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bstract

We study the effect of photoinhibition in a nonlocal reaction–diffusion–advection equation, which models 
e dynamics of a single phytoplankton species in a water column where the growth of the species depends 
lely on light. Our results show that, in contrast to the case of no photoinhibition, where at most one 
sitive steady state can exist, the model with photoinhibition possesses at least two positive steady states in 
rtain parameter ranges. Our approach involves bifurcation theory and perturbation–reduction arguments.
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 Introduction

Phytoplankton are microscopic plants that float in oceans and lakes and form the base of the 
uatic food chain. Since they transport significant amounts of atmospheric carbon dioxide into 
e deep oceans, they may also play a crucial role in the climate dynamics. Phytoplankton species 
pically compete for nutrients and light [4,5,16,19,28,29]. But in oligotrophic ecosystems with 
ple supply of light, they tend to compete only for nutrients [20,22], and in eutrophic envi-
nments with ample nutrients supply, they compete only for light [8,15]. In a water column, a 
ytoplankton population diffuses due to turbulent mixing caused by wind and wave actions. In 
any cases, phytoplankton also sinks due to its own weight.
In this paper, we consider a single sinking phytoplankton species in an eutrophic water col-
n. Our analysis is based on a nonlocal reaction–diffusion–advection model given by Huisman 
d colleagues in [8,14], but the growth function g(I) of phytoplankton species in the model is 
odified to include photoinhibition into consideration.
Photoinhibition is characterized by a decreasing rate of photosynthesis with increasing light, 
hich occurs in many phytoplankton species that are sensitive to strong light. This phenomenon 
 caused by damage to the photosynthetic machinery of cells and by protective mechanisms to 
oid this damage [23,27].
Without photoinhibition, the growth function g(I) is generally assumed to be strictly increas-
g in I , representing the fact that increase of the light level I leads to better growth of the 
ytoplankton. In such a case this model was investigated recently through rigorous mathemat-
al analysis in [6,7,13,21] (see also earlier work in [17,18,26] and references therein), which 
ow that the phytoplankton population either stabilizes at a unique positive steady-state or con-
rges to 0 as time goes to infinity, depending on whether the loss rate is below or above a critical 
vel.
With photoinhibition, observations in many laboratory studies [10,11,24] suggest that the 
nction g(I) should be increasing before I reaches a certain critical level I∗ > 0 where g(I)

s a maximum, after which g(I) decreases and converges to 0 as I → ∞. In a completely 
ixed water column, the reaction–diffusion–advection model reduces to an ODE model, and the 
fect of photoinhibition was studied in the recent papers [9,12]. With a growth function g(I)

 above, [9] demonstrates that the phytoplankton population may have two stable steady-states 
ne positive, the other 0), plus another unstable positive steady state, causing a bistable dynami-
l behavior with the phytoplankton population stabilizing at one or the other stable steady state, 
pending on its initial value. (The multi-species case was also considered in [9] and [12].)
In this paper, we examine the effect of photoinhibition in an incompletely mixed water col-
n, through a single species reaction–diffusion–advection model, where photoinhibition is 

corporated into the growth function g(I) as described above. We show that the phenomenon 
 multiple positive steady-states observed in completely mixed water column persists, and their 
ability suggests a bistable dynamical behavior.
Multiplicity results for similar reaction–diffusion equations are usually obtained by making 
e of the upper and lower solution technique, combined with tools from global analysis (such as 
e topological degree theory or global bifurcation theory). However, such upper and lower solu-
on techniques are difficult to apply here due to the nonlocal nature of the problem. To overcome 
is difficulty, apart from employing local and global bifurcation analysis, we also use a perturba-
on and reduction approach, which is new to this kind of nonlocal reaction–diffusion equations. 
 is our hope that the mathematical techniques developed here may find more applications in 
47ytoplankton models.
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We now describe the model in more detail. Consider a vertical water column with a cross 
ction of one unit area and depth h. Let p(x, t) be the population density of the phytoplankton 
 depth x ∈ [0, h] and time t . Then the change of density is governed by the following reaction–
ffusion–advection problem

⎧⎪⎨
⎪⎩

pt = Dpxx − σpx + [
g
(
I0e

−k0x−k
∫ x
0 p(s,t)ds

) − d
]
p, 0< x < h, t > 0,

Dpx(x, t) − σp(x, t) = 0, x = 0 or h, t > 0,

p(x,0) = p0(x) � 0, 0≤ x ≤ h,

(1.1)

here d > 0 is the loss rate of the species, the positive constants D, σ represent the diffusion 
te and the sinking rate, respectively.
The term

I (x, t) = I0e
−k0x−k

∫ x
0 p(s,t)ds (1.2)

 known as the light intensity, with k0 ≥ 0 the background turbidity, k > 0 the light attenuation 
efficient of the phytoplankton species, and I0 > 0 the incident light intensity.
The function g(I) governs the growth rate according to the change of light level I . We always 
sume that g is C1. Taking into account of photoinhibition we assume, as in [9], that g(I) has 
e following properties:

⎧⎨
⎩

(i) g(0) = 0,
(ii) there exists I∗ > 0 such that (I∗ − I )g′(I ) > 0 for I 	= I∗,
(iii) limI→∞ g(I) = 0.

(1.3)

The boundary conditions at x = 0 and x = h imply that there is no population flux at the 
rface or bottom of the water column.
We are interested in the multiplicity of positive steady states of (1.1). To simplify notations 
e assume that D = h = I0 = 1. We stress that this is for simplicity of the notations only; our 
ethod can deal with the general case without extra difficulties. Thus we will study the positive 
lutions of the nonlocal elliptic boundary value problem

{
pxx − σpx + p

[
g(I) − d

] = 0, 0< x < 1,

qpx(0) − σp(0) = 0, px(1) − σp(1) = 0,
(1.4)

ith

I = I (x) = e−k0x−k
∫ x
0 p(s)ds . (1.5)

Our first existence and multiplicity result is obtained by a standard argument involving local 
d global bifurcation theory of Crandall and Rabinowitz [1,2,25]. The multiplicity result is local 
 nature.

heorem 1.1. Suppose that (1.3) holds and I∗ < e−k0 . Then there exist some positive constants 
< d∗ < g(I∗) such that (1.4) has at least one positive solution for d ∈ (0, d∗], two positive 
47lutions for d ∈ (d∗, d∗), and no positive solution for d > g(I ∗).
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Here d∗ is uniquely determined by an eigenvalue problem, and d∗ > d∗ is sufficiently close 
d∗, whose existence arises from a bifurcation analysis along the line of trivial solutions 

d,0) : d ∈R1}, which shows that a branch of positive solutions {(d, p)} bifurcates from the 
ne of trivial solutions at (d∗, 0), and it goes rightward initially but has to become unbounded 
rough d converging to 0. It can be shown that for d ∈ (d∗, d∗), one of the positive steady state 
 unstable (see Lemma 2.3), but we have no information on the stability of the other positive 
eady state, though we believe it is stable.
By making use of a perturbation–reduction approach, we can obtain a multiplicity result which 

 global in nature, together with information on the asymptotic profile and stability of the solu-
ons, but only for large σ .

heorem 1.2. Suppose that (1.3) holds and I∗ < e−k0 .

i) Define

G(μ) = 1

μ

μ∫
0

g
(
e−k0−s

)
ds.

