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Abstract

Many real-world applications require automated
data annotation, such as identifying tissue origins
based on gene expressions and classifying images
into semantic categories. Annotation classes are of-
ten numerous and subject to changes over time, and
annotating examples has become the major bottle-
neck for supervised learning methods. In science
and other high-value domains, large repositories of
data samples are often available, together with two
sources of organic supervision: a lexicon for the
annotation classes, and text descriptions that ac-
company some data samples. Distant supervision
has emerged as a promising paradigm for exploit-
ing such indirect supervision by automatically an-
notating examples where the text description con-
tains a class mention in the lexicon. However, due
to linguistic variations and ambiguities, such train-
ing data is inherently noisy, which limits the accu-
racy of this approach. In this paper, we introduce
an auxiliary natural language processing system for
the text modality, and incorporate co-training to re-
duce noise and augment signal in distant supervi-
sion. Without using any manually labeled data,
our EZLearn system learned to accurately annotate
data samples in functional genomics and scientific
figure comprehension, substantially outperforming
state-of-the-art supervised methods trained on tens
of thousands of annotated examples.

1 Introduction

The confluence of technological advances and the open data
movement [Molloy, 2011] has led to an explosion of publicly
available datasets, heralding an era of data-driven hypothesis
generation and discovery in high-value applications [Piwowar
and Vision, 2013]. A prime example is open science, which
promotes open access to scientific discourse and data to facil-
itate broad data reuse and scientific collaboration [Friesike et
al., 2015]. In addition to enabling reproducibility, this trend
has the potential to accelerate scientific discovery, reduce the
cost of research, and facilitate automation [Rung and Brazma,
2013; Libbrecht and Noble, 2015].

However, progress is hindered by the lack of consistent and
high-quality annotations. For example, the NCBI Gene Ex-
pression Omnibus (GEO) [Clough and Barrett, 2016] con-
tains over two million gene expression profiles, yet only
a fraction of them have explicit annotations indicating the
tissue from which the sample was drawn, information that
is crucial to understanding cell differentiation and cancer
[Hanahan and Weinberg, 2011; Gutierrez-Arcelus et al.,
2015]. As a result, only 20% of the datasets have ever been
reused, and tissue-specific studies are still only performed at
small scales [Piwowar and Vision, 2013].

Annotating data samples with standardized classes is the
canonical multi-class classification problem, but standard su-
pervised approaches are difficult to apply in these settings.
Hiring experts to annotate examples for thousands of classes
such as tissue types is unsustainable. Crowd-sourcing is gen-
erally not applicable, as annotation requires domain expertise
that most crowd workers do not possess. Moreover, the anno-
tation standard is often revised over time, incurring additional
cost for labeling new examples.

While labeled data is expensive and difficult to create at
scale, unlabeled data is usually in abundant supply. Many
methods have been proposed to exploit it, but they typi-
cally still require labeled examples to initiate the process
[Blum and Mitchell, 1998; McClosky and Charniak, 2008;
Fei-Fei et al., 2006]. Even zero-shot learning, where the
name implies learning with no labeled examples for some
classes, still requires labeled examples for related classes
[Palatucci et al., 2009; Socher et al., 2013].

In this paper, we propose EZLearn, which makes annota-
tion learning easy by exploiting two sources of organic su-
pervision. First, the annotation classes generally come with
a lexicon for standardized references (e.g., “liver”, “kidney”,
“acute myeloid leukemia cell” for tissue types). While label-
ing individual data samples is expensive and time-consuming,
it takes little effort for a domain expert to provide a few exam-
ple terms for each class. In fact, in sciences and other high-
value applications, such a lexicon is often available from an
existing ontology. For example, the Brenda Tissue Ontology
specifies 4931 human tissue types, each with a list of stan-
dard names [Gremse et al., 2011]. Second, data samples are
often accompanied by a free-text description, some of which
directly or indirectly mention the relevant classes (e.g., the
caption of a figure, or the description for a gene expression
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sample). Together with the lexicon, these descriptions present
an opportunity for exploiting distant supervision by generat-
ing (noisy) labeled examples at scale [Mintz et al., 2009]. We
call such indirect supervision “organic” to emphasize that it
is readily available as an integral part of a given domain.

