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Abstract—There exists a gap between visualization design guidelines and their application in visualization tools. While empirical
studies can provide design guidance, we lack a formal framework for representing design knowledge, integrating results across studies,
and applying this knowledge in automated design tools that promote effective encodings and facilitate visual exploration. We propose
modeling visualization design knowledge as a collection of constraints, in conjunction with a method to learn weights for soft constraints
from experimental data. Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible, and
testable form: the resulting models can recommend visualization designs and can easily be augmented with additional constraints or
updated weights. We implement our approach in Draco, a constraint-based system based on Answer Set Programming (ASP). We
demonstrate how to construct increasingly sophisticated automated visualization design systems, including systems based on weights
learned directly from the results of graphical perception experiments.

Index Terms—Automated Visualization Design, Perceptual Effectiveness, Constraints, Knowledge Bases, Answer Set Programming

1 INTRODUCTION

Visualization designers benefit from familiarity with both the data do-
main under consideration and principles of effective visual encoding.
Although designers can learn these principles from books, research
papers, and experience, they do not always follow these principles in
practice [6, 42]. Automated design tools [37, 66] are designed to help
address this problem: they use formally-encoded design guidelines to
promote effective visualizations. However, our design knowledge is
incomplete and continually evolving. In order to incorporate new ex-
perimental results or compare different theories of effective design, we
need to elaborate and refine these bodies of formal design knowledge.

Visualization researchers regularly publish empirical study results
of how people decode and interpret visualizations (e.g., [24,30,46,61]).
However, new results often make their way into practical tools slowly:
even though our knowledge is evolving, we lack a shared medium for
representing and acting upon this knowledge. For example, existing
automated design systems [37–39,65] do not explicitly reuse the knowl-
edge bases implemented in previous systems. Rather than building
idiosyncratic representations of design knowledge for individual sys-
tems, we seek to make formal models of design knowledge a shared
resource for the visualization community.

We present Draco, a formal model that represents visualizations as
sets of logical facts and represents design guidelines as a collection of
hard and soft constraints over these facts. Draco can systematically enu-
merate the visualizations that do not violate the hard constraints and find
the most preferred visualizations according to the soft constraints. We
first formulate a simple yet powerful visualization description language
based on the Vega-Lite grammar [52] and then extend this language to
express dataset and task characteristics. To represent design knowledge,
we contribute a set of extensible constraints that can encode expressive-
ness criteria [37], preference rules validated in perception experiments,
and general visualization design best practices.

We view the constraints in Draco as the starting point of an evolving
knowledge base of design considerations for researchers and tool de-
signers to extend and use. Hard constraints must be satisfied (e.g., shape

• Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Bill Howe,

and Jeffrey Heer are with the University of Washington. E-mails: domoritz,

clwang, glnelson, haldenl, billhowe, jheer@uw.edu.

• Adam M. Smith is with the University of California Santa Cruz. E-mail:

amsmith@ucsc.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

encodings cannot express quantitative values), whereas soft constraints
express a preference (e.g., temporal values should use the x-axis by
default). By changing the weights associated with soft constraints, we
can trade off the relative importance of these preferences. However,
updating these weights presents a challenge, as local changes may have
unexpected global effects. To update preferences in a principled man-
ner, we also contribute a method to automatically configure weights
from experimental data. By formulating this process as a learning
to rank [36] problem, we can begin to integrate knowledge scattered
across various research papers into a single system.

We implement Draco using Answer Set Programming, a domain-
independent constraint programming language. We formalize the prob-
lem of finding appropriate encodings as the problem of finding optimal
answer sets [18], which provides well-defined semantics and can be
solved with efficient domain-independent algorithms.

We first evaluate Draco by using it to re-implement the APT [37]
and CompassQL [65] automated design tools, demonstrating Draco’s
expressiveness and improved performance. We then show how Draco
can go beyond these systems by adding new constraints concerning data
and a user’s primary task. Instead of manually specifying weights, we
learn them from two independent graphical perception studies [30, 51].
We compare the learned visualization model to a hand-tuned model,
demonstrating improved automated design suggestions.

Encoding design knowledge as constraints has many advantages
from both practical and academic perspectives [58]. Tool builders
can use evolving knowledge bases of best practices instead of
(re)implementing ad-hoc rules, and can benefit from the efficient search
algorithms provided by state-of-the-art constraint solvers. Most impor-
tantly, an independent knowledge base may allow anyone to formulate
and disseminate design preferences as a small set of independent con-
straints and/or weight updates. Accordingly, we believe Draco can
accelerate the transfer of research knowledge into practical tools. Re-
searchers can also use Draco to systematically sample, enumerate, and
reason about the design space of possible visualizations, or to con-
cretely compare different design models. We make Draco available
as open source software with supporting tools, documentation, and
examples at https://uwdata.github.io/draco/.