Then there exists a unique μ∗ > ln(e−k0/I∗) such that

G′(μ∗) = 0, G′(μ)(μ∗ − μ) > 0 for μ ∈ (0,+∞) \ {μ∗}.

Moreover, for each d ∈ (g(e−k0), G(μ∗)), the equation d = G(μ) has exactly two positive 
solutions μ1, μ2, and 0 < μ1 < μ∗ < μ2.

i) For each d ∈ (g(e−k0), G(μ∗)), there exists ε∗ > 0 such that for every σ > 1/ε∗, (1.4) has 
two positive solutions of the form

p1(x) = μ1

k
σeσ(x−1) + z1,σ (x), p2(x) = μ2

k
σeσ(x−1) + z2,σ (x),

with zi,σ satisfying limσ→∞
∫ 1
0 |zi,σ (x)|dx = 0, i = 1, 2.

emark 1.3. If I∗ ≥ 1, we can show that (1.4) has at most one positive solution for any σ . Indeed, 
e can modify g(I) for I > I∗ to obtain a new C1 function g̃(I ) which is strictly increasing in 
for all I > 0. When I∗ ≥ 1, it is easily seen that if p is a positive solution of (1.4), then 

 is also a positive solution of (1.4) with g(I) replaced by g̃(I ). Hence we are back in the 
-photoinhibition case and can apply the result in [13,7] to conclude that there is at most one 
sitive solution, and the dynamics of (1.1) is simple. Biologically this fact is rather natural, as 1

 the highest possible level of light intensity felt by the species in the water column, so only the 
lues of g(I) for I ∈ (0, 1] contribute to the growth of the species.

The results in Theorem 1.2 suggest that for large σ , the two solutions p1 and p2 form a “⊃”-
aped curve in the (d, p)-space as d is varied in the range (g(e−k0), G(μ∗)), which resembles 
e solution curve of the equation d = G(μ) in the (d, μ)-plane. Fig. 1 shows the graph of the 
47rve G(μ) and the two solutions μ1 and μ2 of d = G(μ) for the case I∗ < e−k0 .
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Fig. 1. Illustrative graph of G(μ) and the solutions of d = G(μ).

It is interesting to note that, by Theorem 3.2 of [13], as σ → +∞, the bifurcation value d∗ in 
heorem 1.1 converges to g(e−k0), suggesting that the global bifurcation curve in Theorem 1.1
r large σ looks like the solution curve of the equation d = G(μ) in the (d, μ)-plane, and the 
o positive solutions in Theorem 1.2 are from the “lower” and “upper” branches of the global 
furcation curve.
Let us also note that for large σ , the solutions p1(x) and p2(x) are well approximated by 

1 σeσ(x−1) and μ2
k

σeσ(x−1), respectively, which have values close to 0 away from x = 1, while 
eir values at x = 1 go to ∞ as σ → ∞. The fact that the populations concentrate at the bot-
m of the water column is due to the assumption of large sinking rate σ . The information on 
e asymptotic profiles of p1(x) and p2(x) enables us to investigate their stability, see Theo-
m 4.1 in Section 4, which suggests that p1 is unstable, p2 is stable, as expected for the bistable 
enomenon. (Note that 0 is a stable steady state for d in the range of Theorem 1.2.)
The rest of the paper is organized as follows. In Section 2 we use a bifurcation approach to 
ove Theorem 1.1, with d as the bifurcation parameter. To overcome some of the limitations 
countered in Section 2 in the bifurcation approach, in Section 3 we use a perturbation and 
duction approach to study the steady-state solutions of (1.1) with large sinking rate and prove 
heorem 1.2. In Section 4 we consider the linearized stability of the two positive steady states 
und in Section 3.
We thank the referee for helpful suggestions on the presentation of the paper.

 Multiple steady-states through a bifurcation approach

In this section we use a bifurcation approach to prove Theorem 1.1. We focus on the existence 
 positive solutions by studying the bifurcation of a branch of positive solutions of (1.4) from 
e trivial solution p = 0, with coefficient d as the bifurcation parameter.
We first consider the stability of p = 0, which is determined by the sign of the largest eigen-
lue, denoted by λ = d∗, of the linear eigenvalue problem

{
ϕxx − σϕx + g

(
e−k0x

)
ϕ = λϕ, 0< x < 1,
47
ϕx(0) − σϕ(0) = 0, ϕx(1) − σϕ(1) = 0.

(2.1)
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y the well-known Krein–Rutman theorem it is known that d∗ exists and is positive. Its corre-
onding eigenfunction can be chosen to be positive in [0, 1], denoted by ϕ∗, which is uniquely 
termined by the normalization max[0,1] ϕ∗ = 1. To investigate the structure of the set of solu-
ons of (1.4) near (d, p) = (d∗, 0), we first introduce a few notations. Set X = {u ∈ C2([0, 1]) :
x − σu = 0 at x = 0, 1}, Y = C([0, 1]). Define mapping F(d, p) : (0, ∞) × X → Y by

F(d,p) = pxx − σpx + p
[
g(I) − d

]
.

learly, F(d, 0) = 0 for d ∈ (0, ∞). Since

Fp(d,0)ϕ = ϕxx − σϕx + [
g
(
e−k0x

) − d
]
ϕ, (2.2)

e see that (i) the kernel of Fp(d∗, 0) is spanned by ϕ∗, and is thus one dimensional; (ii) the 
nge of Fp(d∗, 0), denoted by R(Fp(d∗, 0)), is given by

{
ζ ∈ Y :

1∫
0

e−σxϕ∗ζdx = 0

}
,

d is thus of co-dimension one. Furthermore, Fpd(d∗, 0)ϕ∗ = −ϕ∗ /∈ R(Fp(d∗, 0)). By Theo-
m 1.7 of [1], we obtain the result:

emma 2.1. Let Z be any complement of span of {ϕ∗} in X. Then there exists some δ > 0 and 
ntinuously differentiable functions d : (−δ, δ) → R and ψ : (−δ, δ) → X such that d(0) = d∗, 
(0) = 0, and F(d(s), p(s)) = 0, where p(s) = sϕ∗ + sψ(s). Moreover, F−1({0}) near (d∗, 0)
nsists precisely of the curves p = 0 and (d(s), p(s)), s ∈ (−δ, δ). Furthermore,

d ′(0)
1∫

0

e−σxϕ2∗ dx = −k

1∫
0

e−σxe−k0xg′(e−k0x
)
ϕ2∗

( x∫
0

ϕ∗

)
dx. (2.3)

roof. It suffices to check (2.3). Dividing F(d(s), p(s)) = 0 by s and differentiating the result 
ith respect to s at s = 0, using p = sϕ∗ + sψ(s) we have

