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ABSTRACT

Robot system models often have difficulty allowing for di-
rect command over all input degrees of freedom if the system
has a large number of imposed constraints. A snake robot with
more than three links and a nonholonomic wheel on each link
cannot achieve arbitrary configurations in all of its joints simul-
taneously. For such a system, we assume partial command over
a subset of the joints, and allow the rest to evolve according to
kinematic chained and dynamic models. Different combinations
of commanded and passive joints, as well as the presence of dy-
namic elements such as torsional springs, can drastically change
the coupling interactions and stable oscillations of the joints. We
use the oscillation modes that emerge to inform feedback con-
trollers that achieve desired overall locomotion of the robot.

INTRODUCTION

A common design for a multi-link snake robot, for exam-
ple shown in Fig. 1, is to place nonholonomic wheels on each
of the links, ensuring that resultant motion only occurs the body
longitudinal direction. This allows for the development of rel-
atively simple kinematic models that describe the coupling be-
haviors among the joints and the overall locomotion of the robot.
While one often assumes control via motors in each individual
joint, the kinematic models restrict the set of valid input trajec-
tories, prescribing the robot to follow shapes such as a serpenoid
curve [1] in order to avoid singular configurations or those for
which the constraints cannot be satisfied exactly.
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FIGURE 1. A m-LINK NONHOLONOMIC SNAKE ROBOT. THE
COORDINATES (x,y, ) DENOTE THE INERTIAL CONFIGURA-
TION OF THE PROXIMAL LINK, WHICH ALSO HAS BODY VE-
LOCITIES (&,&,,E9). RELATIVE JOINT ANGLES STARTING
FROM THE PROXIMAL LINK ARE DENOTED (q, ..., Op_1).

An early implementation of this system was Hirose’s Active
Cord Mechanism Model 3 [1], for which the author presented
a heuristically derived position controller. Krishnaprasad and
Tsakiris [2] introduced the notion of nonholonomic kinematic
chains, formalizing the snake robot’s configuration as a princi-
pal bundle in which periodic “internal” joint angle trajectories
are lifted via a connection to a geometric phase, or displacement,
in the “external” position variables. Ostrowski and Burdick [3]
considered specific gaits for a three-link robot, including those
that induce “serpentine” and rotation motion.

A branch of later work relevant to this paper focused on de-
veloping feedback controllers for certain gaits and relaxed mech-
anism designs. Prautsch and Mita [4] and Prautsch et al. [5] pro-
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posed a position controller with all joints required to be actuated
and centered about zero, but the gaits could not be applied to
a three-link robot due to singularities. Matsuno and Mogi [6],
Matsuno and Suenaga [7], and Matsuno and Sato [8] developed
the idea of a “redundancy controllable” system and associated
position controllers using both kinematic and dynamic models.
This allowed for a greater variety of gaits and locomotion, but re-
quired the removal of nonholonomic constraints along the mech-
anism where control was to be imposed. Their controllers were
able to actively steer away from singular configurations.

The analysis in this paper considers the full nonholonomic
snake robot with constraints on each link. We first review the
derivation of the kinematic and dynamic models for this sys-
tem. By limiting actuation to two joints and one joint in each
respective case, we describe how singularities and locking behav-
iors arise due to relative phase relationships between the joints.
With oscillatory joint behaviors, we propose preliminary feed-
back controllers on trajectory components that intuitively pro-
duce system locomotion based on geometric phase analysis. Fi-
nally, we consider the addition of torsional springs on passive
joints, allowing for stability and control for the relative phases of
the joints as an extension of our previous work with a dynamic
three-link robot [9, 10].

KINEMATIC MODEL

The system shown in Fig. 1 is a visual representation of
a five-link nonholonomic snake robot. A general m-link robot
simply has the requisite number of links appended or removed
as necessary. Each link has an identical length R and a non-
holonomically constrained wheel at the center. The velocity con-
straints induce locomotion of the overall system when the joints
are actuated and the links are subsequently rotated.

The robot’s configuration is denoted ¢ € Q = G x B, where
the configuration space Q is a product of two distinct subspaces.
For this system, g = (x,y,0)” € G = SE(2) are Lie group vari-
ables specifying the position and orientation of the proximal
link, and the joint angles b = (a,...,0,_1)T € B=T""! de-
scribe the links’ relative orientations to one another. In this paper
links are numbered 1 (proximal) through m (distal) and joints 1
through m — 1, with joint i connecting links i and i + 1.

