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ABSTRACT. In this paper we study the Shigesada-Kawasaki-Teramoto model
[17] for two competing species with cross-diffusion. We prove the existence
of spectrally stable non-constant positive steady states for high-dimensional
domains when one of the cross-diffusion coefficients is sufficiently large while
the other is equal to zero.

1. Introduction. The movement of organisms generally depend upon the densi-
ties of their conspecifics and competitors. It is well known that density-dependent
dispersal plays an important role in population dynamics and affects the spa-
tial distribution of populations [1, 16]. To understand the spatial segregation of
competing species, Shigesada et al. [17] proposed a mathematical model for two
species, in which the transition probability of each species depend only on the den-
sities of both species at the departure point. The Shigesada-Kawasaki-Teramoto
model (abbreviated as SKT henceforth) is a strongly coupled quasilinear para-
bolic system and it has been studied extensively for the last three decades; See
[2,5,4,6,7,8,9, 11, 12, 13, 14, 18, 20, 21, 22, 23] and references therein. In this
paper we will focus on the following model which is a special case of the SKT model:

up = A[(dy + av)u] + u(a; — byu — cv)  in Q x (0, 00),

vy = doAv + v(az — byu — cov)  in Q x (0, 00), (1)

ou  Ov

52520 on 09 x (0, 00),
where u(z,t) and v(z,t) represent the densities of two species at location x and
time t. We assume that € is a bounded open domain in Euclidean space RY
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with smooth boundary 0f2, and v is the outward unit normal vector on 9. The
boundary conditions for v and v mean that there is no net flux across the boundary
for either population.

The coefficients dq, dy are the random dispersal rates of species, a1, as are their
intrinsic growth rates, b1, co account for their intraspecific competition and b, c;
are their interspecific competition coefficients. We shall assume that d;, a;, b;, ¢; are
positive constants throughout the paper. The parameter « is referred as the cross-
diffusion coefficient and it measures the population pressure from species v towards
species u. System (1) is a special case of the SKT model which assumes that the
movement rate of species v is also a linear function of the density of its competitor
(i.e., species u).

System (1) for @ = 0 has been extensively studied as well. It follows from
the work of Kishimoto and Weinberger [3] that system (1) without cross-diffusion
(i.e., @ = 0) has no stable non-constant positive steady states, provided that 2
is convex. On the other hand, it was shown in [10] that system (1) for & = 0 can
possess stable non-constant positive steady states for some non-convex domains and
suitable coefficients d;, a;, b;, ¢;.

One natural question arises: Does system (1) with large a have stable non-
constant positive steady states for general domains? For sufficiently large «, for-
mally we have [d;/a + v(x,t)]u(z,t) = 7(¢t) for some function 7(t), so it is natural
to expect that the dynamics of (1) is related with that of the shadow system

1 b
/(Z) ZT/* a — 2= —arT|Q, t>0,
o \v/t QU v

vy = doAv + v(ag — 17277- —cov) in Q x (0,00), (2)

% =0 on 99 x (0, 00).

When N =1, i.e., (2 is an interval, the existence of non-constant positive steady
states of (2) has been studied in Lou et al. [9]. Among other things, it is shown
in [9] that for @ = (0,1), if a1/az > b1/ba, then (2) has non-constant positive
steady states for any dy slightly less than ay/m%. This is in strong contrast with
the case dy > as /7%, where (2) has no non-constant positive steady states for any
values a;,b; and ¢;. In a recent work [15], Ni et al. are able to derive more precise
estimates of these steady solutions of (2) as do — as/7?, which enables them to
construct non-constant positive steady states of system (1) and further show that
these positive steady states are asymptotically stable.

The goal of this paper is to extend some of the results of Ni et al. [15] to
higher dimensional domains. To this end, we first introduce some notation. Let
A =0< A <X < ... <X < ... denote the eigenvalues of the linear eigenvalue
problem

—Ap=2Ap in Q,
I¢
— =0 o09.
ey on
Denote the corresponding eigenfunction of A\; by ¢, normalized by ming ¢, = —1.
In particular, ¢g = —1 in Q. However, for k > 1, ¢ is not uniquely determined
by ming ¢ = —1 since —yy/ maxg px is also an eigenfunction of A, which satis-

fies ming —*%— = —1. If )\, is a simple eigenvalue and k& > 1, then there are
Q maxg Pk
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exactly two eigenfunctions of A; with the global minimum value —1; i.e., ¢ and
— @K/ maxg Y.
Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N < 4, Ay is simple for some k > 1, and ai/as >
b1/ba.
(a) (Existence) There exists § > 0 such that for every ds € (az/Ap — d,a2/\i), if
is sufficiently large, then (1) has two non-constant positive steady state solutions in
C?(Q) x C*(9Q), denoted by (u} , v} ).
(b) (Asymptotic behavior) (ul ,, v ;) satisfy

T4,k

. « . *
lim w} , = ;o lim vl =vpg
a—»00 V4 k a—00

uniformly in Q. Here (vt k, T+,k) are non-constant positive steady states of system
(2) which satisfy

i Utk Ak Jo 4k .
lim =~ = —— 1+ mn L°(Q),
do—as /i, do — 02/)\k Co fQ gpi(Q + ,U'i,k@k) [ Mi,k@k} ( ) (3)
lim TEk - _a2/\k fsz ¢
da—vaz /A dz — az /A baca [o 0h(2 4 peppr)’

where piy 1 > 0> p_ 1 are the roots of

Jo (1 + ppr) 2 da _ ai/az (4)
fQ (1+M(,Dk)_1d1‘ bl/bQ.
c tability) For every ds € (a2/A1—0,a2/A1), if « 1s suffictently large, (u’ {,v
Stabili F d A1—0 A if o is sufficiently | *i,l 1’1
are spectrally stable in W12(Q2) x W12(Q).

