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Abstract

We study the effect of photoinhibition in a nonlocal reaction—diffusion—advection equation, which models
the dynamics of a single phytoplankton species in a water column where the growth of the species depends
solely on light. Our results show that, in contrast to the case of no photoinhibition, where at most one
positive steady state can exist, the model with photoinhibition possesses at least two positive steady states in
certain parameter ranges. Our approach involves bifurcation theory and perturbation-reduction arguments.
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1. Introduction

Phytoplankton are microscopic plants that float in oceans and lakes and form the base of the
aquatic food chain. Since they transport significant amounts of atmospheric carbon dioxide into
the deep oceans, they may also play a crucial role in the climate dynamics. Phytoplankton species
typically compete for nutrients and light [4,5,16,19,28,29]. But in oligotrophic ecosystems with
ample supply of light, they tend to compete only for nutrients [20,22], and in eutrophic envi-
ronments with ample nutrients supply, they compete only for light [8,15]. In a water column, a
phytoplankton population diffuses due to turbulent mixing caused by wind and wave actions. In
many cases, phytoplankton also sinks due to its own weight.

In this paper, we consider a single sinking phytoplankton species in an eutrophic water col-
umn. Our analysis is based on a nonlocal reaction—diffusion—advection model given by Huisman
and colleagues in [8,14], but the growth function g(/) of phytoplankton species in the model is
modified to include photoinhibition into consideration.

Photoinhibition is characterized by a decreasing rate of photosynthesis with increasing light,
which occurs in many phytoplankton species that are sensitive to strong light. This phenomenon
is caused by damage to the photosynthetic machinery of cells and by protective mechanisms to
avoid this damage [23,27].

Without photoinhibition, the growth function g (/) is generally assumed to be strictly increas-
ing in I, representing the fact that increase of the light level I leads to better growth of the
phytoplankton. In such a case this model was investigated recently through rigorous mathemat-
ical analysis in [6,7,13,21] (see also earlier work in [17,18,26] and references therein), which
show that the phytoplankton population either stabilizes at a unique positive steady-state or con-
verges to 0 as time goes to infinity, depending on whether the loss rate is below or above a critical
level.

With photoinhibition, observations in many laboratory studies [10,11,24] suggest that the
function g(/) should be increasing before I reaches a certain critical level I, > 0 where g([)
has a maximum, after which g(/) decreases and converges to 0 as I — oo. In a completely
mixed water column, the reaction—diffusion—advection model reduces to an ODE model, and the
effect of photoinhibition was studied in the recent papers [9,12]. With a growth function g(/)
as above, [9] demonstrates that the phytoplankton population may have two stable steady-states
(one positive, the other 0), plus another unstable positive steady state, causing a bistable dynami-
cal behavior with the phytoplankton population stabilizing at one or the other stable steady state,
depending on its initial value. (The multi-species case was also considered in [9] and [12].)

In this paper, we examine the effect of photoinhibition in an incompletely mixed water col-
umn, through a single species reaction—diffusion—advection model, where photoinhibition is
incorporated into the growth function g(/) as described above. We show that the phenomenon
of multiple positive steady-states observed in completely mixed water column persists, and their
stability suggests a bistable dynamical behavior.

Multiplicity results for similar reaction—diffusion equations are usually obtained by making
use of the upper and lower solution technique, combined with tools from global analysis (such as
the topological degree theory or global bifurcation theory). However, such upper and lower solu-
tion techniques are difficult to apply here due to the nonlocal nature of the problem. To overcome
this difficulty, apart from employing local and global bifurcation analysis, we also use a perturba-
tion and reduction approach, which is new to this kind of nonlocal reaction—diffusion equations.
It is our hope that the mathematical techniques developed here may find more applications in
phytoplankton models.
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We now describe the model in more detail. Consider a vertical water column with a cross
section of one unit area and depth 4. Let p(x, t) be the population density of the phytoplankton
at depth x € [0, i] and time ¢. Then the change of density is governed by the following reaction—
diffusion—advection problem

Pt = Dpxx —opx + [g(loe_kox_kfg p(s”)ds) — d]p, O<x<h, t>0,
Dp,(x,t) —op(x,t) =0, x=0orh, t >0, (1.1)
p(x,0) = po(x) 20, 0<x<h,

where d > 0 is the loss rate of the species, the positive constants D, o represent the diffusion
rate and the sinking rate, respectively.
The term

I(x. 1) = Ipe Rk pls.nds (1.2)

is known as the light intensity, with ky > O the background turbidity, k > 0 the light attenuation
coefficient of the phytoplankton species, and Ip > 0 the incident light intensity.

The function g(/) governs the growth rate according to the change of light level /. We always
assume that g is C L Taking into account of photoinhibition we assume, as in [9], that g(/) has
the following properties:

(i) g0)=0,
(ii) there exists I, > 0 such that (I, — I)g’(I) > O for I # I, (1.3)
(iii) limj_oog(1)=0.

The boundary conditions at x = 0 and x = & imply that there is no population flux at the
surface or bottom of the water column.

We are interested in the multiplicity of positive steady states of (1.1). To simplify notations
we assume that D = h = [y = 1. We stress that this is for simplicity of the notations only; our
method can deal with the general case without extra difficulties. Thus we will study the positive
solutions of the nonlocal elliptic boundary value problem

{Pxx—apx+p[g(1)—d]=0, 0<x<l, a4
qpx(0) —op(0)=0, p,(1)—op(l)=0, )
with

[ =1(x)=e fox=kfy p@)ds (1.5)

Our first existence and multiplicity result is obtained by a standard argument involving local
and global bifurcation theory of Crandall and Rabinowitz [1,2,25]. The multiplicity result is local
in nature.

