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ABSTRACT

When engaging with a textbook, students are inclined to
highlight key content. Although students believe that high-
lighting and subsequent review of the highlights will further
their educational goals, the psychological literature provides
no evidence of benefits. Nonetheless, a student’s choice of
text for highlighting may serve as a window into their men-
tal state—their level of comprehension, grasp of the key
ideas, reading goals, etc. We explore this hypothesis via an
experiment in which 198 participants read sections from a
college-level biology text, briefly reviewed the text, and then
took a quiz on the material. During initial reading, partici-
pants were able to highlight words, phrases, and sentences,
and these highlights were displayed along with the complete
text during the subsequent review. Consistent with past re-
search, the amount of highlighted material is unrelated to
quiz performance. However, our main goal is to examine
highlighting as a data source for inferring student under-
standing. We explored multiple representations of the high-
lighting patterns and tested Bayesian linear regression and
neural network models, but we found little or no relationship
between a student’s highlights and quiz performance. Our
long-term goal is to design digital textbooks that serve not
only as conduits of information into the mind of the reader,
but also allow us to draw inferences about the reader at a
point where interventions may increase the effectiveness of
the material.
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1. INTRODUCTION

A premise of educational data mining is that the knowledge
state of a student can be inferred by observation. How-
ever, knowledge state is opaque until students reach a level
of understanding that they can be tested or they can solve
problems. This delay makes interventions at an early stage
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of exposure quite challenging. Consider a student’s first en-
gagement with new material in a textbook. Reading times
and gaze patterns may be useful for modeling student en-
gagement and comprehension [3]. However, these implicit
measures are quite difficult to collect. Fortunately, students
often willingly provide explicit measures: students will vol-
untarily highlight sections of text and write notes in the
margins. With the advent of electronic texts, the opportu-
nity now exists to collect data from students during their
early exposure to new material, and if knowledge state can
be inferred, interventions can be performed early. In this
article, we explore the hypothesis that these annotations—
specifically highlights—can be used to predict comprehen-
sion, as assessed by a follow-up quiz.

Highlighting has been studied in the psychological litera-
ture from the perspective of whether highlighting is an ef-
fective study strategy. The current understanding is that
the mere act of highlighting does not promote learning, nor
does re-reading isolated sentences that were highlighted [1].
No relationship has been found between coarse statistics of
highlighting (e.g. the total amount of text highlighted) and
a student’s performance/understanding [2].

In a few cases, highlighting has been shown to provide ben-
efits. First, text which is pre-highlighted by an informed
instructor can guide a student to focus on key content [4].
Second, restricting highlighting to encourage consideration
of the material—e.g., permitting the student to highlight
only one sentence per paragraph—can support understand-
ing [5]. In contrast to this traditional literature that exam-
ines highlighting as a study tool, here we examine highlight-
ing as a data source for inferring student understanding.

2. EXPERIMENT

We conducted an experiment in which participants read pas-
sages from a biology textbook. They later reviewed the
passages, and then took a short quiz drawing on material
from the passages. During initial reading, participants were
allowed to highlight portions of the text (words, phrases,
or sentences). These highlights were displayed along with
the text during the review phase, and participants were in-
structed that highlighting could assist in the review.



2.1 Methodology

2.1.1 Participants

Participants aged 18 and above were recruited from Ama-
zon Mechanical Turk. A total of 198 people completed the
experiment and were paid $3.60. Data from six participants
was discarded because these participants reported that they
were unable to use the highlighting functionality in their web
browser. The experiment took 25-30 minutes to complete.
No screening was performed to determine an individual’s
background in biology. To incentivize attention to the task,
participants were told that they would be entered into a raf-
fle for a bonus prize of $15.00, with the number of entries
equal to the number of correct reponses to the quiz ques-
tions.

2.1.2 Materials

Three passages were selected from the Openstax Biology
textbook [7]. The passages were chosen with the expecta-
tion that they could be understood by a college-aged reader
with no background in biology. The three passages concern
the topic of sterilization, with one serving as an introduc-
tion, one discussing procedures, and the last summarizing
commercial use. Twelve factual quiz questions were gener-
ated by selecting particular sentences from the passages and
turning the factual statements in these sentences into fill-
in-the-blank questions. These twelve questions were trans-
formed into twelve additional multiple choice questions, each
question comprised of the correct response and three lures
as alternatives. Three questions are drawn from the first
passage, four from the second passage, and five from the
final passage.