Remark 1. For k > 2, it is shown in Ni et al. [15] that if N = 1, then for dz close
to az/Ax, (Ui y,vi ) are unstable when « is sufficiently large.

Remark 2. For N > 5, Theorem 1.1 remains to hold provided that (4) has positive
and negative roots, e.g., when aj/as is slightly larger than by /bs.

Remark 3. Numerical computations suggest that the branches of positive steady
states of (1) which contain {(u% ;,v% ;,d2)} can be extended up to dz = 0, but they
may no longer be stable for some smaller values of ds under suitable assumptions
on a;,b;, c;. Figure 1 shows positive steady states for the case
Q=(0,1)x(0,15/16) CR*, di=1,a=10", bi=1,¢c1=2,ap=by=cy =1,
A:=ai/az, B:=b1/ba=1, C:=c1/co =2.

It holds that A\(f2) = 72, and we take p; = cos(mx). Two graphs near dy =
az/A1(Q2) represent v’ ; and v} ;. As dy decreases, we numerically obtain a branch
of positive steady states connecting to v’ ; and v} ;. Asdy — 0, it seems that small
spiky solutions appear for the case (B4 C)/2 < A < (B + 3C)/4, and large spiky
solutions appear for the case (B + 3C)/4 < A. We suspect from various numerical
computations that small spiky solutions would be unstable and large spiky solutions
would be stable. We note that numbers (B 4+ C)/2 and (B + 3C)/4 appear in the
papers [6, 7] in multi-dimensional case and [9, 15, 19] in one-dimensional case. It
seems that they are very important numbers to investigate the existence and the
stability of steady state solutions.
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FIGURE 1. Numerically obtained steady states

Our paper is organized as follows: Section 2 is devoted to the existence of non-
constant positive steady states of system (1) and parts (a) and (b) of Theorem 1.1
are proved there. In Section 3 we prove part (c) of Theorem 1.1.

2. Existence of non-constant positive steady states. In this section we prove
parts (a) and (b) of Theorem 1.1. We first establish some qualitative properties
concerning the eigenfunctions ¢y in Subsection 2.1, which will play critical roles in
later analysis. The existence of non-constant positive steady states of (2) is given
in Subsection 2.2. Finally in Subsection 2.3 we prove the existence of non-constant
positive steady states of (1).

2.1. Preliminary results. We recall that ¢y is an eigenfunction of the eigenvalue
Ai. For each k > 1, define

(1 + ppr) =2 da 1 1
gr(p) = Jo T e <p< (5)
Jo (T4 ppr) L da maxg Qg ming Qg

We shall show that gx(p) > 1 for any p # 0. Given any number n > 1, we are
interested in whether g (1) = 1 has exactly one positive root and one negative root.

Lemma 2.1. For each k > 1, function gi(n) satisfies gi(0) = 1, pgy (1) > 0 for
any p# 0. In particular, gi(p) > 1 for p # 0, g (1) > 0 for p >0, and g, (1) <0
for p <0.

Proof. Tt is obvious that gx(0) = 1. We first show that gx(u) > 1 for any u # 0.
By the equation of ¢ we have

1 1
[ i [
o (1+ per) o 1+ pek
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:*M/ Ldz
o (1+ ppr)?

M Apy

S s LT 6
e Jo (14 ppr)? ©)
22 V|2

= —————dz >0,
M Jo (T4 per)?  —

where the last inequality is strict for any p # 0 as ¢y is non-constant for any k& > 1.
This proves that gg(u) > 1 for any p # 0.
By direct calculation,

,()_</ dz )2 _2/ op dz / dz
s o 1+ pp o (L+ per)® Jo 1+ per

+/ dx / i dx
o (L4 pe)? Jo (1+ per)? |

Therefore,

ol (/ 1+/wk>
ey dz dx dx ok dz
—2 + 2 2
Q 1+u<pk ol+tpper  Jo (14 per)? Jo (1+ pwer)
2{/ 7 L) L
a( +u<pk o (L+per)®] Jo 1+ pepr
/ w s | i) 7
Q 1+u<pk o l+per  Jo (1+ ppr)? @
dx dx dx
+ 2 3
(14 per)? Jo 1+ ppy o (14 pew)® Jo 1+ pes

[/ 1+M<Pk ]
2
22/ da 3/ dx 2{/ dx 2}7
o (14 per)? Jo 1+ por o (14 o)

where the last inequality follows from the fact that gp(u) > 1 for any p.
By Cauchy-Schwartz inequality,

+

dx dx dz 2
3 > | (8)
o (1+per)® Jo 14 pgr o (1+ per)
where the inequality is strict if and only if u # 0. This together with (7) completes
the proof. O

By Lemma 2.1 we see that there exists some 6 > 0 small such that for any

€ (1,14 9), gr(u) = n has exactly one positive and one negative root. Next we
study when gx(u) = 1 has exactly one positive root and one negative root for any
n> 1.

