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Abstract. In this paper we study the Shigesada-Kawasaki-Teramoto model

[17] for two competing species with cross-diffusion. We prove the existence
of spectrally stable non-constant positive steady states for high-dimensional

domains when one of the cross-diffusion coefficients is sufficiently large while

the other is equal to zero.

1. Introduction. The movement of organisms generally depend upon the densi-
ties of their conspecifics and competitors. It is well known that density-dependent
dispersal plays an important role in population dynamics and affects the spa-
tial distribution of populations [1, 16]. To understand the spatial segregation of
competing species, Shigesada et al. [17] proposed a mathematical model for two
species, in which the transition probability of each species depend only on the den-
sities of both species at the departure point. The Shigesada-Kawasaki-Teramoto
model (abbreviated as SKT henceforth) is a strongly coupled quasilinear para-
bolic system and it has been studied extensively for the last three decades; See
[2, 5, 4, 6, 7, 8, 9, 11, 12, 13, 14, 18, 20, 21, 22, 23] and references therein. In this
paper we will focus on the following model which is a special case of the SKT model:

ut = ∆ [(d1 + αv)u] + u(a1 − b1u− c1v) in Ω× (0,∞),

vt = d2∆v + v(a2 − b2u− c2v) in Ω× (0,∞),

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0,∞),

(1)

where u(x, t) and v(x, t) represent the densities of two species at location x and
time t. We assume that Ω is a bounded open domain in Euclidean space RN
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with smooth boundary ∂Ω, and ν is the outward unit normal vector on ∂Ω. The
boundary conditions for u and v mean that there is no net flux across the boundary
for either population.

The coefficients d1, d2 are the random dispersal rates of species, a1, a2 are their
intrinsic growth rates, b1, c2 account for their intraspecific competition and b2, c1
are their interspecific competition coefficients. We shall assume that di, ai, bi, ci are
positive constants throughout the paper. The parameter α is referred as the cross-
diffusion coefficient and it measures the population pressure from species v towards
species u. System (1) is a special case of the SKT model which assumes that the
movement rate of species v is also a linear function of the density of its competitor
(i.e., species u).

System (1) for α = 0 has been extensively studied as well. It follows from
the work of Kishimoto and Weinberger [3] that system (1) without cross-diffusion
(i.e., α = 0) has no stable non-constant positive steady states, provided that Ω
is convex. On the other hand, it was shown in [10] that system (1) for α = 0 can
possess stable non-constant positive steady states for some non-convex domains and
suitable coefficients di, ai, bi, ci.

One natural question arises: Does system (1) with large α have stable non-
constant positive steady states for general domains? For sufficiently large α, for-
mally we have [d1/α + v(x, t)]u(x, t) ≈ τ(t) for some function τ(t), so it is natural
to expect that the dynamics of (1) is related with that of the shadow system

∫
Ω

(τ
v

)
t

= τ

∫
Ω

1

v

(
a1 −

b1τ

v

)
− c1τ |Ω|, t > 0,

vt = d2∆v + v(a2 −
b2τ

v
− c2v) in Ω× (0,∞),

∂v

∂ν
= 0 on ∂Ω× (0,∞).

(2)

When N = 1, i.e., Ω is an interval, the existence of non-constant positive steady
states of (2) has been studied in Lou et al. [9]. Among other things, it is shown
in [9] that for Ω = (0, 1), if a1/a2 > b1/b2, then (2) has non-constant positive
steady states for any d2 slightly less than a2/π

2. This is in strong contrast with
the case d2 > a2/π

2, where (2) has no non-constant positive steady states for any
values ai, bi and ci. In a recent work [15], Ni et al. are able to derive more precise
estimates of these steady solutions of (2) as d2 → a2/π

2, which enables them to
construct non-constant positive steady states of system (1) and further show that
these positive steady states are asymptotically stable.

The goal of this paper is to extend some of the results of Ni et al. [15] to
higher dimensional domains. To this end, we first introduce some notation. Let
λ0 = 0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ... denote the eigenvalues of the linear eigenvalue
problem 

−∆ϕ = λϕ in Ω,

∂ϕ

∂ν
= 0 on ∂Ω.

Denote the corresponding eigenfunction of λk by ϕk, normalized by minΩ̄ ϕk = −1.
In particular, ϕ0 ≡ −1 in Ω. However, for k ≥ 1, ϕk is not uniquely determined
by minΩ̄ ϕk = −1 since −ϕk/maxΩ̄ ϕk is also an eigenfunction of λk which satis-
fies minΩ̄

−ϕk
maxΩ̄ ϕk

= −1. If λk is a simple eigenvalue and k ≥ 1, then there are
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exactly two eigenfunctions of λk with the global minimum value −1; i.e., ϕk and
−ϕk/maxΩ̄ ϕk.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N ≤ 4, λk is simple for some k ≥ 1, and a1/a2 >
b1/b2.

(a) (Existence) There exists δ > 0 such that for every d2 ∈ (a2/λk − δ, a2/λk), if α
is sufficiently large, then (1) has two non-constant positive steady state solutions in
C2(Ω̄)× C2(Ω̄), denoted by (u∗±,k, v

∗
±,k).

(b) (Asymptotic behavior) (u∗±,k, v
∗
±,k) satisfy

lim
α→∞

u∗±,k =
τ±,k
v±,k

, lim
α→∞

v∗±,k = v±,k

uniformly in Ω̄. Here (v±,k, τ±,k) are non-constant positive steady states of system
(2) which satisfy

lim
d2→a2/λk

v±,k
d2 − a2/λk

= −λk
c2

∫
Ω
ϕ2
k∫

Ω
ϕ2
k(2 + µ±,kϕk)

[1 + µ±,kϕk] in L∞(Ω),

lim
d2→a2/λk

τ±,k
d2 − a2/λk

= −a2λk
b2c2

∫
Ω
ϕ2
k∫

Ω
ϕ2
k(2 + µ±,kϕk)

,

(3)

where µ+,k > 0 > µ−,k are the roots of∫
Ω

(1 + µϕk)−2 dx∫
Ω

(1 + µϕk)−1 dx
=
a1/a2

b1/b2
. (4)

(c) (Stability) For every d2 ∈ (a2/λ1−δ, a2/λ1), if α is sufficiently large, (u∗±,1, v
∗
±,1)

are spectrally stable in W 1,2(Ω)×W 1,2(Ω).

