Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco

Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith, Bill Howe, Jeffrey Heer

Abstract—There exists a gap between visualization design guidelines and their application in visualization tools. While empirical
studies can provide design guidance, we lack a formal framework for representing design knowledge, integrating results across studies,
and applying this knowledge in automated design tools that promote effective encodings and facilitate visual exploration. We propose
modeling visualization design knowledge as a collection of constraints, in conjunction with a method to learn weights for soft constraints
from experimental data. Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible, and
testable form: the resulting models can recommend visualization designs and can easily be augmented with additional constraints or
updated weights. We implement our approach in Draco, a constraint-based system based on Answer Set Programming (ASP). We
demonstrate how to construct increasingly sophisticated automated visualization design systems, including systems based on weights
learned directly from the results of graphical perception experiments.

Index Terms—Automated Visualization Design, Perceptual Effectiveness, Constraints, Knowledge Bases, Answer Set Programming

1 INTRODUCTION

Visualization designers benefit from familiarity with both the data do-
main under consideration and principles of effective visual encoding.
Although designers can learn these principles from books, research
papers, and experience, they do not always follow these principles in
practice [6,42]. Automated design tools [37,66] are designed to help
address this problem: they use formally-encoded design guidelines to
promote effective visualizations. However, our design knowledge is
incomplete and continually evolving. In order to incorporate new ex-
perimental results or compare different theories of effective design, we
need to elaborate and refine these bodies of formal design knowledge.

Visualization researchers regularly publish empirical study results
of how people decode and interpret visualizations (e.g., [24,30,46,61]).
However, new results often make their way into practical tools slowly:
even though our knowledge is evolving, we lack a shared medium for
representing and acting upon this knowledge. For example, existing
automated design systems [37-39,65] do not explicitly reuse the knowl-
edge bases implemented in previous systems. Rather than building
idiosyncratic representations of design knowledge for individual sys-
tems, we seek to make formal models of design knowledge a shared
resource for the visualization community.

We present Draco, a formal model that represents visualizations as
sets of logical facts and represents design guidelines as a collection of
hard and soft constraints over these facts. Draco can systematically enu-
merate the visualizations that do not violate the hard constraints and find
the most preferred visualizations according to the soft constraints. We
first formulate a simple yet powerful visualization description language
based on the Vega-Lite grammar [52] and then extend this language to
express dataset and task characteristics. To represent design knowledge,
we contribute a set of extensible constraints that can encode expressive-
ness criteria [37], preference rules validated in perception experiments,
and general visualization design best practices.

We view the constraints in Draco as the starting point of an evolving
knowledge base of design considerations for researchers and tool de-
signers to extend and use. Hard constraints must be satisfied (e.g., shape

* Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Bill Howe,
and Jeffrey Heer are with the University of Washington. E-mails: domoritz,
clwang, glnelson, haldenl, billhowe, jheer@uw.edu.

e Adam M. Smith is with the University of California Santa Cruz. E-mail:
amsmith@ucsc.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

encodings cannot express quantitative values), whereas soft constraints
express a preference (e.g., temporal values should use the x-axis by
default). By changing the weights associated with soft constraints, we
can trade off the relative importance of these preferences. However,
updating these weights presents a challenge, as local changes may have
unexpected global effects. To update preferences in a principled man-
ner, we also contribute a method to automatically configure weights
from experimental data. By formulating this process as a learning
to rank [36] problem, we can begin to integrate knowledge scattered
across various research papers into a single system.

We implement Draco using Answer Set Programming, a domain-
independent constraint programming language. We formalize the prob-
lem of finding appropriate encodings as the problem of finding optimal
answer sets [18], which provides well-defined semantics and can be
solved with efficient domain-independent algorithms.

We first evaluate Draco by using it to re-implement the APT [37]
and CompassQL [65] automated design tools, demonstrating Draco’s
expressiveness and improved performance. We then show how Draco
can go beyond these systems by adding new constraints concerning data
and a user’s primary task. Instead of manually specifying weights, we
learn them from two independent graphical perception studies [30,51].
We compare the learned visualization model to a hand-tuned model,
demonstrating improved automated design suggestions.

Encoding design knowledge as constraints has many advantages
from both practical and academic perspectives [58]. Tool builders
can use evolving knowledge bases of best practices instead of
(re)implementing ad-hoc rules, and can benefit from the efficient search
algorithms provided by state-of-the-art constraint solvers. Most impor-
tantly, an independent knowledge base may allow anyone to formulate
and disseminate design preferences as a small set of independent con-
straints and/or weight updates. Accordingly, we believe Draco can
accelerate the transfer of research knowledge into practical tools. Re-
searchers can also use Draco to systematically sample, enumerate, and
reason about the design space of possible visualizations, or to con-
cretely compare different design models. We make Draco available
as open source software with supporting tools, documentation, and
examples at https://uwdata.github.io/draco/.

2 RELATED WORK

Draco builds on prior work on automated visualization design systems,
visualization specification languages, and constraint programming.
2.1 Automated Visualization Design

To recommend a visualization, automated design systems enumerate
visual encodings that satisfy both user-defined constraints (such as
which fields to visualize) and design constraints (Fig. 1). They then

Presentation Tool

Data Properties +
Incomplete Specification

Graphical

- —— Visualization
Design

synthesize render

Fig. 1. A model of automated visualization design tools, inspired by
APT. One component synthesizes a design from data and incomplete
specifications, and the other renders the design. Draco produces Vega-
Lite specifications as output.

rank candidate visualizations by a utility function. These systems may
return the top encodings or perform subsequent clustering to avoid
redundancy [65].

Mackinlay’s APT system [37] automatically designs graphical rep-
resentations of relational data using expressiveness and effectiveness
criteria to prune and rank encoding choices. A visualization is consid-
ered expressive if it conveys all the facts in the data, and only the facts in
the data. A visualization is considered most effective when the informa-
tion it conveys is more readily perceived than with other visualizations.
The original APT system consists of roughly 200 rules in a declarative
logic programming language. The logic programming approach has a
number of advantages over procedural approaches. First, it is flexible
and can be adapted with additional constraints. Second, global opti-
mization can find satisfiable solutions that procedural approaches may
fail to identify. Draco takes the logic programming approach from APT
but extends it in a few ways. The search strategy in APT is depth-first
search with simple backtracking, which is inefficient for large design
spaces. Draco uses a modern constraint solver and a standardized repre-
sentation language. APT is built on a graphical algebra that is no longer
used, whereas Draco synthesizes Vega-Lite, a more complete graphical
language. Lastly, Draco can deal with multiple (possibly competing)
criteria, which was beyond the scope of APT.

The SAGE project [39] extends APT by considering additional data
properties such as cardinality, uniqueness, and functional dependencies.
We adopt this idea in Draco. Casner’s BOZ [8] additionally models the
low-level perceptual tasks of reading and comparing values. In addition
to value tasks, Draco’s model includes summary tasks involving aggre-
gate properties of visual ensembles [62]. ShowMe [38] uses heuristic
rules to suggest encodings from groups of charts, including trellis plots.
Draco similarly models faceting of data into trellis plots.

While traditional systems rely on carefully designed rules and de-
faults, more recent systems like Voyager’s CompassQL [65-67] use
hand-tuned scores to specify fine-grained criteria such as space effi-
ciency and legibility based on encoding and data properties. Draco is
most similar to CompassQL and its weighted preferences. However,
CompassQL is implemented in imperative JavaScript. Moreover, like
all prior systems presented in this section, it uses similar heuristics and
ad-hoc rules. In contrast, Draco’s learning approach offers a “program-
matic” way to turn experimental results into preference rankings.

2.2 Effective Visualization Design

To rank candidate visualizations, automated design tools use models
of visual encoding effectiveness. These models encode the insights of
Bertin [4], Cleveland & McGill [9], and others that encoding effective-
ness varies depending on the visualized data type and related perceptual
tasks. For example, APT uses a ranking of encoding channels by data
type informed by human-subjects studies of visual decoding perfor-
mance. Other studies (e.g., [26]) confirm and extend such rankings.
However, most work on effectiveness focuses on the performance of
reading or comparing individual marks in a visualization. Recent work
investigates the effects of reading ensembles of visual elements [62]:
for example, how users read aggregates [22], distributions, trends,
or correlation [24]. Experimental results from Kim et al. [30] and
Saket et al. [51] analyze how effectiveness varies by task. These results
also show that effectiveness varies with respect to data characteristics,
such as the cardinality or entropy of data fields. Draco’s declarative de-
sign can combine classical work on effectiveness using strict preference
rules with recent work that considers data and task characteristics in a

single system. If activity-oriented [40] or low-level [2] task taxonomies
were expressed as constraints, they could be used in automated design
systems. To demonstrate this conceptually, we use a simple task classi-
fication into value tasks for reading and comparing values and summary
tasks for comparing ensembles [30].