The kinematics of the system are described by the set of
nonholonomic constraints on the wheels, which prohibit motion
perpendicular to each of the links’ longitudinal directions. They
can be written as m equations of the form

—X;sin@; +y;cos6; =0, @))

where (%;,y;) is the velocity and ; is the inertial orientation of the
ith link. These quantities can be computed recursively in order to
express them as functions of g. Starting with the proximal link,

we have that (x1,y;,0;) = (x,y,0); fori=2,...,m,

0, =06i_1+a_i,

R
Xi =Xj—1+ E(COS 9,'_1 ~+cos 9,'),

R . .
Yi=Yi-1+ E(sme,»,l +5sin6;). )

The constraint equations are symmetric with respect to the
group part G of the configuration, since the kinematics do not
explicitly depend on where the system is positioned or how it is
oriented in space. Q can thus be described formally as a principal
fiber bundle [11] with the fibers G over the base manifold B. In
such a structure, trajectories specified only in the base or shape
space B can be mapped to trajectories in the position space G.

In order to find such a mapping, we can rewrite the con-
straints in a reduced Pfaffian form as

0 (b)& + wy(b)b =0, 3)

where wz € R™3, @, € R™("=1) and & = (&,,,,&p)" are the
fiber velocities of the system expressed in a frame attached to
the proximal link, as shown in Fig. 1. These “body velocities”
can be viewed as a transformation of the inertial group velocities
& = (%,9,0) to the tangent space at the identity element e of G.
This mapping is formally expressed as ¢ = T,L,&, where T,L, is
the lifted left action given by

cos@ —sinf 0
sin@ cos6 0
0 0 1

T,L, =

Typically, one assumes that input commands are sent to the
joint variables b. For a three-link robot (m — 1 = 2), the number
of constraints concides exactly with the dimension of the fiber.
By specifying trajectories in both joint variables, fiber trajecto-
ries are then determined exactly by the constraint equations. For
m > 3, however, each additional joint degree of freedom is added
along with a new constraint on the overall system’s motion. We
can therefore arbitrarily control at most two joint degrees of free-
dom if all the constraints are to hold.

In this section we assume exactly two input degrees of free-
dom at any given time, denoted as b, = (04, ;)T The rest of the
joint variables are denoted b, and evolve passively according to
the constraints. Eq. (3) can then be solved as

& = _A(b)ba
b, = B(b)b.. (4)
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Here we explicitly separate the mappings from b, to & and b,
as A(b) is the local connection form, a base-valued mapping that
lifts trajectories in the base to the fiber. Note that the Jacobian
relationship between the commanded joint velocities b. and the
passive ones l}p takes on a similar linear form. Eq. (4) can be
further simplified into a chained form as follows.

Proposition 1. Suppose that b, = (04, ;)" where i < j. Then

S0, Oy 1y, @1, 0)be, k<

O = 9§ fi( O, Qiv1ye o 01, O)be, k> s (5)
fk((Xi,(XH.],...,(Xj_l,aj)bc, l<k<.]
The kinematics of link k can then be extended from the joint

velocity Q. In particular, the kinematics of the proximal link
(k = 1) can be written as

E=—A(ay,a,...,0j_1,0))b,. (6)

Proof. Due to the recursive nature of how the constraint equa-
tions are defined, one can algebraically show that the constraint
matrices in Eq. (3) have the forms

0 1 0
—sinog cos 0] flar)
w; = —Sil‘l(Otl + 062) cos(oy + o) f(al,ocz)

—sin ():?”;11 (X[) cos (Z;":jl oc,) flar,...,0m—1)

0 0 0 0

R/2 0 0 0

flon) R/2 o - 0

D= flag,03) floz) R/2 :
i . . 0

f(am.—l) R/2

f(az,..:,am_1> f(OC3,....,OCm_1)

The kth line of either matrix, which corresponds to the kth
constraint equation, only has dependencies on the joint angles
ai,...,0 1. Furthermore, the first j 4 1 lines of the matrices
yield j+ 1 independent equations. These equations are linear
in the body velocities (&, &, &) as well as the joint velocities
(¢u,...,0;). Given that we have command over two of them,
this leaves us with j+ 1 unknown velocity quantities (three fibers
plus j — 2 joints), which can be linearly solved.

