAGView helps users find the desired clustering that
meet the following (often competing) goals simultaneously: 1) the
clusters must provide good coverage, i.e., covering at least a spec-
ified number of top-valued result tuples; 2) they must be diverse,
i.e., avoiding overlapping clusters and/or penalizing similar sum-
maries; and 3) they must be relevant, i.e., avoiding dilution caused
by covering low-valued result tuples.

EXAMPLE 1.1. Suppose an analyst is using the movie ratings data
from MovieLens [2] to investigate average movie ratings across genres
by different groups of users over time. The analyst first joins several
relations from this dataset (information about movies, ratings, users,
and their occupations) into one relation R, extracts some additional
features from the original attributes (age group, decade, half-decade),
and then runs the following aggregate query on R (we omit the join
for simplicity). In this query, hdec denotes disjoint five-year windows
of half-decades, e.g., 1990 for 1990-94, 1995 for 1995-99, etc.; agegrp
denotes age groups of users, e.g., 10s for 10—19, 20s for 20-29, etc.
SELECT hdec, agegrp, gender, occupation, avg(rating) as val
FROM R
GROUP BY hdec, agegrp, gender, occupation
WHERE genres_adventure = 1
HAVING count(*) > 50
ORDER BY score DESC

The top 10 and bottom 10 results from this query are shown in
Figure 1. Suppose the analyst has no patience or interest to go over all
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50 result tuples; instead, we get to deliver 4 rows of information that
will best help the analyst understand viewers and time periods with
high ratings for the adventure genre.

The obvious option is to output the top 4 result tuples from Figure 1,
but they do not summarize the common properties of the intended
viewers/times periods. In addition, despite having high scores, they
have attribute values that are close to each other (e.g., male students
in their 20s) leading to repetition of information and sub-optimal
use of the designated space of 4 rows. More importantly, the top 4
original result tuples may give a wrong impression on the common
properties of high-valued tuples even if they all share those properties.
For instance, all top 4 tuples share the properties (20s, M), but it is
misleading, since a closer look at Figure 1 reveals that many tuples
with low values (49th, 46th, 44th) share these properties too, suggesting
that male viewers in their 20s may or may not give high rating to the
adventure genre. A corollary to the above observation is that simply
running a standard clustering algorithm on the high-valued result
tuples may not work, because some resulting clusters may include
low-valued result tuples and hence are misleading.

QAGView provides solutions to such scenarios and helps the user
see summaries of high-valued result tuples with relevance, coverage,
and diversity. Each summary cluster is described by a pattern that
sets a subset of the group-by attributes to specific values while leav-
ing others to “don’t-cares” (denoted by ). Based on their preference,
users use three parameters to control the behavior of QAGView. The
size parameter k specifies the number of clusters desired (k = 4
in Example 1.1). The coverage parameter L denotes the number of
top-valued result tuples (as ranked by the original aggregate query)
that must be covered by the k clusters. The diversity parameter D
ensures that the clusters should be at least “distance” D from each
other; i.e., between any two cluster patterns, there are at least D
attributes for which they do not set identical specific values.

Notably, QAGView presents three interfaces for users to explore
and understand aggregate query results.

1. Exploring high-valued result tuples via summary clus-
ters. Once QAGView summarizes the query result given k,L,D, it
shows each summary cluster as a row; users can then click on the
row to expand the cluster to reveal its constituent result tuples.

For example, suppose we run QAGView for the query in Exam-
ple 1.1 with k = 4,L = 8, and D = 2; i.e., the user would like to
see at most 4 clusters, these clusters should cover the top 8 tuples
from Figure 1, and any two clusters should disagree on at least two
attributes. QAGView would produce the four clusters shown in the
top of Figure 2, with their patterns as well as average values of their
constituent tuples. The user can investigate any of these clusters
further by expanding them (clicking on ¥). The bottom of Figure 2
shows when all four clusters are expanded. Here, it happens that
clusters are disjoint and cover no other tuples outside the top 8; in
general, the clusters may overlap and contain lower-valued tuples,
although QAGView will attempt to avoid such cases.