In practice, however, there are serious challenges to enact
this learning process. Descriptions are created for general
human consumption, not as high-quality machine-readable
annotations. They are provided voluntarily by data own-
ers and lack consistency; ambiguity, typos, abbreviations,
and non-standard references are common [Lee et al., 2013;
Rung and Brazma, 2013]. Multiple samples may share a text
description that mentions several classes, introducing uncer-
tainty as to which class label is associated with which sam-
ple. Additionally, annotation standards evolve over time, in-
troducing new terms and evicting old ones. As a result, while
there are potentially many data samples whose descriptions
contain class information, only a fraction of them can be cor-
rectly labeled using distant supervision. This problem is par-
ticularly acute for domains with numerous classes and fre-
quent updates, such as the life sciences.

To best exploit indirect supervision using all instances,
EZLearn introduces an auxiliary text classifier for handling
complex linguistic phenomena. This auxiliary classifier first
uses the lexicon to find exact matches to teach the main clas-
sifier. In turn, the main classifier helps the auxiliary clas-
sifier improve by annotating additional examples with non-
standard text mentions and correcting errors stemming from
ambiguous mentions. This co-supervision continues until
convergence. Effectively, EZLearn represents the first at-
tempt in combining distant supervision and co-training, using
text as the auxiliary modality for learning (Figure 1).

To investigate the effectiveness and generality of EZLearn,
we applied it to two important applications: functional
genomics and scientific figure comprehension, which dif-
fer substantially in sample input dimension and description
length. In functional genomics, there are thousands of rele-
vant classes. In scientific figure comprehension, prior work
only considers three coarse classes, which we expand to
twenty-four. In both scenarios, EZLearn successfully learned
an accurate classifier with zero manually labeled examples.

While standard co-training has labeled examples from the
beginning, EZLearn can only rely on distant supervision,
which is inherently noisy. We investigate several ways to
reconcile distant supervision with the trained classifier’s pre-
dictions during co-training. We found that it generally helps
to “remember” distant supervision while leaving room for
correction, especially by accounting for the hierarchical re-
lations among classes. We also conducted experiments to
evaluate the impact of noise on EZLearn. The results show
that EZLearn can withstand a large amount of simulated noise
without suffering substantial loss in annotation accuracy.

2 Related Work

A perennial challenge in machine learning is to transcend the
supervised paradigm by making use of unlabeled data. Stan-
dard unsupervised learning methods cluster data samples by
explicitly or implicitly modeling similarity between them. It
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Figure 1: The EZLearn architecture: an auxiliary text-based classi-
fier is introduced to bootstrap from the lexicon (often available from
an ontology) and co-teaches the main classifier until convergence.

cannot be used directly for classification, as there is no direct
relation between learned clusters and annotation classes.

In semi-supervised learning, direct supervision is aug-
mented by annotating unlabeled examples using either a
learned model [Nigam and Ghani, 2000; Blum and Mitchell,
1998] or similarity between examples [Zhu and Ghahramani,
2002]. Tt is an effective paradigm to refine learned models,
but still requires initialization with sufficient labeled exam-
ples for all classes. Zero-shot learning or few-shot learning
relax the requirement of labeled examples for some classes,
but still need to have sufficient labeled examples for related
classes [Palatucci et al., 2009; Socher et al., 2013]. In this re-
gard, they bear resemblance with domain adaptation [Blitzer
et al., 2007; Daumé III, 2007] and transfer learning [Pan and
Yang, 2010; Raina et al., 2007]. Zero-shot learning also faces
additional challenges such as novelty detection to distinguish
between known classes and new ones.

An alternative approach is to ask domain experts to pro-
vide example annotation functions, ranging from regular ex-
pressions [Hearst, 1991] to general programs [Ratner et al.,
2016]. Common challenges include combating low recall and
semantic drifts. Moreover, producing useful annotation func-
tions still requires domain expertise and substantial manual
effort, and may be impossible when predictions depend on
complex input patterns (e.g., gene expression profiles).

