

Research Article

www.acsami.org

Hydrophobic Antifouling Electrospun Mats from Zwitterionic Amphiphilic Copolymers

- 3 Sefika Ozcan, †,‡ Papatya Kaner,† David Thomas,§ Peggy Cebe,§ and Ayse Asatekin*,†®
- 4 [†]Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- s [‡]Department of Polymer Science and Technology, Middle East Technical University, 06800 Ankara, Turkey
- 6 SDepartment of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, United States
- 7 Supporting Information

8

9

10

11

12

13

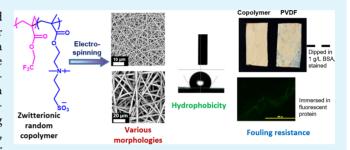
14

15

16

17

18 19


20

21

22 23

24

ABSTRACT: A porous material that is both hydrophobic and fouling-resistant is needed in many applications, such as water purification by membrane distillation. In this work, we take a novel approach to fabricating such membranes. Using the zwitterionic amphiphilic copolymer poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate), we electrospin nonwoven, porous membranes that combine high hydrophobicity with resistance to protein adsorption. By changing the electrospinning parameters and the solution composition, membranes can be prepared with a wide range of fiber

morphologies including beaded, bead-free, wrinkly, and ribbonlike fibers, with diameters ranging between \sim 150 nm and 1.5 μ m. The addition of LiCl to the spinning solution not only helps control the fiber morphology but also increases the segregation of zwitterionic groups on the membrane surface. The resultant electrospun membranes are highly porous and very hydrophobic, yet resist the adsorption of proteins and retain a high contact angle (\sim 140°) even after exposure to a protein solution. This makes these materials promising candidates for the membrane distillation of contaminated wastewater streams and as self-cleaning materials.

KEYWORDS: electrospinning, zwitterion, polymer, protein adsorption, fouling resistance

1. INTRODUCTION

25 The adsorption of proteins and other biomolecules on surfaces 26 is a crucial challenge in many fields. In membrane filtration 27 applications for water treatment, this phenomenon is the main 28 cause of fouling that leads to a severe flux decline. Fouling also 29 leads to problems in medical applications (e.g., implants, 30 wound dressings, surgical equipment, and protective apparel), 31 marine and architectural surfaces, and biosensors. The 32 formation of an adsorbed layer of proteins and other 33 macromolecules on porous materials can be especially 4 problematic because of the large surface area involved, leading 35 to pore narrowing and changes in surface chemistry, wettability, 36 and other properties that strongly affect the performance. This 37 layer can also enable and enhance the adhesion of cells and 38 microorganisms on the surface, serving as the first step in the 39 formation of a biofilm.

To address these concerns, surfaces that strongly resist protein adsorption and cell adhesion have been the focus of much research. The Protein adsorption on hydrophobic surfaces can more significantly decrease the interfacial energy. This implies that in general, hydrophilic surfaces tend to foul less than hydrophobic ones. Indeed, hydrophilicity is listed as a key criterion for surfaces that resist protein adsorption, along with the presence of hydrogen-bond acceptors, lack of hydrogen-bond donors, and being neutral in charge.

A few studies, however, have shown that surfaces that 49 combine small patches of hydrophilic and hydrophobic 50 materials can resist fouling. Specifically, amphiphilic surfaces, 51 with compositional heterogeneities on the length scale of the 52 foulant, may discourage thermodynamically favorable inter-53 actions between the foulant and the surface, thus limiting the 54 adsorption. Such a surface may be hydrophobic on 55 average, exhibiting a sessile drop water contact angle (CA) 56 above 90°, but still resists fouling. However, these studies are 57 preliminary and almost exclusively focused on roughly flat 58 surfaces.

There is still a significant need for porous materials that are 60 both fouling-resistant and hydrophobic. One important 61 application is membrane distillation (MD), which utilizes a 62 hydrophobic porous membrane that separates the liquid phase 63 on the one side from the vapor phase on the other. Water vapor 64 can diffuse through the membrane, whereas the liquid, along 65 with nonvolatile solutes (e.g., salt and organic molecules), is 66 retained. MD is often used for treating highly contaminated 67 water and wastewater streams, containing both high salt 68 concentrations and large quantities of organic macromolecules 69

Received: February 25, 2018 Accepted: April 16, 2018 Published: April 16, 2018 70 and/or oil. 13 The adsorption of these organic foulants on the 71 membrane surface during operation makes the membrane 72 surface more hydrophilic, which eventually allows the break-73 through of the wastewater to the permeate side. This leads to a 74 drastic decrease in the effluent quality and efficiency of the 75 operation. 14 In most applications, fouling is prevented by 76 making the membrane surface more hydrophilic. 1,15 However, a 77 successful MD membrane has to be hydrophobic and must maintain its high CA even upon exposure to foulants. 14,16

Electrospinning is an easy and robust method for producing 80 nanometer to micrometer scale fibers from many polymers. 81 The fibers and the nonwoven materials have been used in a 82 wide variety of applications, from photocatalysis 17 to drug 83 delivery 18,19 and tissue engineering 20,21 to water remedia-84 tion. 12,22–24 Electrospinning can generate membranes and 85 nonwoven materials with extremely high porosity, highly 86 interconnected pores, controllable phase structure (crystalline, 87 rigid amorphous, and mobile amorphous phases^{25–30}), and 88 controlled pore size and fiber diameter.^{31–33} These are crucial 89 advantages for many membrane applications. In MD 90 applications, the high porosity and the interconnected pore 91 structure of electrospun materials lead to a high flux and 92 thermally efficient membranes. 12 To achieve high hydro-93 phobicity, most electrospun MD membranes are made of 94 fluorinated polymers, especially poly(vinylidene fluoride) 95 (PVDF) and its derivatives. 12

Therefore, in this study we aim to create highly hydrophobic 97 and porous fiber mats that resist fouling, by electrospinning a novel material that combines hydrophobic groups with fouling-99 resistant groups. We selected zwitterions, defined as groups that 100 contain equal numbers of anionic and cationic moieties linked 101 by covalent bonds, as the fouling-resistant functionalities. The 102 performance of zwitterions is comparable to the best known 103 systems for resisting protein adsorption^{2,34–37} and bacterial adhesion, 34,35 with the fouling resistance attributed to the very 105 small perturbation effect at the polymer-water interface. 36,3 106 This makes them especially promising for preventing fouling in 107 a wide range of systems, including membranes. 6,7,39

The unusual properties of zwitterionic groups such as their 109 strong dipole moments, high hydrophilicity, and interesting 110 interaction with salt ions⁴⁴ may lead to novel outcomes in the electrospinning process. Yet, there are very few reports of the electrospinning of zwitterion-containing polymers in the 113 literature. Homopolymers of the zwitterionic monomer 114 sulfobetaine methacrylate (SBMA) can be formed into 115 nanofibers by electrospinning, 45 but these fibers will extensively 116 swell and eventually dissolve in water unless cross-linked. 46,47

Amphiphilic copolymers that combine a zwitterionic 118 monomer with a hydrophobic monomer can lead to better 119 stability and higher hydrophobicity, yet there are few reports on 120 the electrospinning of such copolymers in the literature. 42,48-51 121 One team described lower protein adsorption and thrombo-122 genic activity in thin films of polyurethanes functionalized with 123 sulfobetaine groups. 49 They also mentioned that they prepared 124 electrospun mats and tubes, but also admitted that the 125 electrospinning process requires more study. Another team 126 has reported the electrospinning of random copolymers of poly(butyl methacrylate) and SBMA (PBMA-r-SBMA).⁴⁸ This 128 study has shown that these copolymers can be electrospun at 129 lower polymer concentrations, and the addition of salts can 130 improve the morphology of the nonwoven mats by preventing 131 the formation of beads along the fibers. However, applications 132 or surface properties of these materials were not discussed.