2.3 Visualization Specification

Automatic visualization tools synthesize graphical designs, which are
abstract descriptions of visualizations (Fig. 1). For example, the under-
lying language for APT describes graphical techniques (e.g., color varia-
tion and position on axis) to encode information, whereas ShowMe [38]
synthesizes encodings using VizQL [23]. Following CompassQL [65],
Draco uses a logical representation of the Vega-Lite grammar [52].

Vega-Lite enables concise descriptions of visualizations by encoding
data as properties of graphical marks. The language is inspired by
other high-level visualization languages such as Wilkinson’s Grammar
of Graphics [64], Wickham’s ggplot2 [63], and the VizQL formalism
underlying Tableau. Vega-Lite represents single plots using a set of
encoding definitions that map data fields to visual channels such as
position, color, shape, and size. Encodings may include common data
transformations such as binning, aggregation, sorting, and filtering.
Vega-Lite was specifically designed to facilitate search and inference
over the space of possible visualizations [31, 65, 66].

In addition to single plots, Vega-Lite supports faceting into trellis
plots, layering, and arbitrary concatenation. In this paper, we focus on
single views and faceted views (using the row and column encoding
channels). Previous work has focused on similarly restricted design
spaces [31,44,65,66]. This subset of Vega-Lite is capable of expressing
a variety of plots of both raw and aggregate data, including bar charts,
histograms, dot plots, scatter plots, line graphs, and area graphs.

2.4 Constraint-Based Knowledge Representation

Constraint programming is a declarative programming paradigm with
wide applications in scheduling [12], graphical design [5], and natural
language specification [45]. A constraint program is a set of constraints
defining relations among several unknowns (i.e., variables) that must
be or should be satisfied by its solutions. Constraints thus restrict the
possible values that variables can take, representing partial information
about the variables of interest [3]. Solutions are computed by constraint
solvers via inference and search over the constrained space [28]. In
visualization, the design recommendation process (i.e., generating,
testing [50], subsequent ranking) can be modeled as a constrained
combinatorial optimization problem.

The declarative nature of constraint programming allows users to
focus on modeling high-level knowledge, while delegating low-level
algorithmic details to off-the-shelf constraint solvers. In contrast, im-
perative implementations of recommendation systems are often hard to
implement efficiently and maintain. For example, CompassQL wastes
resources in enumerating and evaluating infeasible solutions. Changes
in the specification may require a complete overhaul of generators with
an imperative implementation [56]. When building on a constraint
programming language of sufficient expressiveness (such as beyond-
NP reach of ASP technology), complex tests can be folded into the
generation part without inventing new algorithms [57].

In Draco, we model visualization knowledge using Answer Set Pro-
gramming (ASP) [7,35], a declarative constraint logic programming
language that seeks to balance expressivity, efficiency, and ease of
use. ASP has been deployed in contexts such as decision support
systems [41], product configuration [59], and educational game de-
sign [57]. Draco uses Clingo [17, 19], a state-of-the-art answer set
solver. Clingo leverages conflict reasoning [20] and heuristics [16]
to direct the search process and efficiently solve problems with up to
millions of variables. The Clingo guide [15] provides a comprehensive
resource of the ASP language features that Draco uses (§3), advice
for how to model problems (§1 and §6), and documentation of the
constraint solver (§7).

2.5 Learning Preferences

Both CompassQL and Draco use weights of visualization features to
trade-off competing effectiveness criteria. Although the weights can be
defined by visualization experts, tuning these weights involves ad-hoc
choices that are difficult to maintain and extend, especially when the
visualization model is complex.

Instead, the preference model might be learned from data. For ex-
ample, VizDeck [29] learns a linear scoring function that uses data
statistics and chart type to predict users’ up/down votes on presented
charts. However, VizDeck’s model features only capture direct correla-
tions between data statistics and chart type, and its learning algorithm
is limited to a small set of predefined visualizations.

To improve expressivity and extensibility, Draco leverages domain
knowledge from experts (in the form of soft constraints) as visualization
features. Draco’s preference model forms a Markov logic network
(MLN) [49], where the weights corresponding to soft constraints are
learnable parameters reflecting preference levels. Draco can capture
rich attribute relations using a small number of expert-defined rules due
to the expressive and compact nature of MLNs [45,55].

To train a recommendation model, a common practice is to use pairs
of incomplete specifications and their corresponding optimal comple-
tion [54]. However, for visualization, such training datasets are not
generally available and are hard to obtain because there typically does
not exist a single optimal completion. Instead, with Draco we take a
learning to rank [36] approach, where the preference model is learned
from ordered pairs of visualizations (i.e., complete specifications). A
dataset of ranked pairs can either be harvested from experimental data
based on human-subject performance measures or solicited from ex-
perts. To learn a preference model, we use RankSVM [27] over the
structural features defined by Draco’s soft constraints.

3 BACKGROUND: ANSWER SET PROGRAMMING

The building blocks of ASP programs are atoms, literals, and rules.
Atoms are elementary propositions that may be true or false. Literals
are atoms A or their negation not A. Rules are expressions of the form

A :-Ly,...,L,. where each L; is a literal. The atom A of a rule (also
called its head) is derivable (true) if all literals in the body (right of :-)
Ly,...,L, are true. A positive literal is true if it has a derivation, and a

negative literal not B is true if the atom B does not have a derivation.
For example, the rule light_on :- power_on, not broken. informally
states that the light is on if we can derive that the power is on and there
is no reason to say that the lamp is broken [7].

Rules can be bodiless or headless. A bodiless rule, such as power_on
:-., simply asserts the fact that its head is true. A fact can also be
stated using only its head, e.g., power_on.. Headless rules of the form
:- Ly, ...,L, are integrity constraints that derive false from their body.
Thus, satistying the body Ly, ..., L, results in a contradiction.

An ASP program consists of a set of rules. Note that not in an
ASP program means “not derivable”. For example, given the two rules
described above, power_on can be derived from a fact (our bodiless
rule), while broken cannot. Consequently, we can derive light_on.
Such derivations are formally defined as stable models [21] or answer
sets: sets of atoms that are consistent with the constraints, justified by
a derivation, and minimal with respect to unknown facts. Answer Set
Programming has a constructive flavor: negative literals need only be
true, whereas positive ones must also be provable.

On top of the stable model formalism, the language of ASP [14]
introduces powerful modeling constructs. Aggregate rules of the form
I {Ao,...,An} k are read as: at least / and at most k atoms in the set
{Ao,...,A,} are true. Aggregates can appear in the head or body of
a rule and aggregate rules can be used to define a design space. We
can eliminate answer sets with integrity constraints (headless rules) to
restrict the design space. Soft constraints are headless rules with an
associated weight and are written as :~ Ly,...,L,. [w]. Unlike hard
constraints, soft constraints may be violated by a solution, but each
violation of a soft constraint imposes a penalty (or cost) equal to its
weight w. Soft constraints can express preferences in the search. In a
program with soft constraints, an answer set is optimal if it minimizes
the sum of weighted costs of all violated soft constraints. Although

150 {
"data": {"url": "cars.csv"},
“mark": "bar",
"encoding": {
100 "xt
“field": "Cylinders",

mark(bar).

encoding(e0).
channel(e0,x).
L type(e0,ordinal).
}"tVPe"i "ordinal® field(e@,cylinders).
"y o :
% xfleld": "Horsepower", encoding(el).
"type": "quantitative", channel(el,y).
“aggregate": "mean" type(el,quant).
0 } field(el,horsepower).
o ¢ 0 o }} aggregate(el,mean).

Mean of Horsepower

Cylinders

Fig. 2. An example of a bar chart, its Vega-Lite specification (in Vega-Lite
JSON), and its equivalent specification using Draco constraints (in ASP).
The specification defines the marktype and encodings, which includes a
specification of the fields, data type, and data transformations.

one can express richer forms of optimization in ASP (such as Pareto
optimality for combining preferences without first establishing a fixed
trade-off between them) [18], the weighting scheme for soft constraints
is sufficient for the linear preference models we will learn from data.

4 MODELING VISUALIZATION DESIGN IN DRACO

In this section, we first describe how we model visualizations as sets of
facts. We then explain the design space of our model and how we can
query the model with constraints. Modern constraint solvers efficiently
search for optimal visualization specifications within a defined space.
Imperative systems, which use an exhaustive generate and test method,
couple knowledge representation and the algorithm for finding effective
designs. In Draco, solutions to the base problem of finding optimal
designs should be found via automated search, whereas solutions to
the higher level problem of what preferences should be used and how
competing preferences are resolved should be determined by designers
(via refinement of the design space and preference definition).