We now have a solution for the joint velocities ¢y with k < j.
The kinematic maps for these solutions have dependencies from

o4 to ¢ only, since no equations past the first j+ 1 rows of the
constraint matrices are used. This thus proves Eq. (6). We can
now solve for the joint velocities k > j by successively using
each of the constraint equations in order starting from row j +2
of the constraint matrices. Each equation has dependencies up to
oy and introduces one unknown joint velocity ¢, which can be
solved since the previous velocities are already known.
We now know that the kinematics must be of the form

ak{fk(a177a])b67 k<]a (7)

fk(al,...,ak)bc, k> ]

A symmetry argument can be applied. Our choices of the prox-
imal link and the joint ¢ are arbitrarily defined, with the physi-
cal kinematics of the system being unchanged if we had instead
chosen to start ; from the distal link. Therefore, by defining the
constraints relative to that link and going through the same pro-
cedure as above, we would obtain (in the original coordinates)

) ®)

o fk(akw"aamf])bc, k<l,
¢ fk(aia“-vamfl)bc, k>1i.

In order for both Egs. (7) and (8) to simultaneously hold,
the dependencies must only occur in their intersection. In other
words, the function f; has a dependency on oy only if this is true
in both equations. Eq. (5) can then be proved by applying this
observation to each joint velocity in turn.

Adjacent Commanded Joints

Three-Link Robot. In considering the overall locomo-
tion of the multi-link snake robot, we first take the case in
which the two commanded joints are adjacent to each other, i.e.,
be = (@, ;1) Due to the chained form of the kinematics, the
evolution of the passive joint variables increases in complexity as
they get farther away from o; or ;1. We first review previous
work regarding the simplest relevant configuration for this case,
the three-link robot. For this system, one assumes command of
both joint variables ¢ and 05; there are no remaining passive
joints. Then the kinematic mapping for £ can be written as

E=—— 0 0

| B(cos oy +cos(a; — ) B(1+cosay) [dl}
sinay +sin(o; — o) sin o

(45)

©))
where D = sin o + sin(a; — oy) — sin 0. The second row, cor-
responding to &y, is zero since this corresponds to the direction
prohibited by the wheel of the proximal link. Note that Eqn. (9)

also describes the fiber motion of a general m-link robot and is a
reduced form of Eqn. (6). If a; and/or o, are not the commanded
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FIGURE 2. VISUALIZATIONS OF THE x AND 6 COMPO-
NENTS OF THE CONNECTION EXTERIOR DERIVATIVE FOR
THE THREE-LINK SNAKE ROBOT.

joints when m > 3, one can use Eqn. (5) to first solve for these
trajectories in terms of the controlled ones, and then apply Eqn.
(9) to find the overall fiber motion. This is equivalent to solving
Eqns. (5) and (6) simultaneously.

The quantity D is not well defined when ¢ = 0, which cor-
responds to a singular configuration for the system. In this sit-
uation, we no longer have three independent constraints, so that
two of them are insufficient to prescribe the three fiber degrees of
freedom. We emphasize that this artifact does not mean that the
robot is prohibited from being singular; that it arises here simply
means that the kinematic model cannot tell us the fiber displace-
ment of the robot when moving the joint angles into or from this
configuration. A dynamic system model can bypass this problem
if only one joint is commanded instead of two. For general oper-
ation of a multi-link robot with two commanded joint inputs, we
will prefer gaits that avoid this and other singular configurations.

The structure of the Jacobian-like connection form in Eqn.
(9) can be visualized in order to understand the response of &
to input trajectories without regard to time [12]. By integrating
each row of Eqn. (9) over a given joint trajectory, one can ob-
tain a measure of displacement corresponding to the body frame
directions. In the world frame, this measure provides the exact

rotational displacement, i.e., 6= &g for the third row, and an ap-
proximation of the translational component for the first two rows.
Assuming that we have periodic trajectories, or gaits, the integral
can be realized by Stokes’ theorem as

T .
—/0 A(b(r))b(r)dr:—/WA(b)db: —/ﬁdA(b)db.

We can first convert the time integral to a line integral over the
trajectory y : [0,7] — B in the joint space, since the kinematics
are independent of input pacing. The second transformation is to
an area integral over f3, the region of the joint space enclosed by
y. The integrand in the rightmost integral is the exterior deriva-
tive of A and is computed as the curl of A in two dimensions. For
example, the connection exterior derivative of Eqn. (9) has three
components, one for each row j given by

dA;(b) = 9Aj2 ﬂ

ay 1%%)

The magnitudes of the connection exterior derivative over
the joint space are depicted in Fig. 2!, along with a gait trajec-
tory shown as a closed curve on the surfaces. The area integral
over the enclosed region is the geometric phase, a measure of the
expected displacement in the body x and 6 directions (the body
y plot is not shown because it is zero everywhere). The x plot
is positive everywhere, meaning that any closed loop will lead
to net displacement along the &, direction. The 6 plot is anti-
symmetric about ®; = — 0, meaning that gaits symmetric about
this line will yield zero net reorientation while simultaneously
moving the robot forward. Note that the magnitudes in both plots
become unbounded closer to the singular configurations @; = 0.