ψ ′(0)
)
xx

− σ
(
ψ ′(0)

)
x

+ ψ ′(0)
[
g
(
e−k0x

) − d∗
] + ϕ∗

[
−kg′(e−k0x

)
e−k0x

x∫
0

ϕ∗ − d ′(0)
]

= 0.

ultiplying the above equation by e−σxϕ∗ and integrating by parts we obtain (2.3). �
In the terminology of [2], 0 is an Fpd(d∗, 0)-simple eigenvalue of the operator Fp(d∗, 0). By 

orollary 1.13 and Theorem 1.16 of [2] we have

roposition 2.2. There exist some positive constants δ1 and δ2 and continuously differen-
able functions γ : (d∗ − δ1, d∗ + δ1) → R, μ : (−δ2, δ2) → R, v : (d∗ − δ1, d∗ + δ1) → X, 
47: (−δ2, δ2) → X such that
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Fp(d,0)v(d) = −γ (d)v(d),

Fp

(
d(s),p(s)

)
w(s) = −μ(s)w(s),

lim
s→0,μ(s)	=0

−sd ′(s)γ ′(d∗)
μ(s)

= 1, (2.4)

here γ (d∗) = μ(0) = 0, v(d∗) = w(0) = ϕ∗.

The next result suggests that for s > 0 small, the nontrivial (positive) solution p(s) = sϕ∗ +
(s) is unstable under suitable conditions.

emma 2.3. Suppose that (1.3) holds and I∗ < e−k0 . Then for any sufficiently small s > 0, 
(s) < 0.

roof. By (2.2) and the definition of d∗, we see that γ (d) = d − d∗. If (1.3) holds, g′(e−k0x) < 0
r x ∈ (0, 1), which together with (2.3) implies that d ′(0) > 0. By (2.4), we see that μ(s) < 0
r s > 0 small. �
emma 2.4. Suppose that (1.3) holds. If d /∈ (0, g(I∗)), then (1.4) has no positive solution.

roof. Let p denote a positive solution of (1.4). Integrating (1.4) in (0, h) and applying the 
undary condition in (1.4), we have

1∫
0

p
[
g(I) − d

]
dx = 0.

nce g(I) ∈ (0, g(I∗)) and I 	≡ I ∗, we see that d ∈ (0, g(I∗)). Therefore, (1.4) has no positive 
lution when d /∈ (0, g(I∗)). �
emma 2.5. Given any η > 0, there exists some positive constant C(η) such that every positive 
lution p of (1.4) with d ≥ η satisfies ‖p‖L∞(0,1) ≤ C(η).

The proof of Lemma 2.5 is identical to that of Lemma 4.2 of [13] and is omitted.

roof of Theorem 1.1. By Lemma 2.1 and the global bifurcation result of Rabinowitz [25], 
.4) has an unbounded connected branch of positive solutions, denoted by Γ = {(d, p)} ⊂
 × C1([0, 1]), which bifurcates from the trivial solution branch {(d, 0)} at (d∗, 0). Since (1.4)
s no positive solutions when d /∈ (0, g(I∗)) (Lemma 2.4) and all positive solutions of (1.4) are 
iformly bounded when d is positive and bounded away from zero (Lemma 2.5), we see that Γ
n only become unbounded as d → 0+. As Γ is connected, (1.4) has at least one positive solu-
n for every d ∈ (0, d∗). Denote {(d, p) ∈ Γ : 0 < d < d∗} by Γ1. By Lemma 2.1, Γ contains a 
anch of positive solutions, denoted by Γ2, which is given by (d(s), p(s)) for s > 0 small. By 
.3) and I∗ < e−k0 , we have d ′(0) > 0. In particular, there exists some d∗ > d∗ such that the 
ojection of Γ2 onto the d-axis is given by (d∗, d∗). Hence Γ1 and Γ2 must be disjoint. As Γ
47 connected and Γ1, Γ2 ⊂ Γ , we see that the projection of Γ \ Γ2 onto the d-axis must contain 
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, d∗), i.e. (1.4) has at least two positive solutions for d ∈ (d∗, d∗). By Lemma 2.4, (1.4) has no 
sitive solution for d > g(I∗). Thus we complete the proof of Theorem 1.1. �
The proof of Theorem 1.1 indicates that there exists d∗∗ ∈ [d∗, g(I∗)) such that (1.4) has no 
sitive solution lying on Γ for d > d∗∗, and it has at least one positive solution for d ∈ (0, d∗∗]. 
 such a case, it is natural to expect that there exist two positive solutions for d ∈ (d∗, d∗∗), 
d the global bifurcation curve is “⊃”-shaped, with a turning point at d = d∗∗. Moreover, one 
pects the following typical conclusions:
For d ∈ (d∗, d∗∗), there are two positive solutions, and the solution on the “upper” branch of 

e global bifurcation curve is stable, while that located on the “lower” branch is unstable. Note 
so that the zero solution p = 0 is always stable for d > d∗.
Such a global bifurcation picture can be partially proved by techniques of [3] for increasing 
erators, if the problem at hand has the usual order-preserving property. Unfortunately, due 
 the nonlocal nature of our problem, this nice property is lost and we cannot use such tools 
volving the order-preserving property as in [3] or the usual upper and lower solution technique. 
e remark that even the modified order-preserving property used in [6] is lost here due to the 
ct that g(I) is no longer increasing in I for all I > 0.
To overcome these difficulties, in the next two sections, we employ a perturbation and reduc-

on approach, which strongly suggests the validity of the global bifurcation picture described 
ove, at least for large σ .

 Multiple steady-states via a perturbation–reduction approach

In this section, we use a perturbation and reduction approach to study the positive solutions 
 (1.4). Their stability will be considered in Section 4 later. We will examine the problem with 
large σ , and write it in the form

σ = ε−1,

ith ε > 0 small.
Let p(x) be a positive solution of (1.4), and define

u(x) = p(εx + 1)e−x/2.

 simple calculation shows that

⎧⎪⎨
⎪⎩

uxx − 1

4
u + ε2

[
g(Ĩ ) − d

]
u = 0, x ∈ (−ε−1,0

)
,

ux − 1

2
u = 0, x ∈ {−ε−1,0

}
,

(3.1)

here

Ĩ = exp

(
−k0 − εk0x − kε

x∫
u(s)es/2ds

)
.

47−ε−1
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We will look for a solution to (3.1) of the form

u(x) = ε−1ηex/2 + z(x)

ith η > 0 and

z ∈ H :=
{

z :
0∫

−ε−1

z(x)ex/2dx = 0,

0∫
−ε−1

∣∣z(x)
∣∣ex/2dx < ∞

}
.