Lemma 2.2. Suppose that N < 4. Then for each k > 1, function gi(un) satisfies
im — gp(p) = m  gy(p) = +oo. (9)

p——1/ maxq @ p——1/ming ¢
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Proof. We argue by contradiction. Suppose that the limit in (9) fails for p —
—1/ming ¢i. Since g;, > 0 for p > 0, there exists some positive constant C4
such that gx(pu) < Cy for any 0 < p < —1/ming ¢,. Hence, for any 0 < p <
—1/ming ¢y,

/ dx _ ()/ dx
Q(1+/1<Pk)2_gk# a1+ pex

<c/7dx 10
= o T+ pew (10)

diL’ 1/2
cof ot ]
1[Q<1+m>2 [

dx
= < Cy:=CEQ, YVO<pu<-—

/Q(l+us0k-)2’ 2= Crl g
Let z* € Q such that oy (z*) = ming px = —1. We claim that Vi (z*) = 0. This
is clear if * € Q. If x* € 0, it follows from Vo - v = 0 at x*. Hence there exist
positive small constants § and -« such that

Therefore we get

(11)

ming ¢y,

or(z) < —1+9lx —2*|?, Vz e Bs(=z*)NQ,
where Bs(z*) denotes the open ball centered at x* with radius 6. Therefore, for
any p > 0,

1+ per(z) <1 —p+ pylz —2*|?, Vo € Bs(z*)NQ.

This implies that

dxr 1
<Cy VOi<puy<—-——"—"—=1. 12
/Bs(a:*)m (1= p+ pyle — z*]?)? ming @ (12

By choosing 702 < 1, we see that for any x € Bs(x*) N Q, 1 — pu + pyle — x*|?
is monotone in p. Therefore by the Monotone Convergence Theorem, by letting
@ — 1— in (12) we find

d
/ 71.*4 < 0272' (13)
Bs(z*)NQ |z — z*|
However, this is a contradiction since for N < 4,
d
/ 7@‘*4 = +00. (14)
Bs(z*)NQ |z — z*|

The limit of gi(p) as p — —1/ maxg g can be similarly treated. O

The following result is a direct consequence of Lemmas 2.1 and 2.2.

Corollary 1. Suppose that N < 4 and ay/as > b1/by. Then for each k > 1,
gr(p) = (a1/a2)/(b1/b2) has exactly one positive and one negative root, denoted by
wi and ., respectively. Moreover, g). (1)) > 0 and g, (uy ) < 0.

Remark 4. For N > 5, (4) has exactly one positive and one negative root when
a1/asg is slightly larger than by /bs.



PATTERN FORMATION IN A CROSS-DIFFUSION SYSTEM 7

2.2. Shadow system. This subsection is devoted to the study of the system
daAv 4+ v(az — cav) —beT7 =0 in Q,
Ov

520 onaQ,

(15)
1 b

[} (=) -

Qv v

v>0 inQ, 7>0.

Our main result for this subsection can be stated as follows:

Theorem 2.3. Suppose that N < 4, X\, is simple, and a1/as > by /ba. Then there
exists 6 > 0 such that for every do € (az/Mp — d,a2/A;), system (15) has two
non-constant solutions, denoted by (vt x(x;dz), 7+ k(d2)), which satisfy

vt k(73 d2) Ak Ja v
DR\ e R 1+ ) ,
dy—az /X do — a2/)\k C2 fQ 90%(2 + /H:,k‘ﬂk) [ Ni,k@k} (16)
T4 1 (d2) _ Gk Jo #i
dy—az /Ny, d — ag /A baca [ PR (2+ pskpr)’

where pit ) > 0> p_ g are the two roots of gi(n) = (a1/az2)/(b1/b2).
Proof. Set w = v/7. Then (w, ) solves

daAw + w(ag — caTw) —be =0 in Q,

1 b1
fy (=) oo 1)

Iy ond0, w>0 mQ 70
ov

For p > N, set
W2P ={ueW??(Q): 2% =0 on 00},
WP ={ueW2'(Q):u>0 inQ}.
Define mapping F : Wfﬁ X R x (0,00) = LP x R by

daAw + w(ag — caTw) — by

F(w,7,dy) = / 1 (a1 B Zi) T (18)

0w
Since gi(pit k) = (@1/az2)/(b1/b2), it is straightforward to check that

bz a9 - 0
F <a2(1+ﬂ+,k90k)707 )\k) = (0> .