Theorem 1.1. Suppose that (1.3) holds and I, < e %. Then there exist some positive constants
dy < d* < g(I,) such that (1.4) has at least one positive solution for d € (0, d,], two positive
solutions for d € (dy, d*), and no positive solution for d > g(I*).
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Here d. is uniquely determined by an eigenvalue problem, and d* > d, is sufficiently close
to d,, whose existence arises from a bifurcation analysis along the line of trivial solutions
{(d,0) :d € R'}, which shows that a branch of positive solutions {(d, p)} bifurcates from the
line of trivial solutions at (d, 0), and it goes rightward initially but has to become unbounded
through d converging to 0. It can be shown that for d € (d,, d*), one of the positive steady state
is unstable (see Lemma 2.3), but we have no information on the stability of the other positive
steady state, though we believe it is stable.

By making use of a perturbation—reduction approach, we can obtain a multiplicity result which
is global in nature, together with information on the asymptotic profile and stability of the solu-
tions, but only for large o.

Theorem 1.2. Suppose that (1.3) holds and I, < e,

(i) Define
. 7
G(u) = —/g(e_ko_s)ds.
# 0

Then there exists a unique iy > In(e % /I.) such that

G'(us) =0, G' (W (s — ) >0 for pu € (0, +00) \ {1e.}.

Moreover; for each d € (g(e%0), G(uy)), the equation d = G () has exactly two positive
solutions |1, p, and 0 < iy < iy < (2.

(ii) For each d € (g(e %), G(u)), there exists €* > 0 such that for every o > 1/€*, (1.4) has
two positive solutions of the form

1 > “2 —
pl(x>=70e“<x Dt 216(), pz(x)=7cre”<x Dt 226 (0),

with 2 5 satisfying iy oo [ 120 (0)|dx =0, i =1,2.

Remark 1.3. If I, > 1, we can show that (1.4) has at most one positive solution for any o . Indeed,
we can modify g(I) for I > I, to obtain a new C! function g(/) which is strictly increasing in
I for all 1 > 0. When I, > 1, it is easily seen that if p is a positive solution of (1.4), then
it is also a positive solution of (1.4) with g(I) replaced by g(I). Hence we are back in the
no-photoinhibition case and can apply the result in [13,7] to conclude that there is at most one
positive solution, and the dynamics of (1.1) is simple. Biologically this fact is rather natural, as 1
is the highest possible level of light intensity felt by the species in the water column, so only the
values of g(I) for I € (0, 1] contribute to the growth of the species.

The results in Theorem 1.2 suggest that for large o, the two solutions p; and p; form a “>”-
shaped curve in the (d, p)-space as d is varied in the range (g(e ), G(u+)), which resembles
the solution curve of the equation d = G(w) in the (d, u)-plane. Fig. 1 shows the graph of the
curve G(u) and the two solutions s and po of d = G () for the case I, < e k0.
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Fig. 1. Illustrative graph of G (w) and the solutions of d = G ().

It is interesting to note that, by Theorem 3.2 of [13], as 0 — 400, the bifurcation value d in
Theorem 1.1 converges to g(e %), suggesting that the global bifurcation curve in Theorem 1.1
for large o looks like the solution curve of the equation d = G(w) in the (d, w)-plane, and the
two positive solutions in Theorem 1.2 are from the “lower” and “upper” branches of the global
bifurcation curve.

Let us also note that for large o, the solutions pj(x) and py(x) are well approximated by
%ae"(x -D and %Ge"(x b, respectively, which have values close to 0 away from x = 1, while
their values at x =1 go to oo as o — oo. The fact that the populations concentrate at the bot-
tom of the water column is due to the assumption of large sinking rate o. The information on
the asymptotic profiles of pj(x) and p>(x) enables us to investigate their stability, see Theo-
rem 4.1 in Section 4, which suggests that p; is unstable, p, is stable, as expected for the bistable
phenomenon. (Note that O is a stable steady state for d in the range of Theorem 1.2.)

The rest of the paper is organized as follows. In Section 2 we use a bifurcation approach to
prove Theorem 1.1, with d as the bifurcation parameter. To overcome some of the limitations
encountered in Section 2 in the bifurcation approach, in Section 3 we use a perturbation and
reduction approach to study the steady-state solutions of (1.1) with large sinking rate and prove
Theorem 1.2. In Section 4 we consider the linearized stability of the two positive steady states
found in Section 3.

We thank the referee for helpful suggestions on the presentation of the paper.

2. Multiple steady-states through a bifurcation approach

In this section we use a bifurcation approach to prove Theorem 1.1. We focus on the existence
of positive solutions by studying the bifurcation of a branch of positive solutions of (1.4) from
the trivial solution p = 0, with coefficient d as the bifurcation parameter.