Locked Passive Joint. Our analysis for a three-link
robot helps us understand the types of gaits that would emerge
for a robot with more than three links, where the commanded
joints are o; and ¢y and the ones on either side of them are
passive. In general, the kinematics of a joint ¢y (or ¢;—1 by
symmetry) for two adjacent commanded joints ¢; and o1 are
given by

. cos(3 0t+2) sin(3 (@1 — Gir2))
Qit2 = — ) i

sin(} (o — 041 cos(50)
. 1 .
sin(5 (0 — 2041 + 04 ;
_ (2( i i+1 l+2))(xi+1 éBH—Z |:.az ] . (10)
1 :
COS(E Oit1 ) i+1

'We plot a scaled arctangent of these functions in order to visualize the singu-
lar portions. Instead of dA (), we plot % arctan(kdA ;(b))), where & is positive.
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FIGURE 3. THE JACOBIAN EXTERIOR DERIVATIVE OF ;.
WHEN o, IS NEAR BUT LESS THAN .

An immediate observation is that o1, = +7 are equilibria,
as (4o is zero at these configurations. This corresponds to the
passive joint rotating all the way around such that link i 42 co-
incides with link i + 1, normally an undesirable behavior. In the
absence of dynamic mechanisms such as a torsional spring hold-
ing ¢4 near zero, we must ensure that the equilibrium at 7 is
unstable, i.e., &> should be negative if o> = m — € and posi-
tive if o0 = —m + €, where € is a small positive number. It can
be shown that Eqn. (10) is simply negated when between the two
cases, so any solution that causes one equilibrium to be unstable
will also be sufficient for the other.

In the same way that we visualize the exterior derivative of
the connection form from Eqn. (9), we can do the same with the
Jacobian B;;, of Eqn. (10). By plotting the magnitude of the
curl of B;;», we can see whether a given combination of ¢; and
¢+1 pushes oo toward or away from £7x. This is shown as the
surface in Fig. 3 for oo = m — &, where € is a small positive
number (again, this would be negated for oz = —7 + €). While
the absolute magnitudes are not important, it is clearly positive
everywhere. Any closed loop that is traversed in a counterclock-
wise direction on the surface will yield a positive net area, push-
ing ¢ yo toward 7. In order to obtain the opposite result, we must
have gaits corresponding to clockwise loops, which integrate to
negative values and push @;4, away from 7. In the o;-o; 11 space,
clockwise loops are those in which ;1| leads o; i.e., their phase
difference is between 0 and 7.

Fig. 4 shows two simulations for a four-link robot verifying
our conclusion. The commanded inputs (dashed lines) are oy =
0.3cos(r)40.4 and 0 = 0.3cos(t+¢) — 0.4, where ¢ = Z in the
first simulation, causing oy to lead ¢, and ¢ = %” in the second,
so that o lags . In the former case, the passive response of o3
(solid line) is pushed away from 7, even though it starts out very

2 - ai (1)
----- - ay(t)
1L — as(t)
A ’\ - ~ ™ N, ’” ’ -
\VAVAW AN AN A / / \\ A
AV WA V) ‘\\1’ ‘\Il‘ ‘\" N/ v . 1% ‘\ ¢
"y ,°, g e ~ Y7
’.l \“ '/\0 i \ N ‘\’30,', \“ 'A:'Q ;I \“50' \ i 60
Y
ONSON NS N NS N N

FIGURE 4. TRAJECTORIES OF COMMANDED INPUTS a; AND
o, AND THE PASSIVE RESPONSE osz. THE INPUTS’ RELATIVE
PHASE DETERMINES THE CONVERGENT BEHAVIOR OF o3.

close to that configuration and is even initially drawn to it before
the end of the first gait cycle. The opposite is true in the second
plot, in which a3 converges to 7 and stays there throughout.

Oscillating Passive Joints. Assuming that ¢;; and o4 |
are prescribed so that the adjacent passive joint o> does not
lock up, a;» will have a steady-state oscillatory response. From
the first plot of Fig. 4, we see that oz converges toward a trajec-
tory that is nearly completely out of phase with 0. This obser-
vation holds exactly if o, intersects ;1 anywhere along its
steady-state trajectory, i.e., &¢i+2> = 11, as Eqn. (10) reduces to
Q12 = —0;+1. This means that the two trajectories are out of
phase with each other.