For each participant a normalized quiz score is computed as
follows. For each of the twelve questions, a score of 1.0 is
assigned if both the fill-in-the-blank and multiple-choice re-
sponse are correct; a score of 0.66 is assigned if the fill-in-the-
blank (FIB) response is correct; a score of 0.33 is assigned if
the multiple-choice (MC) response is correct; and a score of
0 is assigned if neither is correct. The normalized quiz score
is the sum of these scores divided by 12, yielding a value
in the range [0,1]. A liberal criterion was used for judging
FIB response correctness: A response is considered correct
if the edit distance between the actual and correct responses
is less than 25% of the length of the correct response. Ta-
ble 1 shows the distribution of response correctness on MC
and FIB versions of a question.

2.1.3  Procedure

The experiment is divided into three phases. During the
reading phase, the three passages are presented on the screen
sequentially, each on screen for five minutes. During the re-
view phase, the three passages are again presented sequen-
tially, along along with any highlights the participant made

Table 1: Distribution of response correctness on multiple
choice (MC) and fill-in-the-blank (FIB) versions of a ques-
tion

MC Incorrect | MC Correct
FIB Incorrect | 0.259 0.415
FIB Correct 0.038 0.288
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Figure 1: A paragraph of text as highlighted by three ran-
domly selected participants.

during the reading phase, each for one minute. Finally, dur-
ing the quiz phase, the 12 FIB questions are shown, followed
by the 12 MC questions, randomized within question type.
During the first two phases, a timer at the top of the screen
indicates time remaining for the current passage. After the
timer has expired, the screen blanks and displays a message
describing the next step of the experiment (either the next
passage or the next phase of the experiment). Throughout
the course of the experiment, a progress bar is displayed at
the bottom of the screen that indicates the current propor-
tion of the experiment completed.

In the reading phase, participants may highlight text by se-
lecting one or more words using the mouse, which we will
refer to as a highlighting interaction. If the selected text
exactly corresponds to an existing highlight, the highlight is
deleted. If the selected text captures any portion of an exist-
ing highlight but extends beyond it, the existing highlight is
expanded to include the new selection. A single interaction
may highlight more than one sentence at a time, but cannot
cross paragraph boundaries. In the review phase, the pre-
viously selected highlights are displayed, but no additional
highlights can be made.

3. RESULTS

Figure 1 presents an example of three participants’ high-
lights of one paragraph of text. As these examples make
clear, there is diversity in the manner in which individuals
highlight. Highlights are used to note single words, phrases,
and complete sentences.

In order to analyze the relationship between an individual’s
highlights and quiz performance, we need to first specify a
representation of the highlights. In all analyses, we ignore
the time course and sequence of actions that the partici-
pant took to create and/or delete highlights, and instead
consider only the terminal highlighted state of each passage.
The three passages contain 117 complete sentences delin-
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Figure 2: Scatter plot of proportion of sentences highlighted
(using the binary encoding) versus normalized quiz score
for each participant. The marginal distributions are shown
above and to the right of the scatter plot.

eated by periods, exclamation marks, and question marks.
The first analyses we perform are based on a sentence-level
representation in which the pattern of highlights are coded
as a 117-dimensional feature vector, either as a binary en-
coding in which each element i of the vector is set to 1 if any
portion of sentence i is highlighted, or as a graded encoding
in which element i is set to the proportion of words in the
sentence that are highlighted.

Figure 2 shows the relationship between the proportion of
sentences highlighted according to the binary encoding and
the normalized quiz score. Each point is a single participant.
As shown along the margin, the proportion of sentences
highlighted is a unimodal distribution with a mean of 0.40.
The normalized quiz score is also unimodal with a mean of
0.45. The scatter plot suggests no functional relationship—
linear or otherwise—between the amount of highlighting and
quiz performance; the correlation coefficient is 0.08.

Although the total number of highlights fails as a predic-
tor of quiz score, the specific pattern of highlighting may
prove more useful. To begin analyzing the relationship be-
tween highlighting patterns and performance, we performed
a locally-linear embedding (LLE) with 11 neighbors [6] to re-
duce the dimensionality of the 117-dimensional binary sen-
tence-level highlighting vector to a 2D space. Figure 3(a)
plots the embedded points, colored to indicate the corre-
sponding quiz score. The embedding has interesting struc-
ture, but no simple relationship to quiz performance. To
understand what the LLE has captured, the points are re-
colored by proportion of sentences highlighted in Figure 3(b).
This figure reveals that the abscissa captures the proportion,
and the ordinate captures some of the diversity in the rep-
resentation for a particular proportion. Referring back to
Figure 3(a), there is no discernible relationship between the
variation along the ordinate and performance, even when
there is diversity in the embedding (i.e., the mid-range along
the abscissa).
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Figure 3: 2D LLE embedding of the binary sentence-level
highlights with each point corresponding to one participant’s
data, and the coloring of points indicating (a) normalized
quiz score and (b) the proportion of sentences highlighted.