We first consider the stability of p = 0, which is determined by the sign of the largest eigen-
value, denoted by A = d,, of the linear eigenvalue problem

{fpxx—G(/)x—i-g(ekOx)(p:Mp, O<x<l1, .1
0x(0) —op(0) =0, @, (1) —oe()=0.
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By the well-known Krein—Rutman theorem it is known that d, exists and is positive. Its corre-
sponding eigenfunction can be chosen to be positive in [0, 1], denoted by ¢,, which is uniquely
determined by the normalization maxo,1} ¢« = 1. To investigate the structure of the set of solu-
tions of (1.4) near (d, p) = (dy, 0), we first introduce a few notations. Set X = {u € C2([0, 1]) :
uy—ou=0atx=0,1},Y =C([0, 1]). Define mapping F(d, p) : (0,00) x X — Y by

F(d, p) = pxx —0opx +p[g(1) _d]~

Clearly, F(d,0) =0 for d € (0, o0). Since

Fp(d,0)¢ = ¢xx — o + [g(e750%) —d]o, 2.2)

we see that (i) the kernel of F,(dy, 0) is spanned by ¢, and is thus one dimensional; (ii) the
range of Fj(dy,0), denoted by R(F,(dy,0)), is given by

1

{; eY:/e_”go*{dx:O},

0

and is thus of co-dimension one. Furthermore, Fpq(ds, 0)ps = —@4 ¢ R(F)(ds, 0)). By Theo-
rem 1.7 of [1], we obtain the result:

Lemma 2.1. Let Z be any complement of span of {¢.} in X. Then there exists some § > 0 and
continuously differentiable functions d : (—8,8) — R and ¢ : (=8, 8) — X such that d(0) = d,,
¥ (0) =0, and F(d(s), p(s)) =0, where p(s) = sy + sy (s). Moreover, F~1({0}) near (ds, 0)
consists precisely of the curves p =0 and (d(s), p(s)), s € (=8, 8). Furthermore,

1 X

1
d’(O)/e_”%%dx :_k/e—axe—koxg/(g—kox)%%(/(p*) dx. 2.3)
0

0 0

Proof. It suffices to check (2.3). Dividing F(d(s), p(s)) = 0 by s and differentiating the result
with respect to s at s =0, using p = 5@, + s¥ (s) we have

X

(V' (), —o (¥ @), + ¥ O)[g(e ™) — di] + . [—kg’(e"“’*)e"‘()" f Pu — d’(O)} =0.

0

Multiplying the above equation by e~°* ¢, and integrating by parts we obtain (2.3). O

In the terminology of [2], 0 is an Fj,4(dy, 0)-simple eigenvalue of the operator F,(dx, 0). By
Corollary 1.13 and Theorem 1.16 of [2] we have

Proposition 2.2. There exist some positive constants §1 and &y and continuously differen-
tiable functions y : (dy — 81,ds« +81) > R, w:(=62,82) > R, v: (dy — 81,ds + 1) — X,
w: (=82, 62) — X such that

Please cite this article in press as: Y. Du et al., Multiple steady-states in phytoplankton population induced by
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Fp(d, 0v(d) = —y (d)v(d),
Fp(d(s). p())w(s) = —us)w(s),

—sd'(s)y’(dx)

lim =1, 24
50, 14(5) 70 wu(s)

where y (dy) = 1(0) =0, v(dyx) = w(0) = ¢s.

The next result suggests that for s > 0 small, the nontrivial (positive) solution p(s) = s@s +
s (s) is unstable under suitable conditions.

Lemma 2.3. Suppose that (1.3) holds and I, < e*. Then for any sufficiently small s > 0,
uis) <0.

Proof. By (2.2) and the definition of d,, we see that y (d) = d — d,. If (1.3) holds, g/(e’kox) <0
for x € (0, 1), which together with (2.3) implies that d’(0) > 0. By (2.4), we see that u(s) <0
fors > 0small. O

Lemma 2.4. Suppose that (1.3) holds. If d ¢ (0, g(1,)), then (1.4) has no positive solution.

Proof. Let p denote a positive solution of (1.4). Integrating (1.4) in (0, 2) and applying the
boundary condition in (1.4), we have

1
/p[g(l) —d] dx =0.
0

Since g(I) € (0, g(1,)) and I # I*, we see that d € (0, g(1,)). Therefore, (1.4) has no positive
solution when d ¢ (0, g(1)). O

Lemma 2.5. Given any n > 0, there exists some positive constant C(n) such that every positive
solution p of (1.4) with d > n satisfies ||p|lL=©,1) < C().

The proof of Lemma 2.5 is identical to that of Lemma 4.2 of [13] and is omitted.

Proof of Theorem 1.1. By Lemma 2.1 and the global bifurcation result of Rabinowitz [25],
(1.4) has an unbounded connected branch of positive solutions, denoted by I = {(d, p)} C
R x C!([0, 1]), which bifurcates from the trivial solution branch {(d, 0)} at (dy, 0). Since (1.4)
has no positive solutions when d ¢ (0, g(1,)) (Lemma 2.4) and all positive solutions of (1.4) are
uniformly bounded when d is positive and bounded away from zero (Lemma 2.5), we see that I”
can only become unbounded as d — 07. As I' is connected, (1.4) has at least one positive solu-
tion for every d € (0, dx). Denote {(d, p) € I' : 0 <d < d,} by I''. By Lemma 2.1, I" contains a
branch of positive solutions, denoted by I>, which is given by (d(s), p(s)) for s > 0 small. By
(1.3) and I, < e % we have d’ (0) > 0. In particular, there exists some d* > d, such that the
projection of I'; onto the d-axis is given by (dy, d*). Hence '] and I> must be disjoint. As I"
is connected and 17, I> C I', we see that the projection of "\ I> onto the d-axis must contain
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(0,d™*), i.e. (1.4) has at least two positive solutions for d € (dy, d*). By Lemma 2.4, (1.4) has no
positive solution for d > g(I,). Thus we complete the proof of Theorem 1.1. O

The proof of Theorem 1.1 indicates that there exists d** € [d*, g(I4)) such that (1.4) has no
positive solution lying on I" for d > d**, and it has at least one positive solution for d € (0, d**].
In such a case, it is natural to expect that there exist two positive solutions for d € (dyx, d*™),
and the global bifurcation curve is “>”-shaped, with a turning point at d = d**. Moreover, one
expects the following typical conclusions:

For d € (dy, d™), there are two positive solutions, and the solution on the “upper” branch of
the global bifurcation curve is stable, while that located on the “lower” branch is unstable. Note
also that the zero solution p =0 is always stable for d > d.,.