Based on simulations and a linearization analysis of Eqn.
(10), we make the following observations about the oscillatory
response of @i, due to sinusoidal inputs with the same fre-
quency but possibly different phase. We assume that ¢ is be-
tween 0 and 7 so that ;15 does not end up locking. We also
assume that the magnitues and offsets are such that the two tra-
jectories do not cross to avoid singular configurations.

1. The magnitude of 1, depends on ¢. When the commanded

joints are in-phase, the passive joint has a range of about
A;+A;;1. Otherwise, it is about the same magnitude as the

Copyright © 2017 by ASME



a(t)

06\
0.4 — a(t)
0.2 — ez
‘ P as(t)
1 120 0 14 50 — au(t)
~02¢ as(t)
-0.4
-06

FIGURE5. TRAJECTORIES OF COMMANDED INPUTS o; AND
o, AND THE PASSIVE RESPONSE OF JOINT ANGLES a3 TO o5.

smaller of ¢; and Q1.

2. ;4o operates nearly out of phase to a4, regardless of the
original phase ¢.

3. The offset of o, is closer to that of ¢; than o1, so that
the robot configuration tends toward a “zig-zag” shape.

These observations can be carried over to passive joints be-
yond ;5. Although the kinematics of an arbitrary joint o; be-
come increasingly complex and depend on all of the joints pre-
ceding it, the principal response of ¢; is to move “opposite” to
oj—1. Thus, a natural mode of locomotion is that each succes-
sive joint trajectory alternates between the two forms set by the
commanded joints, with slight decays in magnitude, phase, and
offset going down the links. Fig. 5 depicts the trajectories of
three passive joints in response to out-of-phase inputs to a; and
. The first passive joint oz follows a trajectory close to o,
while leading o, by about the same phase that o, leads . The
same statements can be made for a4 and o5, each relative to the
preceding joints. Note that the magnitudes and sinusoidal form
increasingly decay as we move down the chain, since each pas-
sive joint does not perfectly replicate the opposite gait of the pre-
ceding one. A snapshot of the robot’s configuration during these
joint trajectories is shown in Fig. 6. This zig-zag shape is main-
tained throughout the locomotion of the robot.

We can make several statements about the overall locomo-
tion of the robot in the plane as a result of different joint inter-
actions. First, because the kinematics are of a chained form, the
presence of links and passive joints beyond the standard three-
link case does not change the locomotion of the proximal link
if oy and op are the commanded joints. Second, commanding
joints in the interior of the robot, i.e., joints that are neither ;
nor o,_1, is to be avoided in order to prevent an adjacent pas-
sive joint from locking at 7. If ¢ leads @11, ¢ty will lock, as
per our earlier conclusion; if the opposite is true, ;11 leads o
and so a;_; will lock. Finally, the case that is left is if the two
commanded joints are located at the distal links, which can be

FIGURE 6. DEPICTION OF THE NATURAL “ZIG-ZAG” CON-
FIGURATION ACHIEVED BY THE PASSIVE JOINTS (az AND o)
OF A FIVE-LINK SNAKE ROBOT.

trivially solved by applying symmetry to find the joint responses
starting from @,,—; down to ¢.

Non-Adjacent Commanded Joints

The analysis of the previous subsection can be extended to
situations in which the commanded subset of joints is arbitrary.
Whereas having two adjacent controlled joints means that they
have to be either (o, ) or (@1, &y ), making the robot’s lo-
comotion as a whole equivalent to that of a three-link robot, no
such restriction exists when there are passive joints between the
commanded ones. The kinematics of a passive joint ¢ between
two commanded ones ¢;_; and ¢y are given by

o cos(%a,-) sin(%(ai—a,-H)) -
i = i
sin(3 (041 — 204+ 0411)) cos($ati1)
.1 .
sSIn(5 (0 — Qi—1)) . Qi
+ a( 1—))ai+1 = B; L‘x» 1} (11)
cos(5 1) i1

The form of this equation shares some similarities with Eqn.
(10). However, in addition to again having undesired equilib-
ria at o; & 7, it is now also possible for the robot to passively
find itself in a singular configuration if the sine term in the de-
nominator goes to zero. Note that the singularities here are of a
different nature from those of Eqn. (10), which correspond to the
two commanded or adjacent joints having equal values. In that
case, the inputs can directly be chosen to avoid those configura-
tions. Here, in Eqn. (11) a singular configuration is one in which
o = %(ai_l + a;y1), the left-hand side being a quantity that we
do not directly control.