The term “optimal” here does not refer to the definitively best or
“correct” visual design, as this would make two arrogant presumptions.
First, the system would have to fully understand the user’s intentions
and their ability to read visualizations—an unlikely proposition. Visu-
alization is always an abstraction where choices are made about what
to emphasize. Second, visual analysis is an iterative process, involving
any number of visualizations, not just a singular view. By “optimal”, we
refer to an optimal specification according to a set of formally-defined
preferences: the system can find no other visualization that would be
scored as preferred to this one. A user-facing application can show
more than just an optimal visualization, and a user may select between
multiple recommendations or refine their query until they have the right
design(s) for their task [65, 66].

4.1

A Vega-Lite specification describes a single Cartesian plot with a back-
ing dataset, a given mark type, and a set of one or more encoding
definitions for the visual channels. Fig. 2 shows a Vega-Lite specifi-
cation for a bar chart. Vega-Lite expects a relational table of records
with named fields. The mark type specifies the geometric objects used
to visually encode data records. Possible values include bar, point,
area, line, and tick. The encodings determine how data fields map to
visual properties of the marks. An encoding uses a visual channel such
as spatial position (x,y), color, size, shape, or text. A detail channel
can be used to add group-by fields in aggregate plots. An encoding
includes the data field to visualize and its given data type (nominal,
ordinal, quantitative, temporal). The data can also be transformed via
binning, aggregation (sum, average, etc.), and sorting. An encoding
may specify scales that define how the data domain maps to the visual
range or guides that visualize scales (axis and legend). Examples in-
clude whether a scale domain should include zero or whether the scale
is linear or logarithmic. If omitted, the Vega-Lite compiler will infer
defaults based on the channel and data type.

We represent the Vega-Lite specification, user task, and data schema
as a set of atoms. To enable reasoning over atoms, we encode them as
predicates (i.e., relations or functions). A predicate defines what value
is assigned to an attribute of a visualization specification.

Mapping Visualization Specifications to Logical Facts

more
preferred
specification

less
preferred
specification

20000

expressive
oteamsve |- [~ 77
. 7 Non-Expressive Visualizations

DI Il

. Valid Vega-Lite |
Visualizations

Fig. 3. lllustration of the design space in Draco. The set of valid Vega-
Lite specifications is a subset of all possible visualizations, and Draco’s
design space overlaps with that subset. Given a preference model,
expressive visualizations are ranked according to their preference scores
in the model. Draco eliminates ill-formed or non-expressive specifications
using hard constraints and encodes preferences using soft constraints.

llI-Formed

non-expressive
specification

To set the mark type, we use a predicate mark/1.! For example,
mark(bar) . defines that the visualization should use the bar mark (i.e.,
assign the value bar to the attribute mark).

To define an encoding, we use encoding/1 to establish that it exists.
For example encoding(e) . declares the encoding e. We then use binary
predicates to define properties of the encoding. channel(e,x). defines
that the encoding e uses the x encoding channel. The field being
visualized is defined with field/2. In addition, we use aggregate/2
to define an aggregation function, bin/2 to discretize continuous data,
stack/1 to define whether marks should be stacked, and zero/1 and
log/1 to customize scales. Compared to Vega-Lite’s JSON syntax, we
un-nest scale properties to simplify the logical encoding.

The data schema is defined as the size of the data num_rows/1 (e.g.,
num_rows(42).) and facts about data fields. We use fieldtype/2 to
specify the data type (string, number, date, ...) and cardinality/2
to define how many distinct entries there are, entropy/2 to define the
entropy, and extent/3 to set the minimum and maximum values. We
see this set of data attributes as a starting point; future extensions of
Draco can define other features relevant to automated design.

We currently model a user’s primary task as a single function
task/1. Following Kim et al. [30], we distinguish between value and
summary tasks. Since tasks regard specific fields (e.g., “What is the
maximum acceleration across cars?”), fields can be marked as relevant
to the task with interesting/2.

We designed this logical visualization language to be extensible
and enable reasoning. For example, we could have defined predicates
for each channel such as field_x, aggregate_x. This design would
automatically ensure that each channel is only used once; however,
it would limit the expressiveness of the language (e.g., detail can in
fact be used multiple times) and would make it more difficult to define
general constraints over attributes that are not tied to a specific channel.
One way of extending Draco is to define new attributes as predicates.
For example, to add a data property that measures data skew, we can
add kurtosis/2 where the first argument is the field and the second is
the kurtosis measure.

4.2 Representing Design Knowledge as Constraints

The goal of a visualization model is to distinguish desirable visualiza-
tions from undesirable ones. In Draco, our visualization model consists
of two parts: the space of all visualizations considered valid, and an
evaluation function over the space to measure preferences. Fig. 3 illus-
trates the design space. We describe a visualization model in Draco as
a declarative answer set program.

"Per Prolog traditions, predicates are identified by their symbolic name and
the number of arguments they take (signified with /n).

4.2.1 Design Space Definition

The design space of a visualization model is defined by a set of con-
straints. A visualization is considered valid only if all constraints are
satisfied. Following best practices in logic program design [34], we
define the space of possible visualization specifications with two sets
of rules: (1) a set of aggregate rules that specifies the domains of the
attributes defined in the previous section (mark, encoding, ...) and (2)
a set of integrity constraints that defines how different attributes can
interact with each other.

We use aggregate rules to define which values can be assigned
to a visualization attribute. For example, the rule 1 { mark(bar);
mark(line); mark(area); mark(point) } 1. restricts choices of mark
to one of bar, line, area or point. Similarly, we can use the constraint
0 { aggregate(E,count), aggregate(E,mean), aggregate(E,median),
aggregate(E,sum) } 1 :- encoding(E). to declare that each encoding
may have up to one aggregate of count, mean, median, or sum. Note
that E is capitalized, which identifies it as a variable. To extend the
domain of an attribute (e.g., support tick marks), we would add facts to
existing aggregate rules (e.g., by adding mark(tick)). The complete list
of aggregate rules, and all other constraints in this section, are included
as supplemental material.

The aggregate rules declare the domain of attributes, but not the
validity of interactions of different attribute values. To capture such
interactions, we introduce an additional set of constraints. Using ASP
notation, we write these constraints as a headless rule (integrity con-
straint). :- X. is read as “it cannot be the case that X”. Integrity
constraints can be used to encode expressiveness and restrictions to the
attributes of a visualization specification, for example, to match the
implementation of Vega-Lite.

First, we use constraints to rule out specifications that do not spec-
ify a valid visualization (i.e., that are ill-formed or ungrammatical).
We call these constraints well-formedness constraints. For example,
the constraint : - channel(_,shape), not mark(point). is an integrity
constraint stating that it cannot be the case that there exists a shape
encoding unless the mark that is used to encode data is “point”, as
other mark types such as area, line, bar, or text cannot encode a shape.
Another example is :- log(E), zero(E). which ensures that we do not
synthesize a log scale that requires zero in its domain. We also assert
that visualizations must use a text mark when the text channel is used
(and vice versa) and that only discrete data can be mapped to facet
(row and column) channels. Well-formedness depends on the syntax
and semantics of the graphical language. We can use constraints to
generate only visualization specifications that are supported by a con-
crete visualization model such as Vega-Lite. For example, Vega-Lite
only implements 8 shape types; we can use the integrity constraint : -
channel (E,shape), cardinality(E,C), C > 8. to model this restric-
tion. When defining the design space, conflicting constraints must be
avoided, as they result in an empty space that cannot be satisfied by
any visualization.

Second, we use constraints to eliminate non-expressive visualiza-
tions that do not convey all and only the facts in the data. For example
;= mark(bar), channel(E,y), continuous(E), not zero(E). ensures
that the model will not consider vertical bar charts that do not use
zero as a baseline. (We actually implement this as a more general
rule : - mark(bar), channel(E, (x;y)), continuous(E), not zero(E).,
which also covers horizontal bar charts. Here the semicolon denotes
an expansion into disjunctions, implying one constraint for each chan-
nel type.) Another expressiveness constraint is :- channel(E,size),
type(E,nominal) ., which ensures that size is not used to encode nomi-
nal data, as size implies an order. We also assert that the size channel is
only permitted for compatible marks, that zero baselines are used for
area and bar charts, and that bar charts with a color channel encoding
use stacking so that bars do not occlude each other.

4.2.2 Preference Over the Design Space

We now define an evaluation function over the visualization design
space to encode preferences. The (linear) evaluation function maps a
valid visualization specification into an integer representing its prefer-
ence level. This function defines a total ordering over the design space,

more
O preferred
specification
O |
(3 less x x x x x x x
o Spocitcatin XoXOoXYXXXE._ £
X X X% EES
O =
expressive XXX X XXX X +g
arosewiy el 777777/ L
~ Non-Expressive Visualizations
g;g;ieﬁxs;teiziive D

Visualizations

Fig. 4. To find the optimal completion of a partial specification, Draco
compiles a user query into a set of constraints that removes all candidates
(X) that do not match the query from the design space illustrated in Fig. 3.
Draco selects the optimal visualization (v') within the remaining space.