Remark 1. For k ≥ 2, it is shown in Ni et al. [15] that if N = 1, then for d2 close
to a2/λk, (u∗±,k, v

∗
±,k) are unstable when α is sufficiently large.

Remark 2. For N ≥ 5, Theorem 1.1 remains to hold provided that (4) has positive
and negative roots, e.g., when a1/a2 is slightly larger than b1/b2.

Remark 3. Numerical computations suggest that the branches of positive steady
states of (1) which contain {(u∗±,1, v∗±,1, d2)} can be extended up to d2 = 0, but they
may no longer be stable for some smaller values of d2 under suitable assumptions
on ai, bi, ci. Figure 1 shows positive steady states for the case

Ω = (0, 1)×(0, 15/16) ⊂ R2, d1 = 1, α = 107, b1 = 1, c1 = 2, a2 = b2 = c2 = 1,

A := a1/a2, B := b1/b2 = 1, C := c1/c2 = 2.

It holds that λ1(Ω) = π2, and we take ϕ1 = cos(πx). Two graphs near d2 =
a2/λ1(Ω) represent u∗+,1 and v∗+,1. As d2 decreases, we numerically obtain a branch
of positive steady states connecting to u∗+,1 and v∗+,1. As d2 → 0, it seems that small
spiky solutions appear for the case (B + C)/2 < A < (B + 3C)/4, and large spiky
solutions appear for the case (B + 3C)/4 ≤ A. We suspect from various numerical
computations that small spiky solutions would be unstable and large spiky solutions
would be stable. We note that numbers (B + C)/2 and (B + 3C)/4 appear in the
papers [6, 7] in multi-dimensional case and [9, 15, 19] in one-dimensional case. It
seems that they are very important numbers to investigate the existence and the
stability of steady state solutions.
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Figure 1. Numerically obtained steady states

Our paper is organized as follows: Section 2 is devoted to the existence of non-
constant positive steady states of system (1) and parts (a) and (b) of Theorem 1.1
are proved there. In Section 3 we prove part (c) of Theorem 1.1.

2. Existence of non-constant positive steady states. In this section we prove
parts (a) and (b) of Theorem 1.1. We first establish some qualitative properties
concerning the eigenfunctions ϕk in Subsection 2.1, which will play critical roles in
later analysis. The existence of non-constant positive steady states of (2) is given
in Subsection 2.2. Finally in Subsection 2.3 we prove the existence of non-constant
positive steady states of (1).

2.1. Preliminary results. We recall that ϕk is an eigenfunction of the eigenvalue
λk. For each k ≥ 1, define

gk(µ) :=

∫
Ω

(1 + µϕk)−2 dx∫
Ω

(1 + µϕk)−1 dx
, − 1

maxΩ̄ ϕk
< µ < − 1

minΩ̄ ϕk
. (5)

We shall show that gk(µ) > 1 for any µ 6= 0. Given any number η > 1, we are
interested in whether gk(µ) = η has exactly one positive root and one negative root.

Lemma 2.1. For each k ≥ 1, function gk(µ) satisfies gk(0) = 1, µg′k(µ) > 0 for
any µ 6= 0. In particular, gk(µ) > 1 for µ 6= 0, g′k(µ) > 0 for µ > 0, and g′k(µ) < 0
for µ < 0.

Proof. It is obvious that gk(0) = 1. We first show that gk(µ) > 1 for any µ 6= 0.
By the equation of ϕk we have∫

Ω

1

(1 + µϕk)2
dx−

∫
Ω

1

1 + µϕk
dx
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= −µ
∫

Ω

ϕk
(1 + µϕk)2

dx

=
µ

λk

∫
Ω

∆ϕk
(1 + µϕk)2

dx

=
2µ2

λk

∫
Ω

|∇ϕk|2

(1 + µϕk)3
dx ≥ 0,

(6)

where the last inequality is strict for any µ 6= 0 as ϕk is non-constant for any k ≥ 1.
This proves that gk(µ) > 1 for any µ 6= 0.

By direct calculation,

g′k(µ) =

(∫
Ω

dx

1 + µϕk

)−2
[
− 2

∫
Ω

ϕk dx

(1 + µϕk)3

∫
Ω

dx

1 + µϕk

+

∫
Ω

dx

(1 + µϕk)2

∫
Ω

ϕk dx

(1 + µϕk)2

]
.

Therefore,

µg′k(µ)

(∫
Ω

dx

1 + µϕk

)2

= −2

∫
Ω

µϕk dx

(1 + µϕk)3

∫
Ω

dx

1 + µϕk
+

∫
Ω

dx

(1 + µϕk)2

∫
Ω

µϕk dx

(1 + µϕk)2

= −2

[∫
Ω

dx

(1 + µϕk)2
−
∫

Ω

dx

(1 + µϕk)3

] ∫
Ω

dx

1 + µϕk

+

∫
Ω

dx

(1 + µϕk)2

[∫
Ω

dx

1 + µϕk
−
∫

Ω

dx

(1 + µϕk)2

]
= −

∫
Ω

dx

(1 + µϕk)2

∫
Ω

dx

1 + µϕk
+ 2

∫
Ω

dx

(1 + µϕk)3

∫
Ω

dx

1 + µϕk

−
[∫

Ω

dx

(1 + µϕk)2

]2

≥ 2

∫
Ω

dx

(1 + µϕk)3

∫
Ω

dx

1 + µϕk
− 2

[∫
Ω

dx

(1 + µϕk)2

]2

,

(7)

where the last inequality follows from the fact that gk(µ) ≥ 1 for any µ.
By Cauchy-Schwartz inequality,∫

Ω

dx

(1 + µϕk)3

∫
Ω

dx

1 + µϕk
≥
[∫

Ω

dx

(1 + µϕk)2

]2

, (8)

where the inequality is strict if and only if µ 6= 0. This together with (7) completes
the proof.

By Lemma 2.1 we see that there exists some δ > 0 small such that for any
η ∈ (1, 1 + δ), gk(µ) = η has exactly one positive and one negative root. Next we
study when gk(µ) = η has exactly one positive root and one negative root for any
η > 1.