Electrospun mats have been prepared from terpolymers of 133 butyl methacrylate with another zwitterionic mononomer 134 (methacryloxyphosphorylcholine) and a cross-linkable mono- 135 mer, 51 with a focus on the prevention of protein and platelet 136 adsorptions. Zwitterion-containing mats were unstable in water, 137 which is why the ultraviolet-cross-linkable monomer was 138 included. A terpolymer of SBMA with methyl methacrylate 139 and *n*-hexyl methacrylate was also studied for its applications as 140 a biomaterial, both as flat films and as electrospun mats. 52 The 141 high glass transition temperature of the copolymer in the 142 absence of water enabled the successful electrospinning of 143 fibers. However, when immersed in water, these mats were 144 heavily plasticized and swelled to the point of losing integrity. 145

The poor mechanical properties of these materials in water 146 arise from the low glass transition temperature, T_{σ} , of their 147 hydrophobic polymer segments. In all these materials, the 148 zwitterions interact with each other to act as physical cross- 149 links.⁵³ When exposed to water, these cross-links are broken, 150 leading to swelling and softening of the fibers. If $T_{\rm g}$ of the $_{151}$ hydrophobic sections of the polymer is above rather than below 152 the room temperature, this would likely improve the stability of 153 the resultant nanofibers in water. Indeed, electrospun mats 154 prepared from the random copolymer poly(methyl methacry- 155 late-random-carboxybetaine methacrylate) (PMMA-r-CBMA) 156 were stable enough in water for extensive testing during 157 exposure to aqueous media, including tests for biocompatibility 158 and for use as a wound-dressing material.⁵⁰ T_g of PMMA is 159 around 100 °C, so it remains rigid and intact even when the 160 zwitterionic CBMA domains are heavily plasticized in water. 161 This study, however, did not focus on the electrospinning 162 process and the effect of the electrospinning process on the 163 morphology or surface chemistry of the materials obtained.

Recently, we reported the formation of electrospun 165 membranes from blends of PVDF with random copolymers 166 of methyl methacrylate with two zwitterionic monomers, 167 SBMA and sulfobetaine-2-vinyl pyridine.⁴² This study showed 168 that electrospun mats could be obtained from blends 169 containing up to 15-20 wt % of the zwitterionic copolymer 170 and that these mats are hydrophobic but resist protein 171 adsorption. The pure zwitterionic copolymers were not 172 electrospun in this study, however, because the copolymers 173 were being investigated specifically as surface-modifying agents 174 to prevent fouling.

Here, we report the formation and properties of electrospun 176 membranes prepared from a random amphiphilic copolymer of 177 a fluorinated monomer, 2,2,2-trifluoroethyl methacrylate 178 (TFEMA), with ~20 wt % of the zwitterionic monomer 179 SBMA. Electrospun membranes can be prepared with a wide 180 range of morphologies, with fiber size ranging between ~200 181 nm and 3 μ m. Beaded, bead-free, wrinkly, and ribbonlike 182 merged fibers can be formed by changing the solution 183 composition and electrospinning parameters. The addition of 184 lithium chloride (LiCl) to the spinning solution not only helps 185 control the fiber morphology but also increases the segregation 186 of zwitterionic groups on the membrane surface. The resultant 187 electrospun membranes are highly porous and very hydro- 188 phobic, yet resist the adsorption of proteins and retain a high 189 CA even after exposure to a protein solution. This makes these 190 materials very promising for MD of contaminated wastewater 191 streams and as self-cleaning materials.

ACS Applied Materials & Interfaces

stationary

rotating

rotating

spinning solution composition LiCl (g) PTFEMA-r-SBMA (g) solvent amount (mL) sample code solvent type collector type P-DMAC 0.18 0 DMAc 1 stationary P-TFE 0 TFE 0.18 1 stationary P18-0 0.18 0 3:1 TFE/DMF stationary P18-0.5 0.18 0.005 3:1 TFE/DMF stationary P18-1 0.18 0.010 3:1 TFE/DMF stationary 0.015 3:1 TFE/DMF P18-1.5 0.18 stationary P2.7-0 0.27 0 3:1 TFE/DMF stationary

3:1 TFE/DMF

3:1 TFE/DMF

3:1 TFE/DMF

0.005

0.010

0.015

Table 1. Solution Compositions and Collectors Used in Preparing Electrospun Materials

2. EXPERIMENTAL METHODS

P27-0.5

P27-1

P27-1.5

2.1. Materials. SBMA, azobisisobutyronitrile (AIBN), 4-methoxy 193 194 phenol (MEHQ), bovine serum albumin (BSA, 66.5 kDa), phosphate-195 buffered saline (PBS), and LiCl were all purchased from Sigma-Aldrich 196 (St. Louis, MO). TFEMA was purchased from Scientific Polymer 197 Products Inc. (Ontario, NY). Trifluoroethanol (TFE), basic activated 198 alumina, dimethyl sulfoxide (DMSO), dimethyl acetamide (DMAc), 199 and dimethyl formamide (DMF) were purchased from VWR (West 200 Chester, PA). Deuterated DMSO (DMSO-d₆) and deuterium oxide 201 (D₂O) were obtained from Cambridge Isotope Laboratory (Tewks-202 bury, MA). All chemicals and solvents were of reagent grade and used 203 as received, except TFEMA, which was purified by passing through a basic activated alumina column.

0.27

0.27

0.27

2.2. Synthesis and Characterization of PTFEMA-r-SBMA 205 206 Copolymer. The random copolymer PTFEMA-r-SBMA was 207 synthesized by free radical copolymerization using a previously 208 described method³⁹ with minor modifications. Briefly, TFEMA 209 (Aldrich) was passed through a column of basic activated alumina to 210 remove the inhibitor. Then, 0.1 g of LiCl was dissolved in 100 mL of 211 DMSO in a round-bottom flask while stirring at 350 rpm. Two grams 212 of SBMA was added and dissolved. TFEMA (8 g) and AIBN (0.0125 213 g) were added to the round-bottom flask to achieve a TFEMA/SBMA 214 ratio of 80:20 by mass. The flask was sealed with a rubber septum. 215 Nitrogen was bubbled through the reaction mixture for 20 min to 216 purge any dissolved oxygen. The flask was then kept in an oil bath set 217 to 70 °C while stirring at 350 rpm for at least 48 h. After the reaction, 218 0.5 g of MEHQ was added to terminate the reaction. The copolymer 219 was precipitated in water, collected, and further purified by washing in 220 a 1:1 ethanol/hexane mixture by volume overnight twice. The 221 copolymer was then dried in the vacuum oven set to 50 °C overnight. 222 The composition of the copolymer, collected as a white powder, was 223 characterized by a proton nuclear magnetic resonance (¹H NMR) 224 Bruker Avance III 500 spectrometer using DMSO- d_6 as the solvent.

2.3. Molecular Weight Characterization. Dynamic light 225 226 scattering (DLS) measurements were conducted using a Nano 227 Brook 90Plus PALS particle sizer (Brookhaven Instruments, Holtsville, 228 NY). The light source of the instrument was a He-Ne laser with a 229 nominal wavelength of 659 nm and 1 mm entrance aperture. The 230 measurements were performed on a 1 mg/mL copolymer solution in 231 DMSO at a scattering angle of 90° and a temperature of 25 °C. Before 232 any measurement, the copolymer solution was passed through a 0.2 µm Teflon filter to remove impurities. Then, five consecutive measurements were performed following a stabilization period of 2 235 min. The effective hydrodynamic radius value was used to calculate the 236 relative molecular weight based on PMMA standards in tetrahydrofur-237 an (THF) by implementing the Mark-Houwink equation using the 238 literature values for Mark-Houwink parameters for PMMA in THF at 239 25 °C, which were $K = 1.28 \times 10^{-2}$ and a = 0.69.

2.4. Electrospinning of PTFEMA-r-SBMA. Homogenous sol-240 241 utions of PTFEMA-r-SBMA were prepared in DMAc, TFE, and 242 DMF/TFE mixtures by stirring overnight at room temperature to 243 obtain a clear polymer solution. If the solution contained LiCl, the salt 244 was fully dissolved in the solvent before the addition of the copolymer.

