


posed a position controller with all joints required to be actuated

and centered about zero, but the gaits could not be applied to

a three-link robot due to singularities. Matsuno and Mogi [6],

Matsuno and Suenaga [7], and Matsuno and Sato [8] developed

the idea of a “redundancy controllable” system and associated

position controllers using both kinematic and dynamic models.

This allowed for a greater variety of gaits and locomotion, but re-

quired the removal of nonholonomic constraints along the mech-

anism where control was to be imposed. Their controllers were

able to actively steer away from singular configurations.

The analysis in this paper considers the full nonholonomic

snake robot with constraints on each link. We first review the

derivation of the kinematic and dynamic models for this sys-

tem. By limiting actuation to two joints and one joint in each

respective case, we describe how singularities and locking behav-

iors arise due to relative phase relationships between the joints.

With oscillatory joint behaviors, we propose preliminary feed-

back controllers on trajectory components that intuitively pro-

duce system locomotion based on geometric phase analysis. Fi-

nally, we consider the addition of torsional springs on passive

joints, allowing for stability and control for the relative phases of

the joints as an extension of our previous work with a dynamic

three-link robot [9, 10].

KINEMATIC MODEL

The system shown in Fig. 1 is a visual representation of

a five-link nonholonomic snake robot. A general m-link robot

simply has the requisite number of links appended or removed

as necessary. Each link has an identical length R and a non-

holonomically constrained wheel at the center. The velocity con-

straints induce locomotion of the overall system when the joints

are actuated and the links are subsequently rotated.

The robot’s configuration is denoted q ∈ Q = G×B, where

the configuration space Q is a product of two distinct subspaces.

For this system, g = (x,y,θ)T ∈ G = SE(2) are Lie group vari-

ables specifying the position and orientation of the proximal

link, and the joint angles b = (α1, . . . ,αm−1)
T ∈ B = T

m−1 de-

scribe the links’ relative orientations to one another. In this paper

links are numbered 1 (proximal) through m (distal) and joints 1

through m−1, with joint i connecting links i and i+1.

The kinematics of the system are described by the set of

nonholonomic constraints on the wheels, which prohibit motion

perpendicular to each of the links’ longitudinal directions. They

can be written as m equations of the form

−ẋi sinθi + ẏi cosθi = 0, (1)

where (ẋi, ẏi) is the velocity and θi is the inertial orientation of the

ith link. These quantities can be computed recursively in order to

express them as functions of q. Starting with the proximal link,

we have that (x1,y1,θ1) = (x,y,θ); for i = 2, . . . ,m,

θi = θi−1 +αi−1,

xi = xi−1 +
R

2
(cosθi−1 + cosθi),

yi = yi−1 +
R

2
(sinθi−1 + sinθi). (2)

The constraint equations are symmetric with respect to the

group part G of the configuration, since the kinematics do not

explicitly depend on where the system is positioned or how it is

oriented in space. Q can thus be described formally as a principal

fiber bundle [11] with the fibers G over the base manifold B. In

such a structure, trajectories specified only in the base or shape

space B can be mapped to trajectories in the position space G.

In order to find such a mapping, we can rewrite the con-

straints in a reduced Pfaffian form as

ωξ (b)ξ +ωb(b)ḃ = 0, (3)

where ωξ ∈ R
m×3, ωb ∈ R

m×(m−1), and ξ = (ξx,ξy,ξθ )
T are the

fiber velocities of the system expressed in a frame attached to

the proximal link, as shown in Fig. 1. These “body velocities”

can be viewed as a transformation of the inertial group velocities

ġ = (ẋ, ẏ, θ̇) to the tangent space at the identity element e of G.

This mapping is formally expressed as ġ = TeLgξ , where TeLg is

the lifted left action given by

TeLg =





cosθ −sinθ 0

sinθ cosθ 0

0 0 1



 .

Typically, one assumes that input commands are sent to the

joint variables b. For a three-link robot (m−1 = 2), the number

of constraints concides exactly with the dimension of the fiber.

By specifying trajectories in both joint variables, fiber trajecto-

ries are then determined exactly by the constraint equations. For

m > 3, however, each additional joint degree of freedom is added

along with a new constraint on the overall system’s motion. We

can therefore arbitrarily control at most two joint degrees of free-

dom if all the constraints are to hold.

In this section we assume exactly two input degrees of free-

dom at any given time, denoted as bc = (αi,α j)
T . The rest of the

joint variables are denoted bp and evolve passively according to

the constraints. Eq. (3) can then be solved as

ξ =−A(b)ḃc,

ḃp = B(b)ḃc. (4)
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Here we explicitly separate the mappings from ḃc to ξ and ḃp,

as A(b) is the local connection form, a base-valued mapping that

lifts trajectories in the base to the fiber. Note that the Jacobian

relationship between the commanded joint velocities ḃc and the

passive ones ḃp takes on a similar linear form. Eq. (4) can be

further simplified into a chained form as follows.

Proposition 1. Suppose that bc = (αi,α j)
T where i < j. Then

α̇k =











fk(αk,αk+1, . . . ,α j−1,α j)ḃc, k < i;

fk(αi,αi+1, . . . ,αk−1,αk)ḃc, k > j;

fk(αi,αi+1, . . . ,α j−1,α j)ḃc, i < k < j.