Lemma 2.2. Suppose that N ≤ 4. Then for each k ≥ 1, function gk(µ) satisfies

lim
µ→−1/maxΩ̄ ϕk

gk(µ) = lim
µ→−1/minΩ̄ ϕk

gk(µ) = +∞. (9)
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Proof. We argue by contradiction. Suppose that the limit in (9) fails for µ →
−1/minΩ̄ ϕk. Since g′k > 0 for µ > 0, there exists some positive constant C1

such that gk(µ) ≤ C1 for any 0 < µ < −1/minΩ̄ ϕk. Hence, for any 0 < µ <
−1/minΩ̄ ϕk, ∫

Ω

dx

(1 + µϕk)2
= gk(µ)

∫
Ω

dx

1 + µϕk

≤ C1

∫
Ω

dx

1 + µϕk

≤ C1

[∫
Ω

dx

(1 + µϕk)2

]1/2

|Ω|1/2.

(10)

Therefore we get∫
Ω

dx

(1 + µϕk)2
≤ C2 := C2

1 |Ω|, ∀ 0 < µ < − 1

minΩ̄ ϕk
. (11)

Let x∗ ∈ Ω̄ such that ϕk(x∗) = minΩ̄ ϕk = −1. We claim that ∇ϕk(x∗) = 0. This
is clear if x∗ ∈ Ω. If x∗ ∈ ∂Ω, it follows from ∇ϕk · ν = 0 at x∗. Hence there exist
positive small constants δ and γ such that

ϕk(x) ≤ −1 + γ|x− x∗|2, ∀x ∈ Bδ(x∗) ∩ Ω,

where Bδ(x
∗) denotes the open ball centered at x∗ with radius δ. Therefore, for

any µ > 0,

1 + µϕk(x) ≤ 1− µ+ µγ|x− x∗|2, ∀x ∈ Bδ(x∗) ∩ Ω.

This implies that∫
Bδ(x∗)∩Ω

dx

(1− µ+ µγ|x− x∗|2)2
≤ C2, ∀ 0 < µ < − 1

minΩ̄ ϕk
= 1. (12)

By choosing γδ2 < 1, we see that for any x ∈ Bδ(x
∗) ∩ Ω, 1 − µ + µγ|x − x∗|2

is monotone in µ. Therefore by the Monotone Convergence Theorem, by letting
µ→ 1− in (12) we find ∫

Bδ(x∗)∩Ω

dx

|x− x∗|4
≤ C2γ

2. (13)

However, this is a contradiction since for N ≤ 4,∫
Bδ(x∗)∩Ω

dx

|x− x∗|4
= +∞. (14)

The limit of gk(µ) as µ→ −1/maxΩ̄ ϕk can be similarly treated.

The following result is a direct consequence of Lemmas 2.1 and 2.2.

Corollary 1. Suppose that N ≤ 4 and a1/a2 > b1/b2. Then for each k ≥ 1,
gk(µ) = (a1/a2)/(b1/b2) has exactly one positive and one negative root, denoted by
µ+
k and µ−k , respectively. Moreover, g′k(µ+

k ) > 0 and g′k(µ−k ) < 0.

Remark 4. For N ≥ 5, (4) has exactly one positive and one negative root when
a1/a2 is slightly larger than b1/b2.
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2.2. Shadow system. This subsection is devoted to the study of the system

d2∆v + v(a2 − c2v)− b2τ = 0 in Ω,

∂v

∂ν
= 0 on ∂Ω,∫

Ω

1

v

(
a1 −

b1τ

v

)
= c1|Ω|,

v > 0 in Ω, τ > 0.

(15)

Our main result for this subsection can be stated as follows:

Theorem 2.3. Suppose that N ≤ 4, λk is simple, and a1/a2 > b1/b2. Then there
exists δ > 0 such that for every d2 ∈ (a2/λk − δ, a2/λk), system (15) has two
non-constant solutions, denoted by (v±,k(x; d2), τ±,k(d2)), which satisfy

lim
d2→a2/λk

v±,k(x; d2)

d2 − a2/λk
= −λk

c2

∫
Ω
ϕ2
k∫

Ω
ϕ2
k(2 + µ±,kϕk)

[1 + µ±,kϕk],

lim
d2→a2/λk

τ±,k(d2)

d2 − a2/λk
= −a2λk

b2c2

∫
Ω
ϕ2
k∫

Ω
ϕ2
k(2 + µ±,kϕk)

,

(16)

where µ+,k > 0 > µ−,k are the two roots of gk(µ) = (a1/a2)/(b1/b2).

Proof. Set w = v/τ . Then (w, τ) solves
d2∆w + w(a2 − c2τw)− b2 = 0 in Ω,∫

Ω

1

w

(
a1 −

b1
w

)
= c1τ |Ω|,

∂w

∂ν
= 0 on ∂Ω, w > 0 in Ω, τ > 0.

(17)

For p > N , set

W 2,p
ν =

{
u ∈W 2,p(Ω) : ∂u∂ν = 0 on ∂Ω

}
,

W 2,p
ν,+ =

{
u ∈W 2,p

ν (Ω) : u > 0 in Ω̄
}
.

Define mapping F : W 2,p
ν,+ ×R× (0,∞)→ Lp ×R by

F (w, τ, d2) =

 d2∆w + w(a2 − c2τw)− b2∫
Ω

1

w

(
a1 −

b1
w

)
− c1τ |Ω|

 (18)

Since gk(µ+,k) = (a1/a2)/(b1/b2), it is straightforward to check that

F

(
b2
a2

(1 + µ+,kϕk), 0,
a2

λk

)
=

(
0

0

)
.

The Fréchet derivative of F at (w, τ, d2) = (b2(1 + µ+,kϕk)/a2, 0, a2/λk), with re-
spect to (w, τ), is given by

D(w,τ)F
∣∣
(b2(1+µ+,kϕk)/a2,0,a2/λk)

(
ϕ

η

)

=


a2

λk
∆ϕ+ a2ϕ−

c2b
2
2

a2
2

η(1 + µ+,kϕk)2

(
a2

b2

)3 ∫
Ω

[
−a1b2ϕ

a2(1 + µ+,kϕk)2
+

2b1ϕ

(1 + µ+,kϕk)3

]
− c1η|Ω|


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We claim that the kernel of the operator D(w,τ)F
∣∣
(b2(1+µ+,kϕk)/a2,0,a2/λk)

is trivial.

To this end, we argue by contradiction: If not, suppose that there exists (ϕ, η)T in
the kernel of D(w,τ)F

∣∣
(b2(1+µ+,kϕk)/a2,0,a2/λk)

, where ϕ ∈ W 2,p
ν and η ∈ R. Then ϕ

and η satisfy

a2

λk
∆ϕ+ a2ϕ−

c2b
2
2

a2
2

η(1 + µ+,kϕk)2 = 0 in Ω,

∂ϕ

∂ν
= 0 on ∂Ω,(

a2

b2

)3 ∫
Ω

[
−a1b2ϕ

a2(1 + µ+,kϕk)2
+

2b1ϕ

(1 + µ+,kϕk)3

]
− c1η|Ω| = 0.