EZLearn leverages domain lexicons to annotate noisy ex-
amples from text, similar to distant supervision [Mintz et al.,
2009]. However, distant supervision is predominantly used
in information extraction, which considers the single view on
text [Quirk and Poon, 2017; Peng et al., 2017]. In EZLearn,
the text view is introduced to support the main annotation
task, resembling co-training [Blum and Mitchell, 1998]. The
original co-training algorithm annotates unlabeled examples
in batches, where EZLearn relabels all examples in each iter-
ation, similar to co-EM [Nigam and Ghani, 2000].

3 EZLearn

Let X = {x; : i} be the set of data samples and C' be the
set of classes. Automating data annotation involves learning
a multi-class classifier f : X — C. For example, x; may be
a vector of gene expression measurements for an individual,
where C'is the set of tissue types. Additionally, we denote ¢;
as the text description that accompanies z;. If the description
is not available, ¢; is the empty string.

Algorithm 1 shows the EZLearn algorithm. By default,
there are no available labeled examples (z, y*) where y* € C
is the true class for annotating z € X. Instead, EZLearn as-
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Algorithm 1 EZLearn

Input: Data samples X, text descriptions 7', annotation
classes C, and lexicon L containing example terms L. for
each class c € C.
Output: Trained classifiers f : X — C' (main) and fr :
T — C (auxiliary).
Initialize: Generate initial training data D° as all (x;, t;, ¢)
for xz; € X, t; € T, where t; mentions some term in L.
for k =1 : N, do
f < Traing,;,(D*71); DX < Resolve(f(X), D)
fr < Train.,(D%); D¥ « Resolve(fr(T), DY)
end for

sumes that a lexicon L is available with a set of example terms
L, for each ¢ € C'. We do not assume that L. contains every
possible synonym for ¢, nor that such terms are unambigu-
ous. Rather, we simply require that L. is non-empty for any
c of interest. We use L.’s for distant supervision in EZLearn,
by creating an initial labeled set D°, which consists of all
(z4,t;, c) where the text description ¢; explicitly contains at
least one term in L.

To handle linguistic variations and ambiguities, EZLearn
introduces an auxiliary classifier fr : T — C, where T' =
{t; : i}. At iteration k, we first train a new main classifier f*
using D¥~1. We then apply f* to X and create a new labeled
set Dk, which contains all (t;, ¢) where f*(z;) = c. We then
train a new text classifier f% using D%, and create the new
labeled set D* with all (x;, c) where fX(¢;) = c. This pro-
cess continues until convergence, which is guaranteed given
independence of the two views conditioned on the class label
[Blum and Mitchell, 1998]. Empirically, it converges quickly.

We can use any classifier for Traing,;, and Traing.
Typically, the classifiers will take a parametric form (e.g.,
f(x) = f(x,0)) and training with a labeled set D
amounts to minimize some loss function L (i.e., 8* =
arg ming Z(%y*)eD L(f(x,6),y*)). In this paper, we
opted for simple, standard choices. In particular, we used lo-
gistic regression and fastText [Joulin ef al., 2017] as the main
and auxiliary classifiers, respectively.

Generally, a classifier will output a score for each class
rather than predicting a single class. The score reflects the
confidence in predicting the given class. EZLearn generates
the labeled set by adding all (sample, class) pairs for which
the score crosses a hyperparameter threshold. We used 0.3
in this paper, which allows up to 3 classes to be assigned to
a sample. The performance of EZLearn was not sensitive to
this parameter: values in (0.2, 0.6) yielded similar results.
In all iterations, a labeled set might contain more than one
class for a sample, which is not a problem for the learning
algorithm and is useful when there is uncertainty about the
correct class.

For samples with distant-supervision labels, a classifier
(main or auxiliary) might predict different labels in an iter-
ation. Since distant supervision is noisy, reconciling it with
the classifier’s prediction could help correct its errors. The
Resolve(-) function is introduced for this purpose. The di-
rect analog of standard co-training returns distant-supervision
labels if they are available (Standard). Conversely, Resolve
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... Enriched tumor-initiating capacity has been
linked to poorly differentiated glioblastoma cells
sharing features with neural stem cells ...