We explored other parameterizations of LLE and other di-
mensionality reduction methods (e.g., k& means clustering)
but found no discernible relationship between performance
and the reduced representations.

3.1 Modeling results

We constructed a series of models that map the highlighted-
sentence representation—either the binary or graded enco-
ding—to either total quiz score or correctness on specific
problems. In all model testing, we perform nested cross
validation to optimize model hyperparameters and evalu-
ate model generalization to new participants. Our nested
procedure consists of an outer 10-fold cross validation loop
to partition the entire data set by participants into train-
ing and test sets, and an inner 3-fold cross validation loop
further splitting the training set to select hyperparameters.
The best set of hyperparameters chosen from the inner loop
are selected and the entire training set is then used to build
a model which predicts test set performance. This process is
repeated over the outer loop to obtain an average normalized
model loss.

The normalized model loss is defined as:

_ EiEj[(si — 8i)°]]
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where s;; is the test score of participant j in outer fold 4, §;;
is the corresponding model prediction, §; is the mean score
of the participants in the training set for fold 4, and E; and
E; are the expectations taken over folds and participants,
respectively. This normalized loss is 1.0 if the model does
no better than predicting the mean score of the training
participants, and drops to 0.0 if predictions are perfect. The
proportion of variance explained by the model is 1 — L.

3.1.1 Linear models

The first set of models we examine are based on Bayesian
linear regression. The general form of these models is y =
W x+b, where y is the predicted quiz score, x is the highlight
vector, and W and b are free parameters. This variant of lin-
ear regression is well suited for domains in which the number
of input features is high relative to the volume of data. The
model coefficients are regularized via a prior which achieves
a ridge penalty (a penalty for large weights). The model is
specified with a prior distribution on the precision of the ob-
servation noise, Gamma(shape = 10~ "', rate = 10~ "?) and
prior on the precision of the coefficients, Gamma(shape =
10773 rate = 107"*), where k. € {3,4,5,6,7,8,9} was cho-
sen by the inner cross validation loop.

Consistent with the scatter plot in Figure 2, when predict-
ing on overall quiz performance, we found that a regression
on the total number of sentence-level highlights obtains a
mean normalized loss of 1.01 (SEM 0.0029). Similarly, a
regression on the total number of words highlighted obtains
a mean normalized loss of 1.01 (SEM 0.0028). Table 2 sum-
marizes these and subsequent results.

Although the summary statistics fail to predict performance,
one might hope to see a relationship between the specific
pattern of highlights and performance. Unfortunately, re-
gressions on the binary and graded sentence-level represen-
tations of highlights obtain mean normalized losses of 0.99
(SEM 0.0028) and 1.03 (SEM 0.0032), respectively.

We hypothesized that the sentence-level representations of
highlights may be too coarse to capture important differ-
ences in the highlighting patterns. We therefore parsed the
text based on a sentence-fragment representation in which
the passages are segmented by periods, exclamation marks,
question marks, colons, semicolons, as well as phrase-sepa-
rating commas. The inclusion or exclusion of commas as seg-
ment boundaries was subjective; our strategy was to exclude
commas that were used to delineate lists of items. Figure 4
gives an example of the sentence-fragment partition scheme.
This partition scheme yields 235 sentence fragments across
the three passages. We examined both binary and graded
representations of the fragment-level highlights. The regres-
sion on the binary and graded fragment-level representations
yields mean normalized losses of 0.93 (SEM 0.0024) and
1.03 (SEM 0.0032), respectively.

Parsing the passages at an even finer granularity, we con-
structed a representation of the individual words highlighted.
The three passages have a total of 2291 word tokens. A
regression on this raw representation of highlights yields a
mean normalized loss of 0.93 (SEM 0.0024).

Although we obtain a modest (7%) reduction in variance

Figure 4: Example of sentence-fragment representation
where the alternating colors signify the different fragments.

with the binary fragment-level highlights and the individual-
word highlights, it is likely that these seemingly promising
results are meaningless because the model degrees of free-
dom (235 and 2291, respectively) are larger than the number
of subjects in our data set (198).

they are not well constrained by the data, we turn to sim-
ple models that leverage domain knowledge, specifically, our

alyzing the fill-in-the-blank (FIB) and multiple choice (MC)
questions separately, a two-tailed matched-sample t-test in-
dicates that MC quiz scores are significantly higher for those
who highlighted the critical sentence than for those who did
not (0.74 versus 0.63, ¢(11) = 4.05, p = 0.002, d = 0.73).
A marginal effect in the expected direction was also found
for FIB by those who highlighted the critical sentence ver-
sus those who did not (0.34 versus 0.29, ¢(11) = 2.034, p =
0.067, d = 0.23).