Compositions of polymer solutions used in this study and the codes 245 used to signify them throughout the document are listed in Table 1. 246 tl

A glass syringe, with an inner diameter of 14.4 mm and a 16 gauge 247 stainless steel needle, was filled with the clear copolymer solution and 248 gently placed horizontally in the syringe pump (Braintree Scientific, 249 Inc. BS-8000) operated to achieve a solution flow rate of 0.005 mL/h. 250 The syringe tip was kept at a working distance of 18 cm from a 251 grounded collector covered by an aluminum foil. Most electrospun 252 mats were collected on a stationary collector. In the few cases where it 253 was difficult to collect uniform mats, a rotary collector was used to 254 acquire the aligned nanofibers. The rotating speed was kept at 500 255 rpm. A voltage of 22.8 kV was applied to the system with a high 256 voltage power supply (Gamma High Voltage Research Inc. model no. 257 ES30P-5w) during electrospinning. The collected nanofiber mats were 258 placed in a vacuum oven to remove any residual solvent and stored in 259 a desiccator.

2.5. Scanning Electron Microscopy (SEM). SEM images were 261 obtained using a Phenom G2 pure tabletop scanning electron 262 microscope operated at 5 kV. Field emission SEM (Quanta 400 263 FEG, FEI) was used to show the fiber morphology at high 264 magnifications. Prior to imaging, electrospun nanofiber mat samples 265 were fixed onto a sample holder with a double-sided carbon 266 conductive tape and were sputter coated with the gold/palladium 267 (60/40) alloy for 120 s at 30 mA current in an argon atmosphere. 268 Average fiber diameter (AFD) was calculated using ImageJ by 269 analyzing more than 100 fibers from 3 images acquired for each 270 sample.

2.6. Rheometry. At least 3 mL of each polymer solution was 272 prepared by stirring for at least 3 h. All solutions were prepared on the 273 day of the analysis. These solutions were tested using a TA 274 Instruments ARES-LS2 shear rheometer (New Castle, DE) with a 275 cone and plate assembly 50 mm in diameter and with a cone angle of 276 0.0402 rad. Samples were allowed to equilibrate for 30 s at each shear 277 rate prior to averaging the viscosity over 10 s.

2.7. X-ray Photoelectron Spectroscopy (XPS). PHI-5000 279 VersaProbe spectrometer equipped with a monochromatic Al Klpha 280 radiation source (1486.6 eV) was used for XPS analysis. Fiber mats 281 were allowed to vacuum dry overnight prior to the day of analysis. A 282 piece of fiber mat was placed on the sample holder and moved into the 283 analysis chamber. A survey scan was conducted to determine the 284 elemental composition of the fiber surface. High-resolution scans were 285 conducted for all elements in the polymer structure, though the data 286 analysis in this paper focuses on the C 1s region.

2.8. CA Measurements. The surface hydrophobicity of the 288 electrospun fiber mats was evaluated by conducting sessile drop CA 289 measurements. A ramé-hart CA instrument (Succasunna, NJ) 290 equipped with a horizontal microscope and camera connected to a 291 video screen was used for imaging, and DROPimage Advanced version 292 2.4.05 software was used for the analysis. For the measurements, the 293 electrospun mats were mounted on a glass slide using a double-sided 294 tape, and then, a 2 μ L droplet of deionized water was dispensed onto 295 each mat. The internal angles of both sides of the water droplet were 296 determined for three droplets at three different locations per sample. 297

298 The mean value \pm standard deviation calculated from three different 299 samples is reported.

2.9. X-ray Diffraction (XRD) Analysis. One-dimensional XRD was performed in the reflection mode at room temperature using a Philips PW 1830 powder diffractometer. The generator produced X-303 rays of wavelength $\lambda = 0.1542$ nm (Cu K α radiation) and was operated at 40 kV and 45 mA. Samples were examined in the θ –2 θ reflection mode (for θ the half scattering angle) using a step scan interval of 306 0.02°/step and a scanning rate of 0.01°/s from $2\theta = 5-35$ °. A piece of 307 electrospun mat was cut and attached to a rectangular sample holder 308 and placed into the XRD instrument.

2.10. Attenuated Total Reflection Fourier Transform Infrared (ATR–FTIR) Spectroscopy. The ATR-FTIR spectra of the asspectrometer (JASCO Instruments, Easton, MD). The measurements were conducted on lyophilized PTFEMA-*r*-SBMA nanofibers prepared with or without LiCl. Samples were placed on the ATR crystal and held in place by a clamp. The data were collected in air. Spectra were scanned in the absorption mode at 4 cm⁻¹ resolution from 4000 to 17 400 cm⁻¹. One hundred and twenty-eight scans were taken for each sample to improve the signal to noise ratio. Spectra were analyzed using OPUS software (version 5.0) (Mattson Instruments, Madison, 20 WA).

2.11. Protein Adsorption and Fouling Measurements. The 321 322 electrospun fiber mats were tested for their protein fouling resistance, 323 following a procedure adopted from J. Seo and J.-H. Seo. 51 Fluorescein 324 isothiocyanate-labeled BSA (5 mg/L) in PBS was used as the foulant 325 solution. Sections of dimensions 5 cm × 5 cm were cut out from the 326 electrospun fiber mats and then fully immersed in the foulant solution for 10 min on a nutating mixer. Once the mats were taken out of the foulant solution, they were washed three times by dipping into fresh 329 PBS solution. The mats were then imaged under an epifluorescence 330 microscope (Olympus BX51 equipped with a DP70 microscope digital camera, Center Valley, PA). A 20× objective lens with a standard 332 green (U-N31001) filter set (Chroma Technology Corp., Rock-333 ingham, VT) was implemented for obtaining the epifluorescence 334 micrographs. ImageJ image analysis software was used to measure the 335 fluorescence intensity from five different 100 μ m × 100 μ m sections of 336 each image, and then, these intensity values were used to calculate the 337 average fluorescence intensity for each image.

3. RESULTS AND DISCUSSION

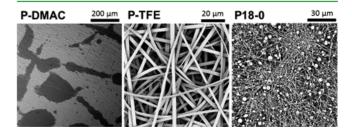

3.1. PTFEMA-r-SBMA Copolymer Synthesis and Char-339 acterization. In this study, electrospun fibers and mats were 340 prepared from a random copolymer of a fluorinated monomer, TFEMA, and a zwitterionic monomer, SBMA. This copolymer, 342 PTFEMA-r-SBMA, was previously found to be extremely 343 fouling-resistant when used as a membrane selective layer. ^{39–41} 344 However, the copolymers used in all these studies had a high 345 SBMA content (≥30 wt %) to enable water permeability. 346 These copolymers are highly plasticized with water and become 347 hydrophilic upon immersion into water, as the zwitterionic 348 functional groups segregate on the surface. 40 To create 349 hydrophobic electrospun materials that include zwitterionic 350 groups, we prepared PTFEMA-r-SBMA by free radical 351 copolymerization (Figure 1), following a previously reported 352 protocol. The starting monomer mixture contained 20 wt % 353 SBMA. The resultant copolymer contained 20 wt % SBMA at a 354 conversion of 70%, as documented by ¹H NMR spectroscopy 355 (Supporting Information, Figure S1). Previous work^{39,40} 356 predicts that if used as a membrane selective layer, this 357 copolymer would be essentially impermeable to water. 358 Therefore, we have not previously characterized the fouling 359 resistance or surface properties of copolymers with such a low 360 SBMA content. On the other hand, when formed into fibers, 361 we would expect these copolymers to be highly stable upon

Figure 1. Synthesis scheme for the PTFEMA-*r*-SBMA copolymer by free radical copolymerization.

exposure to water, creating the structural components of 362 porous mats and membranes formed by electrospinning.

To obtain an estimate of the molecular weight of the 364 PTFEMA-r-SBMA copolymer, DLS was used to measure the 365 hydrodynamic radius. DLS was performed on a 1 mg/mL 366 solution of the copolymer in DMSO. The effective hydro- 367 dynamic radius was found to be 62 ± 13 nm. The relative molar 369 mass was calculated to be 6.6×10^5 g/mol using Mark— 369 Houwink constants for PMMA standards in THF at 25 °C. It 370 should be noted that this value is an order-of-magnitude 371 estimate rather than an absolute molecular weight because of 372 the variable polymeric chain conformations based on solvent— 373 polymer interactions.