2 RELATED WORK

Draco builds on prior work on automated visualization design systems,
visualization specification languages, and constraint programming.

2.1 Automated Visualization Design

To recommend a visualization, automated design systems enumerate
visual encodings that satisfy both user-defined constraints (such as
which fields to visualize) and design constraints (Fig. 1). They then











fieldtype(miles_per_gallon,number).

cardinality(miles_per_gallon,130).

...

Based on the partial specification, Draco then generates a fact declar-
ing an encoding e1 and associated constraints. These constraints restrict
the design space to specifications with an encoding e1 that uses the x

encoding channel for binned values from the horsepower field:

encoding(e1).

:- not channel(e1,x).

:- not field(e1,horsepower).

:- not bin(e1,_).

To find optimal specifications within the subspace, Draco sends data
constraints, query constraints, and constraints from the knowledge base
to the Clingo solver (Fig. 5). For example, Draco suggests the following
optimal completion of the query above, which adds a new encoding e2

on the y-axis for a count aggregate.

encoding(e2).

channel(e2,y).

aggregate(e2,count).

Finally, Draco converts the optimal solutions to Vega-Lite specifica-
tions and returns them to the user.

5 LEARNING PREFERENCE MODELS

Although it is possible for model designers to tune preference weights
for small models, tuning weights for complex models is challenging:
it requires the visualization expert to reason globally about competing
conditions among different preferences. In this section, we describe a
learning algorithm that allows the model to learn soft constraint weights
w = [w1, ...,wk] from ranked pairs of visualizations.

We learn weights using a RankSVM (Support Vector Machine)
model [27] trained on labeled visualization pairs. Given a visualization
pair (v1,v2), the cost model should determine whether or not v1 is
preferred to v2 based on sign(Cost(v1)−Cost(v2)). This model can
be learned from a dataset where each entry (v1,v2;y) is a visualization
pair associated with a label y indicating if v1 is preferred to v2 (y =
−1) or vice versa (y = 1). Given a visualization model with a set
of soft constraints S = {p1, . . . , pk}, we show how we train the cost
model (i.e., training weights w = [w1, ...,wk] for S) using a dataset
D = {(v11,v12;y1), . . . ,(vn1,vn2;yn)}.

As shown in Sect. 4.2.2, the cost of a visualization v is deter-
mined by its feature vector x = [np1

(v), . . . ,npk
(v)]. Accordingly,

we first run Clingo on the complete specifications and count how
often each soft constraint is violated to vectorize all visualizations
in the dataset D and obtain their vector representation: D ′ =
{(x11,x12;y1), . . . ,(xn1,xn2;yn)}.

The cost model is a linear model over soft constraint weights. Given
a pair (v1,v2) with feature vectors x1,x2, its class is determined by the
sign of the following function:

f (v1,v2) = Cost(v1)−Cost(v2) = w
T (x1 −x2)

Using the RankSVM algorithm to train weights w, we perform linear
regression (with L2 regularization) over the dataset D ′ by minimizing
the hinge loss. The loss function L is defined as follows, and it is
minimized by the solution w

∗.

L =
1

n

k

∑
i=1

max
(

0,1− yiw
T (xi1 −xi2)

)

+λ‖w‖2

w
∗ = argminw L

As the cost model is a linear model over inputs (xi1 − xi2), the
weights w

∗ can be efficiently found using an off-the-shelf linear opti-
mizer. By minimizing the loss function L, we obtain a cost model with
weights w

∗ that is most consistent with the rankings of visualization

pairs in the dataset. The order of v1,v2 in a visualization pair from the
training data does not matter, as the classification problem is symmetric
with respect to the origin (−yiw

T (xi1 − xi2) = yiw
T (xi2 − xi1) in the

loss function). Thus, a pair (v1,v2;y) is equivalent to (v2,v1;−y) in
the training set and we can standardize all pairs in the form (v1,v2;−1)
(such that v1 is preferred over v2) without worrying about an imbalance
between classes. For our initial experiments, we set the regularization
parameter λ to 0.1.

By integrating the learned weights w
∗, the visualization model be-

comes a knowledge base for visualization recommendation that inte-
grates both expert knowledge and empirical data.

6 DEMONSTRATION OF DRACO

We present three applications of Draco to demonstrate its expressivity,
extensibility, and usability. First, we implement APT’s preference rules
via a set of strict preference constraints (Draco-APT); this shows Draco
can express a classic yet useful automated design system. Next, we
reimplement CompassQL by adding soft constraints with weights hand-
tuned by experts to match the semantics of CompassQL (Draco-CQL).
Finally, we introduce additional effectiveness criteria learned from
data from two different studies (Draco-Learn); this shows how Draco
can partially automate combining effectiveness results from different
research studies.