Figure 2: Example gene expression profile and its text description in
Gene Expression Omnibus (GEO). Description is provided volun-
tarily and may contain ambiguous or incomplete class information.

could ignore distant supervision and always return the clas-
sifier’s prediction (Predict). Alternatively, Resolve may
return all labels (Union) or the common ones (Intersect).

However, none of the above approaches consider the hier-
archical relations among the label classes. Suppose that the
text mentions both neuron and 1leukemia, whereas the clas-
sifier predicts leukocyte with high confidence. Our confi-
dence in leukemia being the correct label should increase
since leukemia is a subtype of leukocyte, and our confi-
dence in neuron should decrease. We thus propose a more
sophisticated variant of Resolve that captures such reasoning
(Relation). Let cq, co be the two labels from distant super-
vision and classifier prediction, respectively. If ¢; and c» are
the same, Relation returns ¢ = c¢; = co. If they have a
hierarchical relation, Relation will return the more specific
one (i.e., the subtype). Otherwise, Relation returns none. If
distant supervision or the classifier prediction assigns multi-
ple labels to a sample, Relation will return results from all
label pairs. (In domains with no hierarchical relations among
the classes, Relation is the same as Intersect.)

4 Application: Functional Genomics

Different tissues, from neurons to blood, share the same
genome but differ in gene expression. Annotating gene ex-
pression data with tissue type is critical to enable data reuse
for cell-development and cancer studies [Rung and Brazma,
2013]. Lee et al. manually annotated a large dataset of 14,510
expression samples to train a state-of-the-art supervised clas-
sifier [Lee ef al., 2013]. However, their dataset only covers
176 tissue types, or less than 4% of classes in BRENDA Tis-
sue Ontology. In this section, we applied EZLearn to learn
a far more accurate classifier that can in principle cover all
tissue types in BRENDA. (In practice, the coverage is limited
by the available unlabeled gene expression samples; in our
experiments EZLearn learned to predict 601 tissue types.)

Annotation task The goal is to annotate gene expression
samples with their tissue type. The input is a gene expres-
sion profile (a 20,000-dimension vector with a numeric value
signifying the expression level for each gene). The output is
a tissue type. We used the standard BRENDA Tissue Ontol-
ogy [Gremse et al., 20111, which contains 4931 human tissue
types. For gene expression data, we used the Gene Expres-
sion Omnibus (GEO) [Edgar et al., 20021, a popular reposi-
tory run by the National Center for Biotechnology Informa-
tion. Figure 2 shows an example gene expression profile with
text description in GEO. We focused on the most common
data-generation platform (Affymetrix U133 Plus 2.0), and ob-
tained a dataset of 116,895 human samples. Each sample was
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Method # Labeled # All | AUPRC | Prec@(.5 | Use Expression | Use Text | Use Lexicon | Use EM
URSA 14510 0 0.40 0.52 yes no no no
Co-EM 14510 | 116895 0.51 0.61 yes yes no yes
Dist. Sup. 0 | 116895 0.59 0.63 yes yes yes no
EZLearn 0| 116895 0.69 0.86 yes yes yes yes

Table 1: Comparison of test results between EZLearn and state-of-the-art supervised, semi-supervised, and distantly supervised methods
on the CMHGP dataset. We reported the area under the precision-recall curve (AUPRC) and precision at 0.5 recall. EZLearn requires no
manually labeled data, and substantially outperforms all other methods. Compared to URSA and co-EM, EZLearn can effectively leverage
unlabeled data by exploiting organic supervision from text descriptions and lexicon. EZLearn amounts to initializing with distant supervision
(first iteration) and continuing with an EM-like process as in co-training and co-EM, which leads to further significant gains.

processed using Universal exPression Codes (UPC) [Piccolo
et al., 2013] to minimize batch effects and normalize the ex-
pression values to [0,1]. Text descriptions were obtained from
GEOmetadb [Zhu et al., 2008].