The Fréchet derivative of F' at (w,7,d2) = (ba(1 + py k0x)/a2,0,a2/Ax), with re-
spect to (w,T), is given by

'
D(w’T)F} (b2(14p4 kpr)/a2,0,a2/Ak) ( 77>

a2 CQb% 2
)\*A@ +azp — —5=n(1 + py rkox)
k a3

as\® —a1bap 2b1p
— + —cn|Q
(b2> /Q [az(l +prker)? (14 ,U+,k</7k)3} il
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We claim that the kernel of the operator D(waT)F|(b2(1+u+ v or)/a2,0,a2/Ar) is trivial.
)T

To this end, we argue by contradiction: If not, suppose that there exists (¢,n)" in
the kernel of D(,,1,7T)F|(b2(1_w+ v or)/az0.a3/Ak)’ where ¢ € W2P and n € R. Then ¢
and 7 satisfy '

as Cng 2 :

AP +azp — gn(l +pppR) =0 inQ,

dp

- =0 o9 19
v on o5, (19)

as 3 7&11)2()0 2b1§0
— + — 1|2 = 0.
<bz> /Q Lz(l + b k) (1 pgkpr)? vl

Multiplying the first equation of (19) by ¢ and integrating in 2 we have

77/Q<Pk(1 + pgkr)® = 0.

Since [, px =0 and p € (0,—1/ming @), we have

/Qsok(l + gk or)? = [k /Q (2 + pg ki) > 0.

Hence, n = 0. By (19) we have Ap+ Ay = 0in 2 and dp/0v = 0 on 9Q. If ¢ # 0,
as A is assumed to be simple, ¢ = syj for some constant s # 0. Substituting
» = sy and n = 0 into the last equation of (19) we find

—a1bagy, 2b1py, _
2 + 3| 0,
o Laa(1+ py kpr) (14 pg kpr)

which can be written as

ay Ok _2b o

as Jo U+ prren)® by Jo (T+ pg kpr)®
By definition of 4 g,

a 1 bl/ 1
az Jo (14 pg rwor) b2 Jo (1+ pyrer)?

Hence we have

/ wr dz / dx B / dx / Yk
o U+ prren)® Jo L+ prper  Jo (L4 pewen)? Jo (L+ pewpr)?
That is, g;,(t4,%) = 0, which is a contradiction.

By using the Fredholm Alternative we can invoke the Implicit Function Theorem
to find that there exist some positive constant § > 0 and w = w(z; dz) and 7 = 7(d2)
such that F'(w(x;ds), 7(d2),d2) = 0for da € (az/Ax—9,a2/\i), where w(x;as/A;) =
ba(1 + pis ki) /a2 and T(az/A;) = 0. Since we are only seeking solutions for which
T > 0, we need to determine the sign of 7/(az/A;). To this end, differentiate (17)
with respect to dy. We have

Aw + daA(Ow/dda) + Ow/dda(as — catw) + w(—coT'w — c2TOW/Dd2) =0 in Q.

Set do = az /Mg, w = (ba/az)(1 4 py ko), 7 =0 and w* = Ow/0da|4,—a,/»,- Then
w* satisfies

8 1y p Aprt+§2 Aw* +agw* —cor’ (az/AR) [ (s kpr) =0 InQ, & |p0 = 0.
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Multiplying the equation of w* by ) and integrating the result in 2 we find that

as Ak fQ Spi

— < 0.
baca [ 2 (2 + g kok)

T (az/Ar) =

Therefore, choosing § smaller if necessary, 7(d2) > 0 for dy € (az/A; — 6, a2/Ag).
Moreover,

ag2 g fQ CP%

T(dQ) /
= 7(az/ M) = — .
7 (az/A) bacy o 072 + it kor)

1m —_— Y =
da—az /Ay do — a2/)\k

This established the second equation of (16). Finally, letting do — ag/Ag in (17)
and setting W = w(x;aa/A), we see that @ satisfies

8—“’:0 on 0,

%Ad}—i—agd}—bgzo inQ, w>0 inQ, %

Direct calculation yields that @ = (be/a2)(1 + pt kpr). Hence, v(x;ds)/T(d2) =
w(x;da) — (ba/a2)(l + py xr) as do — az/A,. This together with the second
equation of (16) establishes the first equation of (16). O

2.3. Cross-diffusion system. In this subsection we prove the existence of non-
constant positive steady states of (1) and complete the proofs of parts (a) and (b)
of Theorem 1.1. To this end, let (u,v) be a positive steady state of (1). Set e =1/«
and w = (ed; + v)u. Then the steady state problem of system (1) is equivalent to

ew biw .
A - - = Q
w—|—€d1+v(a1 edi o clv) 0 in €,

A L —0 inQ 20
do v—i—v(ag o 02v> 0 in Q, (20)
ow Ov
—_— = — = Q.
ov  Ov 0 ond

Define operator P : L%(Q) — L?(Q) by Pl¢] = ¢ — ﬁ Jo @ Then (20) can be

rewritten as follows:

w biw .
Aw—i—ePLlerv(al—elerv—clv)}—O in Q,
/711} <a — biw —cv)—O
o €di +v Vo ed t v o B (21)
b
dgAerv(agedfichv) =0 in Q,
ow  Ov
5—5—0 OHaQ.