Valid gaits are those that would push ¢; away from the afore-
mentioned value when it is near it. As before, we can visu-
alize the Jacobian B; of Eqn. (11), shown in Fig. 7 for o =
%(ai,l + 0411) — €, where € is again a small positive number.
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FIGURE 7. THE JACOBIAN EXTERIOR DERIVATIVE OF ¢; FOR
Oy & 3 (01 + 0iyp).

Since we would like ¢; to decrease and therefore a net negative
area to be enclosed, a loop lying mostly above the ¢ = 04
line (upper left side of the plot) should run counterclockwise, and
vice-versa for a gait below that line. While the sign of the net en-
closed area may not be clear from inspection alone and require
integration for gaits in which o;_; and ;4 are close in value, a
rule of thumb is that the trajectory whose average value is smaller
should be leading the other.

Fig. 8 shows the joint trajectories for a four-link robot, in
which o and o3 are controlled and @ is passive. In both simu-
lations, o () = 0.3 cos(¢) +0.4 and a3 (¢) = 0.3cos(r +¢) +0.5,
with ¢ = —Z in the first and ¢ = % in the second. In the first
case, the “smaller” «; trajectory leads o3, so that o is not at-
tracted into the singular configuration and instead settles into an
oscillatory trajectory opposite the trajectories on either side of
it. This is consistent with what we found in Fig. 5, in which the
roles of o and a3 are switched but the trajectories remain simi-
lar. However, when a3 is made to lead ¢ in the second plot of
Fig. 8, we have that o is attracted to the value of %(al +o3) at
t = 2.9, at which point the kinematic model becomes infeasible.

If we have a valid gait trajectory that can avoid singular con-
figurations, the general characterizations of the passive joint be-
haviors in the previous subsection can be applied here to inform
a rudimentary feedback controller for locomotion. For example,
suppose that we have a four-link robot in which the two outer
joints @ and o3 are commanded and the inner joint @ is pas-
sive. Since we know that locomotion of the proximal link can be
found from ¢; and oy only (Eqn. (9)), we can achieve desired
and oy trajectories by fixing «; and then “shaping” o, using 0.
The qualitative aspects of a shaping controller are as follows.

1. The phase of ; is approximately the average of the phases
of o and o3, plus an additional 7 offset.

FIGURE 8. TRAJECTORIES OF COMMANDED INPUTS a; AND
o3, AND THE PASSIVE RESPONSE o,. THE INPUTS’ RELATIVE
PHASE DETERMINES THE CONVERGENT BEHAVIOR OF ;.

2. The offset of o, depends on its initial value, but can be
changed by shifting the offset or magnitude of ¢ relative
to ¢ in the opposite direction.

3. The magnitude of , is determined largely by its phase with
respect to the commanded joints. A larger magnitude can be
achieved by scaling a3z proportionally when the trajectories
are close to in-phase.

Given a fixed trajectory ¢ and a desired trajectory for oy,
we can use the above guidelines to impose proportional or more
complex feedback controllers on the parameters of ¢. However,
these controllers do not necessarily always converge, since the
ability to shape the passive joint is rigidly limited by the possi-
bility of hitting singular configurations. For example, the offset
of o may not be so close to the other two trajectories that it in-
tersects them, limiting how much control we have over its mag-
nitude. The robustness and convergence of this or an improved
controller will be considered in future work.

In the simulation of Fig. 9, we have fixed oy (¢), but we de-
sire 0 () to be farther away from the origin with an offset a; and
a phase ¢,. We thus set o3(¢) = a; (t —2¢2) +a3(t), where

a3(t) :kp (%((Zl(l‘) —Otz(t)) —ad> s

where k), is the controller gain. As can be seen in the top left plot,
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FIGURE 9. USING a3 TO SHAPE o, OVER TIME (TOP LEFT)
AND ACHIEVING A DESIRED TRAJECTORY IN THE -0
SPACE (RIGHT). BOTTOM LEFT: THE ROBOT’S FIBER MOTION.

the effect of the controller is to shrink o3 (green) in magnitude
and shift it downward over time. In response, o (blue) decreases
its offset away from o and o3. The right plot shows a sampling
of the trajectories in o - space, where they are mostly elliptical
loops starting near the ; axis (orange) and then eventually mov-
ing downward toward the o = — o line (blue). Finally, from the
robot’s connection derivative plots of Fig. 2, we know that these
gaits will increase the reorientation of the robot from negative to
zero, which is verified by the bottom left plot of the robot’s fiber
trajectory showing the change in curvature over time. If o, is
further decreased, then the gaits become closer to the negative
regions of dAg (shown as red in Fig. 2), which will cause the
robot’s trajectory to acquire the opposite curvature.