Main classifier We implemented Traing,;, using a deep
denoising auto-encoder (DAE) with three LeakyReLU layers
to convert the gene expression profile to a 128-dimensional
vector [Vincent et al., 2008], followed by multinomial logis-
tic regression, trained end-to-end in Keras [Chollet, 2015],
using L2 regularization with weight 1e — 4 and RMSProp op-
timizer [Tieleman and Hinton, 2012].

Auxiliary classifier We implemented Train,,, using fast-
Text with their recommended parameters (25 epochs and
starting learning rate of 1.0) [Joulin et al., 2017]. In prin-
ciple, we can continue the alternating training steps until nei-
ther classifier’s predictions change significantly. In practice,
the algorithm converges quickly [Nigam and Ghani, 2000],
and we simply ran all experiments with five iterations.

Systems We compared EZLearn with URSA [Lee et al.,
2013], the state-of-the-art supervised method that was trained
on a large labeled dataset of 14,510 examples and used a
sophisticated Bayesian method to refine SVM classification
based on the tissue ontology. We also compared it with co-
training [Blum and Mitchell, 1998] and co-EM [Nigam and
Ghani, 2000], two representative methods for leveraging un-
labeled data that also use an auxiliary view to support the
main classification. Unlike EZLearn, they require labeled
data to train their initial classifiers. After the first iteration,
high-confidence predictions on the unlabeled data are added
to the labeled examples. In co-training, once a unlabeled sam-
ple is added to the labeled set, it is not reconsidered again,
whereas in co-EM, all of them are re-annotated in each iter-
ation. We found that co-training and co-EM performed simi-
larly, so we only report the co-EM results.

Evaluation The BRENDA Tissue Ontology is a directed
acyclic graph (DAG), with nodes being tissue types and di-
rected edges pointing from a parent tissue to a child, such
as leukocyte — leukemia cell. We evaluated the clas-
sification results using ontology-based precision and recall.
We expand each singleton class (predicted or true) into a set
that includes all ancestors except the root. We then mea-
sure precision and recall as usual: precision is the propor-
tion of correct predicted classes among all predicted classes,
and recall is the proportion of correct predicted classes among
true classes, with ancestors included in all cases. This met-
ric closely resembles the approach by Verspoor et al. [Ver-
spoor et al., 20061, except that we are using the “micro” ver-
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Figure 3: Ontology-based precision-recall curves comparing

EZLearn, distant supervision, URSA, and the random baseline
(gray). Extrapolated points are shown in transparent colors.

sion (i.e., the predictions for all samples are first combined
before measuring precision and recall). If the system pre-
dicts an irrelevant class in a different branch under the root,
the intersection of the predicted and true sets is empty and
the penalty is severe. If the predicted class is an ancestor
(more general) or a descendent (more specific), the intersec-
tion is non-empty and the penalty is less severe, but overly
general or overly specific predictions are penalized more than
close neighbors. We tested on the Comprehensive Map of
Human Gene Expression (CMHGP), the largest expression
dataset with manual tissue annotations [Torrente et al., 2016].
CMHPG used tissue types from the Experimental Factor On-
tology (EFO) [Malone et al., 2010], which can be mapped to
the BRENDA Tissue Ontology. To make the comparison fair,
7,209 CMHGP samples that were in the supervised training
set for URSA were excluded from the test set. The final test
set contains 15,129 samples of 628 tissue types.

Results We report both the area under the precision-recall
curve (AUPRC) and the precision at 0.5 recall. Table 1 shows
the main classification results (with Resolve = Relationin
EZLearn). Remarkably, without using any manually labeled
data, EZLearn outperformed the state-of-the-art supervised
method by a wide margin, improving AUPRC by an absolute
27 points over URSA, and over 30 points in precision at 0.5
recall. Compared to co-EM, EZLearn improves AUPRC by
18 points and precision at 0.5 recall by 25 points. Figure 3
shows the precision-recall curves.