Since the function ex/2 satisfies

uxx − 1

4
u = 0 in

(−ε−1,0
)
, ux − 1

2
u = 0 at x = −ε−1,0,

e necessarily have

⎧⎪⎨
⎪⎩

−zxx + 1

4
z = ε2

[
g(Ĩ ) − d

]
u, x ∈ (−ε−1,0

)
,

zx − 1

2
z = 0, x ∈ {−ε−1,0

}
,

ith Ĩ as above, and u(x) = ε−1ηex/2 + z(x).
We now define

f (x) = f (x; ε, η, z) := ε2
{
g(Ĩ )

[
ε−1ηex/2 + z(x)

]+ − d
[
ε−1ηex/2 + z(x)

]}
ere u+ =max{u, 0}) and consider the auxiliary problem

⎧⎪⎨
⎪⎩

−zxx + 1

4
z = f (x) − λex/2, x ∈ (−ε−1,0

)
,

zx − 1

2
z = 0, x ∈ {−ε−1,0

}
,

(3.2)

ith λ determined by

λ

0∫
−ε−1

exdx =
0∫

−ε−1

f (x)ex/2dx. (3.3)

hen from (3.2) we find that z ∈ H has the expression

z(x) =
0∫

x

f (y)2 sinh

(
x − y

2

)
dy − λ

0∫
x

ey/22 sinh

(
x − y

2

)
dy + αex/2,

here sinh(x) = (ex − e−x)/2 and α ∈ R1 is chosen such that 
∫ 0
−1/ε z(x)ex/2dx = 0. A simple 
47lculation gives
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z(x) =
0∫

x

f (y)2 sinh

(
x − y

2

)
dy + λex/2(x − 1+ e−x

) + αex/2.

For z ∈ H , we now define the nonlinear operator

Fε,η(z)(x) := F 1
ε,η(z)(x) + α(ε, η, z)ex/2,

ith

F 1
ε,η(z)(x) :=

0∫
x

f (y; ε, η, z)2 sinh

(
x − y

2

)
dy + λ(ε, η, z)ex/2(x − 1+ e−x

)
,

here λ(ε, η, z) is determined by (3.3) with f (x) = f (x; ε, η, z), and α(ε, η, z) is determined 

0∫
−1/ε

ex/2F 1
ε,η(z)(x)dx + α

0∫
−1/ε

exdx = 0,

at is,

α(ε, η, z) := −(
1− e−1/ε)−1

0∫
−1/ε

ex/2F 1
ε,η(z)(x)dx. (3.4)

We will show that for all small ε > 0 and all η > 0 in a certain interval J , the operator Fε,η is 
contraction mapping in H , and hence it has a unique fixed point z = zε,η . We will then choose 
= ηε so that λ(ε, η, z) = 0 for z = zε,η and η = ηε . We will show that this gives a positive 
lution u = ε−1ηεe

x/2 + zε,ηε (x) to (3.1) for all small ε > 0. A key point in this approach is 
at with our assumptions on g(I), for each small ε > 0, for d > 0 in a certain range, we always 
ve two solutions for ηε , and hence this approach yields two positive steady-states for (3.1).
We will show that for ε > 0 small, the equation λ(ε, η, zε,η) = 0 is a perturbation of the 
uation

d =
kη∫
0

1

kη
g
(
ξ0e

−s
)
ds, ξ0 = e−k0 ∈ (0,1].

enote

μ = kη, G(μ) = 1
μ∫
g
(
ξ0e

−s
)
ds and G0(μ) =

μ∫
g
(
ξ0e

−s
)
ds,
47μ
0 0
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en the above equation is equivalent to

d = G(μ). (3.5)

 order to determine the range J for η so that Fε,η is a contraction mapping, and multiple 
lutions to (3.1) exist, we need to obtain several simple properties of the functions G(μ) and 
0(μ) first.

1. Properties of G0(μ) and G(μ)

Our assumptions on g imply that g(I) ≤ c0I for some c0 > 0 and all I > 0. It follows that

G0(+∞) =
+∞∫
0

g
(
ξ0e

−s
)
ds ∈ (0,∞).

learly

G(0) = g(ξ0) > 0, G(μ) > 0 for μ > 0, G(+∞) = 0

d

G′(μ) = μ−2[μG′
0(μ) − G0(μ)

] =: μ−2G̃(μ).

If I∗ ≥ ξ0, then

G′
0(μ) = g

(
ξ0e

−μ
)
> 0, G′′

0(μ) = −g′(ξ0e−μ
)
ξ0e

−μ < 0 ∀μ ≥ 0.

ence

G̃′(μ) = μG′′
0(μ) < 0 for μ > 0.

 follows that

G̃(μ) < G̃(0) = 0 for μ > 0.

hus G′(μ) = μ−2G̃(μ) < 0 for μ > 0. This implies that for each d ∈ (0, d∗) := (0, g(ξ0)), 
.5) has a unique solution μ > 0, and for each d ≥ d∗, (3.5) has no solution μ > 0.
If I∗ < ξ0, then G′

0(μ) > 0 for μ ≥ 0, and

G′′
0(μ) > 0 for μ ∈ (

0, ln(ξ0/I∗)
)
, G′′

0(μ) < 0 for μ > ln(ξ0/I∗).

hus

( )

47G̃′(μ) > 0 for μ ∈ 0, ln(ξ0/I∗) , G̃′(μ) < 0 for μ > ln(ξ0/I∗).
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sing G′′
0(μ) < 0 for all large μ > 0 and G0(+∞) > 0, it is easily seen that G̃(μ) < 0 for all 

rge μ. Thus there exists a unique μ∗ > ln(ξ0/I∗) such that for μ ∈ (0, μ∗), G̃(μ) > 0, and for 
 > μ∗, G̃(μ) < 0. It follows that

G′(μ) > 0 for μ ∈ (0,μ∗), G′(μ) < 0 for μ > μ∗.

efine d̂∗ := G(μ∗); then for each d ∈ (g(ξ0), d̂∗), (3.5) has exactly two solutions μ1 ∈ (0, μ∗)
d μ2 ∈ (μ∗, +∞), and (3.5) has a unique solution μ > 0 for d ∈ {d̂∗} ∪ (0, g(ξ0)). Moreover,

G′(μ1) > 0> G′(μ2). (3.6)

From now on, we always assume that

I∗ < ξ0 and d ∈ (
g(ξ0), d̂∗

)
. (3.7)

hus (3.5) has exactly two solutions 0 < μ1 < μ2, and apart from (3.6), we have

μ > G(μ) for μ ∈ (0,μ1) ∪ (μ2,∞), μ < G(μ) for μ ∈ (μ1,μ2). (3.8)

Clearly part (i) of Theorem 1.2 follows from the above discussions. The rest of this section is 
voted to the proof of part (ii) of Theorem 1.2. We set

J =
[

μ1

2k
,
2μ2

k

]
.