Set w =74 (1 +w1) and v = vy, + v1. Then (21) is equivalent to
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1 1
Aw; +€eP [ T (a _ bty

edy + v + 11 edy + v + 11

1+w biTy k(1+w1) )
/Q edy +vq, + 01 ( Ve o g+ 14+ v1)
_ by kAt wn)

edy + v + 11

—c1(vp e+ vﬁ)} =0in Q,

daA(vy g +v1) + (V45 + 1) (a2
8w1 - 81}1

—co(vg g + vl)) =01in Q,

T a, Q.
ay 81/ 0 Ona
Now we define F': R x W2P x W2P — LP x R x LP by
F(67w171}1)
14+ w, b1T+ k(lerl) )}
Awj +eP|——T "1 (g, = 2TV (e e+
' Ldl vkt 0 ( edy + vy + 01 14+ v1)
L+ wn by k(1 + wi)

B o\ — vt

/Q Edl +’U+,k+'l)1 ( 1 6d1+v+’k+’01 1( +,k 1)

sz_;,_,k(l + wl)

daA(vg ) +v1) + (v +01) | a2 —
2A(vp ke +v1) + (v k 1)<2 edi + v4 k + 01

—cavg k + Ul))

It is easy to check that F(0,0,0) = (0,0,0)”. The Fréchet derivative Dy, v F at
(e,wy,v1) = (0,0,0) is given by

r (7)
(e;wr,v1)=(0,0,0) \ ¥

Ay

2b1T 2b1T
_ /<P<a1_1+7k_m+7k) +/ ¥ (_a1+ ! -hk)
Q U+k Utk Q Uik Utk

da A + P(as — 2cov4 i) — baTy i

(wi,v1)

We claim that if ds is sufficiently close to as /Ay, then D(wl,vl)F‘(6 wr,01)=(0,0,0) has
the trivial kernel. If not, by passing to a sequence if necessary, we may suppose
that for any ds sufficiently close to as/\g, there exist some (¢, 1) # (0,0) such that

(¢, 1) belongs to the kernel of D(“’lvvl)F|(e,w1,111)=(0,0,0)' Since ¢ satisfies Ap =0

in  and g—f =0 on 99, then ¢ = n for some number 1. Set z = /74 . Since
1 bi7o &
/ — (al - +’) = Q]
Q VU+.k Utk

doAz + z(ag — 2cov4 k) —ban =0 in Q,
0z

% =0 on 5‘9, (22)

z 2bi 7 1
[ (o 228) o [
QUi g Utk Q Uik

As (n,z) # (0,0), we can always normalize 71,z such that |n| + ||z||r~ = 1. By
standard elliptic regularity theory we see that for any ¢ > 1, ||z||y2. is uniformly

then (7, z) satisfies
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bounded for ds close to as/A;. By letting do — ay / Ak, passing to a subsequence if
necessary, we may assume that z — z* in C1(Q) and 7 — n*, where (2*,7*) satisfy

N + a9z —bon* =0 in Q,
Ak

0z*
Y 0 on 09,
S —,
o (14 pgrpr)? P (ba/an) (1 pykpn)

b / ! 0
—b" | 5 =0,
o (L+ py kor)?

where we used vy — 0 and vy /74 1 — 2—2(1 + iy k9K) as do — ag/ k.

We first show that n* # 0. If n* = 0, then z* satisfies Az* + Agz* = 0 in Q
and 9z*/0v = 0 on 9. Since )y is assumed to be simple, z* = spy, for some real
number s. If s # 0, substituting 2* = sy and n* = 0 into the last equation of (23)
we obtain

o 2, )
. rr —a1 + - 0
/Q (1 + g ko) < P (ba/a)(1+ oy k)

Then we can argue similarly as in the proof of Theorem 2.3 to deduce that g, (p4 ) =
0, which is a contradiction. Hence, s = 0, i.e., 2 = 0. But this contradicts
In| + ||#]|Le= = 1. Therefore, n* # 0.

Since Ay is assumed to be simple and n* # 0, by the first two equations of (23)
we have

* b2 * *
2t =—=n"(1+ p"px) (24)
as

for some real number p*. We claim that p* = p4 ;. To establish this assertion,
substituting (24) into the last equation of (23) and dividing both sides by n* we
obtain

/ 52 (14 p* ) ( ot 2b, ) . / 1 0

— — 01 _ = ().
o (1+ py kor)? P (bo/ag) (1 + pa ko) o (14 pig kpr)?
Define

L2 (1 + per) 2, 1
Hp) = [ e THEW b / _r
() /Q (14 g kor)? ( “ (ba/az)(1 +M+,k90k)> ' o (L+ py wor)?