3.2. Effect of the Electrospinning Solvent. A critical 375 parameter in the optimization of an electrospinning system is 376 the choice of the solvent in which the polymer is dissolved. The 377 viscosity, solvent quality, polarity, surface tension, and volatility 378 of the solvent all influence the resultant electrospun structure. 55 This choice is relatively limited for the electrospinning of the 380 PTFEMA-r-SBMA copolymer because its two types of repeat 381 units are very different in nature and have few common 382 solvents. This, combined with the strong Coulombic 383 interactions between the charged groups on the zwitterions, 384 leads to few available solvents for this copolymer. The 385 copolymer was found to be easily soluble in TFE. It was also 386 soluble in DMAc. Although it was not sufficiently soluble in 387 DMF at the concentrations needed for electrospinning, the 388 addition of TFE into this solvent enabled it to dissolve. To 389 identify the best electrospinning solvent system, three 390 PTFEMA-r-SBMA solutions were prepared, each containing 391 0.18 g of the copolymer mixed with 1 mL of a different solvent 392 or solvent mixture (Table 1). The solution in DMAc, P-DMAc, 393 did not produce electrospun mats and only led to electro- 394 spraying of small droplets despite multiple conditions tested 395 (Figure 2, left), possibly due to the low volatility and high 396 f2

Figure 2. SEM images of electrospun mats prepared using different solvents. P-DMAC was prepared from DMAc, P-TFE was prepared from TFE, and P18-0 was prepared from a 3:1 DMF/TFE.

Figure 3. SEM images of electrospun mats prepared from solutions containing various copolymer and LiCl concentrations, demonstrating a wide range of accessible morphologies including beaded and bead-free nanofibers, microfibers, and ribbonlike fibers.

397 surface tension of this solvent. A different solvent system that 398 has a lower surface tension may enable the Coulombic forces 399 created by the applied voltage to overcome the surface tension 400 of the solution, so that fibers can be formed on the collector. 401 Electrospun mats prepared from TFE led to the creation of 402 ribbonlike fibers, $\sim 2600 \pm 300$ nm in width and 530 ± 80 nm 403 in thickness (Figure 2, middle). Ribbonlike morphologies are 404 believed to arise from the formation of a skin on the liquid jet 405 because of the rapid evaporation of the solvent, followed by the 406 collapse of this skin. 33,36 The high volatility of this solvent, 407 however, also often caused the needle to clog during the 408 electrospinning process, resulting in fiber breakage.

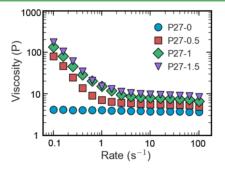
Finally, fibers electrospun from 3:1 mixtures of DMF with TFE led to beaded nanofibers (Figure 2, right). Despite the presence of beads, considered undesirable for most electrospun materials, this solvent composition was selected because of better, more reliable processing and the potential for tuning the fiber morphology through the use of other parameters such as copolymer composition and the addition of salts.

3.3. Effect of Copolymer Concentration on the Morphology. The copolymer concentration in the electrospinning solution directly affects the solution viscosity, surface tension, and the rate at which the polymer is dispensed by the syringe pump. As such, copolymer concentration is one of the most important parameters in controlling and tuning the morphology of resultant electrospun fibers and mats. In this study, electrospun mats were prepared from 18 or 27 g to 27 copolymer per 100 mL of the solvent mixture, without any added LiCl, denoted as P18-0 and P27-0, respectively (Table 1). Electrospinning of the more dilute P18-0 created beaded nanofibers (Figure 3), ~200 nm in diameter (Table 2).

Table 2. AFD and Standard Deviations for Electrospun Mats

sample name	AFD (nm)
P18-0	230 ± 27
P18-0.5	202 ± 23
P18-1	415 ± 48
P18-1.5	503 ± 61
P27-0	2230 ± 390
P27-0.5	2200 ± 360
P27-1	2350 ± 310
P27-1.5	3140 ± 520

to achieve bead-free electrospun fibers.³³ Indeed, bead-free 429 fibers were obtained from P27-0. The fiber diameter also 430 increased significantly to micron scale (Figure 3, Table 2), in 431 agreement with other studies showing that increased polymer 432 concentration often leads to a larger fiber diameter. 57 A small 433 number of flat or dumbbell-shaped fibers can also be observed 434 upon careful inspection. Higher magnification images (see 435 Supporting Information, Figure S2) show that many of the 436 cylindrical fibers have wrinkled surfaces. These fiber morphol- 437 ogies likely arise from the fast evaporation of TFE from the 438 surface of the fibers, creating a thin skin layer. As the rest of the 439 solvent is removed, this skin layer collapses. 56,58 This is known 440 as the buckling instability. Buckling can also occur if a thin, 441 gelled, or glassy surface film forms due to phase separation 442 instead of evaporation. This can occur, for example, because of 443 the water vapor present in humid air acting as a nonsolvent for 444 the polymer.⁵⁹ The occurrence of buckling before the complete 445 removal of the solvent from the fiber core leads to noncircular 446 fiber cross-sections such as flat or dumbbell-shaped fibers or 447 wrinkly fibers with a high surface area. 56,58,59


3.4. Effect of LiCl Addition to Electrospinning 449 **Solution.** The addition of salts to electrospinning solutions 450 increases the net charge density, leading to increased 451 electrostatic repulsions on the fiber surface and the spinning 452 of more bead-free fibers.³³ However, salt addition to a polymer 453 solution also changes the solution viscosity and surface tension, 454 which in turn affects the electrospun fiber morphology. Of 455 these parameters, the increase in the solution charge density 456 and conductivity typically leads to thinner fibers. In addition to 457 charge effects, salt addition can also change the solvent quality 458 for the dissolved copolymer. This would in turn change the 459 swelling and conformation of the polymer chains in solution, 460 which would affect the flow properties and spinnability of the 461 solution and the chain conformation in the fibers. These two 462 competing effects have been widely studied for the control and 463 modulation of the electrospun fiber morphology. 60,61

Zwitterionic polymers are subject to significant changes in 465 the solvency and intra- and intermolecular interactions in 466 response to the presence of small ions. In the absence of small 467 ions, strong Coulombic interactions between the anionic and 468 cationic groups on each zwitterionic group (e.g., the sulfonate 469 and quaternary amine groups forming the sulfobetaine moiety 470 in SBMA) lead to the formation of intrachain associations that 471 limit the solubility and result in collapsed polymer chains. Upon 472

473 the addition of small ions (i.e., a salt such as LiCl or NaCl),
474 these intrachain associations are broken, as Coulombic
475 interactions are partially shielded by the salt ions. Solvency
476 increases and polymer chains swell. 44,62 Interchain associations
477 between zwitterionic groups can also be present with or
478 without these small ions. These interactions act as physical
479 cross-links between chains. 63,64 This effect, termed the anti480 polyelectrolyte effect, has been extensively studied in aqueous
481 systems. 44,62,63,65,66 There are few, if any, studies on this
482 phenomenon in organic solvents such as those used for
483 electrospinning in this study or on its effect on electrospinning.
484 However, given the literature indicating the importance of
485 zwitterion—zwitterion interactions on electrospinning, 48
486 addition of a salt to these polymer solutions may be a crucial
487 tool for controlling the morphology of electrospun fibers.

Indeed, our previous exploratory studies with PTFEMA-*r*-489 SBMA and other zwitterion-containing random copolymers 490 had indicated that the addition of LiCl to organic solvents like 491 DMSO increased their solubility in these organic solvents. ^{6,39,40} This implies that the addition of LiCl salt to concentrated 493 PTFEMA-*r*-SBMA solutions would change many parameters 494 simultaneously including, but not limited to, solution 495 conductivity, inter-molecular interactions between zwitterionic 496 groups, solvent quality for the zwitterionic segments, and 497 solvent quality for the hydrophobic polymer segments. These 498 two factors would be reflected in the flow properties of the 499 copolymer solutions.

To better understand how salt addition affects the flow properties of concentrated PTFEMA-r-SBMA solutions in the DMF/TFE mixtures including some used for electrospinning, memory was performed on a range of polymer solutions containing 27 g of copolymer and 0–1.5 g of LiCl per 100 mL sos of the solvent, labeled P27-0 to P27-1.5 (Table 1). The viscosities of the copolymer solutions were measured at varying shear rates to better characterize their viscoelastic properties. The P27-0 solution, with no LiCl added, had a viscosity around 4.1 P at low shear rates (Figure 4). Although the solution

Figure 4. Rheometry results for electrospinning solutions containing 27 g of copolymer and 0–1.5 g of LiCl per 100 mL of the solvent. The solutions show roughly Newtonian behavior in the absence of LiCl, as shown in P27-0. Viscosity increases significantly upon the addition of LiCl, and the solutions become shear-thinning.