(19)

Multiplying the first equation of (19) by ϕk and integrating in Ω we have

η

∫
Ω

ϕk(1 + µ+,kϕk)2 = 0.

Since
∫

Ω
ϕk = 0 and µ+,k ∈ (0,−1/minΩ̄ ϕk), we have∫

Ω

ϕk(1 + µ+,kϕk)2 = µ+,k

∫
Ω

ϕ2
k(2 + µ+,kϕk) > 0.

Hence, η = 0. By (19) we have ∆ϕ+λkϕ = 0 in Ω and ∂ϕ/∂ν = 0 on ∂Ω. If ϕ 6≡ 0,
as λk is assumed to be simple, ϕ = sϕk for some constant s 6= 0. Substituting
ϕ = sϕk and η = 0 into the last equation of (19) we find∫

Ω

[
−a1b2ϕk

a2(1 + µ+,kϕk)2
+

2b1ϕk
(1 + µ+,kϕk)3

]
= 0,

which can be written as

a1

a2

∫
Ω

ϕk
(1 + µ+,kϕk)2

=
2b1
b2

∫
Ω

ϕk
(1 + µ+,kϕk)3

.

By definition of µ+,k,

a1

a2

∫
Ω

1

(1 + µ+,kϕk)
=
b1
b2

∫
Ω

1

(1 + µ+,kϕk)2
.

Hence we have

2

∫
Ω

ϕk dx

(1 + µ+,kϕk)3

∫
Ω

dx

1 + µ+,kϕk
=

∫
Ω

dx

(1 + µ+,kϕk)2

∫
Ω

ϕk
(1 + µ+,kϕk)2

.

That is, g′k(µ+,k) = 0, which is a contradiction.
By using the Fredholm Alternative we can invoke the Implicit Function Theorem

to find that there exist some positive constant δ > 0 and w = w(x; d2) and τ = τ(d2)
such that F (w(x; d2), τ(d2), d2) = 0 for d2 ∈ (a2/λk−δ, a2/λk), where w(x; a2/λk) =
b2(1 + µ+,kϕk)/a2 and τ(a2/λk) = 0. Since we are only seeking solutions for which
τ > 0, we need to determine the sign of τ ′(a2/λk). To this end, differentiate (17)
with respect to d2. We have

∆w + d2∆(∂w/∂d2) + ∂w/∂d2(a2 − c2τw) + w(−c2τ ′w − c2τ∂w/∂d2) = 0 in Ω.

Set d2 = a2/λk, w = (b2/a2)(1 + µ+,kϕk), τ = 0 and w∗ = ∂w/∂d2|d2=a2/λk . Then
w∗ satisfies

b2
a2
µ+,k∆ϕk+ a2

λk
∆w∗+a2w

∗−c2τ ′(a2/λk)[ b2a2
(1+µ+,kϕk)]2 = 0 in Ω, ∂w∗

∂ν |∂Ω = 0.
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Multiplying the equation of w∗ by ϕk and integrating the result in Ω we find that

τ ′(a2/λk) = −
a2λk

∫
Ω
ϕ2
k

b2c2
∫

Ω
ϕ2
k(2 + µ+,kϕk)

< 0.

Therefore, choosing δ smaller if necessary, τ(d2) > 0 for d2 ∈ (a2/λk − δ, a2/λk).
Moreover,

lim
d2→a2/λk

τ(d2)

d2 − a2/λk
= τ ′(a2/λk) = −

a2λk
∫

Ω
ϕ2
k

b2c2
∫

Ω
ϕ2
k(2 + µ+,kϕk)

.

This established the second equation of (16). Finally, letting d2 → a2/λk in (17)
and setting w̃ = w(x; a2/λk), we see that w̃ satisfies

a2

λk
∆w̃ + a2w̃ − b2 = 0 in Ω, w̃ ≥ 0 in Ω,

∂w̃

∂ν
= 0 on ∂Ω,∫

Ω

1

w̃

(
a1 −

b1
w̃

)
= 0.

Direct calculation yields that w̃ = (b2/a2)(1 + µ+,kϕk). Hence, v(x; d2)/τ(d2) =
w(x; d2) → (b2/a2)(1 + µ+,kϕk) as d2 → a2/λk. This together with the second
equation of (16) establishes the first equation of (16).

2.3. Cross-diffusion system. In this subsection we prove the existence of non-
constant positive steady states of (1) and complete the proofs of parts (a) and (b)
of Theorem 1.1. To this end, let (u, v) be a positive steady state of (1). Set ε = 1/α
and w = (εd1 + v)u. Then the steady state problem of system (1) is equivalent to

∆w +
εw

εd1 + v

(
a1 −

b1w

εd1 + v
− c1v

)
= 0 in Ω,

d2∆v + v

(
a2 −

b2w

εd1 + v
− c2v

)
= 0 in Ω,

∂w

∂ν
=
∂v

∂ν
= 0 on ∂Ω.

(20)

Define operator P : L2(Ω) → L2(Ω) by P [ϕ] = ϕ − 1
|Ω|
∫

Ω
ϕ. Then (20) can be

rewritten as follows:

∆w + εP

[
w

εd1 + v

(
a1 −

b1w

εd1 + v
− c1v

)]
= 0 in Ω,∫

Ω

w

εd1 + v

(
a1 −

b1w

εd1 + v
− c1v

)
= 0,

d2∆v + v

(
a2 −

b2w

εd1 + v
− c2v

)
= 0 in Ω,

∂w

∂ν
=
∂v

∂ν
= 0 on ∂Ω.

(21)

Set w = τ+,k(1 + w1) and v = v+,k + v1. Then (21) is equivalent to
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

∆w1 + εP

[
1 + w1

εd1 + v+,k + v1

(
a1 −

b1τ+,k(1 + w1)

εd1 + v+,k + v1
− c1(v+,k + v1)

)]
= 0 in Ω,∫

Ω

1 + w1

εd1 + v+,k + v1

(
a1 −

b1τ+,k(1 + w1)

εd1 + v+,k + v1
− c1(v+,k + v1)

)
= 0,

d2∆(v+,k + v1) + (v+,k + v1)

(
a2 −

b2τ+,k(1 + w1)

εd1 + v+,k + v1
− c2(v+,k + v1)

)
= 0 in Ω,

∂w1

∂ν
=
∂v1

∂ν
= 0 on ∂Ω.