Query Definition

Dataset » Data Schema
Partial Speci%——» Query Constraints
User Task

+

1
Input: |
I
1

tput:
Outpu Search Space Definition

|

I

I

l

|
Vega-Lite Specification |

| Aggregate Rules

|

|

|

|

|

T [
RIS < Well-formedness Constraints
i m 8
< Expressiveness Constraints

mmmmmm a

B a Preference Model

Preference Rules

ASP Solver Weights

Fig. 5. Our implementation of the optimal encoding search process using
constraints. Draco compiles a user query (including the dataset, the
partial specification, and the task) into a set of rules and combines them
with the existing knowledge base to form an ASP program. Draco then
calls Clingo to solve the program to obtain the optimal answer set. Finally,
Draco translates the answer set into a Vega-Lite specification.

as illustrated in Fig. 3. Instead of defining the evaluation function as a
procedure, we use a set of soft constraints to implicitly define it. The
weight of a soft constraint reflects its strength: the higher the weight
(penalty), the higher cost that violating the constraint imposes on the
cost of an answer set.

Soft constraints are similar to integrity constraints, but start with :~
instead of :- and include a weight declared in square brackets. They
can be read as “prefer not to ...”. As an example, the soft constraint
:~ continuous(E), not zero(E). [5] states that the model prefers to
include zero for continuous fields and that violating the rule increases
the cost of the visualization by 5. A soft constraint is appropriate:
though omitting a zero baseline for ratio data can mislead [42], it is still
sometimes reasonable to do. Note that a visualization may violate a
soft constraint multiple times. For example, given a visualization with
two encodings, the soft constraint above may be violated twice if two
of its encodings use continuous fields but omit zero.

In order to extend Draco to support new visualization types or data
properties, a visualization expert can add soft constraints to capture
intended preferences. For example, in order to extend a visualization
model to handle the relation between the new data property kurtosis (as
discussed in the previous section) and using a log scale, we add the soft
constraint :~ kurtosis(F,K), field(E,F), log(E), K > 42. [wl.

The set of soft constraints defines a cost model for visualizations in
the design space that we can use to evaluate preferences. The cost of
a visualization is the sum of the costs of all soft constraint violations
multiplied by their count of violations. Concretely, given a set of soft

{

"data”: { "url”: "cars.csv” },
"encoding”: [{"channel”: "x", "bin": true,
"field": "horsepower”}]

}

Fig. 6. An example query over the cars dataset, in the form of a partial
(incomplete) Vega-Lite specification.

constraints S = {(py,wy),....,(Pm,wm)}, the cost of a visualization
specification v is calculated as follows, where n), is the number of
violations of the soft constraint p; by v:

Cost(v) = Z winp,(v)
i=1..k

Given a visualization v, the vector X = [np, (v),...,np, (v)] fully de-
termines the cost of v in the given visualization model, and we refer to
x as the feature vector of v. Using the feature vector x, the cost of v can
be represented as Cost(v) = x! w, where w = [wy,...,wy] is the vector
consisting of all soft constraint weights. Note that setting the weight w
for this new rule requires the expert to know the existing constraints
and carefully trade-off among competing preferences. In Sect. 5, we
instead present a method to learn w from data.

Draco’s preference model forms a Markov logic network (MLN),
a graphical model that integrates logic with statistical reasoning to
handle uncertainty in a robust way [49]. This interpretation as an MLN
offers theoretical insight into the expressiveness of our model. The
soft constraints are structural features of visualizations that capture
hidden relations among visualization attributes, and their weights are
learnable parameters reflecting their importance. We discuss MLNs in
more detail in the appendix.

4.3 Completing Specifications by Solving Constraints

Given a visualization model, a user can query said model for optimal
completions of a partially specified visualization. Fig. 4 illustrates the
search process, while Fig. 5 summarizes our implementation of it.

4.3.1

A user’s query is a partial specification that describes their incomplete
intent for a desired visualization. Our partial specification language
allows the user to specify unknown visualization attributes by leaving
them blank. Draco also supports converting CompassQL queries and
Vega-Lite specifications into queries. In addition to a partial specifi-
cation, a query can specify the schema of the dataset and the user’s
primary task.

As an example, Fig. 6 shows a query over the classic cars dataset [1].
In this query, the user specifies that “I want a visualization that shows
binned horsepower along the x-axis”. Using this query, Draco must then
determine completions of the mark and other attributes of the specified
encoding, as well as whether other encodings are necessary. Draco
then searches to find the mark for the chart, completes the specified
encoding, and potentially adds additional encodings (including which
channels to use, whether to use aggregation, etc.).

Partial Specification

4.3.2 Queries as Constraints over the Design Space

To answer a query, Draco first compiles the query into a set of facts and
constraints that defines a subspace of visualizations and then searches
over the subspace for the lowest-cost specifications (Fig. 4). Concretely,
the subspace is defined by (1) a set of facts describing the dataset
specified in the query (Sect. 4.1) and (2) a set of constraints that restrict
the available choices for visualization attributes.

For example, the query in Fig. 6 is compiled into a set of facts and
constraints. Unless the data schema is provided explicitly, Draco infers
a schema (including fields, their types, and data properties) from the
provided dataset (“cars.csv”’) and uses it to generate facts that describe
the dataset’s size and fields:

num_rows (407) .
fieldtype(name,string).
cardinality(name,311).

fieldtype(miles_per_gallon,number).
cardinality(miles_per_gallon,130).

Based on the partial specification, Draco then generates a fact declar-
ing an encoding e1 and associated constraints. These constraints restrict
the design space to specifications with an encoding e1 that uses the x
encoding channel for binned values from the horsepower field:

encoding(el).

;= not channel(el,x).

;- not field(el,horsepower).
;= not bin(el,_).

To find optimal specifications within the subspace, Draco sends data
constraints, query constraints, and constraints from the knowledge base
to the Clingo solver (Fig. 5). For example, Draco suggests the following
optimal completion of the query above, which adds a new encoding e2
on the y-axis for a count aggregate.

encoding(e2).
channel(e2,y).
aggregate(e2,count).

Finally, Draco converts the optimal solutions to Vega-Lite specifica-
tions and returns them to the user.

5 LEARNING PREFERENCE MODELS

Although it is possible for model designers to tune preference weights
for small models, tuning weights for complex models is challenging:
it requires the visualization expert to reason globally about competing
conditions among different preferences. In this section, we describe a
learning algorithm that allows the model to learn soft constraint weights
W = [wq,...,wy] from ranked pairs of visualizations.

We learn weights using a RankSVM (Support Vector Machine)
model [27] trained on labeled visualization pairs. Given a visualization
pair (vi,v2), the cost model should determine whether or not v; is
preferred to v, based on sign(Cost(vy) — Cost(v;)). This model can
be learned from a dataset where each entry (vq,v;;y) is a visualization
pair associated with a label y indicating if v is preferred to v, (y =
—1) or vice versa (y = 1). Given a visualization model with a set
of soft constraints S = {py,...,pr}, we show how we train the cost
model (i.e., training weights w = [wy,...,w] for S) using a dataset
D ={(11,m12:51),- -+ Va1, Vu2s) }-

As shown in Sect. 4.2.2, the cost of a visualization v is deter-
mined by its feature vector X = [np, (v),...,np, (v)]. Accordingly,
we first run Clingo on the complete specifications and count how
often each soft constraint is violated to vectorize all visualizations
in the dataset 2 and obtain their vector representation: %' =

The cost model is a linear model over soft constraint weights. Given
a pair (v1,v;) with feature vectors X1, Xy, its class is determined by the
sign of the following function:

f(v1,v2) = Cost(vy) — Cost(vy) = W' (x; —x3)

Using the RankSVM algorithm to train weights w, we perform linear
regression (with L, regularization) over the dataset 2’ by minimizing
the hinge loss. The loss function L is defined as follows, and it is
minimized by the solution w*.

1 k
L= Y max (07 1—yew? (x;1 —Xiz)) F AWl
i=1

w* = argminy L

As the cost model is a linear model over inputs (x;; —X;2), the
weights w* can be efficiently found using an off-the-shelf linear opti-
mizer. By minimizing the loss function L, we obtain a cost model with
weights w* that is most consistent with the rankings of visualization

pairs in the dataset. The order of v, v; in a visualization pair from the
training data does not matter, as the classification problem is symmetric
with respect to the origin (—y;w” (x;; —X;2) = y;w! (X;» —X;1) in the
loss function). Thus, a pair (v,v;;y) is equivalent to (vy,vy;—y) in
the training set and we can standardize all pairs in the form (vy,vo; —1)
(such that vy is preferred over v,) without worrying about an imbalance
between classes. For our initial experiments, we set the regularization
parameter A to 0.1.

By integrating the learned weights w*, the visualization model be-
comes a knowledge base for visualization recommendation that inte-
grates both expert knowledge and empirical data.