2. Fε,η maps a subset of H into itself

It is easily seen that H = Hε endowed with the norm

‖z‖ =
0∫

−ε−1

∣∣z(x)
∣∣ex/2dx

 a Banach space.

emma 3.1. There exist ε0 > 0 and M > 0 such that for each ε ∈ (0, ε0] and η ∈ J , Fε,η maps 
:= {z ∈ H : ‖z‖ ≤ M} into itself.

roof.

ex/2F 1
ε,η(z)(x) = ex/2

0∫
x

f (y; ε, η, z)2 sinh

(
x − y

2

)
dy + λ(ε, η, z)

[
(x − 1)ex + 1

]
= S1(x) + S2(x).
47e have, for ε > 0 small,



JID:YJDEQ AID:7673 /FLA [m1+; v1.200; Prn:18/12/2014; 9:44] P.13 (1-27)

Y. Du et al. / J. Differential Equations ••• (••••) •••–••• 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
∣∣λ(ε, η, z)
∣∣ = (

1− e−ε−1)−1

∣∣∣∣∣
0∫

−ε−1

ε2
{
g(·)[ε−1ηex/2 + z(x)

]+ − d
[
ε−1ηex/2 + z(x)

]}
ex/2dx

∣∣∣∣∣

≤ 2

0∫
−ε−1

ε2
[
c0e

−εk
∫ x

−ε−1 (ε−1ηey/2−|z(y)|)ey/2dy + d
](

ε−1ηex + ∣∣z(x)
∣∣ex/2)dx

≤ 2

0∫
−ε−1

[
c0e

εk‖z‖ + d
](

εηex + ε2
∣∣z(x)

∣∣ex/2)dx

≤ C
(
eεk‖z‖ + 1

)(
ε + ε2‖z‖),

for some C > 0 independent of η ∈ J and small ε > 0. In the following, we will use C to denote a 
generic positive constant that is independent of η ∈ J and small ε > 0, whose value may change 
from line to line.

From the above estimate we obtain

0∫
−ε−1

∣∣S2(x)
∣∣dx ≤ ∣∣λ(ε, η, z)

∣∣ 0∫
−ε−1

∣∣(x − 1)ex + 1
∣∣dx

≤ C
(
eεk‖z‖ + 1

)(
1+ ε‖z‖).

For the term S1(x) we have

∣∣S1(x)
∣∣ =

∣∣∣∣∣ex/2

0∫
x

f (y; ε, η, z)2 sinh

(
x − y

2

)
dy

∣∣∣∣∣

≤ ex/2

0∫
x

ε2
∣∣g(·) − d

∣∣(ε−1ηey/2 + ∣∣z(y)
∣∣)2∣∣∣∣sinh

(
x − y

2

)∣∣∣∣dy

≤ ε2

0∫
x

C
(
eεk‖z‖ + 1

)(
ε−1ey + ∣∣z(y)

∣∣ey/2)∣∣ex−y − 1
∣∣dy

≤ C
(
eεk‖z‖ + 1

)(
1+ ε‖z‖)ε.

Thus

0∫
−1

∣∣S1(x)
∣∣dx ≤ C

(
eεk‖z‖ + 1

)(
1+ ε‖z‖).
−ε
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We therefore have ∥∥F 1
ε,η(z)

∥∥ ≤ C
(
eεk‖z‖ + 1

)(
1+ ε‖z‖).

y (3.4), we have

∥∥α(ε, η, z)ex/2
∥∥ ≤ ∥∥F 1

ε,η(z)
∥∥ ≤ C

(
eεk‖z‖ + 1

)(
1+ ε‖z‖).

herefore, taking M = 3C then from the above inequalities we can easily find ε0 > 0 sufficiently 
all (depending on C) such that for all ε ∈ (0, ε0] and η ∈ J ,

∥∥Fε,η(z)
∥∥ ≤ M if ‖z‖ ≤ M. �

3. Fε,η is a contraction mapping

In this subsection we show that there exists ε0 ∈ (0, ε0] such that for each ε ∈ (0, ε0] and each 
∈ J , Fε,η is a contraction mapping on Ω .
Suppose that z1, z2 ∈ Ω , and denote for i = 1, 2,

Ii(x) = exp

(
−k0 − εk0x − k

x∫
−ε−1

ηeydy

)
e
−εk

∫ x

−ε−1 zi (y)ey/2dy
.

learly

∣∣g(I1) − g(I2)
∣∣ ≤ C|I1 − I2|
≤ C

∣∣e−εk
∫ x

−ε−1 z1(y)ey/2dy − e
−εk

∫ x

−ε−1 z2(y)ey/2dy∣∣
≤ Ceεk(‖z1‖+‖z2‖)εk

x∫
−ε−1

∣∣z1(y) − z2(y)
∣∣ey/2dy

≤ Ceεk2Mε‖z1 − z2‖
≤ εC‖z1 − z2‖.

We write

F 1
ε,η(z1)(x) − F 1

ε,η(z2)(x)
]
ex/2

= ε2

0∫
x

{
g(I1)

(
ε−1ηey/2 + z1

)+ − g(I2)
(
ε−1ηey/2 + z2

)+ − d(z1 − z2)
}
ey/2(ex−y − 1

)
dy

+ [
λ(ε, η, z1) − λ(ε, η, z2)

]
ex

(
x − 1+ e−x

)

= ε2

0∫ [
g(I1) − g(I2)

](
ε−1ηey/2 + z1

)+
ey/2(ex−y − 1

)
dy
47
x
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+ ε2

0∫
x

{
g(I2)

[(
ε−1ηey/2 + z1

)+ − (
ε−1ηey/2 + z2

)+] − d(z1 − z2)
}
ey/2(ex−y − 1

)
dy

+ [
λ(ε, η, z1) − λ(ε, η, z2)

]
ex

(
x − 1+ e−x

)
= T1(x) + T2(x) + T3(x).

Then

∣∣T1(x)
∣∣ ≤ ε2Cε‖z1 − z2‖

0∫
x

(
ε−1ηey + |z1|ey/2)dy

≤ Cε2‖z1 − z2‖.

Since

∣∣g(I2)
∣∣ + d ≤ CI2 + d ≤ Ceεk‖z2‖ + d ≤ C,

we have

∣∣T2(x)
∣∣ ≤ Cε2

0∫
x

{∣∣(ε−1ηey/2 + z1
)+ − (

ε−1ηey/2 + z2
)+∣∣ + |z1 − z2|

}
ey/2

∣∣ex−y − 1
∣∣dy

≤ Cε2

0∫
x

∣∣z1(y) − z2(y)
∣∣ey/2dy

≤ Cε2‖z1 − z2‖.

To estimate T3(x), we notice that

[
λ(ε, η, z1) − λ(ε, η, z2)

] 0∫
−ε−1

exdx

= ε2

0∫
−ε−1

{
g(I1)

(
ε−1ηey/2 + z1

)+ − g(I2)
(
ε−1ηey/2 + z2

)+ − d(z1 − z2)
}
ey/2dy

= ε2

0∫
−ε−1

[
g(I1) − g(I2)

](
ε−1ηey/2 + z1

)+
ey/2dy

+ ε2

0∫
−1

{
g(I2)

[(
ε−1ηey/2 + z1

)+ − (
ε−1ηey/2 + z2

)+] − d(z1 − z2)
}
ey/2dy.
−ε
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T

S

B

T
m

L
ε

P

R
th

3.