6.1 Reimplementing APT: Draco-APT

Draco-APT provides a re-implementation of APT’s channel preferences
as a set of soft constraints. APT uses a principle of importance ordering:
each field is assigned to the most effective channel (for the correspond-
ing data type) in order of decreasing user-specified importance.

Draco-APT starts with the set of well-formedness and expressiveness
constraints from Sect. 4.2. We add a set of soft constraints to express
channel preferences. Each preference constraint is of the form :~

type(E,T), channel(E,C), priority(E,P). [w@P,E], which states that
for any encoding E, using channel C for a field of type T incurs a
cost of w at priority level P equivalent to the priority of the field.
To determine the optimal solution, the solver first satisfies all hard
constraints followed by soft constraints, ordered by priority level.

:~ type(E,quant), channel(E,x), priority(E,P). [1@P,E]

:~ type(E,quant), channel(E,y), priority(E,P). [1@P,E]

:~ type(E,quant), channel(E,size), priority(E,P). [2@P,E]

:~ type(E,quant), channel(E,color), priority(E,P). [3@P,E]

:~ type(E,ordinal), channel(E,x), priority(E,P). [1@P,E]

:~ type(E,ordinal), channel(E,y), priority(E,P). [1@P,E]

:~ type(E,ordinal), channel(E,color), priority(E,P). [2@P,E]

:~ type(E,ordinal), channel(E,size), priority(E,P). [3@P,E]

:~ type(E,nominal), channel(E,x), priority(E,P). [1@P,E]

:~ type(E,nominal), channel(E,y), priority(E,P). [1@P,E]

:~ type(E,nominal), channel(E,color), priority(E,P). [2@P,E]

:~ type(E,nominal), channel(E,shape), priority(E,P). [3@P,E]

:~ type(E,nominal), channel(E,size), priority(E,P). [4@P,E]

Using Draco-APT, we can find optimal completions of partial spec-
ifications using APT’s effectiveness criteria. For example, given a
query with four fields with decreasing priority—two quantitative fields
(encoded as e_q1 and e_q2), one nominal field (e_n), and one ordinal
field (e_o)—Draco-APT synthesizes the following two optimal results.

1 channel(e_q1,y) channel(e_q2,x) channel(e_n,color)

channel(e_o,size)↪→

2 channel(e_q1,x) channel(e_q2,y) channel(e_n,color)

channel(e_o,size)↪→

6.2 Reimplementing CompassQL: Draco-CQL

We now show that Draco is expressive enough to re-implement Com-
passQL [65], a state-of-the-art automated visualization design system
that includes additional forms of effectiveness knowledge. We compare
the original CompassQL implementation with our new implementation,







and aggregation). We plan to extend the model to transformations
such as filtering and sorting, and incorporate Vega-Lite’s interaction
primitives [52].

We are excited to explore how our visualization model can be ex-
tended to support chart composition, for instance into layered views or
dashboards. Applying design guidelines to multiple charts separately
can lead to locally effective, yet globally inconsistent views [47]. For
example, different fields might confusingly be encoded with the same
color scheme across charts. With the right set of weighted constraints,
Draco could trade-off among the effectiveness of single views and
global consistency within a multi-view display [47, 66].

In our demonstration of Draco-Learn, we modeled a restricted sub-
space of visualizations that mirrors the limits of the available exper-
imental data. We hope to encourage more researchers to make data
from effectiveness studies available, such that their results may be used
by Draco or related systems. Future work might provide tools to help
researchers convert their results into constraints or ranked pair datasets.
We plan to collect more comprehensive data by systematically gen-
erating visualization pairs and having human subjects evaluate them.
In addition to independent studies, we might leverage Draco’s design
space to guide data collection in an active learning process.

With sufficient data, it may even be possible to go beyond learning
weights and attempt to learn preference rules themselves. The AI
community uses inductive logic programming methods to infer logic
programs from databases of positive and negative examples [48]. To
learn from noisy data (common in the visualization domain!), we could
combine inductive logic programming with statistical models such as
Markov logic networks [11, 32]. For example, Law et al.’s ILASP
(Inductive Learning of Answer Set Programs) [33] is a logic-based
learning system that can learn preferences in answer set programs.
To understand differences in preferences represented by two or more
distinct data sources, we can use multi-objective (Pareto) optimization
in ASP to enumerate designs that map the trade-off frontier.