Now we define F : R×W 2,p
ν ×W 2,p

ν → Lp ×R× Lp by

F (ε, w1, v1)

=



∆w1 + εP

[
1 + w1

εd1 + v+,k + v1

(
a1 −

b1τ+,k(1 + w1)

εd1 + v+,k + v1
− c1(v+,k + v1)

)]
∫

Ω

1 + w1

εd1 + v+,k + v1

(
a1 −

b1τ+,k(1 + w1)

εd1 + v+,k + v1
− c1(v+,k + v1)

)
d2∆(v+,k + v1) + (v+,k + v1)

(
a2 −

b2τ+,k(1 + w1)

εd1 + v+,k + v1
− c2(v+,k + v1)

)


It is easy to check that F (0, 0, 0) = (0, 0, 0)T . The Fréchet derivative D(w1,v1)F at
(ε, w1, v1) = (0, 0, 0) is given by

D(w1,v1)F
∣∣∣
(ε,w1,v1)=(0,0,0)

(
ϕ

ψ

)

=


∆ϕ∫

Ω

ϕ

v+,k

(
a1 −

2b1τ+,k
v+,k

− c1v+,k

)
+

∫
Ω

ψ

v2
+,k

(
−a1 +

2b1τ+,k
v+,k

)
d2∆ψ + ψ(a2 − 2c2v+,k)− b2τ+,kϕ


We claim that if d2 is sufficiently close to a2/λk, then D(w1,v1)F

∣∣
(ε,w1,v1)=(0,0,0)

has

the trivial kernel. If not, by passing to a sequence if necessary, we may suppose
that for any d2 sufficiently close to a2/λk, there exist some (ϕ,ψ) 6= (0, 0) such that
(ϕ,ψ) belongs to the kernel of D(w1,v1)F

∣∣
(ε,w1,v1)=(0,0,0)

. Since ϕ satisfies ∆ϕ = 0

in Ω and ∂ϕ
∂ν = 0 on ∂Ω, then ϕ = η for some number η. Set z = ψ/τ+,k. Since∫

Ω

1

v+,k

(
a1 −

b1τ+,k
v+,k

)
= c1|Ω|,

then (η, z) satisfies

d2∆z + z(a2 − 2c2v+,k)− b2η = 0 in Ω,

∂z

∂ν
= 0 on ∂Ω,∫

Ω

z

v2
+,k

(
−a1 +

2b1τ+,k
v+,k

)
− b1η

∫
Ω

1

v2
+,k

= 0.

(22)

As (η, z) 6= (0, 0), we can always normalize η, z such that |η| + ‖z‖L∞ = 1. By
standard elliptic regularity theory we see that for any q > 1, ‖z‖W 2,q is uniformly
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bounded for d2 close to a2/λk. By letting d2 → a2/λk, passing to a subsequence if
necessary, we may assume that z → z∗ in C1(Ω̄) and η → η∗, where (z∗, η∗) satisfy

a2

λk
∆z∗ + a2z

∗ − b2η∗ = 0 in Ω,

∂z∗

∂ν
= 0 on ∂Ω,∫

Ω

z∗

(1 + µ+,kϕk)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,kϕk)

)
− b1η∗

∫
Ω

1

(1 + µ+,kϕk)2
= 0,

(23)

where we used v+,k → 0 and v+,k/τ+,k → b2
a2

(1 + µ+,kϕk) as d2 → a2/λk.
We first show that η∗ 6= 0. If η∗ = 0, then z∗ satisfies ∆z∗ + λkz

∗ = 0 in Ω
and ∂z∗/∂ν = 0 on ∂Ω. Since λk is assumed to be simple, z∗ = sϕk for some real
number s. If s 6= 0, substituting z∗ = sϕk and η∗ = 0 into the last equation of (23)
we obtain ∫

Ω

ϕk
(1 + µ+,kϕk)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,kϕk)

)
= 0.

Then we can argue similarly as in the proof of Theorem 2.3 to deduce that g′k(µ+,k) =
0, which is a contradiction. Hence, s = 0, i.e., z∗ ≡ 0. But this contradicts
|η|+ ‖z‖L∞ = 1. Therefore, η∗ 6= 0.

Since λk is assumed to be simple and η∗ 6= 0, by the first two equations of (23)
we have

z∗ =
b2
a2
η∗(1 + µ∗ϕk) (24)

for some real number µ∗. We claim that µ∗ = µ+,k. To establish this assertion,
substituting (24) into the last equation of (23) and dividing both sides by η∗ we
obtain∫

Ω

b2
a2

(1 + µ∗ϕk)

(1 + µ+,kϕk)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,kϕk)

)
− b1

∫
Ω

1

(1 + µ+,kϕk)2
= 0.

Define

H(µ) :=

∫
Ω

b2
a2

(1 + µϕk)

(1 + µ+,kϕk)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,kϕk)

)
− b1

∫
Ω

1

(1 + µ+,kϕk)2
.

Since H(µ∗) = H(µ+,k) = 0 and

H ′(µ) =

∫
Ω

b2
a2
ϕk

(1 + µ+,kϕk)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,kϕk)

)
6= 0,

where the last inequality follows from g′k(µ+,k) 6= 0, we see that µ∗ = µ+,k.
Now multiplying the equation of z by ϕk and integrating the result in Ω, we have∫

Ω

zϕk = 2c2

∫
Ω

zϕk
v+,k

a2 − d2λk
.

By letting d2 → a2/λk and applying z → b2
a2
η∗(1 +µ+,kϕk) and (16), dividing both

sides by η∗b2/a2 we have∫
Ω

ϕk(1 + µ+,kϕk) = 2

∫
Ω

ϕk(1 + µ+,kϕk)2 ·
∫

Ω
ϕ2
k∫

Ω
ϕ2
k(2 + µ+,kϕk)

.
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After further simplifications we obtain

µ+,k

∫
Ω

ϕ2
k = 0,

which is a contradiction as µ+,k > 0. This shows that D(w1,v1)F
∣∣
(ε,w1,v1)=(0,0,0)

has only trivial kernel, provided that d2 is sufficiently close to a2/λk. Hence, by
the Implicit Function Theorem there exists some δ > 0 such that for every d2 ∈
(a2/λ − δ, a2/λ), if α is sufficiently large, then there exists one positive solution,
denoted by (u∗+,k, v

∗
+,k), such that

lim
α→∞

u∗+,k =
τ+,k
v+,k

, lim
α→∞

v∗+,k = v+,k

uniformly in Ω̄. The existence of (u∗−,k, v
∗
−,k) can be similarly established. This

together with Theorem 2.3 complete the proof of parts (a) and (b) of Theorem 1.1.