Since H(p*) = H(p4x) = 0 and

H’()_/Zz%<—a+ 201 )#o
M Jo T ieaen)? U ofa) (Ut e ) 7

where the last inequality follows from g (uy x) # 0, we see that p* = py j.
Now multiplying the equation of z by ¢ and integrating the result in 2, we have

V4 k
20K = 262/ 2o ———.
/Q o a2 —daAg

By letting do — as/A\; and applying z — 2—277*(1 + p4 kpr) and (16), dividing both
sides by 1n*by/as we have

fQ 9"%
Jo 022+ pykor)

/ k(1 + py kor) = 2/ on(1+ pgkpr)”
Q Q
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After further simplifications we obtain

H-i-,k/ @i =0,
Q

which is a contradiction as p4 > 0. This shows that D(wlavl)F|(e,wl,vl):(mo,o)
has only trivial kernel, provided that ds is sufficiently close to as/Ax. Hence, by
the Implicit Function Theorem there exists some 0 > 0 such that for every dy €
(ag/X\ — d,a2/N), if « is sufficiently large, then there exists one positive solution,
denoted by (u} ;,v} ;), such that
. x Tk . o
I

uniformly in €. The existence of (u*_,k,vi,k) can be similarly established. This

together with Theorem 2.3 complete the proof of parts (a) and (b) of Theorem 1.1.

3. Spectral stability of non-constant positive steady states. The goal of
this section is to prove part (¢) of Theorem 1.1. We first study the spectral stability
of positive steady states of shadow system (2) in Subsection 3.1. The proof of part
(c) of Theorem 1.1 is given in Subsection 3.2, where we adopt some ideas from [15].

3.1. Shadow system. We are interested in the spectral stability of (vi 1,74.1),
positive solutions of the shadow system (2), which were constructed in previous
section. For simplicity we focus on (v41,7+1). The stability of (v41,741) is
determined by

do A + (ag — 2cov4 1)y — ban = 07p  in Q,
0
a—f =0 on 09,
2b1T. 1
T+,1/ R <_a1 n 1+1> —bm,m/ L (25)
QUi U+1 QVia
1

== 077 —_— UTJ’,’l 35 -

QU+ QU3

Theorem 3.1. If do is sufficiently close to as/A1, the real part of any eigenvalue
of (25) is strictly negative.

Proof. We argue by contradiction. Suppose that there exists a sequence of {ds;}
with dy; < as/A\; for every j and lim; o, d2; = a2/A1 such that the eigenvalue
problem (25) with ds = ds; has an eigenvalue o; which has non-negative real
part for every j > 1. We normalize corresponding functions v; and 7; so that
m5] + lljlle = 1.

Step 1. We show that {|o;|} is a bounded sequence. Write o; = o1, + i02 5,
1/’;’ = wl,j + ii/)gﬁj, N =M,j + i?]g,j, where 01,5,02,5,M1,5,72,5 are real numbers, and
¥1,5,2,; are real valued functions. Since the real part of o; is non-negative, we
have o ; > 0. Then

do jAY1; + a(@)P1,; — bam,; = 01,915 — 02,5025 in €,
do jAYg j + a(x)e ; — bano; = 01,2, + 0291, in Q,
01 _ Oy

By = By on 00,



PATTERN FORMATION IN A CROSS-DIFFUSION SYSTEM 13

where a(x) = a2 —2cov4 1. We claim that if |o;| — 0o as j — oo, then |||/ L2 — 0.
To establish our assertion, we consider two cases:

Case 1. 01 ; = +o0 as j — oo. Multiplying the equation of v, ; by 1: ; and the
equation of v ; by 19 ;, adding two equations and integrating the result in 2, we
obtain

0o /Q (Va1 + Vo 2) + o /Q (W2, +42,)

= /91/11,3‘(6“/)1,3' — bami5) +A¢27j(a¢27j — bana,j).

If 01, — +00, by Cauchy-Schwartz inequality we have fﬂ(w%’j + ¢%,j) — 0.

Case 2. |02;| = 00 as j — oo. For this case, multiplying the equation of 1 ; by
9,5 and the equation of 1) ; by 91 ;, subtracting the result and integrating it in €2,
we obtain

02,]'/(1/113 +¢23 /77/123 ay j — bam 5) /1/11,3 aha j — bana ;).

Again by Cauchy-Schwartz inequality we see that if |09 ;| — oo, then fQ(wf)j +
¥3;) = 0.

Therefore, if |o;| — 0o as j — oo, we have ||| L2 — 0. Since |n;| + ||¥;llL2 =1,
we have |n;| — 1 as j — oo.

By the last equation of (25) we have

L] 2b 1
— Ja (V4,1/741)? <7a1 + U+,1/1T+,1) — by Jy (v4,1/741)°
o . 1 _ ] )
" fQ vpa/Tea fQ (v4,1/74,1)2

Since |[¢j]|2 = 0, |n;| = 1 and vy 1/71 — (ba/a2)(1 + pi191) as j — oo, by
passing to the limit in the above equation we see that

1
asdy [ G
lim o; = — ( —Wfr’“m) <0,

b fQ (I+p4,101)

which is a contradiction since we assume that the real part of o; is non-negative.
This proves that {o;} is a bounded sequence.

Step 2. We claim that as j — oo, o; — 0 and (n;,v;) = (1, az( + pi+,11)) after
suitable rescaling.