Because the effectiveness of a visualization can depend on low-
level features not captured in a high-level specification (for example,
over-plotting), we can imagine applying a re-ranking strategy in which
Draco enumerates a number of top-scoring candidate designs (ranked
by high-level features) that are then re-ranked by another learned clas-
sifier operating on low-level features that may be impractical to model
directly in ASP. The sub-symbolic models learned by such classifiers
could constitute another valuable form of visualization design knowl-
edge to represent and share.

7.2 Beyond Automated Visualization Design

Up to this point, we have positioned Draco as a tool for synthesizing
optimal visualization designs from partial specifications. However,
Draco could be used in a variety of other contexts. In the following, we
discuss four directions that Draco could be extended.

First, Draco can be used as a general “visualization spell checker”
to validate and auto-correct designs independently, or within a broader
system for people to “learn by doing”. Currently, Draco is able to use
expressiveness and effectiveness constraints to report errors for designs
that violate design guidelines. However, given a visualization, we could
extend Draco to additionally automatically correct the visualization,
removing the most severe violations and suggesting alternative valid
designs to users. The problem of finding the minimal set of constraints
that need to be removed for the remaining constraints to be satisfiable
is known as the unsatisfiable cores problem [10]; related techniques
could be applied to visualization design constraints. Draco might also
explain those violations and why they matter, to teach students or visu-
alization designers about best practices, help them spot (intentionally
or unintentionally) misleading visualizations, critique visualizations,
and perhaps contribute new visualization knowledge or explanations.

Second, Draco can facilitate exploration of the visualization design
space. Besides surfacing violations of design guidelines, Draco can
rank visualizations by their costs. Designers might use this function
of Draco to choose among different alternative designs. Draco could
also be used to cluster designs based on their violations (using the same
feature vectors used in our learning to rank approach). An exciting

avenue for future research is to use Draco’s design space definition to
systematically generate visualizations to build a corpus of visualiza-
tions and interactions. Creating such a corpus is as simple as running
Clingo on the Draco design space definition without preferences, which
enumerates all valid answer sets. Testing generated designs with human
subjects will allow us to understand the costs and benefits of different
encodings and interactions. Although the current design space in Draco
is limited, as noted above we plan to extend the model further, including
interaction primitives such as Vega-Lite selections [52].

Third, Draco can be used as a tool for researchers to compare the im-
plications of different effectiveness studies. Concretely, if a researcher
finds a new design guideline, they could add it to Draco as a constraint
and assess whether it conflicts with, or is subsumed by, existing design
guidelines. Based on comparison results, researchers could share their
design results as constraints to improve the common knowledge base
of visualization design tools.

Lastly, an important future extension is tooling to support developers,
researchers, and designers. In addition to collecting more data to learn
preference weights, we hope to provide tools to browse the visualization
design space and knowledge base rules, as well as tools to understand
violations and fine-tune trade-offs among competing design guidelines.
With the right tooling and fine-tuned visualization models, Draco’s
declarative approach to automated visualization design could bring
us one step closer towards building assistive interfaces for effective
design that canvas a much broader swath of the visualization design
space. Such interfaces should allow visualization designers to consider
a greater variety of approaches, while also focusing on the creative
aspects of visualization design.

Appendix: Preference Models as Markov Logic Networks

Our preference model forms a Markov logic network (MLN) [49] that
describes a distribution over visualizations. In MLNs, soft constraints
are structural features of the model, and their weights reflect the differ-
ence in log probability between a visualization satisfying the constraint
and one that does not. The joint distribution modeled by a MLN is:

P(v) =
e−Cost(v)

∑
u∈V

e−Cost(u)
=

e−∑
k
i=1 winpi

(v)

∑
u∈V

e−∑
k
i=1 winpi

(u)

The probability P(v) of a visualization in the distribution is its exponen-
tiated cost normalized by the exponentiated costs of all visualizations
in the design space V , using a softmax function. Note that the partition

function Z =∑u∈V e−∑
k
i=1 winpi

(u) is a fixed term in a given visualization
model, and the difference of costs of two visualizations v1,v2 results in
the log difference of their probability in the model.

The problem of finding the optimal completion of a partial specifica-
tion is the same as performing maximum a posteriori (MAP) inference
in the probability model [54]. Given a partial specification Y , its opti-
mal completion X maximizes the posterior probability of P(x |y = Y )
(i.e., X = maxx P(x |y = Y )). The ASP solver solves this inference
problem efficiently by minimizing the overall cost of the generated
visualization; it is not necessary to compute the partition function.

Since a MLN is a linear model over structural features rather than
linear model directly over attributes, it has the advantage of capturing
structural relations between attributes that cannot be captured otherwise.
For example, a channel ranking that is independent of the data type
would have to prefer color and size independent from the data type.
Moreover, as opposed to explicitly representing correlations between
every attribute and all other attributes, a MLN is more compact and
interpretable.
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