6 DEMONSTRATION OF DRACO

We present three applications of Draco to demonstrate its expressivity,
extensibility, and usability. First, we implement APT’s preference rules
via a set of strict preference constraints (Draco-APT); this shows Draco
can express a classic yet useful automated design system. Next, we
reimplement CompassQL by adding soft constraints with weights hand-
tuned by experts to match the semantics of CompassQL (Draco-CQL).
Finally, we introduce additional effectiveness criteria learned from
data from two different studies (Draco-Learn); this shows how Draco
can partially automate combining effectiveness results from different
research studies.

6.1 Reimplementing APT: Draco-APT

Draco-APT provides a re-implementation of APT’s channel preferences
as a set of soft constraints. APT uses a principle of importance ordering:
each field is assigned to the most effective channel (for the correspond-
ing data type) in order of decreasing user-specified importance.
Draco-APT starts with the set of well-formedness and expressiveness
constraints from Sect. 4.2. We add a set of soft constraints to express
channel preferences. Each preference constraint is of the form :~
type(E,T), channel(E,C), priority(E,P). [weP,E], which states that
for any encoding E, using channel C for a field of type T incurs a
cost of w at priority level P equivalent to the priority of the field.
To determine the optimal solution, the solver first satisfies all hard
constraints followed by soft constraints, ordered by priority level.

channel(E,x), priority(E,P). [1@P,E]
channel(E,y), priority(E,P). [1€P,E]
channel(E,size), priority(E,P). [2@P,E]
channel(E,color), priority(E,P). [3@P,E]

.~ type(E,quant),
.~ type(E,quant),
.~ type(E,quant),
.~ type(E,quant),

channel(E,x), priority(E,P). [1@P,E]
channel(E,y), priority(E,P). [1@P,E]
channel(E,color), priority(E,P). [2@P,E]
channel(E,size), priority(E,P). [3@P,E]

:~ type(E,ordinal),
.~ type(E,ordinal),
:~ type(E,ordinal),
.~ type(E,ordinal),

:~ type(E,nominal),
.~ type(E,nominal),
:~ type(E,nominal),
.~ type(E,nominal),
:~ type(E,nominal),

channel(E,x), priority(E,P). [1@P,E]
channel(E,y), priority(E,P). [1@P,E]
channel(E,color), priority(E,P). [2@P,E]
channel(E, shape), priority(E,P). [3@P,E]
channel(E,size), priority(E,P). [4@P,E]

Using Draco-APT, we can find optimal completions of partial spec-
ifications using APT’s effectiveness criteria. For example, given a
query with four fields with decreasing priority—two quantitative fields
(encoded as e_q1 and e_qg2), one nominal field (e_n), and one ordinal
field (e_o)—Draco-APT synthesizes the following two optimal results.

1 channel(e_ql,y) channel(e_qg2,x) channel(e_n,color)
< channel(e_o,size)

2> channel(e_q1,x) channel(e_g2,y) channel(e_n,color)
— channel(e_o,size)

6.2 Reimplementing CompassQL: Draco-CQL

We now show that Draco is expressive enough to re-implement Com-
passQL [65], a state-of-the-art automated visualization design system
that includes additional forms of effectiveness knowledge. We compare
the original CompassQL implementation with our new implementation,

showing Draco-CQL is more concise, extensible, and provides superior
performance when searching for optimal visualizations.

CompassQL uses a generate and test approach [50]: for a given par-
tial specification, CompassQL generates all matching full specifications.
The changes made to the partial specification may include both data
query parameters (e.g., fields, aggregation) and encoding parameters
(e.g., channels). It then uses data query, encoding, and expressiveness
constraints similar to those described in Sect. 4.2 to eliminate invalid en-
codings. The system then assigns each valid candidate an effectiveness
score. The scoring function incorporates preferences for type-channel
interactions (e.g., it is preferred to encode nominal fields using x or y
before using row or column) and mark-type interactions (e.g., point
marks are preferred over tick marks for quantitative by quantitative
plots). These effectiveness scores are then used to rank and recommend
visualizations. Critically, this approach allows CompassQL to trade off
among competing preferences.

We identified two places for improvement in the process taken by
CompassQL. First, CompassQL generates and tests all possible can-
didate visualizations, which leads to an ineffective exhaustive search.
By expressing the hard constraints as integrity constraints, we can pass
this process off to a modern constraint solver. Moreover, ASP allows
for concise representations. For example, the constraint that invalidates
encodings that reuse channels that should only be used once, requires
14 lines of JavaScript code in CompassQL but can be expressed in
Draco as : - single_channel(C), 2 { channel(_,C) }. stating that we
prefer not to use a single channel 2 or more times.

Second, CompassQL’s scoring function can be expressed naturally
in Draco with soft constraints. For example, CompassQL penalizes
aggregation when grouping by a continuous field, implemented in 12
lines of code. Draco’s implementation is more concise and readable:
.~ aggregate(_,_), continuous(E), not aggregate(E,_). [3].

Reimplementing CompassQL in Draco requires authoring soft con-
straints that express CompassQL’s imperative rankings and design pref-
erences. These constraints include channel, mark type, and aggregation
function rankings as well as soft constraints to prefer compact layouts
(e.g., fewer encodings) or promote best practices such as placing time
on the horizontal axis. For example, channel preferences for nominal
fields can be expressed as follows, where lower weights (penalties)
indicate higher preference:

:~ channel(E,y), type(E,nominal). [0]

:~ channel(E,x), type(E,nominal). [1]

:~ channel(E,row), type(E,nominal). [6]

:~ channel(E,column), type(E,nominal). [7]
:~ channel(E,color), type(E,nominal). [7]
:~ channel(E,shape), type(E,nominal). [8]
:~ channel(E, text), type(E,nominal). [9]

:~ channel(E,detail), type(E,nominal). [20]

Using a full set of these constraints, Draco-CQL synthesizes identi-
cal optimal specifications as CompassQL for all 17 partial specifications
included in CompassQL’s test suite. It does so while reducing specifi-
cation complexity. Draco-CQL is implemented as 70 hard and 110 soft
constraints. In contrast, CompassQL is implemented in 4,324 lines of
imperative code, with 1, 134 of those lines devoted to hard constraints
and 786 devoted to scoring logic.

Draco-CQL also exhibits better performance, especially for highly
unconstrained problems. Fig. 7 shows the results of a benchmark study
comparing CompassQL and Draco-CQL across varied numbers of input
dataset fields and output encoding channels. All measurements were
taken on CentOS Linux 7 with an Intel Xeon CPU E5-2690 v3 with
2.60GHz; CompassQL used Node v9.9.0. Other than a constant startup
overhead, Draco exhibits superior scalability. On a real dataset with 25
fields and a query with 5 encodings, Draco returns an answer in less
than half a second. In contrast, CompassQL’s exhaustive search runs
out of heap memory after a few minutes.

6.3 Learning Preferences from Experiments: Draco-Learn

When developing automated visualization design systems, develop-
ers may hand-tune weights until the system synthesizes the desired

1,000 # of Fields in CQL

5
10
15
® 2
o>

of Fields in Draco

5

Runtime in Seconds
o

0.01

0.001 T T T T T
1 2 3 4 5

Number of Encodings

Fig. 7. Median runtime for CompassQL (blue) and Draco (orange) across
different numbers of data fields and encodings. CompassQL perfor-
mance rapidly degrades with additional encodings and runs out of heap
memory (set to 4GB) for most queries with four or more encodings be-
cause it exhaustively searches all combinations of fields in the schema.

specifications across test cases. This process is time-consuming and
error-prone. Instead, Draco can automatically learn parameters from
data. Draco’s preference model allows competing preferences and, via
learning to rank, can learn weights for soft constraints from ranked
pairs of visualizations. The same generalizability and validity issues
that all empirical studies have also apply to Draco’s empirically learned
weights. Draco’s flexible learning system allows us to harvest training
pairs from data originating from different experimental studies, even
those carried out under different conditions.

To demonstrate this advantage, we harvested ranked pairs from two
recent experiments on effectiveness. Kim et al. [30] measured subject
performance across task types and data distributions. They compared
performance across 12 scatterplot encoding specifications of trivariate
data involving 1 categorical and 2 quantitative fields, encoded with x
and y channels along with the color, size, or row channel - in total,
185,000 responses from 1,920 participants. The visualizations tested by
Kim et al. are only a fraction of the design space that Draco supports;
thus, we are not able to learn the weights of a system that can compete
with CompassQL from this data alone. Saket et al. [51] conducted a
similar experiment with 180 participants to evaluate task performance
across visualization types. Their study is limited to encodings with one
quantitative y-encoding with a mean aggregate, and an x-encoding with
nominal, ordinal, or quantitative data.