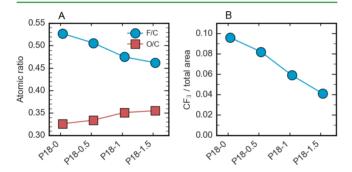
510 viscosity decreased slightly to ~3.6 P at high shear rates, the 511 shear thinning effect was minor and entirely typical for polymer 512 solutions. This was also similar to the results reported for 513 concentrated solutions of the zwitterionic random copolymers 514 PBMA-r-SBMA⁴⁸ and PMMA-r-CBMA⁵⁰ and the PSBMA 515 homopolymer⁴⁵ in the absence of the salt. By contrast, upon 516 the addition of even small amounts of LiCl, the solution 517 viscosity increased greatly at low shear rates to around 100 P,

with higher salt concentrations leading to slightly higher 518 viscosities. The solutions also exhibited significant shear 519 thinning, with viscosity decreasing by over an order of 520 magnitude with increasing shear rate. These results imply that 521 the copolymer chains are in a relatively collapsed form in the 522 absence of a salt, with isolated coils in solution. When LiCl is 523 added to the solution, the chains expand, leading to increased 524 viscosity. This effect, termed as the anti-polyelectrolyte effect, 525 has been extensively reported for polyzwitterions in aqueous 526 solution. These results indicate that a similar outcome is 527 observed in this organic solvent. Upon chain swelling, transient 528 interactions between zwitterionic groups on different polymer 529 chains likely act in a manner similar to entanglements, leading 530 to the shear-thinning effect.

There were important morphological differences between 532 electrospun mats and fibers prepared from solutions containing 533 LiCl (Figure 3). The addition of even small amounts of LiCl to 534 the lower polymer concentrations (P18 series) enabled the 535 electrospinning of bead-free fibers. This is in agreement with 536 the results for other polymer systems, where the increased 537 solution conductivity improves fiber stretching during the 538 electrospinning process and prevents bead formation. 67,68 539 Further addition of LiCl to the polymer solution led to an 540 increase in the fiber diameter (Table 2).

When a higher polymer concentration was used (P27 series), 542 bead-free fibers were obtained in the absence of any salts. LiCl 543 addition led to a transition from fibers with circular cross- 544 sections to flat, ribbonlike fibers. This was observed both in 545 P27-0.5, where a stationary collector was used, and in P27-1 546 and P27-1.5, collected on a rotating drum to improve the 547 uniformity of the deposited mat. This may have arisen from the 548 fact that a mixture of two solvents, highly volatile TFE and less 549 volatile DMF, was used in this process. The fast evaporation of 550 TFE in these systems likely leads to the formation of a thin skin 551 layer. The fiber then collapses as the DMF evaporates, creating 552 flat fibers. 56 At high polymer and salt concentrations, the 553 polymer is closer to the gel point. The skin layer forms quickly 554 upon the removal of even a small amount of TFE from the 555 system, creating a ribbonlike morphology. This resulted in an 556 increase in the average diameter of the fibers calculated by 557 image analysis with increasing LiCl concentration (Table 2), as 558 the ribbons became more common and wider.

To better characterize the chain arrangement within the 560 fibers, XRD was performed on the P27-0 series fibers (Figure 561 S3). The PTFEMA-r-SBMA polymer was synthesized by free 562 radical polymerization and is hence expected to be atactic. 563 Therefore, no crystallinity was expected in the polymer. This 564 was consistent with the XRD data for P27-0 fibers, which 565 showed only a broad amorphous peak at a 2θ of 18° , indicating 566 an average interatom spacing of 0.49 nm, independent of the 567 LiCl content. Interestingly, despite the large LiCl content in the 568 fibers, there were no visible peaks arising from LiCl crystals. 569 The copolymer prevented the crystallization of LiCl during 570 fiber formation, further indicating the strong interaction 571 between zwitterionic groups in the copolymer with salt ions. 572


3.5. LiCl Addition and Surface Chemistry of Electro- 573 **spun Fibers.** The interaction between salt ions and 574 zwitterionic groups can lead to changes in how the polymer 575 chains are arranged in the fibers and which groups segregate on 576 the fiber surface. This would in turn affect both the 577 hydrophobicity and fouling resistance. To study the effect of 578 LiCl addition on the presence of hydrophobic and hydrophilic 579 groups on the fiber surfaces, we used XPS to characterize the 580

581 surface chemistry of the electrospun mats. We specifically 582 focused on the P18 series, which lead to the formation of 583 unaligned fiber mats at every LiCl concentration. The P18 584 series also had a smaller fiber size, which is in turn linked to 585 smaller pore size and higher break-through pressures crucial for 586 membrane applications. XPS survey scans confirmed increasing 587 amounts of LiCl in the fibers spun from solutions with a greater 588 LiCl content, as expected (Table 3). Interestingly, as the LiCl

Table 3. Surface Elemental Composition (at. %) of P18-Series Electrospun Fibers Obtained from XPS Survey Scans

	P18-0	P18-0.5	P18-1	P18-1.5
C 1s	52.8	52.6	53.3	53.5
F 1s	27.8	26.6	25.3	24.7
O 1s	17.2	17.55	18.7	19
N 1s	1.4	1.5	1.1	0.7
S 2p	0.8	1.11	0.7	0.8
Cl 2p	0	0.64	0.9	1.2

589 concentration in the spinning solution increased, the oxygen 590 content on the fiber surface also increased whereas the fluorine 591 content decreased (Figure 5A).

Figure 5. XPS analysis of the effect of LiCl concentration in spinning solution on the fiber surface chemistry. (A) F/C and O/C atomic ratios obtained from XPS survey scans, indicating an enrichment of oxygen atoms and depletion of fluorine atoms on the fiber surface with increasing LiCl addition. (B) The ratio of the peak area for CF₃ groups to the total C 1s peak area obtained from the high-resolution scans, indicating a decrease in the prevalence of fluorinated groups on the fiber surface.

This observation obtained from the survey scan was confirmed using C 1s high-resolution scans (Figure 6), which were analyzed to identify specific functional groups on the fiber surface. The peak at 248.8 eV was assigned to C–C/C–H specific functional groups, whereas the peaks at around 286 and 289 eV were assigned to C–O/S/N and COO groups, respectively. CF_3 functional groups from TFEMA units led to the highest binding specific peak, around 293 eV. A stronger CF_3 peak was observed in samples prepared with low or no LiCl added to the solution. The area of the CF_3 peak relative to the total peak area decreased with increasing LiCl concentration in the surface when LiCl was used.

3.6. Hydrophobicity and Fouling Resistance. Finally, we aimed to quantify the hydrophobicity and fouling resistance for electrospun membranes prepared from PTFEMA-*r*-SBMA. These experiments were exclusively performed on samples

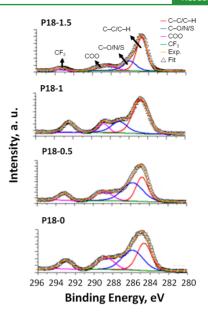


Figure 6. High-resolution C 1s XPS spectra for the P18-series samples.

prepared without any LiCl addition, to avoid complications 610 arising from the leaching of LiCl upon contact with water.

The CAs of both P18-0 and P27-0 membranes were very 612 high, around 140°, indicating a highly hydrophobic surface 613 (Table 4). These CAs are promising for MD applications. 614 t4

Table 4. CA of Electrospun Mats before and after Fouling

sample	CA (deg)	CA after fouling (deg)
PVDF (control)	144 ± 2	79 ± 4
P18-0	141 ± 4	132 ± 3
P27-0	136 ± 5	129 ± 6

There are, however, other commodity polymers that can be 615 electrospun to create similarly hydrophobic porous materials. 616 As a control, we prepared an electrospun mat from PVDF, a 617 common material for membranes used in filtration and MD 618 applications. 6,12 This PVDF mat had a morphology and fiber 619 size similar to that of the P18-0 membrane (see the Supporting 620 Information, Figure S4) and a comparable, though slightly 621 higher, initial CA of 144°.