3. Spectral stability of non-constant positive steady states. The goal of
this section is to prove part (c) of Theorem 1.1. We first study the spectral stability
of positive steady states of shadow system (2) in Subsection 3.1. The proof of part
(c) of Theorem 1.1 is given in Subsection 3.2, where we adopt some ideas from [15].

3.1. Shadow system. We are interested in the spectral stability of (v±,1, τ±,1),
positive solutions of the shadow system (2), which were constructed in previous
section. For simplicity we focus on (v+,1, τ+,1). The stability of (v+,1, τ+,1) is
determined by 

d2∆ψ + (a2 − 2c2v+,1)ψ − b2η = σψ in Ω,

∂ψ

∂ν
= 0 on ∂Ω,

τ+,1

∫
Ω

ψ

v2
+,1

(
−a1 +

2b1τ+,1
v+,1

)
− b1τ+,1η

∫
Ω

1

v2
+,1

= ση

∫
Ω

1

v+,1
− στ+,1

∫
Ω

ψ

v2
+,1

.

(25)

Theorem 3.1. If d2 is sufficiently close to a2/λ1, the real part of any eigenvalue
of (25) is strictly negative.

Proof. We argue by contradiction. Suppose that there exists a sequence of {d2,j}
with d2,j < a2/λ1 for every j and limj→∞ d2,j = a2/λ1 such that the eigenvalue
problem (25) with d2 = d2,j has an eigenvalue σj which has non-negative real
part for every j ≥ 1. We normalize corresponding functions ψj and ηj so that
|ηj |+ ‖ψj‖L2 = 1.

Step 1. We show that {|σj |} is a bounded sequence. Write σj = σ1,j + iσ2,j ,
ψj = ψ1,j + iψ2,j , ηj = η1,j + iη2,j , where σ1,j , σ2,j , η1,j , η2,j are real numbers, and
ψ1,j , ψ2,j are real valued functions. Since the real part of σj is non-negative, we
have σ1,j ≥ 0. Then

d2,j∆ψ1,j + a(x)ψ1,j − b2η1,j = σ1,jψ1,j − σ2,jψ2,j in Ω,

d2,j∆ψ2,j + a(x)ψ2,j − b2η2,j = σ1,jψ2,j + σ2,jψ1,j in Ω,

∂ψ1,j

∂ν
=
∂ψ2,j

∂ν
on ∂Ω,
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where a(x) = a2−2c2v+,1. We claim that if |σj | → ∞ as j →∞, then ‖ψj‖L2 → 0.
To establish our assertion, we consider two cases:

Case 1. σ1,j → +∞ as j → ∞. Multiplying the equation of ψ1,j by ψ1,j and the
equation of ψ2,j by ψ2,j , adding two equations and integrating the result in Ω, we
obtain

d2,j

∫
Ω

(|∇ψ1,j |2 + |∇ψ2,j |2) + σ1,j

∫
Ω

(ψ2
1,j + ψ2

2,j)

=

∫
Ω

ψ1,j(aψ1,j − b2η1,j) +

∫
Ω

ψ2,j(aψ2,j − b2η2,j).

If σ1,j → +∞, by Cauchy-Schwartz inequality we have
∫

Ω
(ψ2

1,j + ψ2
2,j)→ 0.

Case 2. |σ2,j | → ∞ as j → ∞. For this case, multiplying the equation of ψ1,j by
ψ2,j and the equation of ψ2,j by ψ1,j , subtracting the result and integrating it in Ω,
we obtain

σ2,j

∫
Ω

(ψ2
1,j + ψ2

2,j) = −
∫

Ω

ψ2,j(aψ1,j − b2η1,j) +

∫
Ω

ψ1,j(aψ2,j − b2η2,j).

Again by Cauchy-Schwartz inequality we see that if |σ2,j | → ∞, then
∫

Ω
(ψ2

1,j +

ψ2
2,j)→ 0.
Therefore, if |σj | → ∞ as j →∞, we have ‖ψj‖L2 → 0. Since |ηj |+ ‖ψj‖L2 = 1,

we have |ηj | → 1 as j →∞.
By the last equation of (25) we have

σj =

∫
Ω

ψj
(v+,1/τ+,1)2

(
−a1 + 2b1

v+,1/τ+,1

)
− b1ηj

∫
Ω

1
(v+,1/τ+,1)2

ηj
∫

Ω
1

v+,1/τ+,1
−
∫

Ω
ψj

(v+,1/τ+,1)2

.

Since ‖ψj‖L2 → 0, |ηj | → 1 and v+,1/τ+,1 → (b2/a2)(1 + µ+,1ϕ1) as j → ∞, by
passing to the limit in the above equation we see that

lim
j→∞

σj = −
a2b1

∫
Ω

1
(1+µ+,1ϕ1)2

b2
∫

Ω
1

(1+µ+,1ϕ1)

< 0,

which is a contradiction since we assume that the real part of σj is non-negative.
This proves that {σj} is a bounded sequence.

Step 2. We claim that as j →∞, σj → 0 and (ηj , ψj)→ (1, b2a2
(1 + µ+,1ϕ1)) after

suitable rescaling.
By elliptic regularity theory, ‖ψj‖W 2,2 is uniformly bounded. By Sobolev embed-

ding theorem, passing to a subsequence if necessary, we may assume that ψj → ψ∗

in W 1,2, ηj → η∗, and σj → σ∗ as j →∞, where (η∗, ψ∗) and σ∗ satisfy

a2

λ1
∆ψ∗ + a2ψ

∗ − b2η∗ = σ∗ψ∗ in Ω,

∂ψ∗

∂ν
= 0 on ∂Ω,∫

Ω

ψ∗

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
− b1η∗

∫
Ω

1

(1 + µ+,1ϕ1)2

=
b2
a2
σ∗η∗

∫
Ω

1

1 + µ+,1ϕ1
− σ∗

∫
Ω

ψ∗

(1 + µ+,1ϕ1)2
.