6.3.1

For both studies, the data contains the visualization type, data properties,
task, and whether the user correctly completed the task. To create
ranked pairs, we first group the response data by data schema and
task. Within each group, we group again by visualization and create
every possible pair. The difference in task performance between the
visualizations in each pair may or may not be significant. We use
Fisher’s test to check whether the accuracy scores are significantly
different between the two visualizations. We keep only pairs where
the p-value is lower than a threshold (in our case 0.01). We consider
both accuracy and timing results and include a pair if either exhibits a
significant difference. Ranked pairs of visualizations could be harvested
from other studies in a similar fashion. Our harvesting results in about
1,100 pairs from Kim et al. and 10 pairs from Saket et al. We get few
pairs for Saket et al. because for each data and task combination, only
three visualizations are compared (Vega-Lite supports bar, line, and
scatter) and few exhibit significant differences.

We then apply the learning approach described in Sect. 5. First, we
transform every visualization that appears in the dataset into a feature
vector of soft constraint violation counts in Draco. We start with Draco-
CQL’s constraints and add soft constraints for the preferences described
in Kim et al.’s paper. Specifically, we added rules to capture task-
channel and task-marktype interactions, along with a handful of rules
for the most important interactions from the discussion of the paper
(see supplemental material for a full listing). We implemented these
rules in a few hours. These preference rules can be also included in

Harvesting Training Data and Learning Weights

the CompassQL implementation from the previous section, as we can
simply initialize the weights for new constraints to zero. With the new
rules, we train a classifier on the difference between the two feature
vectors for each pair of ranked visualizations using RankSVM. We
trained an off-the-shelf SVM from scikit-learn [43] on the two datasets
derived from the studies by Kim et al. and Saket et al.

6.3.2 Applying the Learned Model

We first evaluate our trained model directly on ranked pairs by mea-
suring the percentage of pairs that are correctly ranked based on their
costs. We train our model on a training set of 55% of the full data,
validate on 15% of the data, and assess generalization of the final model
with 30% test data [25]. The trained model achieves 93% accuracy
on the test set, whereas Draco-CQL with hand-tuned weights achieves
65% accuracy—only slightly better than chance. Our model achieves
perfect training accuracy on the dataset from Saket et al. even if we
include all data harvested from Kim et al. Our model was able to
learn from different datasets without degrading performance in either
of them. The model correctly labels 96% of the validation dataset
when we increase the p-value threshold for harvesting from 0.01 to
0.1. We also found that the test accuracy only starts to significantly fall
behind the validation accuracy when we train on less than 250 pairs.
This observation indicates that there is redundancy in the data and that
our model generalizes. These results support our model and feature
selection choices.

In practice, finding the optimal encoding given a dataset, task, and
partial specification matters more than accuracy across all ranked pairs
of visualizations. For example, correctly ordering the second and third
best visualizations may matter less than getting the optimal encoding
right. We built Draco-Learn using only the trained weights for the soft
constraints in our preference model. First, we restrict the design space
to only those encodings used in Kim et al. and Saket et al.’s studies (as
described at the beginning of this section) by adding about 10 additional
constraints each (included in supplemental material). Adding these
constraints adapts Draco-Learn to synthesize only specifications that are
in a restricted design space. We then query Draco-Learn to synthesize
specifications for all combinations of data properties (cardinality and
entropy) and tasks (value and summary). In all conditions (48 for
Kim et al., 8 for Saket et al.), Draco-Learn returns a top-performing
encoding for the harvested data.

Draco-Learn outperforms Draco-CQL within the restricted design
space covered by the experimental data. Fig. 8 shows the optimal
visualizations synthesized by Draco with default weights (Draco-CQL)
and with learned weights (Draco-Learn) for a specification with three
encodings across value and summary tasks. In Draco-CQL, the weights
for all features related to task are zero. Consequently, Draco-CQL
synthesizes the same specification regardless of task: a scatterplot with
the primary variable (Q1) on y and category (N) on color. Draco-
Learn synthesizes different charts depending on the task. To compare
individual values, the scatterplot works well and reduces overplotting.
However, to summarize Q1 relative to N, spatially grouping values by
category (N) better facilitates perception of distributional properties
such as min, max, or average [30].

7 DiscussiON AND FUTURE WORK

We presented Draco, a formal model for visualization knowledge repre-
sentation, and demonstrated its use for automated visualization design.
Draco models visualization design knowledge using constraints and
associated weights; this separation of knowledge representation from
search procedures enables easier development and maintenance. The
Draco-APT and Draco-CQL examples demonstrate how Draco can
support increasingly sophisticated visualization design tools with less
development effort and better performance than prior approaches. The
Draco-Learn example demonstrates that Draco can combine data from
different studies to learn weights for a state-of-the-art visualization
design tool, further accelerating modeling efforts.

We now discuss how Draco’s constraint system can enable new
usage scenarios, such as design space enumeration, visualization model

Task Draco-CQL Draco-Learn
as hand-tuned weights learned weights
20 M 20 M
& advertisement ol advertisement
154 - bias 15 e 5 bias
elapses elapsss
Value 5 10 ® o 5 10 o
x® ®
05 xR 05 xR
@)
004 L & 0wt L& &
00 o0s 10 15 20 00 05 10 15 20
2 2
20 Q2
20 N ° 8
8 adverisement 1§ ° 8 o -,D
15 A bias e
elapses
5 10 8¢
Summary 5 1o ° §
os 8 H
® Q. 0.0 g

00—
00 05 10 15 20
12

:]
advertisement-| ‘0 co@oo @0
elapses | ‘ODOO

N

Fig. 8. The optimal visualization synthesized by Draco with hand-tuned
weights (left) and Draco with learned weights (rights) for two queries with
varying tasks. Draco with default weights cannot distinguish by task as
the weights for all soft constraints related to task are set to zero.

comparison, and design debugging. We go on to describe how future
work might address current limitations of Draco’s implementation.

7.1 Draco from a Software Engineering Perspective

Draco’s use of constraint programming enables easier development and
maintenance of automated visualization design tools. Due to imple-
mentation complexity, prior approaches often have to compromise the
implementation of effectiveness criteria. Although Draco does not com-
pletely solve this problem, it shifts the problem to the more tractable
and well-defined problem of defining weights to trade-off competing
preferences. We show that these weights can be effectively learned
from data even when the dataset is assembled from different sources.

Using constraints also decouples knowledge representation from
the code that applies that knowledge. Although this approach aims
to benefit visualization tool developers, it may also benefit end-users
as it makes knowledge bases easier to contribute to. Visualization
researchers can disseminate their results as constraints to make them
more easily accessible by visualization designers; in a declarative sys-
tem, designers might use more nuanced models that would otherwise
be too complex to maintain. We contend that software engineering and
developer productivity should be given more attention in the visual-
ization community. Human designers should focus on the design of
the visualization design space and preferences rather than the design
of search algorithms that are already available in domain-independent
constraint solvers.

Draco’s knowledge base can be adapted or extended to fit specific
needs. Each component of Draco can be easily modified: the definition
of the design space, the preferences within the valid solution space,
their weights, and how the visualization model is queried. For example,
in Sect. 6.3.2, we limited the design space to scatter plots with three
encodings (two quantitative, one nominal). The same expressiveness
and preference constraints could be used in a tool that targets full Vega-
Lite specifications or in a tool that targets only specific visualizations,
such as vertical bar charts. Similarly, Draco can be extended with richer
descriptions of input data (Sect. 4.1) that can then be referenced by
new soft constraints (Sect. 4.2.2). A researcher who wants to extend
the Draco knowledge base with new design rules could distribute their
rules as an independent set of constraints or updates to the weights.

We hope that Draco’s current set of constraints can serve as the
starting point of an evolving knowledge base that can be extended by
researchers and practitioners. For example, Draco could be extended
to include richer task taxonomies [2]. One challenge for visualization
design tools is that the “task” is typically inaccessible (e.g., within
a user’s mind). Natural language interfaces may be better suited for
communicating user intent [13, 53, 60], which could then be expressed
as Draco constraints. The visualization model in this paper supports
synthesis of marks, encodings, and simple transformations (binning

and aggregation). We plan to extend the model to transformations
such as filtering and sorting, and incorporate Vega-Lite’s interaction
primitives [52].

We are excited to explore how our visualization model can be ex-
tended to support chart composition, for instance into layered views or
dashboards. Applying design guidelines to multiple charts separately
can lead to locally effective, yet globally inconsistent views [47]. For
example, different fields might confusingly be encoded with the same
color scheme across charts. With the right set of weighted constraints,
Draco could trade-off among the effectiveness of single views and
global consistency within a multi-view display [47, 66].