To test the effect of exposure to organic foulants on the 623 surface hydrophobicity of these materials, we dipped each mat 624 in a protein solution containing 1 g/L BSA in PBS. This 625 solution is commonly used to test the fouling resistance of 626 membrane materials because BSA is a protein that easily and 627 strongly adsorbs on a wide variety of surfaces. 1,4,15,16 Upon 628 adsorption, the protein covers the surfaces and makes them 629 relatively more hydrophilic. In MD, this can allow the feed to 630 break through the porous membrane, contaminating the 631 permeate, increasing its temperature, and decreasing the 632 efficiency and effluent quality of the operation.¹⁶ In our tests, 633 we found that after exposure to the protein solution, the CA of 634 the PVDF mat decreased drastically to only 79° (Table 3). This 635 CA is below 90° and indicates that the material wets easily. By 636 contrast, the two zwitterion-containing membranes remained 637 highly hydrophobic, with CAs remaining around 130°. This 638 implies that these membranes would operate reliably even with 639 feeds that contain biomacromolecular contaminants with a high 640 fouling potential.

679

680

687

688

689

690

691

692

701

702

703

726

To further document the fouling resistance of these materials, we performed a quantitative protein adsorption 44 experiment. A 5 cm × 5 cm swatch was cut out from the P18-0 and PVDF mats. Both of these mats were immersed into a 5 mg/L solution of fluorescently labeled BSA for 10 min on a nutating mixer, rinsed, and then imaged using an epifluor-48 escence microscope. The mean fluorescence intensity measured for each sample is directly proportional to the amount of fluorescently labeled protein adsorbed onto the mat, and hence a measure of propensity for protein fouling. The electrospun PTFEMA-r-SBMA mat, P18-0, adsorbed approximately 80% less protein than the PVDF mat (Figure 7). This result was

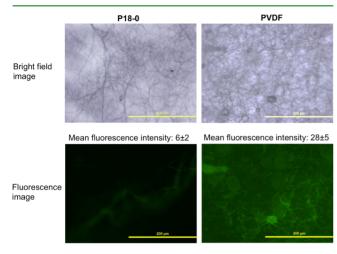


Figure 7. Bright-field (top row) and fluorescence (bottom row) images of the mats obtained after exposure to fluorescently labeled BSA adsorption. In the fluorescence images (bottom row), green color intensifies with increasing fluoresced foulant protein adsorbed on the membrane. P18-0 mat shows approximately 80% less protein adsorption than the PVDF mat. The scale bars are 200 μ m.

confirmed with a separate, simple, qualitative experiment. One half of each mat, P18-0 and control PVDF, was immersed in a 1 simple g/L BSA solution in PBS for 18 h and then rinsed. The protein was stained with the GelCode Blue Safe Protein Stain. Foulant-disable dipped parts of the PVDF mat showed large patches of protein deposits. By contrast, the P18-0 mat showed no visible blue staining, indicating little if any protein adsorption (Supporting Information, Figure S5). These tests synergistically confirm the ability of this zwitterionic copolymer to maintain hydro-dos phobicity while resisting fouling.

4. CONCLUSIONS

664 This study is the first report of the formation of electrospun 665 membranes from PTFEMA-*r*-SBMA, a copolymer of zwitter-666 ionic and fluorinated monomers. A wide range of fiber 667 morphologies (beaded fibers, bead-free fibers, ribbon-like fibers, 668 and wrinkly fibers) can be obtained by altering the solvent 669 composition, by changing the copolymer concentration, and by 670 adding LiCl to the spinning solution. The resultant electrospun 671 membranes are highly hydrophobic, yet adsorb 80% less 672 protein in comparison with a PVDF membrane with a similar 673 initial CA. Their CA also remains stable even after exposure to 674 a protein solution, further confirming their fouling resistance. 675 These highly hydrophobic yet fouling-resistant membranes are 676 promising for several applications, especially MD. Our findings 677 are also relevant to the preparation of a wide range of fouling-678 resistant porous materials by electrospinning.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the 681 ACS Publications website at DOI: 10.1021/acsami.8b03268. 682

¹H NMR spectrum of the copolymer, high-resolution 683 SEM image of the P27-0 fiber, SEM images of P18-0 and 684 PVDF mats, and image of fouled mats upon protein 685 staining (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: ayse.asatekin@tufts.edu.

ORCID ®

Ayse Asatekin: 0000-0002-4704-1542

Author Contributions

The manuscript was written through contributions of all 693 authors. All authors have given approval to the final version of 694 the manuscript.

Funding

This research was funded by the Tufts University, the Tufts 697 Collaborates Program, and the National Science Foundation 698 (NSF) under grant nos. CBET-1437772, CHE-1508049, and 699 DMR1608125.

NotesThe authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank David Wilbur for help with the NMR 704 analysis, Methira Saksiriwatekul for experimental help with 705 SEM and DLS measurements, and Prof. Qiaobing Xu for access 706 to DLS equipment. The authors also thank Prof. Hyunmin Yi 707 and Eric Liu for access to the Epifluorescence Microscopy 708 facility and help with experimental training and design. This 709 research was funded by the Tufts University and the National 710 Science Foundation (NSF) under grant nos. CBET-1437772, 711 CHE-1508049, and DMR-1608125.

ABBREVIATIONS

MD, membrane distillation; AIBN, azobisisobutyronitrile; 714 MEHQ, 4-methoxy phenol; TFE, trifluoroethanol; PTFEMA- 715 r-SBMA, poly(trifluoroethyl methacrylate-random-sulfobetaine 716 methacrylate); PVDF, polyvinylidene fluoride; DMSO, dimeth- 717 yl sulfoxide; NMR, nuclear magnetic resonance; Mw, molecular 718 weight; DLS, dynamic light scattering; PAN, polyacrylonitrile; 719 DMF, dimethyl formamide; DMAc, dimethylacetamide; SEM, 720 scanning electron microscopy; XPS, X-ray photoelectron 721 spectroscopy; CA, contact angle; XRD, X-ray diffraction; 722 ATR-FTIR, attenuated total reflection Fourier transform; 723 BSA, bovine serum albumin; FITC, fluorescein isothiocyanate; 724 PBS, phosphate buffered saline

REFERENCES

- (1) Yang, R.; Asatekin, A.; Gleason, K. K. Design of conformal, 727 substrate-independent surface modification for controlled protein 728 adsorption by chemical vapor deposition (CVD). *Soft Matter* **2012**, *8*, 729 31–43.
- (2) Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; 731 Whitesides, G. M. Zwitterionic SAMs that resist nonspecific 732 adsorption of protein from aqueous buffer. *Langmuir* **2001**, *17*, 733 2841–2850.
- (3) Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; 735 Whitesides, G. M. A survey of structure-property relationships of 736