Such a global bifurcation picture can be partially proved by techniques of [3] for increasing
operators, if the problem at hand has the usual order-preserving property. Unfortunately, due
to the nonlocal nature of our problem, this nice property is lost and we cannot use such tools
involving the order-preserving property as in [3] or the usual upper and lower solution technique.
We remark that even the modified order-preserving property used in [6] is lost here due to the
fact that g(7) is no longer increasing in / for all 7 > 0.

To overcome these difficulties, in the next two sections, we employ a perturbation and reduc-
tion approach, which strongly suggests the validity of the global bifurcation picture described
above, at least for large o.

3. Multiple steady-states via a perturbation-reduction approach

In this section, we use a perturbation and reduction approach to study the positive solutions
of (1.4). Their stability will be considered in Section 4 later. We will examine the problem with
a large o, and write it in the form

with € > 0 small.
Let p(x) be a positive solution of (1.4), and define

u(x) = plex + e /2.

A simple calculation shows that

uxx_lu+62[g(i)_d]u=()’ xe(—G_l,O),
4 3.1
Uy — ~u=0, xe{—efl,o},

where

X

I= exp(—ko — ekox — ke f u(s)ef/zds).

—e1
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We will look for a solution to (3.1) of the form
u(x)=e 'ne? + z(x)

with n > 0 and

0 0
zeH:={z: / z(x)e?dx =0, / |z(x)|e*/?dx < o0
el e
Since the function ¢*/? satisfies

1 . -1 1 -1
uxx—zu:() 11’1(—6 ,O), MX—EMZO at x = —e€ ,0,

we necessarily have

1 -
—Zex + e :ez[g(l) —d]u, X € (—6_1,0),

1 _
zx—§z=0, xe{-e10},

with 7 as above, and u(x) = € 'ne*/% + z(x).
We now define

f) = fen 2 =e{gD[e ne? +20)]" —d[e e +z2(0)])

(here ™ = max{u, 0}) and consider the auxiliary problem

1
—Zyx + Zz = f(x)— re? xe (—6_1,0),

! (3.2)
2x —=2=0, xe{—e_l,O},
2
with A determined by
0 0
A / etdx = fx)e* ?dx. (3.3)
1

el —em

Then from (3.2) we find that z € H has the expression
0 0
72(x) = / f(y)25inh<x%y>dy — )\/ey/22sinh(x%y)dy + ae/?,
X X

where sinh(x) = (¢ — e *)/2 and « € R is chosen such that f?l/e z2(x)e*2dx = 0. A simple
calculation gives
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0
72(x) = / f(y)2$iﬂh<%>dy + )»ex/z(x —14+e™) +ae*/?,
X

For z € H, we now define the nonlinear operator

Fen(@)(x) := FL (2)(x) + a(e. n, 2)e*/?,

with
0
. X — _
Fl,( () ¢=/f(y; €, n,z)2smh<—2 y)dy+>»(e, n,2)e?(x — 1+ e7¥),
X

where A(e, 1, z) is determined by (3.3) with f(x) = f(x;€,n, z), and a(e, 1, z) is determined
by

0 0
/ ex/zFel,n(z)(x)dx + o / edx =0,
1/€e 1/e

that is,

0
ale,n,z)=—(1— e*l/e)*‘ / ¢ ?F} (2)(x)dx. (3.4)
—1/e

We will show that for all small € > 0 and all n > 0 in a certain interval J, the operator F , is
a contraction mapping in H, and hence it has a unique fixed point z = z, ;. We will then choose
n = ne so that A(e, n,z) =0 for z =z, and n = n.. We will show that this gives a positive
solution u = e_lnee"/z + Ze,p. (x) to (3.1) for all small € > 0. A key point in this approach is
that with our assumptions on g(I), for each small € > 0, for d > 0 in a certain range, we always
have two solutions for 7, and hence this approach yields two positive steady-states for (3.1).

We will show that for € > 0 small, the equation A(e, 1, z¢,,) = 0 is a perturbation of the
equation

kn

1 )
d:/k_g(éoeﬂ)dsﬁ Ep=ee(0,1].
J K
Denote
Lf r
w=kn, G(p) = ;/g(é‘oe‘s)ds and Go(u)=/g($oe_s)ds,
0 0
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then the above equation is equivalent to

d=Gw). (3.5)
In order to determine the range J for n so that F,, is a contraction mapping, and multiple
solutions to (3.1) exist, we need to obtain several simple properties of the functions G (u) and
Go(w) first.
3.1. Properties of Go(un) and G(w)

Our assumptions on g imply that g(/) < col for some ¢y > 0 and all 7 > 0. It follows that

+o00
Go(+o00) = / g(Soe_s)ds € (0, 00).
0
Clearly
G(0)=g(&o) >0, G(n) >0 foru>0, G(+00)=0
and

G' () = n?[uGo() = Go(w ] =: 1 >G ().
If I, > &, then
Go(w) = g(60e™) =0, Gi(u) =—g (Eoe ")pe ™ <0 VYuu=0.
Hence
G'(w) = uGy(u) <0 for pu> 0.
It follows that
G(n) <G0)=0 foru>0.