By elliptic regularity theory, ||%;||w=2.2 is uniformly bounded. By Sobolev embed-
ding theorem, passing to a subsequence if necessary, we may assume that 1; — *
in Wh2 n; — n*, and 0; — o* as j — oo, where (n*,¢*) and o* satisfy

%Aw* +agt —bont = ot i Q,

oy =0 on 99,

ov
%, . 1 (26)
e Ry
1+u+ 191)? (ba/az)(1+ py 101) o (L+py101)

X */ 1 */ Y*
= 25%p —— 90 —.
as o l+pg 101 o (14 pq101)




14 YUAN LOU, WEI-MING NI AND SHOJI YOTSUTANI

We first show that o* = 0. Since the real part of o; is non-negative, we see
that the real part of ¢* is also non-negative. Since |n;| + ||¥;|lr2 = 1 we have
[n*| + ||¥*||2 = 1. In the following we consider two cases:

Case 1. n* = 0. For this case, ¥* # 0 and it satisfies
o™

AP =02 im0, 22 =0 on 00
as ov
If 0* # 0, then o* must be real and positive. Hence, A\; ©2-7— o” < ). Since ¢h* #0,
the only possibility is that ¢* = as and ¢¥* is a non—zero constant. By the last

equation of (26) and n* = 0 we have

1 2by ) / 1
_al _|_ = —a2 -, < 0,
/Q (14 pga1)? < (b2/a2)(1 + pis11) o (L+ pe101)?
which implies that

ay 1 2by 1
as Jo (14 iy 11)? g E/Q (I+ pgap1)
By the definition of py 1, we have
ai 1 B by 1
az Jo 1+ praer ba Jo (1+ pyap1)?

Therefore, we obtain

aar) =L b
o (L+py101)? o (Lt prae)® Jo L4 pgaer’

which is a contradiction to Cauchy-Schwartz inequality. This proves that if n* = 0,
then o* = 0.

Case 2. n* # 0. Integrating the equation of * in 2 we have

(@2 =") [ 4" = alst” £ 0.

Therefore, 0* # a. Hence, the equation of ¢* can be written as

_A¢*:A1a2_a (1/’*_bzn*> in €, i =0 on 09.

as as — O ov

Suppose that o* # 0. We claim that the only possibility is ¢¥* = ban*/(az — 0*).
If not, then A\q aza—za* is an eigenvalue of the Laplace operator with zero Neumann
boundary condition. As o* # 0 and Re(c*) > 0, ¢* must be real and btrictly
positive. This together with o* # az implies that \; 2~ 7" < A\ and M\ e o #0,

which is a contradiction. Therefore, ¢* = ban*/(az — o ) By the last equatlon of
(26) and n* # 0, we have

/Q (b12/+<(;:_1:1*))2 <_a1 " (bz/az)(lmi u+,1<p1)> B bl/n (1 +u1,1<p1)2
1 bs/(ay — o™
i UQ (az/b2)(1 + ppapr) /Q <121(u2+,m>)2] ’

which can be reduced to a quadratic equation of o* of the form

C(0%)* + 0" (B — agC + byD) + by A — a3 B = 0, 27)
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where

. / (—a . 2bq )
1+ py, 1901 P (be/a) (1t pragr) )

B=b 7,
! o (14 py101)?

1
¢= / (as/b2) (1 + piy11)”

1
Y
o (14 pg101)

Claim. by A > asB.
To prove this assertion, note that

b b 1 1
2A-B=- a”/ 2+2b1/73
as az Jo (14 py101) o (14 pg101)

b / 1
Yo U paap)?
Rewrite g1 (pt+,1) = (a1/a2)/(b1/b2) as

a1by _p, fQ L+ pgap1)?

as fﬂ (1 + pg101)

Hence,

ba by 1 1
—A-B= 1 [7 2
a2 Jo (L4t 1601)~ o (L4 pra01)? Jo 1+ py 101

1 1 1 2
. : Y
o T+ pyae1)? Jo 1+ e o (14 pg 101)

Following the proof of Lemma 2.1 we find that by A > a2 B.
Note that

1 1
bg O 1+M+,1901 Q (1+/’6+71901)2

where the last inequality follows from Lemma 2.1. Since B > 0, from (27) we see
that Re(c*) < 0, which is contradiction since the real part of ¢; is non-negative.
This contradiction shows that if n* # 0, then o* = 0.

In conclusion, we always have o* = 0. Hence, (26) can be written as

%Aw* + as)* —bon* =0 in Q,
1

o =0 on 99,
ov
— (| -a
o (L+ pg191)? P (b2/az) (1 + psapn)

1
b */720.
H o (L+ py1p1)?

We next show that n* # 0. To this end we argue by contradiction. Suppose that
*=0. As (n*,¢*) # (0,0), we see that ¢* = sp; for some s # 0. Substituting
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this into (28) we have

(pl 261 >
—— | —a1 + =0,
/Q (L4 pga1)? ( P (ba/az)(1+ pyagn)
which implies that ¢i(r4 1) = 0. This contradiction implies that n* # 0. Therefore
V= —=n"(1+ pp1)

for some real number pu. Substituting this into (28) and dividing both sides by n*
we have

/W(_H 2b, >_b/1_0
0t peae)? U (befan)A+praer)) o At praen)?

By using exactly the same argument as in Subsection 2.3, we see that p = py 1.
This completes the proof for Step 2.