- 737 surfaces that resist the adsorption of protein. *Langmuir* **2001**, *17*, 738 5605–5620.
- 739 (4) Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling Coatings: 740 Recent Developments in the Design of Surfaces That Prevent Fouling 741 by Proteins, Bacteria, and Marine Organisms. *Adv. Mater.* **2011**, 23, 742 690–718.
- 743 (5) Kaner, P.; Johnson, D. J.; Seker, E.; Hilal, N.; Altinkaya, S. A. 744 Layer-by-layer surface modification of polyethersulfone membranes 745 using polyelectrolytes and AgCl/TiO2 xerogels. *J. Membr. Sci.* **2015**, 746 493, 807–819.
- 747 (6) Kaner, P.; Rubakh, E.; Kim, D. H.; Asatekin, A. Zwitterion-748 containing polymer additives for fouling resistant ultrafiltration 749 membranes. *J. Membr. Sci.* **2017**, 533, 141–159.
- 750 (7) Kaner, P.; Hu, X.; Thomas, S. W.; Asatekin, A. Self-Cleaning 751 Membranes from Comb-Shaped Copolymers with Photoresponsive 752 Side Groups. ACS Appl. Mater. Interfaces 2017, 9, 13619–13631.
- 753 (8) Baxamusa, S. H.; Gleason, K. K. Random Copolymer Films with 754 Molecular-Scale Compositional Heterogeneities that Interfere with 755 Protein Adsorption. *Adv. Funct. Mater.* **2009**, *19*, 3489–3496.
- 756 (9) Gudipati, C. S.; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley, 757 K. L. The antifouling and fouling-release perfomance of hyper-758 branched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) 759 composite coatings evaluated by adsorption of biomacromolecules 760 and the green fouling alga Ulva. *Langmuir* 2005, 21, 3044–3053.
- 761 (10) Weinman, C. J.; Gunari, N.; Krishnan, S.; Dong, R.; Paik, M. Y.; 762 Sohn, K. E.; Walker, G. C.; Kramer, E. J.; Fischer, D. A.; Ober, C. K. 763 Protein adsorption resistance of anti-biofouling block copolymers 764 containing amphiphilic side chains. *Soft Matter* **2010**, *6*, 3237–3243.
- 765 (11) Youngblood, J. P.; Andruzzi, L.; Ober, C. K.; Hexemer, A.; 766 Kramer, E. J.; Callow, J. A.; Finlay, J. A.; Callow, M. E. Coatings based 767 on side-chain ether-linked poly(ethylene glycol) and fluorocarbon 768 polymers for the control of marine biofouling. *Biofouling* **2003**, 19, 769 91–98.
- 770 (12) Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der 771 Bruggen, B. Membrane synthesis for membrane distillation: A review. 772 Sep. Purif. Technol. **2017**, 182, 36–51.
- 773 (13) Thomas, N.; Mavukkandy, M. O.; Loutatidou, S.; Arafat, H. A. 774 Membrane distillation research & implementation: Lessons from the 775 past five decades. *Sep. Purif. Technol.* **2017**, *189*, 108–127.
- 776 (14) Tijing, L. D.; Woo, Y. C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, 777 H. K. Fouling and its control in membrane distillation—A review. *J.* 778 *Membr. Sci.* **2015**, 475, 215–244.
- 779 (15) Baker, J. S.; Dudley, L. Y. Biofouling in membrane systems—a 780 review. *Desalination* **1998**, *118*, 81–89.
- 781 (16) Laqbaqbi, M.; Sanmartino, J.; Khayet, M.; García-Payo, C.; 782 Chaouch, M. Fouling in Membrane Distillation, Osmotic Distillation 783 and Osmotic Membrane Distillation. *Appl. Sci.* **2017**, *7*, 334.
- 784 (17) Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; 785 Uyar, T. Transformation of polymer-ZnO core—shell nanofibers into 786 ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its 787 influence on the photocatalysis. *Appl. Catal., B* **2015**, *176–177*, 646–788 653
- 789 (18) Aytac, Z.; Sen, H. S.; Durgun, E.; Uyar, T. Sulfisoxazole/790 cyclodextrin inclusion complex incorporated in electrospun hydrox-791 ypropyl cellulose nanofibers as drug delivery system. *Colloids Surf., B* 792 **2015**, *128*, 331–338.
- 793 (19) Zhu, Y.; Pyda, M.; Cebe, P. Electrospun fibers of poly(l-lactic 794 acid) containing lovastatin with potential applications in drug delivery. 795 *J. Appl. Polym. Sci.* **2017**, *134*, 45287.
- 796 (20) Zhu, Y.; Li, C.; Cebe, P. Poly(lactides) co-electrospun with 797 carbon nanotubes: thermal and cell culture properties. *Eur. Polym. J.* 798 **2016**, 75, 565–576.
- 799 (21) Bradner, S. A.; Partlow, B. P.; Cebe, P.; Omenetto, F. G.; 800 Kaplan, D. L. Fabrication of elastomeric silk fibers. *Biopolymers* **2017**, 801 107, No. e23030.
- 802 (22) Bui, N.-N.; Lind, M. L.; Hoek, E. M. V.; McCutcheon, J. R. 803 Electrospun nanofiber supported thin film composite membranes for 804 engineered osmosis. *J. Membr. Sci.* **2011**, 385–386, 10–19.

- (23) Bui, N.-N.; McCutcheon, J. R. Nanoparticle-embedded 805 nanofibers in highly permselective thin-film nanocomposite mem- 806 branes for forward osmosis. *J. Membr. Sci.* **2016**, *518*, 338–346.
- (24) Huang, L.; Arena, J. T.; McCutcheon, J. R. Surface modified 808 PVDF nanofiber supported thin film composite membranes for 809 forward osmosis. *J. Membr. Sci.* **2016**, 499, 352–360.
- (25) Wunderlich, B. Reversible crystallization and the rigid— 811 amorphous phase in semicrystalline macromolecules. *Prog. Polym.* 812 *Sci.* **2003**, 28, 383–450.
- (26) Pak, J.; Pyda, M.; Wunderlich, B. Rigid Amorphous Fractions 814 and Glass Transitions in Poly(oxy-2,6-dimethyl-1,4-phenylene). 815 *Macromolecules* **2003**, 36, 495–499.
- (27) Suzuki, H.; Grebowicz, J.; Wunderlich, B. Glass transition of 817 poly(oxymethylene). *Br. Polym. J.* **1985**, *17*, 1–3.
- (28) Androsch, R.; Wunderlich, B. The link between rigid amorphous 819 fraction and crystal perfection in cold-crystallized poly(ethylene 820 terephthalate). *Polymer* **2005**, *46*, 12556–12566.
- (29) Menczel, J.; Wunderlich, B. Heat-Capacity Hysteresis Of Semi- 822 Crystalline Macromolecular Glasses. *J. Polym. Sci., Polym. Lett. Ed.* 823 **1981**, 19, 261–264.
- (30) Ma, Q.; Pyda, M.; Mao, B.; Cebe, P. Relationship between the 825 rigid amorphous phase and mesophase in electrospun fibers. *Polymer* 826 **2013**, *54*, 2544–2554.
- (31) Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport 828 properties of porous membranes based on electrospun nanofibers. 829 *Colloids Surf., A* **2001**, *187–188*, 469–481.
- (32) Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating 831 Method for the Preparation of Ultrathin Fibers. *Angew. Chem., Int. Ed.* 832 **2007**, 46, 5670–5703.
- (33) Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the 834 Wheel? Adv. Mater. 2004, 16, 1151–1170.
- (34) Zhang, Z.; Chao, T.; Chen, S.; Jiang, S. Superlow fouling 836 sulfobetaine and carboxybetaine polymers on glass slides. *Langmuir* 837 **2006**, 22, 10072–10077.
- (35) Zhang, Z.; Chen, S.; Chang, Y.; Jiang, S. Surface grafted 839 sulfobetaine polymers via atom transfer radical polymerization as 840 superlow fouling coatings. *J. Phys. Chem. B* **2006**, *110*, 10799–10804. 841
- (36) Kitano, H.; Kawasaki, A.; Kawasaki, H.; Morokoshi, S. 842 Resistance of zwitterionic telomers accumulated on metal surfaces 843 against nonspecific adsorption of proteins. *J. Colloid Interface Sci.* **2005**, 844 282, 340–348.
- (37) Sun, Q.; Su, Y.; Ma, X.; Wang, Y.; Jiang, Z. Improved antifouling 846 property of zwitterionic ultrafiltration membrane composed of 847 acrylonitrile and sulfobetaine copolymer. *J. Membr. Sci.* **2006**, 285, 848 299–305.
- (38) Kitano, H.; Imai, M.; Gemmei-Ide, M.; Takaha, K. Raman 850 spectroscopic study on the structure of water in aqueous solution of 851 zwitterionic surfactants. *J. Colloid Interface Sci.* **2004**, 269, 459–465. 852
- (39) Bengani, P.; Kou, Y.; Asatekin, A. Zwitterionic copolymer self- 853 assembly for fouling resistant, high flux membranes with size-based 854 small molecule selectivity. *J. Membr. Sci.* **2015**, 493, 755–765.
- (40) Bengani-Lutz, P.; Converse, E.; Cebe, P.; Asatekin, A. Self- 856 Assembling Zwitterionic Copolymers as Membrane Selective Layers 857 with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. 858 ACS Appl. Mater. Interfaces 2017, 9, 20859–20872.
- (41) Bengani-Lutz, P.; Zaf, R. D.; Culfaz-Emecen, P. Z.; Asatekin, A. 860 Extremely fouling resistant zwitterionic copolymer membranes with ~ 861 Inm pore size for treating municipal, oily and textile wastewater 862 streams. *J. Membr. Sci.* **2017**, 543, 184–194.
- (42) Govinna, N.; Kaner, P.; Ceasar, D.; Dhungana, A.; Moers, C.; 864 Son, K.; Asatekin, A.; Cebe, P. Electrospun fiber membranes from 865 blends of poly(vinylidene fluoride) with fouling-resistant zwitterionic 866 copolymers. *Polym. Int.* **2018**, DOI: 10.1002/pi.5578. in press
- (43) Kolewe, K. W.; Dobosz, K. M.; Rieger, K. A.; Chang, C.-C.; 868 Emrick, T.; Schiffman, J. D. Antifouling Electrospun Nanofiber Mats 869 Functionalized with Polymer Zwitterions. ACS Appl. Mater. Interfaces 870 2016, 8, 27585–27593.
- (44) Georgiev, G. S.; Kamenska, E. B.; Vassileva, E. D.; Kamenova, I. 872 P.; Georgieva, V. T.; Iliev, S. B.; Ivanov, I. A. Self-assembly, anti 873