Thus G'(u) = u_zé(u) < 0 for u > 0. This implies that for each d € (0, dy) := (0, g(&y)),

(3.5) has a unique solution u > 0, and for each d > d, (3.5) has no solution u > 0.
If I, < &, then G{,(1) > 0 for 1 > 0, and

Gg(n) >0 for ue (0,In(50/1,)), Go(n) <0 for > In(&o/1y).

Thus

G'(w) >0 forpe (0,In(0/1,)), G'(n) <0 for u>1In&/1y).

Please cite this article in press as: Y. Du et al., Multiple steady-states in phytoplankton population induced by
photoinhibition, J. Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2014.12.012

© O N o o »~ 0w N =



© 0 N o 0o~ O N =

A A A B B B D B OWOW W W W W W W WWN NN DNDDNDDN NN NN 2SS d ad S A
N o o0 A WM 2 O © 00N o g B WON 2+ O © 0o N o g BB ON 2+ O © 0o N o o s~ W0 N =+ O

JID:YJDEQ AID:7673 /FLA [m1+; v1.200; Prn:18/12/2014; 9:44] P.12 (1-27)
12 Y. Du et al. / J. Differential Equations eee (eeee) see—eee

Using Gg(u) < 0 for all large u > 0 and Go(+400) > 0, it is easily seen that é(,u) < 0 for all

large . l:hus there exists a unique wy > In(&y/ 1) such that for u € (0, wy), G(u) > 0, and for
W > Wy, G() < 0. It follows that

G'(w) >0 for pe (0, uy), G'(n) <0 forp > py.

Define c?* := G (u+); then for each d € (g(&), 3*), (3.5) has exactlyAtwo solutions w1 € (0, y)
and uy € (s, +00), and (3.5) has a unique solution © > 0 for d € {d,} U (0, g(&p)). Moreover,

G'(11) > 0> G'(n2). (3.6)
From now on, we always assume that

I, <& and de(g&),ds). (3.7)

Thus (3.5) has exactly two solutions 0 < 11 < 2, and apart from (3.6), we have

u>G(u) forpe (0, ur)U(u2,00), nw <G forpe (ur, u2). (3.8)

Clearly part (i) of Theorem 1.2 follows from the above discussions. The rest of this section is
devoted to the proof of part (ii) of Theorem 1.2. We set

n1 2u2
J=|—,—|.
[Zk k}

3.2. Fe, maps a subset of H into itself

It is easily seen that H = H, endowed with the norm

0
o= [ Jzwledx
el

is a Banach space.

Lemma 3.1. There exist €g > 0 and M > 0 such that for each € € (0, €g] and n € J, Fc , maps
2 :={z€ H :|z|| < M} into itself.

Proof.

0
ex/zFel,n(z)(x) = ex/Z/f(y; €, 1, z)25inh<%>dy + X(e, 1, z)[(x —De* + 1]

=S51(x) + S2(x).

‘We have, for € > 0 small,
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0
|Ae,n.2)|=(1- eel)l‘ / {gO)[e  ner/? +Z(x)]+ —d[e 'ne*? + z(x)]}e*dx
el

0
<2 / ez[coe_ekfje—l (e e’ 2=jz()De*2dy +d] (e_lnex + ’Z(x)‘e"/z)dx

-

© 0O N o O »~ W N

el
0
<2 / [coeek”Z” —i—d](er/ex + 62|z(x)|ex/2)dx

el

< C(eekHZH 4 1)(6 + €2||Z||),

for some C > 0 independent of n € J and small € > 0. In the following, we will use C to denote a
generic positive constant that is independent of n € J and small € > 0, whose value may change

from line to line.
From the above estimate we obtain

0 0
/!Sz(x)ldxsix(e,n,z)l / |(x = De* +1|dx
. g

—€ —€

< C(eekllzﬂ + 1)(1 +6||Z||)'

For the term S;(x) we have

0
[$100)] = |e*/2 / f(y;e,n,znsinh(%)dy

0
< ex/2/62|g(,) _d|(€—1ney/2 + |Z(y)|)2 sinh(%)'dy
X
0
< ez/C(eEk”Z” +1)(e7 e +|z(n)]e??) e — 1|dy

X

< C (eI 1) (1 + €llzll)e.

Thus

0
/ 1510 ]dx < C (eI 4 1)(1 + ezl).
—1

—€

photoinhibition, J. Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2014.12.012
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‘We therefore have
|Fey @) < (eI + 1) (1 +ellzll).

By (3.4), we have

lecte. n. e 2| < | L, @] < C (e 4 1) (1 + ezl

Therefore, taking M = 3C then from the above inequalities we can easily find €p > O sufficiently
small (depending on C) such that for all € € (0, ¢g] and n € J,

|Fen@| <M iflzl <M. ©
3.3. Fe is a contraction mapping

In this subsection we show that there exists €? € (0, €0 such that for each € € (0, €] and each
n € J, Fey is a contraction mapping on 2.
Suppose that z1, z> € £2, and denote fori =1, 2,

X

! —ek [ . Y24y
I; (x) = exp| —ko — ekox — k / ne’dy |e ek L1 zmerdy,

—e!