P

th

is
herefore similar to the estimates for T1(x) and T2(x) above, we obtain

∣∣λ(ε, η, z1) − λ(ε, η, z2)
∣∣ ≤ Cε2‖z1 − z2‖.

ince ex |x − 1 + e−x | ≤ C on [−ε−1, 0], we obtain
∣∣T3(x)

∣∣ ≤ Cε2‖z1 − z2‖.

It follows that

∥∥F 1
ε,η(z1) − F 1

ε,η(z2)
∥∥ ≤

0∫
−ε−1

(∣∣T1(x)
∣∣ + ∣∣T2(x)

∣∣ + ∣∣T3(x)
∣∣)dx

≤ Cε‖z1 − z2‖.

y (3.4), we have

∥∥α(ε, η, z1)e
x/2 − α(ε, η, z2)e

x/2
∥∥ = ∥∥F 1

ε,η(z1) − F 1
ε,η(z2)

∥∥ ≤ Cε‖z1 − z2‖.

hus Fε,η is a contraction mapping on Ω provided that ε ∈ (0, ε0] and η ∈ J with ε0 =
in{ε0, (3C)−1}.
Summarizing, we have proved the following result.

emma 3.2. There exists ε0 ∈ (0, ε0] such that Fε,η is a contraction mapping on Ω for every 
∈ (0, ε0] and η ∈ J .

Applying Banach’s fixed point theorem, we obtain

roposition 3.3. For each ε ∈ (0, ε0] and η ∈ J , Fε,η has a unique fixed point zε,η ∈ Ω .

emark 3.4. Since Fε,η depends continuously on (ε, η), the uniqueness of the fixed point implies 
at zε,η also depends continuously on (ε, η).

4. The reduced equation

roposition 3.5. Suppose ε ∈ (0, ε0]. If η ∈ J satisfies

λ(ε, η, zε,η) = 0, (3.9)

en

uε,η = ε−1ηex/2 + zε,η(x)
47 a positive solution to (3.1).
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P
uε

U

w

C
m

u 

w

roof. Since Fε,ηzε,η = zε,η and λ(ε, η, zε,η) = 0, from the definition of Fε,η we find that u =
,η satisfies, for x ∈ (−ε−1, 0),

−uxx + 1

4
u = −(zε,η)xx + 1

4
zε,η = f (x; ε, η, zε,η).

sing the definition of f we have

−uxx +
(
1

4
+ ε2d

)
u = ε2g(Ĩ )u+ ≥ 0 in

(−ε−1,0
)
, (3.10)

ith

Ĩ = exp

(
−k0 − εk0x − εk

x∫
−ε−1

u(y)ey/2dy

)
.

learly u also satisfies the boundary condition of (3.1). Hence, due to ε2d > 0, we can apply the 
aximum principle to (3.10) to conclude that u ≥ 0. Thus u+ = u and u solves (3.1).
To show u is a positive solution, by the strong maximum principle, it suffices to show that 

	≡ 0. But this follows trivially from

0∫
−ε−1

u(x)ex/2dx =
0∫

−ε−1

ε−1ηexdx > 0. �

We next examine closely the reduced equation λ(ε, η, zε,η) = 0, that is

0∫
ε−1

ex/2{g(Iε,η)
[
ε−1ηex/2 + zε,η(x)

]+ − d
[
ε−1ηex/2 + zε,η(x)

]}
dx = 0, (3.11)

ith

Iε,η(x) = exp

(
−k0 − εk0x − εk

x∫
−ε−1

[
ε−1ηey/2 + zε,η(y)

]
ey/2dy

)
.

Multiplying (3.11) by εη−1 we obtain

0=
0∫

ε−1

ex/2{g(Iε,η)
[
ex/2 + εη−1zε,η(x)

]+ − d
[
ex/2 + εη−1zε,η(x)

]}
dx

=
0∫

ex
[
g(Iε,η) − d

]
dx + δ1,
47
ε−1
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with

|δ1| =
∣∣∣∣∣

0∫
ε−1

ex/2g(Iε,η)
{[

ex/2 + εη−1zε,η(x)
]+ − ex/2}dx

∣∣∣∣∣

≤ Cε

0∫
−ε−1

∣∣zε,η(x)
∣∣ex/2dx

≤ Cε.

We may write

Iε,η(x) = ξ0 exp
(−εk0x − kηex

)
mε,η(x),

with

mε,η(x) = ξ−1
0 e−k0 exp

(
−kε

x∫
−ε−1

zε,η(y)ey/2dy

)
exp

(
kηe−ε−1) → 1

uniformly for x ∈ [−ε−1, 0] and η ∈ J as ε → 0. Therefore

g
(
Iε,η(x)

) = g
(
ξ0e

−εk0x−kηex ) + δ̃2(x)

with

δ̃2(x) → 0 uniformly as ε → 0.

It follows that

0=
0∫

−ε−1

[
g
(
ξ0e

−εk0x−kηex ) − d
]
exdx + δ1 + δ2,

where

δ2 =
0∫

−ε−1

δ̃2(x)exdx = o(1) as ε → 0.

We thus have

d
[
1− exp

(−ε−1)] =
0∫
−1

g
(
ξ0e

−εk0x−kηex )
exdx + δ1 + δ2,
−ε
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and

d =
0∫

−ε−1

g
(
ξ0e

−εk0x−kηex )
exdx + δ1 + δ2 + δ3

with

δ3 = d exp
(−ε−1) = o(1).

Finally we have

0∫
−ε−1

g
(
ξ0e

−εk0x−kηex )
exdx =

0∫
−ε−1

g
(
ξ0e

−εk0x−kηex )(
εk0x + kηex

)′ 1
kη

dx

− εk0

kη

0∫
−ε−1

g
(
ξ0e

−εk0x−kηex )
dx

= 1

kη

kη∫
−k0+kη exp(−ε−1)

g
(
ξ0e

−μ
)
dμ

− 1

kη

0∫
−k0

g
(
ξ0e

−μ−kη exp( μ
εk0

))
dμ

= 1

kη

kη∫
−k0

g
(
ξ0e

−μ
)
dμ + o(1)

− 1

kη

0∫
−k0

g
(
ξ0e

−μ
)
dμ + o(1)

= 1

kη

kη∫
0

g
(
ξ0e

−μ
)
dμ + o(1).