The above example illustrates several advantages and features
of QAGView in providing a meaningful and holistic summary of
high-valued aggregate query answers. First, the properties that
summarize multiple top result tuples are clearly highlighted by the
summary clusters, whereas the original top 8 result tuples are still
accessible by expanding the clusters. Second, the summary clusters
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hdec agegrp gender occupation avg val

1975 20s M Student 4.24 v

1980 * M * 3.96 v

1985 20 M Programmer 3.86 \

1985 * M Student 3.76 v
hdec agegrp gender occupation avg val rank
1975 20s M Student 4.24 v
1975 20s M Student 4.24 1
1980 * M * 3.96 \
1980 20s M Programmer 4.13 2
1980 10s M Student 3.96 3
1980 20s M Student 3.91 4
1980 20s M Engineer 3.83 6
1985 20 M Programmer 3.86 v
1985 20s M Programmer 3.86 5
1985 * M Student 3.76 A\
1985 20s M Student 3.76 7
1985 10s M Student 3.76 8

Figure 2: Collapsed (top) vs. expanded (bottom) views of the sum-
mary clusters.

are diverse, each contributing some extra novelty to the answer.
Third, the clustering captures the properties of the top result tuples
that distinguish them from those with low values (e.g., (20s, M) is
not chosen as discussed in Example 1.1), which cannot be achieved
by applying standard clustering methods to the top L tuples.

2. Guiding the selection of clustering parameters. Natu-
rally, selecting the right values of k (number of clusters), L (tuples
to cover), and D (distance to ensure diversity) is non-trivial, and
highly dependent on how users intend to use the aggregate query
result. Thus, instead of imposing automatically chosen parameter
settings on users, QAGView aims to help users select appropriate
settings via interactive exploration. For instance, there may be sce-
narios when users would like to find a certain parameter setting
that produces a moderate number of well-separated clusters that do
not include too many low-valued tuples. Finding such settings by
repeatedly tweaking parameters can be time-consuming. QAGView
allows users to quickly preview, as line plots, the effect of parame-
ters on clustering quality over a wide range of parameter settings,
so that users can visually and quickly identify specific settings of
interest. For example, QAGView can produce the visualization in Fig-
ure 4 to show how clustering quality—as measured by the overall
average value among all covered tuples (including those outside
the top L)—changes with k and D.

3. Visualizing the evolution of clusters as parameters
change. Besides producing the overall preview of how parameter
settings affect clustering quality, QAGView also helps users visualize
how clusters changes at a more fine-grained level between two
parameter settings. Upon tweaking some parameters, users can
visually compare the old versus clusters side by side. An example
is shown in Figure 5. With this visualization, users can quickly
get summary information about the clusters, see how result tuples
get redistributed, and find out which clusters remain the same and
which ones are merged, split, or reorganized.

Related work. There has been work on diversifying a set of
result tuples by selecting a subset of them. For example, diversified
top-k [4] takes into account diversity and relevance while selecting
top result tuples. DisC diversity [1] considers similarity with the
tuples that are not selected as well as and diversity and relevance
among the selected ones. In contrast, we intend to produce sum-
marized information on the result tuples to give the user a holistic
view of the result tuples with high value. Another line of related
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work is smart drill-down [3], which explores and summarizes inter-
esting tuples in a database (not aggregate answers) using a notion
of diversity called “marginal counts” These previous approaches
all consider different problem definitions and usage scenarios from
ours; we refer interested readers to [5] for a detailed discussion.

2 QAGVIEW SYSTEM DETAILS

In this section we discuss some of the system details of QAGView.
QAGView is a web-based application coded in Java, Scala, and
JavaScript, based on Play Framework 2.6 with D3 for visualiza-
tion and PostgreSQL as the database backend. In the following, we
highlight some algorithmic and optimization challenges in support-
ing interactivity. For additional details, please see [5].