Clearly
lg(I) — g(L)| < ClI = b
< c’e—fk FeramePdy _ ek [ zz(y)eyﬂdy‘
X

< CeftlanlHI2I ¢ f l210) — 22|y
e

< CeFMe|z) — 2|

<eCllz1 — 22|l

We write

[Fl, @) = FLE) )]

0
262/{g(11)(€_1ney/2 +Z1)+ _ g([z)(e_lney/2 +Z2)+ —d(z _Zz)}ey/Z(ex—y o l)dy
X
+[en. ) = Ae,n ) ]e" (x — 1+ e7)
0
=& [ Lot - em](e e+ 20) (e~ 1)dy
X
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0
—i—ezf{g(lz)[(e*]ney/2 +21) = (e +22) "] = d(z1 — )} (e = 1)dy

X

+[r(e,n.21) = Ae.n, 22)]e" (x — 1+ e7¥)
=T(x) + T2(x) + T3(x).

Then
0
|T1(x)| < €2 Cellz1 — 2 /(e—lney +1z11e¥72)dy
X
<Ce¥|lz1 — 2all.
Since
s()|+d <Ch+d < CeI2l g < C,

we have

0
|Ta(x)| < Cez/{|(671ney/2 +21) = (e + 22) |+ 121 — 2l }e Y — 1]dy

X

0
<Cé’ f |21(») — z2(y)]e*/?dy
X

2
=Cellz1 — 22|l
To estimate 73(x), we notice that

0

[1(e,n,21) — (e, 1, 22)] / e*dx
el
0
=’ / {8(11)(6_1776}’/2 + Z])+ - g(lz)(e_lﬂey/2 + zz)+ —d(z1 — 22)}€y/2dy
el
0
=’ / [g(h) — g(1)] (e 'ne?? +21) T 2dy
el
0
e / {e[(e e +21)" = (¢ "0 +22) "] —d(z1 — 2} dy.

el
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Therefore similar to the estimates for 77 (x) and 7> (x) above, we obtain
|7(e,n,21) — A€, 0, 22)| < C€2l|z1 — 22|
Since e*|x —1+e7*| <Con [—6_1,0], we obtain
|T3(0)| < CeXllz1 — 22l

It follows that

0
IFlyen=Flyl = [ (o] + 1a00] + 1500

—e!

< Cellz1 — z2]l.

By (3.4), we have

|ae. n. z1)e*/? — a(e. n. z2)e*?| = || F} z1) = F!, 2| < Cellz1 — 22l
Thus F, , is a contraction mapping on £2 provided that € € (0,€°] and n € J with € =
min{eg, (3C) 1},

Summarizing, we have proved the following result.

Lemma 3.2. There exists €° € (0, eo] such that Fe,, is a contraction mapping on 2 for every
€€ (0, 60] andnelJ.

Applying Banach’s fixed point theorem, we obtain
Proposition 3.3. For each € € (0,€°] and n € J, Fe ;) has a unique fixed point z. ; € §2.

Remark 3.4. Since F¢ , depends continuously on (¢, 1), the uniqueness of the fixed point implies
that z, , also depends continuously on (e, ).

3.4. The reduced equation
Proposition 3.5. Suppose € € (0, €°]. If n € J satisfies
A€, 1M, Ze,y) =0, (3.9)
then
Uy = e Ine? + Ze,n(x)

is a positive solution to (3.1).
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Proof. Since F¢ ;ze¢.y = e,y and A(€, 1, Z¢,y) = 0, from the definition of F¢, we find that u =
ue y satisfies, for x € (—e_l, 0),

1 1
—Uxy +-u= _(Ze,r])xx + —Zen = fx; e, n, Ze,n)-

4 4
Using the definition of f we have
1 -
—Uxx + (Z +62d>u - 62g(1)u+ =0 in (_6_1’ O)’ (3.10)
with
X
[ = exp(—ko — ekox — €k / u(y)ey/zdy>.
|

Clearly u also satisfies the boundary condition of (3.1). Hence, due to €d > 0, we can apply the
maximum principle to (3.10) to conclude that # > 0. Thus u* = u and u solves (3.1).

To show u is a positive solution, by the strong maximum principle, it suffices to show that
u = 0. But this follows trivially from

0 0

/u(x)ex/zdxz / e netdx > 0. O

el 1

We next examine closely the reduced equation A(e, n, z¢ ;) =0, that is

0
/ P gUe e ne*? + ze )] = d[e " ne"? + ze y(x)]}dx =0, (3.11)
E—l
with
X
e y(x) = exp(—ko — ekox — €k / [e7'ne’/? + ze,,,(y)]ey/zdy)

el

Multiplying (3.11) by en~! we obtain
0
0= / e"/z{g(le,n)[ex/2 + er/_lze,n(x)]+ - d[ex/2 + en_lze,,](x)] }dx
-1
0

:/ex[g(lssn)—d]dx-l-(sl,

el
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with

0
181] = /ex/zg(le,n){[e"/z+6n_1z€,n(X)]+—ex/z}dx

1

IA

0
Ce / |z€,n(x)‘ex/2dx
7€—|

< Ce.

We may write

Ie.y(x) = Eo exp(—ekox — kne*)me ,(x),
with

X

mey(0) =& e exp| —ke / zenMedy ) exp(kne™ ) — 1

—e—1

uniformly for x € [—e~!,0] and n € J as € — 0. Therefore

g(Iey () = g(Boe™ 1) + 55(x)
with
Sz(x) — 0 uniformly as € — 0.