We then built linear regression models to determine how the
conditional analysis of the previous paragraph translates to
predictive model performance. Models were built predict-
ing specific quiz question accuracy from the corresponding
critical sentence, separately for MC and FIB and for each of
the 12 questions. Models were evaluated using 10-fold cross
validation. Averaging across the 12 questions, the normal-
ized loss is 0.99 for MC, ranging over questions from 0.94 to
1.02, and the normalized loss is 1.00 for FIB, ranging over
questions from 0.95 to 1.03.

Although pre-selecting the critical passage elements does not
appear to boost prediction, we are optimistic, based on the
conditional probability analysis, that with additional data,

3.1.2 Nonlinear models
We also evaluated nonlinear regression models, specifically
neural networks. The neural networks had one or two hid-



den layers with tanh activation functions and an output layer
with a single sigmoid unit to represent the normalized test
score prediction. The nets were trained by the Adam opti-
mizer to minimize the mean square error between the nor-
malized quiz score and the prediction, with an initial learn-
ing rate of 0.001 and batch size equal to 20% of the size
of the training set. All weights were initially drawn using
Xavier initialization. A validation set was created from 10%
of the supplied training data, which was used to stop train-
ing after the normalized error on the validation set plateaued
after 50 epochs. Model hyperparameters (see table below)
were chosen by a grid search in the inner cross validation
loop. The regularizers include an L2 weight penalty on the
input-to-hidden weights and dropout on the nodes in the
hidden layers.

Grid Search

Hyper Parameter Values

Dropout rate 0, 0.5

Hidden layer 1 size 5, 10, 15, 20
Hidden layer 2 size 0, 5, 10, 15

L2 regulariz. relative learn rate 0, 0.25, 0.5, 0.75, 1

For each highlight representation (sentence-level, sentence-
fragment, individual words), we found the best hyperparam-
eters over the grid search and evaluated the models using 10-
fold cross validation. We present the results of each of these
networks in Table 3. Unfortunately, none of these models
outperformed the baseline.

We hypothesized that there might be information to lever-
age by predicting performance on individual questions rather
than their sum (the total quiz score). We therefore built
neural net models with outputs that represent the indi-
vidual questions, with two output units for each of the 12
questions. The target tuple (0,0) represents neither fill-in-
the-blank (FIB) nor multiple-choice (MC) response correct;
(0,1) represents FIB incorrect but MC correct; (1,0) rep-
resents FIB correct but MC incorrect; and (1,1) represents
both FIB and MC correct. The logic of this coding scheme
is that the first bit indicates strong knowledge of the answer
and the second bit indicates at least weak knowledge.

The training and evaluation process was the same as the
neural networks that predict on overall quiz score, with the
normalized loss an expectation over the 24 outputs. We
evaluated networks for each of the highlight representations,
and Table 3 lists the results. Unfortunately, no predictions
were better than baseline.

4. DISCUSSION

If you pick up any textbook in a used bookstore, you'll be
surprised if it isn’t marked up with student annotations and
highlights. Students seem compelled to highlight because
they believe it supports learning. Our goal was to lever-
age this compulsion to better understand what students
are learning from their textbooks. We hypothesized that
a learner’s choice of material for highlighting could differ-
entiate among individuals and predict comprehension. We
constructed a wide range of models that use the specific pat-
tern of highlights to predict subsequent quiz performance

and specific quiz answers, yet we failed to obtain strong
support for our hypothesis.

The most generous interpretation of our modeling effort
is that when highlights are represented at a fine-level of
granularity—sentence fragments or individual words—linear
models can predict about 6% of the variability in quiz score.
It’s difficult to explain why the linear models (Table 2) out-
perform the nonlinear models with the same input represen-
tation, but perhaps we are not successfully controlling for
overfitting of the more complex models. The variance in
model predictions across cross-validation folds is an indica-
tion that the models are perhaps still too flexible and would
benefit by stronger regularization.