Step 3. Multiplying the equation of 9; by ¢ and integrating the result in Q, after
some rearrangement of terms we have

Vi1
(o1 — 92 . ] = 29
/ijia1 02/9%%@—612,3')\1 a2_d2j)‘1 / vigr (29)
By Step 2, ¥; = (ba/a2)(1+ p4,1¢1) as j — oco. Also recall that

Vi 1 fQ o3
lim ————— 1 +
j—oo ag—dzj)\l 02( . 1801 fQ (,01 2+/J+ 1@1)

Passing to the limit in (29) we obtain

o;
lim ——— = —1.
j—oo ag — da A1

However, this contradicts our assumption that the real part of o; is non-negative.
This completes the proof of Theorem 3.1. O

3.2. Cross-diffusion system. To study the dynamics of (1), we set w = u(d;/a+
v). Then (w,v) satisfies

w w biw
— ) =aA - - _ in QF
<d1/a+v)t [ w+d1/a+v<a1 dl/a+v cw) mn s

b
v = doAv +v (ag — ﬁujrv — 0211) in QF, (30)

%2%20 on 09 x (0, 00),
where Q1 = Q x (0, 00).

Recall that (ui 1,v1 ;) are positive solutions of (1). Set wi ; 1= ul ;(d1/a +
v} ;). We are interested in the spectral stability of (wi ;,v} ;), positive solutions
of system (30). For simplicity we only consider the spectral stability of (wi’l, Vi)
The stability of (w7 ;,v7 ;) is determined by

o¢ o owiag .
dijatvi,  (dijatol ) 080 tdtany ind,
oY = do Ay 4+ as10 + a0ty in €, (31)
d¢ Oy

W= =0 on 99,
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where the coefficients a;; are given by

DRSS DAL S
di/a+ v} di/a+vi L

w 2byw? c1d
ay=———F———a - Sy =),
(di/a+ v y) di/a+ v} «
bQUj;_l
ag) = —————|
21 difa+vi
d1b2 wi,l
& (dl/a—i—vi’l)f

*
29 = A2 — 2021)4_71 —

Proof of part (c) of Theorem 1. It suffices to show that the real part of any eigenvalue
of (31) must be strictly negative. We argue by contradiction. Suppose that for every
dy € (az/M1 — d,a2/A1), there exists a sequence {a;} with lim;_,., a; = 400 such
that the eigenvalue problem (31) with a@ = «a; has an eigenvalue o; which has
non-negative real part for every j > 1. We normalize corresponding eigenfunction
(65, 95) so that [|g;l|L> + [[¢sllz2 = 1.

Step 1. We show that the eigenvalues o; are uniformly bounded. We argue by
contradiction. Suppose that o; is unbounded and passing to a subsequence if nec-
essary we may assume that |o;| — oo as j — co. Multiplying the equation for ¢,
by ¢; and integrating the results in Q we have

aj/Q|V¢j|2+Re<aj>/Q\¢j|2g01/Q|¢j|2+cz<|aj\+1>/Q|wj|2,

where Re(o;) denotes the real part of o, and Ci,Cs are positive constants inde-
pendent of j. Similarly, we also have

()| / 16512 < C / 16512 + Ca(lo] + 1) / oy,

where I'm(c;) denotes the imaginary part of o;, and C, Cy are positive constants
independent of j. As o; > 0, combining the above two inequalities we have

[Re(a;) + [Tm(a)]] / 16512 < (Cy + C) / 16512 + (Ca + Ca)(loy] + 1) / 5 2.

As we assume that Re(o;) > 0 and |o;| — 0o as j — 0o, we have

12 2
/Q 16,12 < C5 /Q 1 (32)

for all sufficiently large j, where C5 is some positive constant independent of j.
Multiplying the equation for v; by 1; and integrating the result in € we can
similarly obtain

[Re(0;) + [Im(a)]] / 5 ? < Co / 1652 + Cr / 5 .

As we assume that Re(o;) > 0 and |o;| — 0o as j — oo, we have

el [lop
[ < 5e [ 10 (33)
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for all sufficiently large j. By (32) and (33) we obtain ¢; = ¢; = 0 for sufficiently
large j, but this contradicts ||¢;| L2+ ||¢;]| L2 = 1 for all j. This contradiction shows
that {o;} is a bounded sequence.

Step 2. Since o; is bounded, by elliptic regularity theory we see that ||¢;|lw=2.2 and
ll1j]lw2.2 are uniformly bounded. By Sobolev embedding theorem and passing to a
subsequence if necessary we may assume that ¢; — ¢ and ¢; — 9 weakly in W22
and strongly in W2, In particular, as a; — 0o, A¢ = 0 in Q and d¢/dv = 0 on
Q. Therefore, ¢ = 7 for some constant 7. Recall that as a; — oo, wi ; — 741
and v} ; — vy ;. Therefore, 7 and 1 satisfy 7| + [[1||z> = 1 and (25). Hence, (25)
has an eigenvalue with non-negative real part, which contradicts Theorem 3.1. This
completes the proof of (¢) of Theorem 1.1. O
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