In our demonstration of Draco-Learn, we modeled a restricted sub-
space of visualizations that mirrors the limits of the available exper-
imental data. We hope to encourage more researchers to make data
from effectiveness studies available, such that their results may be used
by Draco or related systems. Future work might provide tools to help
researchers convert their results into constraints or ranked pair datasets.
We plan to collect more comprehensive data by systematically gen-
erating visualization pairs and having human subjects evaluate them.
In addition to independent studies, we might leverage Draco’s design
space to guide data collection in an active learning process.

With sufficient data, it may even be possible to go beyond learning
weights and attempt to learn preference rules themselves. The Al
community uses inductive logic programming methods to infer logic
programs from databases of positive and negative examples [48]. To
learn from noisy data (common in the visualization domain!), we could
combine inductive logic programming with statistical models such as
Markov logic networks [11,32]. For example, Law et al.’s ILASP
(Inductive Learning of Answer Set Programs) [33] is a logic-based
learning system that can learn preferences in answer set programs.
To understand differences in preferences represented by two or more
distinct data sources, we can use multi-objective (Pareto) optimization
in ASP to enumerate designs that map the trade-off frontier.

Because the effectiveness of a visualization can depend on low-
level features not captured in a high-level specification (for example,
over-plotting), we can imagine applying a re-ranking strategy in which
Draco enumerates a number of top-scoring candidate designs (ranked
by high-level features) that are then re-ranked by another learned clas-
sifier operating on low-level features that may be impractical to model
directly in ASP. The sub-symbolic models learned by such classifiers
could constitute another valuable form of visualization design knowl-
edge to represent and share.

7.2 Beyond Automated Visualization Design

Up to this point, we have positioned Draco as a tool for synthesizing
optimal visualization designs from partial specifications. However,
Draco could be used in a variety of other contexts. In the following, we
discuss four directions that Draco could be extended.

First, Draco can be used as a general “visualization spell checker”
to validate and auto-correct designs independently, or within a broader
system for people to “learn by doing”. Currently, Draco is able to use
expressiveness and effectiveness constraints to report errors for designs
that violate design guidelines. However, given a visualization, we could
extend Draco to additionally automatically correct the visualization,
removing the most severe violations and suggesting alternative valid
designs to users. The problem of finding the minimal set of constraints
that need to be removed for the remaining constraints to be satisfiable
is known as the unsatisfiable cores problem [10]; related techniques
could be applied to visualization design constraints. Draco might also
explain those violations and why they matter, to teach students or visu-
alization designers about best practices, help them spot (intentionally
or unintentionally) misleading visualizations, critique visualizations,
and perhaps contribute new visualization knowledge or explanations.

Second, Draco can facilitate exploration of the visualization design
space. Besides surfacing violations of design guidelines, Draco can
rank visualizations by their costs. Designers might use this function
of Draco to choose among different alternative designs. Draco could
also be used to cluster designs based on their violations (using the same
feature vectors used in our learning to rank approach). An exciting

avenue for future research is to use Draco’s design space definition to
systematically generate visualizations to build a corpus of visualiza-
tions and interactions. Creating such a corpus is as simple as running
Clingo on the Draco design space definition without preferences, which
enumerates all valid answer sets. Testing generated designs with human
subjects will allow us to understand the costs and benefits of different
encodings and interactions. Although the current design space in Draco
is limited, as noted above we plan to extend the model further, including
interaction primitives such as Vega-Lite selections [52].

Third, Draco can be used as a tool for researchers to compare the im-
plications of different effectiveness studies. Concretely, if a researcher
finds a new design guideline, they could add it to Draco as a constraint
and assess whether it conflicts with, or is subsumed by, existing design
guidelines. Based on comparison results, researchers could share their
design results as constraints to improve the common knowledge base
of visualization design tools.

Lastly, an important future extension is tooling to support developers,
researchers, and designers. In addition to collecting more data to learn
preference weights, we hope to provide tools to browse the visualization
design space and knowledge base rules, as well as tools to understand
violations and fine-tune trade-offs among competing design guidelines.
With the right tooling and fine-tuned visualization models, Draco’s
declarative approach to automated visualization design could bring
us one step closer towards building assistive interfaces for effective
design that canvas a much broader swath of the visualization design
space. Such interfaces should allow visualization designers to consider
a greater variety of approaches, while also focusing on the creative
aspects of visualization design.

Appendix: Preference Models as Markov Logic Networks

Our preference model forms a Markov logic network (MLN) [49] that
describes a distribution over visualizations. In MLNSs, soft constraints
are structural features of the model, and their weights reflect the differ-
ence in log probability between a visualization satisfying the constraint
and one that does not. The joint distribution modeled by a MLN is:

efCosz‘(v) e~)y winp,; (v)
P(v) = y e—Cost(u) — Y e Xy wing, (u)

uey uey

The probability P(v) of a visualization in the distribution is its exponen-
tiated cost normalized by the exponentiated costs of all visualizations
in the design space ¥/, using a softmax function. Note that the partition
functionZ=Y,cy e i winy, () s a fixed term in a given visualization
model, and the difference of costs of two visualizations vy, v, results in
the log difference of their probability in the model.

The problem of finding the optimal completion of a partial specifica-
tion is the same as performing maximum a posteriori (MAP) inference
in the probability model [54]. Given a partial specification Y, its opti-
mal completion X maximizes the posterior probability of P(x|y =Y)
(i.e., X = max, P(x|y =Y)). The ASP solver solves this inference
problem efficiently by minimizing the overall cost of the generated
visualization; it is not necessary to compute the partition function.

Since a MLN is a linear model over structural features rather than
linear model directly over attributes, it has the advantage of capturing
structural relations between attributes that cannot be captured otherwise.
For example, a channel ranking that is independent of the data type
would have to prefer color and size independent from the data type.
Moreover, as opposed to explicitly representing correlations between
every attribute and all other attributes, a MLN is more compact and
interpretable.

ACKNOWLEDGMENTS

We are immensely grateful to Alan Borning, Kevin Jamieson, Pedro
Domingos, Kanit “Ham” Wongsuphasawat, and Danyel Fisher whose
advice shaped this work. We also thank members of the HCI group at
UW and the anonymous reviewers for their feedback. This work was
supported by a Moore Foundation Data-Driven Discovery Investigator
Award and the National Science Foundation (IIS-1758030).

REFERENCES

(1]
[2]

[3]

[4]
(5]

(6]

(71

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. W. Aha, D. F. Kibler, and M. K. Albert. Instance-based prediction of
real-valued attributes, vol. 5. 1989.

R. A. Amar, J. Eagan, and J. T. Stasko. Low-level components of analytic
activity in information visualization. In IEEE Symposium on Information
Visualization (InfoVis 2005), 23-25 October 2005, Minneapolis, MN, USA,
p. 15, 2005. doi: 10.1109/INFOVIS.2005.24

R. Bartdk. Constraint programming: What is behind. Proceedings of
CPDC99, pp. 7-15, 1999.

J. Bertin. Semiology of graphics: diagrams, networks, maps. 1983.

A. Borning. ThingLab - an object-oriented system for building simulations
using constraints. In Proceedings of the 5th International Joint Conference
on Artificial Intelligence. Cambridge, MA, USA, August 22-25, 1977, pp.
497498, 1977.

J. Boy, R. A. Rensink, E. Bertini, and J. D. Fekete. A principled way of
assessing visualization literacy. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1963-1972, Dec 2014. doi: 10.1109/TVCG.
2014.2346984

G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92-103, Dec. 2011. doi: 10.1145/2043174
.2043195

S. M. Casner. Task-analytic approach to the automated design of graphic
presentations. ACM Transactions on Graphics, 10(2):111-151, 1991. doi:
10.1145/108360.108361

W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American Statistical Association, 79(387):531-554, 1984. doi: 10.
1080/01621459.1984.10478080

G. Davydov, 1. Davydova, and H. K. Biining. An efficient algorithm
for the minimal unsatisfiability problem for a subclass of cnf. Annals of
Mathematics and Artificial Intelligence, 23(3):229-245, Nov 1998. doi:
10.1023/A:1018924526592

R. Evans and E. Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1-64, 2018.

M. S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Schedul-
ing. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, December
1983.

T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Datatone:
Managing ambiguity in natural language interfaces for data visualization.
In Proceedings of the 28th Annual ACM Symposium on User Interface
Software and Technology, UIST ’15, pp. 489-500. ACM, New York, NY,
USA, 2015. doi: 10.1145/2807442.2807478

M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub. Abstract
gringo. TPLP, 15:449-463, 2015.

M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele. Potassco user guide. Institute for
Informatics, University of Potsdam, second edition edition, 2015. https:
//github.com/potassco/guide/releases/.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial In-
telligence and Machine Learning, 6(3):1-238, 2012. doi: 10.2200/
S00457ED1V01Y201211AIMO19

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014.

M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer
set programming. 11, 07 2011.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The potsdam answer set solving collection. Al
Commun., 24(2):107-124, Apr. 2011.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven
answer set solving. In IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, p. 386, 2007.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. pp. 1070-1080. MIT Press, 1988.