Therefore the reduced equation can be written as

d = 1

kη

kη∫
g
(
ξ0e

−s
)
ds + o(1),
0
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w
re

F

T

S
o(

fo

ha

W

T
(3

w

w
di
here o(1) → 0 uniformly in η ∈ J as ε → 0. Recalling the definition of G(μ) we find that the 
duced equation can be written as

d = G(kη) + o(1). (3.12)

ix η1, η2 and η3 in J such that

η1 ∈
(

μ1

2k
,
μ1

k

)
, η2 ∈

(
μ1

k
,
μ2

k

)
, η3 ∈

(
μ2

k
,
2μ2

k

)
.

hen from (3.8) we find that

d > G(kη1), d < G(kη2), d > G(kη3).

ince λ(ε, η, zε,η) is a continuous function in (ε, η), the term o(1) in (3.12) can be written as 
ε, η) which is continuous and satisfies o(ε, η) → 0 uniformly in η ∈ J as ε → 0. Therefore, 
r all small ε > 0, say ε ∈ (0, ε∗], with some ε∗ ∈ (0, ε0), the equation

d = G(kη) + o(ε, η)

s at least two solutions in J : ηε
1 ∈ (η1, η2) and ηε

2 ∈ (η2, η3). Moreover,

lim
ε→0

ηε
1 = μ1

k
, lim

ε→0
ηε
2 = μ2

k
and G′(kηε

1

)
> 0> G′(kηε

2

)
.

e have thus proved the following result.

heorem 3.6. Suppose that (3.7) holds. Then there exists ε∗ > 0 such that for each ε ∈ (0, ε∗], 
.1) has two positive solutions of the form

u1 = ε−1(ηε
1e

x/2 + zε
1

)
, u2 = ε−1(ηε

2e
x/2 + zε

2

)
ith zε

1, z
ε
2 ∈ H satisfying ‖zε

i ‖ ≤ Cε, and

lim
ε→0

ηε
1 = μ1

k
, lim

ε→0
ηε
2 = μ2

k
, G′(μ1) > 0> G′(μ2).

Since, for i = 1, 2,

ui = ε−1(ηε
i e

x/2 + zε
i

) = ε−1
(

μi

k
ex/2 + z̃ε

i

)

ith z̃ε
i := zε

i + o(1)ex/2, we find that ‖z̃ε
i ‖ = o(1), and part (ii) of Theorem 1.2 now follows 
47rectly from Theorem 3.6.
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4.

re
is

w

W

w
de
w
lin

ei
or
K
th
re
ha

Su
 Stability analysis

In this section, we consider the linearized stability of the two solutions u1 and u2 in Theo-
m 3.6. Let u∗ = u∗

ε denote either u1 or u2. The linearized eigenvalue problem of (3.1) at u = u∗
 given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φxx − 1

4
φ + ε2

[
g(Iε) − d

]
φ

− ε2u∗g′(Iε)Iεεk

x∫
−1/ε

φ(s)es/2ds + λφ = 0, x ∈ (−1/ε,0),

φx − 1

2
φ = 0, x ∈ {−1/ε,0},

(4.1)

here

Iε(x) = e
−k0−εk0x−kε

∫ x
−1/ε u∗(s)es/2ds

.

e will show that, for every small ε > 0, this problem has an eigenpair (λ, φ) of the form

λ = ε2με, φ(x) = ex/2 + εwε(x), wε ∈ H,

ith με → μ0 	= 0 as ε → 0 and ‖wε‖ ≤ C for all ε > 0 small. Here H is the Banach space 
fined in the previous section. Moreover, we will show that μ0 < 0 when u∗ = u1, and μ0 > 0
hen u∗ = u2. This implies that u1 is linearly unstable. Although this does not prove that u2 is 
early stable, but as explained below, it strongly suggests the validity of such a conclusion.
The difficulty in proving the linearized stability of u2 is due to the fact that (4.1) is a nonlocal 
genvalue problem, and the corresponding linear operator to this problem is not self-adjoint, nor 
der-preserving. Therefore it is difficult to use variational characterization or the well-known 
rein–Rutman theorem to know the relationship of the eigenvalue obtained above to the rest of 
e spectrum. However, since φ = ex/2 + εwε is a small perturbation of a positive function, it is 
asonable to believe that λ = εμε behaves like a principle eigenvalue, with all other eigenvalues 
ving real parts strictly greater than λ, which would imply the linearized stability of u2.
We now look for an eigenpair of (4.1) of the form

λ = ε2μ, φ = ex/2 + εw, w ∈ H.

bstituting these into (4.1) we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪

wxx − 1

4
w + ε

[
g(Iε) − d

](
ex/2 + εw

)
− εu∗g′(Iε)Iεεk

x∫
−1/ε

[
es + εwes/2]ds + εμ

(
ex/2 + εw

) = 0, x ∈ (−1/ε,0),

1

(4.2)
47⎩wx −
2
w = 0, x ∈ {−1/ε,0}.
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M

T

M

w

w

ultiplying the first equation in (4.2) by ε−1ex/2, and integrating over (−1/ε, 0), we obtain

0∫
−1/ε

[
g(Iε) − d

](
ex + εwex/2)dx −

0∫
−1/ε

ex/2u∗g′(Iε)Iε ε k

x∫
−1/ε

[
es + εwes/2]dsdx

= −μ

0∫
−1/ε

exdx = −μ
(
1− e−1/ε). (4.3)

his defines μ as a functional of w and we may write

μ = μ(w, ε).

uch as in the previous section, from (4.2) we obtain

w(x) = ε

0∫
x

[
g(Iε) − d

](
ey/2 + εw

)
2 sinh

(
x − y

2

)
dy

− ε

0∫
x

u∗g′(Iε)Iεεk

( y∫
−1/ε

[
es + εwes/2]ds

)
2 sinh

(
x − y

2

)
dy

+ εμ

0∫
x

(
ey/2 + εw

)
2 sinh

(
x − y

2

)
dy + γ ex/2,

ith γ ∈ R1 chosen such that 
∫ 0
−1/ε ex/2w(x)dx = 0.

For w ∈ H , we now define the operator

Lε(w)(x) := L1
ε(w)(x) + L2

ε(w)(x) + L3
ε(w)(x) + γ (w, ε)ex/2,

ith

L1
ε(w)(x) : = ε

0∫
x

[
g(Iε) − d

](
ey/2 + εw

)
2 sinh

(
x − y

2

)
dy,

L2
ε(w)(x) : = −ε

0∫
x

u∗g′(Iε)Iεεk

( y∫
−1/ε

[
es + εwes/2]ds

)
2 sinh

(
x − y

2

)
dy,

L3
ε(w)(x) : = ε μ(w, ε)

0∫ (
ey/2 + εw

)
2 sinh

(
x − y

)
dy,
47
x

2
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w

{w
po

C

It

U

w

here μ(w, ε) is determined by (4.3), and

γ (w, ε) = −
[ 0∫

−1/ε

exdx

]−1 0∫
−1/ε

ex/2[L1
ε(w)(x) + L2

ε(w)(x) + L3
ε(w)(x)

]
dx.

We are going to show that there exists C > 0 such that for every small ε > 0, Lε maps B :=
∈ H : ‖w‖ ≤ 2C} into itself, and is a contraction mapping. Therefore Lε has a unique fixed 
int wε in B: Lε(wε) = wε . Clearly this gives an eigenpair to (4.1):

(λ,φ) = (
ε2μ(wε, ε), e

x/2 + εwε

)
.