Computing summary clusters. Given an aggregate query Q
on a database D, where the query has m group-by attributes and
each tuple ¢ in the output Q(D) has an aggregate value val(t)
(score of the tuple, higher is better), QAGView outputs a set of (pos-
sibly overlapping) clusters O for the tuples in Q(D), where each
cluster is defined by a pattern that sets a subset of the m group-by
attributes to specific values while leaving others to “don’t-cares”
(denoted by *). A feasible solution is a set of clusters O that satisfy
the following requirements: 1) size k: the number of clusters in
O is at most k; 2) diversity D: the distance d(C1,Cz) between any
two clusters C1,Cs is at least D, i.e., C; and Cy’s patterns cannot set
identical specific (non-+) values for more than m — D group-by at-
tributes; 3) coverage L: the output clusters cover the original top-L
tuples in Q(9); and 4) minimality: no cluster in O should contain
another in O. The goal is to find a solution with highest quality,
defined as the average aggregate value among all result tuples
covered by the solution: val(0) = (Ztemv(o) val(t)) /lcov(0)].
Here, cov(C) denotes the result tuples covered by cluster C, and
cov(0) = Uceo cov(C) are the tuples covered by all clusters in
O. Note that cov(O) may contain tuples outside the desired top L
tuples, potentially lowering the solution quality.

The optimization problem above is NP-hard even when some
of the constraints involving k,L,D are relaxed [5]. We have de-
signed efficient heuristic algorithms that exploit the semilattice
structure of the clusters and its properties (e.g., merging two clus-
ters does not violate the diversity constraint involving D). Two
natural approaches are bottom-up (starting with the set of singleton
clusters each containing an individual top-L tuple, and greedily
merging clusters until all solution constraints are met), and fixed-
order (starting with an empty solution, adding one singleton cluster
containing an individual top-L tuple at a time in some order, and
merging clusters greedily whenever solution constraints are vio-
lated). Through experiments, we have found that bottom-up tends
to generate solutions with higher quality but fixed-order is better in
terms of efficiency. So in QAGView, we take the advantages of both
in a hybrid algorithm, which runs the faster fixed-order with a tar-
get number of clusters k” > k, and then switch to the more careful
bottom-up (now with much fewer starting number of clusters) to
obtain the final solution (details and pseudocodes in [5]).

Guiding the selection of clustering parameters. Users typi-
cally have some idea about how to set L (i.e., what aggregate values
are consider high), but need help setting k and D. To produce visu-
alizations such as the one in Figure 4, we must quickly compute, for
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a given L, clustering solutions for all possible combinations of k and
D values. Independently computing a solution for each (k, D) pair
would take too much time. Instead, we adapt the hybrid algorithm
such that given L and D, with one execution, it can compute (and
remember) solutions for all k values of interest. Briefly, given L
and D, in the first phase of hybrid, we use fixed-order to compute a
solution with a sufficiently large number of clusters. Then, in the
second phase, we use bottom-up to decrease the number of clusters
gradually by greedily merging clusters; each step of bottom-up pro-
duces a solution for a different k value. Instead of remembering the
clusters in every solution, we note that each cluster always exists
in the solutions for a range of consecutive k values. Hence, we can
efficiently store and index all solutions by associating each cluster
with a range of k values.

In our experiments [5], we have found that using the above
method to precompute and index solutions for all k values takes
less than twice as long as computing the solution for a single k
value. On the other hand, it supports production of visualizations
such as Figure 4 in real time. Furthermore, with the solution index
it creates, a solution for any given k can be produced much faster
(more than 200 times faster than computing it from scratch), which
enables interactive user adjustments to clustering parameters.

Other optimizations to improve interaction speed.
QAGView implements a number of other optimizations to ensure
fast response time especially when challenged by large result sets.

Incremental evaluation of greedy objective. Each greedy step in our
algorithms considers all possible cluster merges, which is expensive
since the resulting solution quality needs to be computed for each
possibility. Noting that changes to solution quality come from new
result tuples not yet covered by existing clusters, we have devised
a method that avoids recomputing a cluster’s effect on solution
quality from scratch in every greedy step, by remembering and
incrementally computing this effect as needed. Our experiments
show about 30X speed-up using this method.

Better cluster enumeration and matching. When the number of
group-by attributes is high, simply enumerating all possible clus-
ters would be impractical. Instead, we ensure that our algorithms
consider only clusters that contain at least one top-L result tuple.
Moreover, finding all result tuples covered by a given cluster is often
more expensive than finding clusters covering a given result tuple,
because the latter requires only examining the tuple’s attribute
values to generate cluster patterns. Optimizations based on these
ideas bring another factor of 100-1000x speed-up.