It follows that

0
0= / [g(80e™ k0 1€") — d]e*dx + 81 + 82,
—e!
where
0
8 = / S(x)e*dx =o(1) ase— 0.

e
‘We thus have

0
d[l — exp(—e_l)] = / g(Eoe_ékox_k”eX)exdx + 81 + 87,

el
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and

0
d= / g (Eoe ™Rk X e 4 81 4+ 85 + 83

—e1

with
8 = dexp(—e_l) =o0(1).

Finally we have

1

9 0
/ g (5oe~ ko k1) ¥ gy = / g (8oe™ k0 k1) (ekox + knex)/kidx
n
€ e

=— / g(oe™)dp
—ko+knexp(—e—1)

0
1 —p—kn exp(Z)
r_ €ko” )\ d
e /g(éoe )du
—ko

1 w
=—/g(§oe_“)du+0(1)

0

1
- / g(&oe™)du +o(1)

—ko

kn
1

=0 / g(&oe™)dpu +o(1).
0

Therefore the reduced equation can be written as

kn
1 -5
d= H/g(fg‘oe )ds +o0(1),
0

19
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where o(1) — 0 uniformly in € J as € — 0. Recalling the definition of G (u) we find that the
reduced equation can be written as

d = G(kn) + o(1). (3.12)

Fix 51, n2 and n3 in J such that

e (i c(t 12 (K2 22
M\ %) P\ %x) B\ )
Then from (3.8) we find that

d > G(kny), d < G(kny), d > G(kns3).

Since A(€, 1, Z¢,) is a continuous function in (€, ), the term o(1) in (3.12) can be written as
o(e, n) which is continuous and satisfies o(e, n) — 0 uniformly in n € J as € — 0. Therefore,
for all small € > 0, say € € (0, €*], with some €* € (0, 60), the equation

d = G(kn)+o(e, n)

has at least two solutions in J: n] € (1, 72) and 15 € (12, n3). Moreover,

lim 7§ = and G'(knj) > 0> G'(kns).

e—0

431
— lim n§ =
k e—>0n2

K2
k
We have thus proved the following result.

Theorem 3.6. Suppose that (3.7) holds. Then there exists €* > 0 such that for each € € (0, €*],
(3.1) has two positive solutions of the form

= e 2). w= e (re 4 25)

with 2§, 25 € H satisfying ||z{|| < Ce, and

M1 . n2
li —, 1 $==, G’ 0>G’ .
el_r)%m X lmny == (1) > 0> G'(u2)
Since, fori =1, 2,
wi =€ (nfe? +26) = e
= Z; % e Z;

with Z{ 1= zf + o(1)e*/%, we find that 1Z5 | = o(1), and part (ii) of Theorem 1.2 now follows
directly from Theorem 3.6.
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4. Stability analysis

In this section, we consider the linearized stability of the two solutions #; and u; in Theo-
rem 3.6. Let u*™ = u} denote either u or u,. The linearized eigenvalue problem of (3.1) at u = u*
is given by

1
Prx — Z¢>+ez[g<le) —dlo
—e2u*g (1) 1€k / ()’ ?ds +rp =0, xe(—1/e0), (4.1)
—1/e
¢x—%¢=o, x €{—1/¢,0},

where

b 4 X * s/2
I(x)=e ko—ekox keffl/gu (s)e ds.

We will show that, for every small € > 0, this problem has an eigenpair (X, ¢) of the form

r=€ne, )= tew(x), weeH,

with (e = o # 0 as € — 0 and ||we| < C for all € > 0 small. Here H is the Banach space
defined in the previous section. Moreover, we will show that pg < 0 when u* = u1, and o > 0
when u* = uy. This implies that u; is linearly unstable. Although this does not prove that u; is
linearly stable, but as explained below, it strongly suggests the validity of such a conclusion.

The difficulty in proving the linearized stability of u, is due to the fact that (4.1) is a nonlocal
eigenvalue problem, and the corresponding linear operator to this problem is not self-adjoint, nor
order-preserving. Therefore it is difficult to use variational characterization or the well-known
Krein—Rutman theorem to know the relationship of the eigenvalue obtained above to the rest of
the spectrum. However, since ¢ = e*/? 4 ew, is a small perturbation of a positive function, it is
reasonable to believe that A = €. behaves like a principle eigenvalue, with all other eigenvalues
having real parts strictly greater than A, which would imply the linearized stability of u5.

We now look for an eigenpair of (4.1) of the form

r=eu, p=e"?+ew, weH.

Substituting these into (4.1) we obtain

1
Wer = W +el[ge) — d](e* + ew)

X

—eu*g'(I)I.€k / [es + ewes/Z]ds +eu(ex/2 + ew) =0, xe(—1/¢0), 4.2)
—1/e

1
wx—§w=0, x €{—1/e,0}.
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1,x/2

Multiplying the first equation in (4.2) by €~ , and integrating over (—1/¢, 0), we obtain

X

0 0
/ [g(le) —d](ex +ewex/2)dx — / ElPurg (1)1 ek / [es +ewes/2]dsdx
1/e 1/e —1/e

0
=— / e'dx =—p(l —e_l/é). (4.3)
1/e

This defines u as a functional of w and we may write

u=pu(w, €).
Much as in the previous section, from (4.2) we obtain

0

wx)=¢ /[g(IE) — d](ey/2 + ew)251nh<x%y>dy

X

0

y
o L (Y e T R e

x —1/e
0
/2 . X—-y x/2
+en (ey —|—ew)251nh 5 dy +ye*'”,

X

with y € R! chosen such that jfl/e e2w(x)dx =0.
For w € H, we now define the operator