From (4.3), we easily obtain

∣∣μ(w, ε)
∣∣ ≤ C

(
1+ ε‖w‖) for all small ε > 0 and some C > 0.

learly

ex/2

∣∣∣∣∣
0∫

x

(
ey/2 + εw

)
2 sinh

(
x − y

2

)
dy

∣∣∣∣∣ ≤
0∫

x

[
ey + ε|w|ey/2]∣∣ex−y − 1

∣∣dy ≤ C
(
1+ ε‖w‖).

 follows that

∥∥L3
ε(w)

∥∥ =
0∫

−1/ε

ex/2
∣∣L3

ε(w)(x)
∣∣dx ≤ C

(
1+ ε‖w‖)2.

sing

ex/2
∣∣L1

ε(w)(x)
∣∣ = εex/2

∣∣∣∣∣
0∫

x

[
g(Iε) − d

](
ey/2 + εw

)(
e

x−y
2 − e

y−x
2

)
dy

∣∣∣∣∣

≤ ε

0∫
x

[
g(Iε) + d

](
ey + ε|w|ey/2)∣∣ex−y − 1

∣∣dy

≤ εC

0∫
−1/ε

(
ey + ε|w|ey/2)dy ≤ εC

(
1+ ε‖w‖),

e deduce

∥∥ 1
∥∥ ( )
47Lε(w) ≤ C 1+ ε‖w‖ .
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To estimate L2
ε(w) we notice that

∣∣∣∣∣
y∫

−1/ε

[
es + εwes/2]ds

∣∣∣∣∣ ≤ C
(
1+ ε‖w‖) for all y ∈ (−1/ε,0),

∣∣u∗g′(Iε)Iεεk
∣∣ ≤ C

(
ey/2 + ε

∣∣zε
i (y)

∣∣),
and hence

ex/2
∣∣L2

ε(w)(x)
∣∣ ≤ εC

(
1+ ε‖w‖)

0∫
x

(
ey + ε

∣∣zε
i (y)

∣∣ey/2)∣∣ex−y − 1
∣∣dy ≤ εC

(
1+ ε‖w‖).

It follows that

∥∥L2
ε(w)

∥∥ ≤ C
(
1+ ε‖w‖).

From the definition of γ (w, ε) we obtain

∥∥γ (w, ε)ex/2
∥∥ ≤ ∥∥L1

ε(w) + L2
ε(w) + L3

ε(w)
∥∥ ≤ C

(
1+ ε‖w‖)2.

Therefore

∥∥Lε(w)
∥∥ ≤ C

(
1+ ε‖w‖)2.

If ‖w‖ ≤ 2C, we obtain

∥∥Lε(w)
∥∥ ≤ C(1+ 2εC)2 ≤ 2C

provided that ε ∈ (0, ε0], with ε0 determined by (1 + 2ε0C)2 = 2.
Next we show that Lε is a contraction mapping on B ⊂ H for all small ε > 0. Let w1, w2 ∈ B . 

Then

L1
ε(w1) − L1

ε(w2) = ε

0∫
x

[
g(Iε) − d

]
ε(w1 − w2)2 sinh

(
x − y

2

)
dy.

It follows easily that

∥∥L1
ε(w1) − L1

ε(w2)
∥∥ ≤ εC‖w1 − w2‖.

Similarly

L2
ε(w1) − L2

ε(w2) = −ε

0∫
x

u∗g′(Iε)Iεεk

( y∫
ε(w1 − w2)e

s/2ds

)
2 sinh

(
x − y

2

)
dy,
−1/ε
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Fi

B

It

W

T

pr

sa
(4

de
de
hich gives

∥∥L2
ε(w1) − L2

ε(w2)
∥∥ ≤ εC‖w1 − w2‖.

nally

L3
ε(w1) − L3

ε(w2) = εμ(w1, ε)

0∫
x

ε(w1 − w2)2 sinh

(
x − y

2

)
dy

+ ε
[
μ(w1, ε) − μ(w2, ε)

] 0∫
x

(
ey/2 + εw2

)
2 sinh

(
x − y

2

)
dy.

y (4.3) we easily see that

∣∣μ(w2, ε) − μ(w1, ε)
∣∣ ≤ εC‖w1 − w2‖.

 then follows easily that

∥∥L3
ε(w1) − L3

ε(w2)
∥∥ ≤ εC‖w1 − w2‖.

e now obtain

∥∥γ (w1, ε)e
x/2 − γ (w2, ε)e

x/2
∥∥

≤ ∥∥L1(w ) − L1(w )
∥∥ + ∥∥L1(w ) − L1(w )

∥∥ + ∥∥L3(w ) − L3(w )
∥∥
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

ε 1 ε 2 ε 1 ε 2 ε 1 ε 2

≤ εC‖w1 − w2‖.

hus we have

∥∥Lε(w1) − Lε(w2)
∥∥ ≤ εC‖w1 − w2‖ ≤ 1

2
‖w1 − w2‖ for all w1,w2 ∈ B

ovided that ε > 0 is small enough, say 0 < ε ≤ ε1 ≤ ε0.
We may now use the contraction mapping theorem to conclude that for every small ε > 0, 
y ε ∈ (0, ε1], Lε has a unique fixed point wε in B: Lε(wε) = wε . It follows that, for such ε, 
.1) has an eigenpair of the form (λ, φ) = (ε2μ(wε, ε), ex/2 + εwε).
Let us now determine the sign of μ(wε, ε) for u∗ = u1 and u∗ = u2, respectively. We will 
note μ(wε, ε) by μi

ε for u∗ = ui , i = 1, 2. We define I i
ε (x) from Iε(x) analogously. From its 

finition, we easily see that

lim
ε→0

I i
ε (x) = e−k0−

∫ x
−∞ kηie

sds = ξ0e
−μie

x

uniformly in compact subsets of (−∞,0].
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T

T

S

T
ei

w

R

[
[

[

[

[

[

[

[

[

[1

[1
hus we can use (4.3) to obtain

− lim
ε→0

μi
ε =

0∫
−∞

[
g
(
ξ0e

−μie
x ) − d

]
exdx −

0∫
−∞

ηikexg′(ξ0e−μie
x )

ξ0e
−μie

x

exdx

1 1
 7

8

9

10
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13
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21
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26
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=
∫
0

g
(
ξ0e

−μis
)
ds − d −

∫
0

ξ0μise
−μisg′(ξ0e−μis

)
ds

= G(μi) − d + μiG
′(μi) = μiG

′(μi).

herefore

μ1
ε = −μ1G

′(μ1) + oε(1) < 0, μ2
ε = −μ2G

′(μ2) + oε(1) > 0.

ummarizing, we have proved the following result:

heorem 4.1. Let u1 and u2 be given by Theorem 3.6. Then for each small ε > 0, the linearized 
genvalue problem (4.1) with u∗ = ui has an eigenpair of the form

(λ,φ) = (
ε2μi

ε, e
x/2 + εwi

ε

)
, i = 1,2,

ith wi
ε ∈ H having a uniform bound independent of ε, and

μ1
ε = −μ1G

′(μ1) + oε(1) < 0, μ2
ε = −μ2G

′(μ2) + oε(1) > 0.
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