(26)



14 YUAN LOU, WEI-MING NI AND SHOJI YOTSUTANI

We first show that σ∗ = 0. Since the real part of σj is non-negative, we see
that the real part of σ∗ is also non-negative. Since |ηj | + ‖ψj‖L2 = 1 we have
|η∗|+ ‖ψ∗‖L2 = 1. In the following we consider two cases:

Case 1. η∗ = 0. For this case, ψ∗ 6= 0 and it satisfies

−∆ψ∗ = λ1
a2 − σ∗

a2
ψ∗ in Ω,

∂ψ∗

∂ν
= 0 on ∂Ω.

If σ∗ 6= 0, then σ∗ must be real and positive. Hence, λ1
a2−σ∗
a2

< λ1. Since ψ∗ 6= 0,
the only possibility is that σ∗ = a2 and ψ∗ is a non-zero constant. By the last
equation of (26) and η∗ = 0 we have∫

Ω

1

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
= −a2

∫
Ω

1

(1 + µ+,1ϕ1)2
< 0,

which implies that

a1

a2

∫
Ω

1

(1 + µ+,1ϕ1)2
>

2b1
b2

∫
Ω

1

(1 + µ+,1ϕ1)3
.

By the definition of µ+,1, we have

a1

a2

∫
Ω

1

1 + µ+,1ϕ1
=
b1
b2

∫
Ω

1

(1 + µ+,1ϕ1)2
.

Therefore, we obtain(∫
Ω

1

(1 + µ+,1ϕ1)2

)2

> 2

∫
Ω

1

(1 + µ+,1ϕ1)3

∫
Ω

1

1 + µ+,1ϕ1
,

which is a contradiction to Cauchy-Schwartz inequality. This proves that if η∗ = 0,
then σ∗ = 0.

Case 2. η∗ 6= 0. Integrating the equation of ψ∗ in Ω we have

(a2 − σ∗)
∫

Ω

ψ∗ = b2|Ω|η∗ 6= 0.

Therefore, σ∗ 6= a2. Hence, the equation of ψ∗ can be written as

−∆ψ∗ = λ1
a2 − σ∗

a2

(
ψ∗ − b2η

∗

a2 − σ∗

)
in Ω,

∂ψ∗

∂ν
= 0 on ∂Ω.

Suppose that σ∗ 6= 0. We claim that the only possibility is ψ∗ = b2η
∗/(a2 − σ∗).

If not, then λ1
a2−σ∗
a2

is an eigenvalue of the Laplace operator with zero Neumann

boundary condition. As σ∗ 6= 0 and Re(σ∗) ≥ 0, σ∗ must be real and strictly

positive. This together with σ∗ 6= a2 implies that λ1
a2−σ∗
a2

< λ1 and λ1
a2−σ∗
a2

6= 0,

which is a contradiction. Therefore, ψ∗ = b2η
∗/(a2 − σ∗). By the last equation of

(26) and η∗ 6= 0, we have∫
Ω

b2/(a2 − σ∗)
(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
− b1

∫
Ω

1

(1 + µ+,1ϕ1)2

= σ∗
[∫

Ω

1

(a2/b2)(1 + µ+,1ϕ1)
−
∫

Ω

b2/(a2 − σ∗)
(1 + µ+,1ϕ1)2

]
,

which can be reduced to a quadratic equation of σ∗ of the form

C(σ∗)2 + σ∗(B − a2C + b2D) + b2A− a2B = 0, (27)
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where

A =

∫
Ω

1

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
,

B = b1

∫
Ω

1

(1 + µ+,1ϕ1)2
,

C =

∫
Ω

1

(a2/b2)(1 + µ+,1ϕ1)
,

D =

∫
Ω

1

(1 + µ+,1ϕ1)2
.

Claim. b2A > a2B.
To prove this assertion, note that

b2
a2
A−B =− a1b2

a2

∫
Ω

1

(1 + µ+,1ϕ1)2
+ 2b1

∫
Ω

1

(1 + µ+,1ϕ1)3

− b1
∫

Ω

1

(1 + µ+,1ϕ1)2
.

Rewrite g1(µ+,1) = (a1/a2)/(b1/b2) as

a1b2
a2

= b1 ·
∫

Ω
(1 + µ+,1ϕ1)−2∫

Ω
(1 + µ+,1ϕ1)−1

.

Hence,

b2
a2
A−B =

b1∫
Ω

(1 + µ+,1ϕ1)−1

[
−
∫

Ω

1

(1 + µ+,1ϕ1)2

∫
Ω

1

1 + µ+,1ϕ1

+ 2

∫
Ω

1

(1 + µ+,1ϕ1)3

∫
Ω

1

1 + µ+,1ϕ1
−
(∫

Ω

1

(1 + µ+,1ϕ1)2

)2 ]
.

Following the proof of Lemma 2.1 we find that b2A > a2B.
Note that

a2

b2
C −D =

∫
Ω

1

1 + µ+,1ϕ1
−
∫

Ω

1

(1 + µ+,1ϕ1)2
< 0,

where the last inequality follows from Lemma 2.1. Since B > 0, from (27) we see
that Re(σ∗) < 0, which is contradiction since the real part of σj is non-negative.
This contradiction shows that if η∗ 6= 0, then σ∗ = 0.

In conclusion, we always have σ∗ = 0. Hence, (26) can be written as

a2

λ1
∆ψ∗ + a2ψ

∗ − b2η∗ = 0 in Ω,

∂ψ∗

∂ν
= 0 on ∂Ω,∫

Ω

ψ∗

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
− b1η∗

∫
Ω

1

(1 + µ+,1ϕ1)2
= 0.

(28)

We next show that η∗ 6= 0. To this end we argue by contradiction. Suppose that
η∗ = 0. As (η∗, ψ∗) 6= (0, 0), we see that ψ∗ = sϕ1 for some s 6= 0. Substituting
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this into (28) we have∫
Ω

ϕ1

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
= 0,

which implies that g′1(µ+,1) = 0. This contradiction implies that η∗ 6= 0. Therefore

ψ∗ =
b2
a2
η∗(1 + µϕ1)

for some real number µ. Substituting this into (28) and dividing both sides by η∗

we have∫
Ω

b2
a2

(1 + µϕ1)

(1 + µ+,1ϕ1)2

(
−a1 +

2b1
(b2/a2)(1 + µ+,1ϕ1)

)
− b1

∫
Ω

1

(1 + µ+,1ϕ1)2
= 0.