Hashing strings to integers. In many datasets, a large fraction of
attributes are strings; storing, manipulating, and matching these
strings as part of the cluster patterns can create considerable over-
head. Thus, we establish a hash-based mapping between strings
and integers, allowing string-valued attributes to be internally pro-
cessed efficiently as integer-value ones. This optimization brings
about 50x speed-up.

Details of our experiments can be found in [5]. We evaluated
our algorithms and optimizations on a large TPC-D dataset for
scalability. With about 50k result tuples and L = 2000, QAGView
takes about 3.5 seconds to precompute solutions for all (k, D) values
of interest and generate the visualization to guide their selection;
subsequently, viewing the solution for a specific (k,D) pair takes
only a few milliseconds.
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Visualizing cluster changes. As users adjust clustering param-
eters, QAGView produces a visualization like that in Figure 5 to help
users understand how their adjustment changes an old clustering
solution O; to a new one O,. We display the clusters in O and O
as two vertical stacks of rectangles, with width proportional to the
number of result tuples they contain. For any two clusters C; € Oy
and Cz € Oz whose contents overlap, we further show a band from
C1 to C; with width (in the middle) proportional to the size of the
overlap. How to present such relationships between clusters in
the old and new solutions in a clean and informative manner is
challenging. If we simply stack the clusters in an arbitrary order,
lots of bands will cross, creating visual clutter. We approach this
challenge in a principled way, formulating it as an optimization
problem that looks for the best visual placement of clusters to min-
imize a measure of “clutter” We reduce this problem to bipartite
graph matching, which can be solved efficiently in polynomial time.
In practice, generating the optimized visualization takes only a few
milliseconds in our experiments [5].

3 DEMONSTRATION

The demonstration of QAGView uses three datasets—besides the
MovieLens data discussed in Example 1.1, we will also let users
explore voting records of legislators in the U.S. Congress as well as
player performance statistics in the National Basketball Association.

1. Exploring high-valued result tuples via summary clus-
ters. As Figure 3 illustrates, from the main GUI of QAGView, users
can select which database to connect to and what table to view.
They can issue a SQL query and specify the clustering parameters k,
L, and D (defaults are provided), and then explore the query result
tuples as a list of summary clusters, each of which can be further
expanded to reveal the list of result tuples therein.

2. Guiding the selection of clustering parameters. Users
have the option of asking QAGView to “guide” them through the
selection of clustering parameters. Given the coverage parameter L,
QAGView plots how the number of clusters (k) affects the clustering
quality under different settings of the diversity parameter (D), as
illustrated in Figure 4. Each line plot (of different color) represents
a different D. Intuitively, given D, the “knees” in the corresponding
line plot help users identify good choices of k (e.g., k = 9 or 11
for D = 1), because additional clusters beyond these points would
bring diminishing improvement to clustering quality. In contrast,
the ranges of k within which the plot is close to linear or flat (e.g.,
k > 6 for D = 3) are less interesting.

3. Visualizing the evolution of clusters as parameters
change. When users make some change to the clustering parame-
ters k, L, and D, QAGView provides an option to visually compare
the old and new result clusters, such as Figure 5. Recall that if an
old cluster (rectangle on the left) and a new cluster (rectangle on
the right) overlap in their contents, there will be a band connecting
them. When the pointer hovers over an old cluster, for example in
Figure 5, QAGView will highlight this cluster as well as the bands
(three in this case) that connect to it, letting users easily see where
its contents get regrouped under the new clustering. QAGView will
also show details about the highlighted cluster, such as the number
of aggregate result tuples it covers (size), the number of top-L result
tuples it covers (coverage), and the average/maximum/minimum
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Figure 3: Main GUI of QAGView.
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Figure 4: Visualization of the effect of k and D on clustering quality
(for a given L), to guide the selection of clustering parameters.
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Figure 5: Visualization of how clusters evolve as parameters
change.

values of the covered tuples. QAGView shows details about each
band connected to the highlighted cluster as well, such as the num-
ber of result tuples shared by the source and destination clusters,
and the percentage of the result tuples in the source cluster that
get regrouped to the destination cluster (note that the sum of per-
centages over all bands connected to the highlighted cluster may
exceed 100%, as destination clusters may overlap).
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