DYNAMIC MODEL

The kinematic model of the m-link robot has the advantage
of being derived solely from the constraints, with each passive
joint described by a first-order differential equation depending
only on the joint angles between it and the commanded ones.
However, this assumes that exactly two joints are commanded;
if instead only one is commanded, then the m constraint equa-
tions are not sufficient to determine the m+ 1 degrees of freedom
(m — 2 passive joints plus three fibers). We have also seen that
purely kinematic trajectories can be susceptible to joint locking,
as well as singular configurations, such that the robot cannot ex-
ecute arbitrary trajectories following the two prescribed inputs.
Therefore, we turn to a full dynamic model in order to under-
stand whether the robot can be designed or controlled in a way
as to avoid these problems.

We assume that each link, indexed by i, has mass M; and in-
ertia J;, in addition to the identical lengths R. Each joint, indexed
by j, also has a mass M; as well as spring constants k;. The
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last parameter allows us to place torsional springs on the passive
joints; we assume that the resting configurations are all ¢¢; = 0.
Now the Lagrangian of the whole system can be written as

. lmfl
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L=

(12)
where (x;,y;) and 6; are the position and orientation of the ith
link defined by Eqn. (2), and (x;,y;) is the position of the jth
joint. If the body velocities & are substituted in for the inertial
fiber velocities, then the Lagrangian can be reduced to a form

1m71

1(b,&,b) = % [ET bT] M (b) [ﬂ -5 Zl kjocﬂ (13)
=

where M(b) is a reduced mass matrix with dependencies on the
system parameters and joint angles only.

The second-order Euler-Lagrange equations of motion can
then be derived, giving us three equations

d al
— | ==—— | = A1) e 4y, (14)
o (95{%9}) (1) g (x.v.0)
and m — 1 equations
d ( dl adl .

Here, g ¢, ¢ and @ ; are the indicated columns of the con-
straint matrices in Eqn. (3), and A(¢) = (A1 (¢),...,Au(2)) is a
horizontal vector of Lagrange multipliers corresponding to each
of the constraints. Simple viscous dissipation terms d;&; can be
appended to the latter equations to ensure stability, where d; are
damping constants. Along with the constraint equations them-
selves, Eqns. (14) and (15) can be integrated in order to find the
dynamic solutions of the robot.

The dynamical equations can be further reduced to the space
of the joint variables only if desired. By solving the constraint
equations along with Eqns. (14) and (15) as a linear system in
the Lagrange multipliers, we can eliminate the A (¢) variables and
obtain a system in b only as

My, (b)b+C(b,b) +K(b) =0. (16)

These equations can then be analyzed for passive joint behaviors
in response to commanded ones, without having to worry directly
about the constraints or the fiber motion of the robot.

Copyright (© 2017 by ASME



FIGURE 10. TOP: o, AND a3 ARE COMPLETELY PASSIVE
JOINTS, SO THAT THEY CAN DRIFT AWAY FROM THE ORIGIN.
BOTTOM: o AND o3 HAVE STABILIZING SPRINGS.

The advantage to working with a dynamic model is that the
robot’s locomotion can be determined if only one joint is com-
manded. If two are commanded, then any resultant trajectories
would ideally be identical to those determined by the kinematic
model, but dynamics allow us to consider additional noise such
as wheel slip close to singular configurations. If the kinematics
are indeed modeled by “soft” rather than “hard” constraints to al-
low for wheel slip on arbitrary links, then it would be possible to
allow for more than three commanded joints. The realization of
soft constraints will be considered in future work; here we extend
our work on a three-link robot with one commanded joint [9, 10]
to a multi-link robot with the same.

In previous work we showed that singular configurations are
not a problem with only one commanded joint; in fact, a natural
response of the passive joint trajectories is such that they oscillate
with the same offset as the commanded one. Since such gaits are
mostly symmetric about the origin of the joint space, this allows
for forward locomotion of the robot without net rotation. If the
passive joints have nonzero spring constants, then these oscilla-
tions are stable. Fig. 10 shows two simulated trajectories, where
04 (t) = 0.3cos(0.5¢). All parameters are assigned to a value of
1 in both, except the spring constant on the passive joints k, and
k3, which are 0 in the first plot. Without stabilizing springs, o
is able to drift away from the origin and would in fact converge
toward 7 if damping were also nonexistent (d, = 0), a situation
detrimental to overall locomotion. In contrast, when k» = 1 the
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FIGURE 11. TOP: FEEDBACK-CONTROLLED TRAJECTORY
OF a; AND PASSIVE RESPONSES OF ap; AND o3. BOTTOM
LEFT: THE TRAJECTORY IN «;-o SPACE. BOTTOM RIGHT: THE
ROBOT’S FIBER TRAJECTORY.

passive joints oscillate around o with roughly equal phases.