The present experiment had several sources of uncontrolled
variability that, in retrospect, should have been taken into
account.

e We neglected to ask participants about their familiar-
ity with biology and we did not exclude participants
based on their knowledge. Prior knowledge could be a
significant uncontrolled factor. In subsequent experi-
ments, it would be sensible to screen participants based
on whether they have had a biology class in the past
three years.

e The randomized order of quiz questions influences the
interval of time for which knowledge must be retained.
For example, if the first quiz question is on the third
passage of text, then the lag between reviewing that
passage and the quiz question is just a matter of sec-
onds. It would be more sensible to present the quiz
questions in order by section and to randomize the or-
der within a passage.

e In the present experiment, participants had little idea
of what the quiz would entail until they completed the
initial reading and review stages of all three passages.
We suspect that participants may highlight in a more
informed manner if they can better anticipate what
is to come in the experiment. Thus, we might have
included in the instructions a sample paragraph and
several typical exam questions.

e We encouraged participants to highlight, but we did
not ask participants whether they ordinarily highlight
text as they read. There seems to be individual dif-
ferences in the proclivity to highlight, and it would be
useful to perform analyses of the highlights for the sub-
populations who either do or do not ordinarily high-
light.

A natural thought for improving predictive models is to en-
code information about the content of the text and semantic
relationships among the individual sentences and phrases.
We argue that such encodings will not improve our models
for the specific experiment we have performed. If our goal
was to devise a general passage-independent representation
of text, then incorporating such encodings would be critical,
but because we have three specific passages and our high-
light representation allows for the reconstruction of which



Table 2: Summary of linear regression results

Mean Normalized | Standard Error of
Input Features Target Output Loss Mean
Total number of sentence-level highlights Normalized Quiz Score 1.01 0.0029
Total number of words highlighted Normalized Quiz Score 1.01 0.0028
Binary sentence-level highlights Normalized Quiz Score 0.99 0.0028
Graded sentence-level highlights Normalized Quiz Score 1.03 0.0032
Binary sentence-fragment highlights Normalized Quiz Score 0.93 0.0024
Graded sentence-fragment highlights Normalized Quiz Score 1.03 0.0032
Word-level highlights Normalized Quiz Score 0.93 0.0024
Critical-sentence highlight Corresponding FIB Question Score 1.00 N/A
Critical-sentence highlight Corresponding MC Question Score 0.99 N/A

Table 3: Summary of neural network results

Mean Normalized | Standard Error of
Input Features Target Output Loss Mean
Binary sentence-level highlights Normalized Quiz Score 1.01 0.0030
Graded sentence-level highlights Normalized Quiz Score 1.00 0.0022
Binary sentence-fragment highlights Normalized Quiz Score 0.99 0.0026
Graded sentence-fragment highlights Normalized Quiz Score 1.20 0.0032
Word-level highlights Normalized Quiz Score 1.03 0.0021
Binary sentence-level highlights Individual Question Scores 1.00 0.0049
Graded sentence-level highlights Individual Question Scores 1.00 0.0052
Binary sentence-fragment highlights | Individual Question Scores 1.00 0.0054
Graded sentence-fragment highlights | Individual Question Scores 1.00 0.0053
Word-level highlights Individual Question Scores 1.00 0.0050

specific sentences, phrases, or words were highlighted, we ar-
gue that this representation is sufficient for prediction. For
example, if the participant were to highlight all phrases re-
lated to thermal death time, we do not need an explicit rep-
resentation of this concept because the pattern of sentences
highlighted contains this information implicitly.

We have ideas for extending the present work with the hope

that highlighting might serve as a valuable data source for
inferring student knowledge. We mention several key ideas

here.

e We explored a variety of highlighting representations

The individual word representation does distinguish
these patterns, though at the cost of a much larger
input and parameter space. The sentence-level and
sentence-fragment graded encodings seem to be a sen-
sible intermediate, but we suspect there are other in-
termediate encodings that would be fruitful to explore.

One potentially useful source of information would be
the detailed time course of reading, i.e., fixation pat-
terns as a function of time, or at least obtaining in-
formation on the rate at which sentences are read and
when backtracking occurs. In our current experiment,
timing information is recorded only when a sentence
is highlighted; these data are too sparse to provide a

in order to capture critical differences among highlight-
ing patterns. However, we are not convinced that all
critical differences are captured. Consider the follow-
ing sentence from one of the passages in the experi-
ment: Unlike disinfectants, antiseptics are antimicro-
bial chemicals safe for use on living skin or tissues.
Highlights of this sentence in our data set include:

— antiseptics

— antiseptics are antimicrobial chemicals

— antiseptics are antimicrobial chemicals safe for
use on living skin or tissues.

All three of these highlights are treated the same by
the sentence and fragment representations with the bi-
nary encoding, but one might imagine that they pro-
vide different windows into the student’s intentions.

useful representation that can be compared across in-
dividuals.

In order to record better timing information, we have
considered conducting the experiment using a small
screen e-reader (or a small window on a computer mon-
itor) which necessitates scrolling from one paragraph
to the next.
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