To investigate why EZLearn attained such a clear advan-
tage even against co-EM, which used both labeled and unla-
beled data and jointly trained an auxiliary text classifier, we
compared their performance using varying amount of unla-
beled data (averaged over fifteen runs). Figure 4(a) shows the
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Figure 4: (a) Comparison of test accuracy with varying amount of
unlabeled data, averaged over fifteen runs. EZLearn gained substan-
tially with more data, whereas co-EM barely improves. (b) Com-
parison of number of unique classes in high-confidence predictions
with varying amount of unlabeled data. EZLearn’s gain stems in
large part from learning to annotate an increasing number of classes,
by using organic supervision to generate noisy examples, whereas
co-EM is confined to classes in its labeled data.

results. Note that the x-axis (number of unlabeled examples
in use) is in log-scale. Co-EM barely improves with more un-
labeled data, whereas EZLearn improves substantially from
2% to 100% of unlabeled data.

To understand why this is the case, we further compare the
number of unique classes predicted by the two methods. See
Figure 4(b). Co-EM is confined to the classes in its labeled
data and its use of unlabeled data is limited to the extent of
improving predictions for those classes. In contrast, by using
organic supervision from the lexicon and text descriptions,
EZLearn can expand the classes in its purview with more un-
labeled data, in addition to improving predictive accuracy for
individual classes. The gain seems to gradually taper off (Fig-
ure 4(a)), but we suspect that this is an artifact of the current
test set. Although CMHGP is large, the number of tissue
types in it (628) is still a fraction of that in the BRENDA
Tissue Ontology (4931). Indeed, Figure 4(b) shows that the
number of its predicted classes keeps climbing. This sug-
gests that with additional unlabeled data EZLearn can im-
prove even further, and with additional test classes, the ad-
vantage of EZLearn might become even larger.

We also evaluated on the subset of CMGHP with tissue
types confined to those in the labeled data used by URSA and
co-EM, to perfectly match their training conditions. Unsur-
prisingly, URSA and co-EM performed much better, attaining
0.53 and 0.67 in AUPRC, respectively (though URSA’s accu-
racy is significantly lower than its training accuracy, suggest-
ing overfitting). Remarkably, by exploiting organic supervi-
sion, EZLearn still outperformed both URSA and co-EM, at-
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Figure 5: Comparison of test accuracy of the main and auxiliary
classifiers at various iterations during learning.

Resolve Stand. | Pred. | Union | Inter. | Relat.
# Classes 623 329 603 351 601
AUPRC 0.59 0.64 0.59 0.66 0.69

Table 2: Comparison of test results and numbers of unique classes in
high-confidence predictions on the Comprehensive Map of Human
Gene Expression by EZLearn with various strategies in resolving
conflicts between distant supervision and classifier prediction.

1.0 -
0.8 == EZLearn|
&£ 06
2 s AN
< \
0.2 \
0.0

0.25 0.50 0.75 1.00
Portion of initial labels perturbed

Figure 6: EZLearn’s test accuracy with varying portion of the
distant-supervision labels replaced by random ones in the first itera-
tion. EZLearn is remarkably robust to noise, with its accuracy only
starting to deteriorate significantly after 80% of labels are perturbed.

taining 0.71 in AUPROC in this setting.

EZLearn amounts to initializing with distant supervision
(first iteration) and continuing with an EM-like process as
in co-training and co-EM. This enables the main classifier
and the auxiliary text classifier to improve each other during
learning (Figure 5). Overall, compared to distant supervision,
adding co-training led to further significant gains of 10 points
in AUPRC and 23 points in precision at 0.5 recall (Table 1).

If labeled examples are available, EZLearn can simply add
them to the labeled sets at each iteration. After incorporating
the URSA labeled examples [Lee et al., 2013], the AUPRC
of EZLearn improved by two absolute points, with precision
at 0.5 recall increasing to 0.87 (not shown in Table 1).

Compared to direct supervision, organic supervision is in-
herently noisy. Consequently, it is generally beneficial to rec-
oncile classifier prediction with distant supervision when they
are in conflict, as Table 2 shows. Standard (always choosing
distant supervision when available) significantly trailed the
alternative approach that always picks classifier’s prediction
(Predict). Union predicted more classes than Intersect
but suffered large precision loss. By taking into account of
hierarchical relations in the class ontology, Relation sub-
stantially outperformed all other methods in accuracy, while
also covering a large number of classes.