Since singular configurations are not a problem, a stabiliz-
ing feedback controller can be more easily defined than in the
kinematic case. First, a frequency sweep of the linearized passive
joint dynamics reveals that they have a characterisic low-pass be-
havior. For lower frequencies of the input o, or higher values of
the spring constants k; (thereby increasing the resonant frequen-
cies), the joint responses have magnitude roughly equal to that of
o and are in-phase with each other. For higher input frequen-
cies or less stiff springs, the joint trajectories become alternately
out-of-phase and start to shrink in magnitude. This information
thus informs selection of the appropriate input frequency for the
desired phase of the passive joints.

If the commanded joint’s offset and magnitude are changed
in a continuous way, the passive joints generally follow those
changes as well. Thus, gaits are roughly centered around o) ~
O ~ -+ = oy,—1. This is sufficient for achieving arbitrary fiber
motions on the plane, since we can use the kinematic model of
geometric phase to approximate gaits that will mainly move the
robot forward in the same body direction (centered about the
origin), or those that turn the robot in a specific direction (off-
setting the gait away from the origin). Feedback controllers, as
described for the kinematic model, can then be imposed on the
magnitude and offset of the input ¢ in order to achieve the same
desired values for the passive joints. The net effect is to shift and
shape the trajectory along the @; = o line in joint space in order
to achieve a desired displacement and reorientation per cycle.

Fig. 11 shows an example of this controller applied to a four-
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link robot. The joint trajectories initially start centered around
0.2 radians, with a magnitude about the same. These are the
loops centered around the second quadrant of the joint space
plot (bottom left). The input frequency was chosen such that the
phase is about a third of a gait cycle, so that the joints are all equal
in phase to each other. As a result, the robot follows a trajectory
of slightly negative curvature and with a small forward displace-
ment per gait cycle (bottom right). It is then desired for the robot
to start turning more sharply in the opposite direction—this cor-
responds to shifting the gait downward to the third quadrant in
o -0 space and increasing its magnitude. As shown in the top
plot, this is achieved by increasing the magnitude and decreasing
the offset of ¢ over time, causing both o and o3 to follow.

This controller design can be applied to robots with an arbi-
trary number of links. The passive joint trajectories will change
since the presence of additional joints down the line couple into
their dynamics. However, the commanded joint can still use
feedback to shape the adjacent joint, followed by the remaining
ones down the chain, with each successive one down the chain
following its predecessor.

CONCLUSIONS AND FUTURE WORK

We have developed and studied kinematic and dynamic
models for a m-link fully nonholonomic snake robot. With the
kinematic model we showed that the joint kinematics take on a
chained form, allowing us to determine gaits with two adjacent
or non-adjacent joints that can avoid locked and singular config-
urations. We also characterized oscillatory modes for the passive
joints that qualitatively inform a class of feedback controllers.
The dynamic model, though more complex, allows for elements
such as stabilizing torsional springs and locomotion of the robot
by actuating only one joint. A feedback controller similar to the
one developed in the kinematic case, but more robust due to the
absence of singularities, was also demonstrated in order to intu-
itively achieve gaits in the joint space. These results were then
discussed in relation to geometric phase analysis for a three-link
robot in order to describe the robot’s motion.

Going forward we would like to find more quantitative re-
lationships among the various joints for both the kinematic and
dynamic models. Although the differential equations cannot be
solved exactly, a major step forward would be to analytically
solve for features such as the phase of a passive joint given a
particular input form. This would then lead to provably stabi-
lizing feedback controllers that converge toward desired trajec-
tories and away from singularities. With the dynamic model, we
also plan to fully characterize the robot’s fiber motion in terms
of all the joints, as the kinematic model that only depends on the
first two proximal joints is only an approximation when they are
not commanded together. Another dynamic aspect that we plan
to explore is that of wheel slip or lateral friction, which would
likely be more faithful to a physical system. By “softening” the
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constraints we can then extend our work to analogous kinematic
systems such as a low or high Reynolds swimmer snake robot.
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