ACS Applied Materials & Interfaces

- 874 polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. 875 *Biomacromolecules* **2006**, *7*, 1329–1334.
- 876 (45) Lalani, R.; Liu, L. Synthesis, characterization, and electro-877 spinning of zwitterionic poly(sulfobetaine methacrylate). *Polymer* 878 **2011**, *S2*, *S344*–*S354*.
- 879 (46) Lalani, R.; Liu, L. Electrospun Zwitterionic Poly(Sulfobetaine 880 Methacrylate) for Nonadherent, Superabsorbent, and Antimicrobial 881 Wound Dressing Applications. *Biomacromolecules* **2012**, *13*, 1853–882 1863.
- 883 (47) Liu, L. Non-adhesive, water-absorbent wound dressing 884 comprising polymerized zwitterionic monomers, where monomer 885 includes sulfobetaine methacrylate, carboxybetaine methacrylate, 886 carboxybetaine acrylamide or poly(phosphoryl)choline. U.S. Patent 887 2013190672 A1, Jul 25, 2013 A61L-015/24 201350.
- 888 (48) Brown, R. H.; Hunley, M. T.; Allen, M. H.; Long, T. E. 889 Electrospinning zwitterion-containing nanoscale acrylic fibers. *Polymer* 890 **2009**, *50*, 4781–4787.
- 891 (49) Ye, S.-H.; Hong, Y.; Sakaguchi, H.; Shankarraman, V.; Luketich, 892 S. K.; D'Amore, A.; Wagner, W. R. Nonthrombogenic, Biodegradable 893 Elastomeric Polyurethanes with Variable Sulfobetaine Content. ACS 894 Appl. Mater. Interfaces 2014, 6, 22796–22806.
- 895 (50) Unnithan, A. R.; Ghavami Nejad, A.; Sasikala, A. R. K.; Thomas, 896 R. G.; Jeong, Y. Y.; Murugesan, P.; Nasseri, S.; Wu, D.; Park, C. H.; 897 Kim, C. S. Electrospun zwitterionic nanofibers with in situ decelerated 898 epithelialization property for non-adherent and easy removable wound 899 dressing application. *Chem. Eng. J.* 2016, 287, 640–648.
- 900 (51) Seo, J.; Seo, J.-H. Fabrication of an Anti-Biofouling Plasma-901 Filtration Membrane by an Electrospinning Process Using Photo-902 Cross-linkable Zwitterionic Phospholipid Polymers. *ACS Appl. Mater.* 903 *Interfaces* **2017**, *9*, 19591–19600.
- 904 (52) Heath, D. E.; Cooper, S. L. Design and characterization of 90s sulfobetaine-containing terpolymer biomaterials. *Acta Biomater.* **2012**, 906 *8*, 2899–2910.
- 907 (53) Ehrmann, M.; Muller, R.; Galin, J. C.; Bazuin, C. G. Statistical n-908 Butyl Acrylate-(Sulfopropy1)ammonium Betaine Copolymers. 4. 909 Dynamic Mechanical Properties. *Macromolecules* **1993**, *26*, 4910– 910 4918.
- 911 (54) Mori, S.; Barth, H. G. Size Exclusion Chromatography; Springer: 912 Heidelberg, Germany, 2013.
- 913 (55) Yang, Q.; Li, Z.; Hong, Y.; Zhao, Y.; Qiu, S.; Wang, C.; Wei, Y. 914 Influence of solvents on the formation of ultrathin uniform poly(vinyl 915 pyrrolidone) nanofibers with electrospinning. *J. Polym. Sci., Part B:* 916 *Polym. Phys.* **2004**, *42*, 3721–3726.
- 917 (56) Koombhongse, S.; Liu, W.; Reneker, D. H. Flat polymer ribbons 918 and other shapes by electrospinning. *J. Polym. Sci., Part B: Polym. Phys.* 919 **2001**, 39, 2598–2606.
- 920 (57) Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Electrospinning 921 of linear homopolymers of poly(methyl methacrylate): exploring 922 relationships between fiber formation, viscosity, molecular weight and 923 concentration in a good solvent. *Polymer* 2005, 46, 4799–4810.
- 924 (58) Arinstein, A.; Zussman, E. Postprocesses in tubular electrospun 925 nanofibers. *Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.* **2007**, *76*, 926 056303.
- 927 (59) Pai, C.-L.; Boyce, M. C.; Rutledge, G. C. Morphology of Porous 928 and Wrinkled Fibers of Polystyrene Electrospun from Dimethylforma-929 mide. *Macromolecules* **2009**, *42*, 2102–2114.
- 930 (60) Qin, X.-H.; Yang, E.-L.; Li, N.; Wang, S.-Y. Effect of different 931 salts on electrospinning of polyacrylonitrile (PAN) polymer solution. *J. Appl. Polym. Sci.* **2007**, *103*, 3865–3870.
- 933 (61) Kim, S. J.; Lee, C. K.; Kim, S. I. Effect of ionic salts on the 934 processing of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) 935 nanofibers. *J. Appl. Polym. Sci.* **2005**, *96*, 1388–1393.
- 936 (62) Grassl, B.; Francois, J.; Billon, L. Associating behaviour of 937 polyacrylamide modified with a new hydrophobic zwitterionic 938 monomer. *Polym. Int.* **2001**, *50*, 1162–1169.
- 939 (63) Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas, 940 J. J.; Soni, L.; Handwerker, B.; Garner, R. T. Phase behaviour and 941 solution properties of sulphobetaine polymers. *Polymer* **1986**, 27, 942 1734–1742.

- (64) Rehm, T. H.; Schmuck, C. Ion-pair induced self-assembly in 943 aqueous solvents. *Chem. Soc. Rev.* **2010**, *39*, 3597–3611.
- (65) Bredas, J. L.; Chance, R. R.; Silbey, R. Head Head Interactions 945 in Zwitterionic Associating Polymers. *Macromolecules* **1988**, *21*, 1633–946 1639.
- (66) Shao, Q.; Jiang, S. Molecular Understanding and Design of 948 Zwitterionic Materials. *Adv. Mater.* **2015**, 27, 15–26.
- (67) Doshi, J.; Reneker, D. H. Electrospinning process and 950 applications of electrospun fibers. *J. Electrost.* **1995**, 35, 151–160. 951
- (68) Liu, Y.; He, J.-H.; Yu, J.-y.; Zeng, H.-m. Controlling numbers 952 and sizes of beads in electrospun nanofibers. *Polym. Int.* **2008**, 57, 953 632–636.
- (69) Beamson, G.; Briggs, D. High Resolution XPS of Organic 955 Polymers: The Scienta ESCA300 Database; Wiley: Chichester, England, 956 1992; p 295.
- (70) López, G. P.; Castner, D. G.; Ratner, B. D. XPS O 1s binding 958 energies for polymers containing hydroxyl, ether, ketone and ester 959 groups. Surf. Interface Anal. 1991, 17, 267–272.