M. Gleicher, M. Correll, C. Nothelfer, and S. Franconeri. Perception of av-
erage value in multiclass scatterplots. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2316-2325, 2013. doi: 10.1109/TVCG.
2013.183

P. Hanrahan. Vizql: a language for query, analysis and visualization. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Chicago, Illinois, USA, June 27-29, 2006, p. 721, 2006. doi:

(24]

[25]

(26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]
[34]

[35]

[36]

(371

[38]

(39]

[40]
(41]

(42]

[43]

[44]

10.1145/1142473.1142560

L. Harrison, F. Yang, S. Franconeri, and R. Chang. Ranking visualizations
of correlation using weber’s law. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1943-1952, 2014. doi: 10.1109/TVCG.2014.
2346979

T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical
learning: data mining, inference, and prediction, 2nd Edition. Springer
series in statistics. Springer, 2009.

J. Heer and M. Bostock. Crowdsourcing graphical perception: Using
mechanical turk to assess visualization design. Proceedings of the 28th
Annual Chi Conference on Human Factors in Computing Systems, pp.
203-212, 2010. doi: 10.1145/1753326.1753357

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for
ordinal regression. In 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 1, pp. 97-102
vol.1, 1999. doi: 10.1049/cp:19991091

J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The
Journal of logic programming, 19:503-581, 1994.

A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck: self-organizing
dashboards for visual analytics. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2012, Scottsdale,
AZ, USA, May 20-24, 2012, pp. 681-684, 2012. doi: 10.1145/2213836.
2213931

Y. Kim and J. Heer. Assessing effects of task and data distribution on
the effectiveness of visual encodings. Computer Graphics Forum (Proc.
EuroVis), 2018.

Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer. GraphScape: A
model for automated reasoning about visualization similarity and sequenc-
ing. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI "17, pp. 2628-2638. ACM, New York, NY, USA,
2017. doi: 10.1145/3025453.3025866

S. Kok and P. Domingos. Learning the structure of markov logic networks.
In Proceedings of the 22Nd International Conference on Machine Learn-
ing, ICML ’05, pp. 441-448. ACM, New York, NY, USA, 2005. doi: 10.
1145/1102351.1102407

M. Law, A. Russo, and K. Broda. The ILASP system for learning answer
set programs. https://www.doc.ic.ac.uk/~ml1909/ILASP, 2015.

V. Lifschitz. Answer set programming and plan generation. Artif. Intell.,
138(1-2):39-54, jun 2002. doi: 10.1016/S0004-3702(02)00186-8

V. Lifschitz. What is answer set programming? In Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3, AAAT’ 08,
pp. 1594-1597. AAAI Press, 2008.

T.-Y. Liu. Learning to rank for information retrieval. Foundations
and Trends in Information Retrieval, 3(3):225-331, 2009. doi: 10.1561/
1500000016

J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transactions on Graphics, 5(2):110-141, 1986.
doi: 10.1145/22949.22950

J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic
presentation for visual analysis. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1137-1144, 2007. doi: 10.1109/TVCG.2007.
70594

V. O. Mittal, G. Carenini, J. D. Moore, and S. Roth. Describing complex
charts in natural language: A caption generation system. Computational
Linguistics, 24(3):431-467, 1998.

T. Munzner. Visualization analysis and design. CRC press, 2014.

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An
a-prolog decision support system for the space shuttle. In Proceedings of
the Third International Symposium on Practical Aspects of Declarative
Languages, PADL °01, pp. 169-183. Springer-Verlag, London, UK, UK,
2001.

A. V. Pandey, K. Rall, M. L. Satterthwaite, O. Nov, and E. Bertini. How
deceptive are deceptive visualizations?: An empirical analysis of common
distortion techniques. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI *15, pp. 1469-1478. ACM,
New York, NY, USA, 2015. doi: 10.1145/2702123.2702608

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

J. Poco, A. Mayhua, and J. Heer. Extracting and retargeting color mappings
from bitmap images of visualizations. [EEE Transactions on Visualization

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53

[t

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

and Computer Graphics, 24(1):637-646, Jan 2018. doi: 10.1109/TVCG.
2017.2744320

H. Poon and P. Domingos. Unsupervised semantic parsing. In Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP °09, pp. 1-10. Association for Computational Linguistics,
Stroudsburg, PA, USA, 2009.

Z. Qu and J. Hullman. Keeping multiple views consistent: Constraints,
validations, and exceptions in visualization authoring. IEEE Transactions
on Visualization and Computer Graphics, 24(1):468-477, Jan 2018. doi:
10.1109/TVCG.2017.2744198

Z. Qu and J. Hullman. Keeping multiple views consistent: Constraints,
validations, and exceptions in visualization authoring. IEEE Transactions
on Visualization and Computer Graphics, 24(1):468—477, Jan 2018. doi:
10.1109/TVCG.2017.2744198

J. R. Quinlan. Learning logical definitions from relations. Machine
Learning, 5(3):239-266, Aug 1990. doi: 10.1007/BF00117105

M. Richardson and P. Domingos. Markov logic networks. Machine
Learning, 62(1):107-136, Feb 2006. doi: 10.1007/s10994-006-5833-1

S. F. Roth and J. Mattis. Data characterization for intelligent graphics
presentation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 193-200. ACM, 1990.

B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of basic
visualizations. IEEE Vis (Proc. InfoVis), 2018.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341-350, 2017. doi: 10.1109/TVCG.2016.
2599030

V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:
A natural language interface for visual analysis. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, UIST 16,
pp. 365-377. ACM, New York, NY, USA, 2016. doi: 10.1145/2984511.
2984588

P. Singla and P. Domingos. Discriminative training of markov logic
networks. In Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 2, AAAT’05, pp. 868—873. AAAI Press, 2005.

P. Singla and P. Domingos. Entity resolution with markov logic. In
Proceedings of the Sixth International Conference on Data Mining, ICDM
’06, pp. 572-582. IEEE Computer Society, Washington, DC, USA, 2006.
doi: 10.1109/ICDM.2006.65

A. M. Smith, E. Andersen, M. Mateas, and Z. Popovi¢. A case study
of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations
of Digital Games, pp. 156-163. ACM, 2012.

A. M. Smith, E. Butler, and Z. Popovic. Quantifying over play: Con-
straining undesirable solutions in puzzle design. In Proceedings of the
Foundations of Digital Games, FDG, pp. 221-228, 2013.

A. M. Smith and M. Mateas. Answer set programming for procedural
content generation: A design space approach. IEEE Transactions on
Computational Intelligence and Al in Games, 3(3):187-200, Sept 2011.
doi: 10.1109/TCIAIG.2011.2158545

T. Soininen and I. Niemeld. Developing a declarative rule language
for applications in product configuration. In Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages,
PADL ’99, pp. 305-319. Springer-Verlag, London, UK, UK, 1998.

A. Srinivasan and J. Stasko. Natural language interfaces for data anal-
ysis with visualization: Considering what has and could be asked. In
Proceedings of EuroVis, vol. 17, pp. 55-59, 2017.

D. A. Szafir. Modeling color difference for visualization design. /EEE
Transactions on Visualization and Computer Graphics, 24(1):392-401,
Jan 2018. doi: 10.1109/TVCG.2017.2744359

D. A. Szafir, S. Haroz, M. Gleicher, and S. Franconeri. Four types of
ensemble coding in data visualizations. Journal of Vision, 16(5):11, 2016.
doi: 10.1167/16.5.11

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York, 2016.

L. Wilkinson. The grammar of graphics. Springer Science & Business
Media, 2006.

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Towards a general-purpose query language for visualization
recommendation. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics - HILDA ’16, pp. 1-6, 2016. doi: 10.1145/2939502.
2939506

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

[67]

J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. /EEE Transactions on Visualization and Computer
Graphics, 22(1):649-658, 2016. doi: 10.1109/TVCG.2015.2467191

K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pp. 2648-2659,
2017. doi: 10.1145/3025453.3025768

	Introduction
	Related Work
	Automated Visualization Design
	Effective Visualization Design
	Visualization Specification
	Constraint-Based Knowledge Representation
	Learning Preferences

	Background: Answer Set Programming
	Modeling Visualization Design in Draco
	Mapping Visualization Specifications to Logical Facts
	Representing Design Knowledge as Constraints
	Design Space Definition
	Preference Over the Design Space

	Completing Specifications by Solving Constraints
	Partial Specification
	Queries as Constraints over the Design Space

	Learning Preference Models
	Demonstration of Draco
	Reimplementing APT: Draco-APT
	Reimplementing CompassQL: Draco-CQL
	Learning Preferences from Experiments: Draco-Learn
	Harvesting Training Data and Learning Weights
	Applying the Learned Model

	Discussion and Future Work
	Draco from a Software Engineering Perspective
	Beyond Automated Visualization Design