Le(w)(x) := LY (w)(x) + L2(w) (x) + L2 (w) (x) + y (w, €)e*/?,
with

0
Lew)(x):i=e / [g(e) — d] (e’ +6w)2sinh<x—; y)dy,

X

0 y

Liw)(x): = —e / “*g/(le)1e6k< / [¢* —i—ewes/z]ds)Zsinh(x—; y)dy,

X —1/e

0
Lg(w)(x) i=eu(w,e€) /(ey/Z + 6w)2$iﬁh<x ; y)dy,
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where ©(w, €) is determined by (4.3), and

0 -1 0
y(w,6)=—|: f ede} fex/2[L;(w)(x)+L§(w)(x)+L2(w)(x)]dx.
—1/€ —1/e

We are going to show that there exists C > 0 such that for every small € > 0, L, maps B :=
{we H : ||lw| <2C} into itself, and is a contraction mapping. Therefore L, has a unique fixed

point w, in B: L (w.) = w,. Clearly this gives an eigenpair to (4.1):
A, ¢)= (ezu(we, €),e? + €we).
From (4.3), we easily obtain
|u(w, e)] <C(14€lwll) forall small € > 0 and some C > 0.

Clearly

0

/(ey/2 + ew)2 sinh(%)dy

X

0
e*? 5/[ey+e|w|ey/2]}ex_y—1|dy§C(1+6||w||).
X

It follows that

0
|Liw)| = / 2L (w)(x)|dx < C(1 +€lw])’.
—1/e
Using
0
e PLew)(x)| = ee*? / [g(Le) — d](e¥? + ew) (e T —&'T")dy
X
0
Sef[g“f)”](ey +elwle’’?)|e ™ — 1]dy
X
0
=< / (¢" +elwle”)dy < eC(1 +efwl),
—1/e
we deduce

|LEw)| = C(1+efwl).
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To estimate Lg(w) we notice that

y

/ [es + ewes/z]ds

—1/e

<C(l+e€llw|) forallye (—1/¢,0),

lu*g' (I Ieek| < C (e + ¢

).

and hence
0
e PIL2(w) ()| < eC(1+elw]) / e +elzf (e[ — 1]dy < eC(1+e€llwl).

It follows that
|L2w)|| < (1 +€lw]).

From the definition of y (w, €) we obtain
|y, ©e2| < |Li@w) + L2w) + Liw)| < C(1+elwl))’.
Therefore
|Le@)| < C(1+€lwl))’.
If |w] <2C, we obtain
[Lew)| < C(1+2e0)? <2C

provided that € € (0, €¢], with €p determined by (1 + 2¢0C)2 =2
Next we show that L. is a contraction mapping on B C H for all small € > 0. Let w, w € B.
Then

0

Le(wn) = Le(wo) =e/[g(le) —d]e(w) — w2)2sinh(x—; y)dy_

X

It follows easily that
|Liwn) = Liwo)| < eCllwy —wal.

Similarly

0

v
Lz(wl)—Lz(wz)z—efu*g/(lé)leek< f e(w) —wg)es/zds>2smh( 5 )dy,

X —1/€
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which gives
2 2
|LZ(w1) — LZ(w2) | < eCllwy — wy]|.
Finally

0

Lg’(wl)—Lg(wz)zeu(wl,e)fe(w1 —wﬁZsinh(%)dy

0
E[M(w1,e)—u(w2,e) /e>/2+ew2 251nh<%y>dy.

By (4.3) we easily see that

|(wa, €) — u(wy, €)] <eCllwy — wy.

It then follows easily that

L2 (w1) — L2 (w2) | < eCllwi — wal.
We now obtain

|y wi, )¢ —y (w2, )2

< |Liw) — Liwo)| + |Liw) — Liwo)| + | L (w1) — L (wy)||

<eCllwy — wal.

Thus we have
1
|Le(wi) — Le(wp) | < €Cllwy — wal| < Elllm —ws|l forall wi, wy € B

provided that € > 0 is small enough, say 0 <€ <€ < €g.

We may now use the contraction mapping theorem to conclude that for every small € > 0,
say € € (0, €1], L¢ has a unique fixed point we in B: L¢(we) = we. It follows that, for such €,
(4.1) has an eigenpair of the form (A, ¢) = (€2 (we, €), &% + ewy).

Let us now determine the sign of u(we, €) for u™ = u; and u* = u,, respectively. We will
denote p(we, €) by /,Li for u* =u;, i =1,2. We define Ié (x) from I (x) analogously. From its
definition, we easily see that

lin}) I(x) = e~k kmietds £9e "¢ uniformly in compact subsets of (—co, 0].
€—>
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Thus we can use (4.3) to obtain

—lim pu; =
e—0

0
[g(éoe_’“ex) —d]e*dx — / nike"g’(éoe_“"ex)Eoe_“"ex erdx
—00

O\“—‘ é\..o

1
g(%'()e_liis)ds —d — /§0Mise_“”g’(§oe—w)ds
0

=G(wi) —d~+ niG'(wi) = wiG' ().

Therefore

ut=—mG' (n) +oe(1) <0, pZ=—p2G'(12) +oc(1) > 0.
Summarizing, we have proved the following result:

Theorem 4.1. Let u| and uy be given by Theorem 3.6. Then for each small € > 0, the linearized
eigenvalue problem (4.1) with u* = u; has an eigenpair of the form

(@) = (2ul, & +ewl), i=1,2,
with wé € H having a uniform bound independent of €, and

nl=—u1G'(uy) + 0e (1) <0, g =—paG' () + 0e(1) > 0.
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