By using exactly the same argument as in Subsection 2.3, we see that µ = µ+,1.
This completes the proof for Step 2.

Step 3. Multiplying the equation of ψj by ϕ1 and integrating the result in Ω, after
some rearrangement of terms we have∫

Ω

ψjϕ1 − 2c2

∫
Ω

ψjϕ1
v+,1

a2 − d2,jλ1
=

σj
a2 − d2,jλ1

∫
Ω

ψjϕ1. (29)

By Step 2, ψj → (b2/a2)(1 + µ+,1ϕ1) as j →∞. Also recall that

lim
j→∞

v+,1

a2 − d2,jλ1
=

1

c2
(1 + µ+,1ϕ1)

∫
Ω
ϕ2

1∫
Ω
ϕ2

1(2 + µ+,1ϕ1)
.

Passing to the limit in (29) we obtain

lim
j→∞

σj
a2 − d2,jλ1

= −1.

However, this contradicts our assumption that the real part of σj is non-negative.
This completes the proof of Theorem 3.1.

3.2. Cross-diffusion system. To study the dynamics of (1), we set w = u(d1/α+
v). Then (w, v) satisfies

(
w

d1/α+ v

)
t

= α∆w +
w

d1/α+ v

(
a1 −

b1w

d1/α+ v
− c1v

)
in Ω+,

vt = d2∆v + v

(
a2 −

b2w

d1/α+ v
− c2v

)
in Ω+,

∂w

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0,∞),

(30)

where Ω+ = Ω× (0,∞).
Recall that (u∗±,1, v

∗
±,1) are positive solutions of (1). Set w∗±,1 := u∗±,1(d1/α +

v∗±,1). We are interested in the spectral stability of (w∗±,1, v
∗
±,1), positive solutions

of system (30). For simplicity we only consider the spectral stability of (w∗+,1, v
∗
+,1).

The stability of (w∗+,1, v
∗
+,1) is determined by

σφ

d1/α+ v∗+,1
−

σw∗+,1ψ

(d1/α+ v∗+,1)2
= α∆φ+ a11φ+ a12ψ in Ω,

σψ = d2∆ψ + a21φ+ a22ψ in Ω,

∂φ

∂ν
=
∂ψ

∂ν
= 0 on ∂Ω,

(31)



PATTERN FORMATION IN A CROSS-DIFFUSION SYSTEM 17

where the coefficients aij are given by

a11 =
1

d1/α+ v∗+,1

(
a1 −

2b1w
∗
+,1

d1/α+ v∗+,1
− c1v∗+,1

)
,

a12 = −
w∗+,1

(d1/α+ v∗+,1)2

(
a1 −

2b1w
∗
+,1

d1/α+ v∗+,1
+
c1d1

α

)
,

a21 = −
b2v
∗
+,1

d1/α+ v∗+,1
,

a22 = a2 − 2c2v
∗
+,1 −

d1b2
α

w∗+,1
(d1/α+ v∗+,1)2

.

Proof of part (c) of Theorem 1. It suffices to show that the real part of any eigenvalue
of (31) must be strictly negative. We argue by contradiction. Suppose that for every
d2 ∈ (a2/λ1 − δ, a2/λ1), there exists a sequence {αj} with limj→∞ αj = +∞ such
that the eigenvalue problem (31) with α = αj has an eigenvalue σj which has
non-negative real part for every j ≥ 1. We normalize corresponding eigenfunction
(φj , ψj) so that ‖φj‖L2 + ‖ψj‖L2 = 1.

Step 1. We show that the eigenvalues σj are uniformly bounded. We argue by
contradiction. Suppose that σj is unbounded and passing to a subsequence if nec-
essary we may assume that |σj | → ∞ as j → ∞. Multiplying the equation for φj
by φ̄j and integrating the results in Ω we have

αj

∫
Ω

|∇φj |2 +Re(σj)

∫
Ω

|φj |2 ≤ C1

∫
Ω

|φj |2 + C2(|σj |+ 1)

∫
Ω

|ψj |2,

where Re(σj) denotes the real part of σj , and C1, C2 are positive constants inde-
pendent of j. Similarly, we also have

|Im(σj)|
∫

Ω

|φj |2 ≤ C3

∫
Ω

|φj |2 + C4(|σj |+ 1)

∫
Ω

|ψj |2,

where Im(σj) denotes the imaginary part of σj , and C3, C4 are positive constants
independent of j. As αj ≥ 0, combining the above two inequalities we have

[Re(σj) + |Im(σj)|]
∫

Ω

|φj |2 ≤ (C1 + C3)

∫
Ω

|φj |2 + (C2 + C4)(|σj |+ 1)

∫
Ω

|ψj |2.

As we assume that Re(σj) ≥ 0 and |σj | → ∞ as j →∞, we have∫
Ω

|φj |2 ≤ C5

∫
Ω

|ψj |2 (32)

for all sufficiently large j, where C5 is some positive constant independent of j.
Multiplying the equation for ψj by ψ̄j and integrating the result in Ω we can

similarly obtain

[Re(σj) + |Im(σj)|]
∫

Ω

|ψj |2 ≤ C6

∫
Ω

|φj |2 + C7

∫
Ω

|ψj |2.

As we assume that Re(σj) ≥ 0 and |σj | → ∞ as j →∞, we have∫
Ω

|ψj |2 ≤
1

2C5

∫
Ω

|φj |2 (33)
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for all sufficiently large j. By (32) and (33) we obtain φj = ψj = 0 for sufficiently
large j, but this contradicts ‖φj‖L2 +‖ψj‖L2 = 1 for all j. This contradiction shows
that {σj} is a bounded sequence.

Step 2. Since σj is bounded, by elliptic regularity theory we see that ‖φj‖W 2,2 and
‖ψj‖W 2,2 are uniformly bounded. By Sobolev embedding theorem and passing to a
subsequence if necessary we may assume that φj → φ and ψj → ψ weakly in W 2,2

and strongly in W 1,2. In particular, as αj → ∞, ∆φ = 0 in Ω and ∂φ/∂ν = 0 on
∂Ω. Therefore, φ = τ for some constant τ . Recall that as αj → ∞, w∗+,1 → τ+,1
and v∗+,1 → v+,1. Therefore, τ and ψ satisfy |τ |+ ‖ψ‖L2 = 1 and (25). Hence, (25)
has an eigenvalue with non-negative real part, which contradicts Theorem 3.1. This
completes the proof of (c) of Theorem 1.1.
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