To evaluate EZLearn’s robustness, we simulated noise by
replacing a portion of the initial distant-supervision labels
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Figure 7: The Viziometrics project only considers three coarse
classes Plot, Diagram, and Image for figures due to high label-
ing cost. We expanded them into 24 classes, which EZLearn learned
to accurately predict with zero manually labeled examples.
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with random ones. Figure 6 shows the results. Interestingly,
EZLearn can withstand a significant amount of label pertur-
bation: test performance only deteriorates drastically when
more than 80% of initial labels are replaced by random ones.
This result suggests that EZLearn can still perform well for
applications with far more noise in their organic supervision.

S Application: Figure Comprehension

Figures in scientific papers communicate key results and pro-
vide visual explanations of complex concepts. However,
while text understanding has been intensely studied, figures
have received much less attention in the past. A notable ex-
ception is the Viziometrics project [Lee et al., 20171, which
annotated a large number of examples for classifying scien-
tific figures. Due to the considerable cost of labeling exam-
ples, they only used five coarse classes: Plot, Diagram,
Image, Table and Equation. We exclude the last two
as they do not represent true figures. In practice, figure-
comprehension projects would be much more useful if they
include larger set of specialized figure types. To explore this
direction, we devised an ontology where Plot, Diagram, and
Image are further refined into a total of twenty-four classes,
such as Boxplot, MRI and PieChart (Figure 7). EZLearn
naturally accommodates a large and dynamic ontology since
no manually labeled data is required.

Annotation task The goal is to annotate figures with se-
mantic types shown in Figure 7. The input is the image of
a figure with varying size. The output is the semantic type.
We obtained the data from the Viziometrics project [Lee et
al., 2017] through its open API. For simplicity, we focused
on the non-composite subset comprising single-pane figures,
yielding 1,174,456 figures along with free-text captions for
use as distant supervision. As in the gene expression case,
captions might be empty or missing.

System Each figure image was first resized and converted
to a 2048-dimensional real-valued vector using a convolu-
tional neural network [He et al., 2016] trained on ImageNet
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Figure 8: Example annotations by EZLearn, all chosen among fig-
ures with no class information in their captions.

[Deng et al., 2009]. We follow [Howe et al., 2017] and use
the ResNet-50 model with pre-trained weights provided by
Keras [Chollet, 2015]. We used the same classifiers and hy-
perparameters as in the functional genomics application. We
used a lexicon that simply comprises of the names of the new
classes, and compared EZLearn with the Viziometrics classi-
fier. We also compared with a lexicon-informed baseline that
annotates a figure with the most specific class whose name is
mentioned in the caption (or root otherwise).

Evaluation We followed the functional genomics applica-
tion and evaluated on ontology-based precision and recall.
Since the new classes are direct refinement of the old ones, we
can also evaluate the Viziometrics classifier using this met-
ric. To the best of our knowledge, there is no prior dataset
or evaluation for figure annotation with fine-grained semantic
classes as in Figure 7. Therefore, we manually annotated an
independent test set of 500 examples.

Lexicon | Vizio. | Dist. Sup. | EZLearn
AUPRC 0.44 0.53 0.75 0.79
Prec@0.5 0.31 0.43 0.87 0.92

Table 3: Comparison of test results between EZLearn, the lexicon
baseline, the Viziometrics classifier, and distant supervision.

Results EZLearn substantially outperformed both the
lexicon-informed baseline and the Viziometrics classifier (Ta-
ble 3). The state-of-the-art Viziometrics classifier was trained
on 3271 labeled examples, and attained an accuracy of 92%
on the coarse classes. So the gain attained by EZLearn re-
flects its ability to extract a large amount of fine-grained se-
mantic information missing in the coarse classes. Figure 8§
shows example annotations by EZLearn, all chosen from fig-
ures with no class mention in the caption.

6 Conclusion

We propose EZLearn for automated data annotation, by com-
bining distant supervision and co-training. EZLearn is well
suited to high-value domains with numerous classes and fre-
quent update. Experiments in functional genomics and sci-
entific figure comprehension show that EZLearn is broadly
applicable, robust to noise, and capable of learning accurate
classifier without manually labeled data, even outperforming
state-of-the-art supervised systems by a wide margin.
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