(5)

The kinematics of link k can then be extended from the joint

velocity α̇k. In particular, the kinematics of the proximal link

(k = 1) can be written as

ξ =−A(α1,α2, . . . ,α j−1,α j)ḃc. (6)

Proof. Due to the recursive nature of how the constraint equa-

tions are defined, one can algebraically show that the constraint

matrices in Eq. (3) have the forms

ωξ =















0 1 0

−sinα1 cosα1 f (α1)
−sin(α1 +α2) cos(α1 +α2) f (α1,α2)

...
...

...

−sin
(

∑
m−1
l=1 αl

)

cos
(

∑
m−1
l=1 αl

)

f (α1, . . . ,αm−1)















,

ωb =





















0 0 0 · · · 0

R/2 0 0 · · · 0

f (α2) R/2 0 · · · 0

f (α2,α3) f (α3) R/2
. . .

...
...

...
. . .

. . . 0

f (α2, . . . ,αm−1) f (α3, . . . ,αm−1) . . . f (αm−1) R/2





















.

The kth line of either matrix, which corresponds to the kth

constraint equation, only has dependencies on the joint angles

α1, . . . ,αk−1. Furthermore, the first j + 1 lines of the matrices

yield j + 1 independent equations. These equations are linear

in the body velocities (ξx, ξy, ξθ ) as well as the joint velocities

(α̇1, . . . , α̇ j). Given that we have command over two of them,

this leaves us with j+1 unknown velocity quantities (three fibers

plus j−2 joints), which can be linearly solved.

We now have a solution for the joint velocities α̇k with k < j.

The kinematic maps for these solutions have dependencies from

α1 to α j only, since no equations past the first j+ 1 rows of the

constraint matrices are used. This thus proves Eq. (6). We can

now solve for the joint velocities k > j by successively using

each of the constraint equations in order starting from row j+2

of the constraint matrices. Each equation has dependencies up to

αk and introduces one unknown joint velocity α̇k, which can be

solved since the previous velocities are already known.

We now know that the kinematics must be of the form

α̇k =

{

fk(α1, . . . ,α j)ḃc, k < j;

fk(α1, . . . ,αk)ḃc, k > j.
(7)

A symmetry argument can be applied. Our choices of the prox-

imal link and the joint α1 are arbitrarily defined, with the physi-

cal kinematics of the system being unchanged if we had instead

chosen to start α1 from the distal link. Therefore, by defining the

constraints relative to that link and going through the same pro-

cedure as above, we would obtain (in the original coordinates)

α̇k =

{

fk(αk, . . . ,αm−1)ḃc, k < i;

fk(αi, . . . ,αm−1)ḃc, k > i.
(8)

In order for both Eqs. (7) and (8) to simultaneously hold,

the dependencies must only occur in their intersection. In other

words, the function fk has a dependency on αl only if this is true

in both equations. Eq. (5) can then be proved by applying this

observation to each joint velocity in turn.

Adjacent Commanded Joints

Three-Link Robot. In considering the overall locomo-

tion of the multi-link snake robot, we first take the case in

which the two commanded joints are adjacent to each other, i.e.,

bc = (αi,αi+1)
T . Due to the chained form of the kinematics, the

evolution of the passive joint variables increases in complexity as

they get farther away from αi or αi+1. We first review previous

work regarding the simplest relevant configuration for this case,

the three-link robot. For this system, one assumes command of

both joint variables α1 and α2; there are no remaining passive

joints. Then the kinematic mapping for ξ can be written as

ξ =−
1

D





R
2
(cosα1 + cos(α1 −α2))

R
2
(1+ cosα1)

0 0

sinα1 + sin(α1 −α2) sinα1





[

α̇1

α̇2

]

,

(9)

where D = sinα1 + sin(α1 −α2)− sinα2. The second row, cor-

responding to ξy, is zero since this corresponds to the direction

prohibited by the wheel of the proximal link. Note that Eqn. (9)

also describes the fiber motion of a general m-link robot and is a

reduced form of Eqn. (6). If α1 and/or α2 are not the commanded
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link robot. The joint trajectories initially start centered around

0.2 radians, with a magnitude about the same. These are the

loops centered around the second quadrant of the joint space

plot (bottom left). The input frequency was chosen such that the

phase is about a third of a gait cycle, so that the joints are all equal

in phase to each other. As a result, the robot follows a trajectory

of slightly negative curvature and with a small forward displace-

ment per gait cycle (bottom right). It is then desired for the robot

to start turning more sharply in the opposite direction—this cor-

responds to shifting the gait downward to the third quadrant in

α1-α2 space and increasing its magnitude. As shown in the top

plot, this is achieved by increasing the magnitude and decreasing

the offset of α1 over time, causing both α2 and α3 to follow.

This controller design can be applied to robots with an arbi-

trary number of links. The passive joint trajectories will change

since the presence of additional joints down the line couple into

their dynamics. However, the commanded joint can still use

feedback to shape the adjacent joint, followed by the remaining

ones down the chain, with each successive one down the chain

following its predecessor.

CONCLUSIONS AND FUTURE WORK

We have developed and studied kinematic and dynamic

models for a m-link fully nonholonomic snake robot. With the

kinematic model we showed that the joint kinematics take on a

chained form, allowing us to determine gaits with two adjacent

or non-adjacent joints that can avoid locked and singular config-

urations. We also characterized oscillatory modes for the passive

joints that qualitatively inform a class of feedback controllers.

The dynamic model, though more complex, allows for elements

such as stabilizing torsional springs and locomotion of the robot

by actuating only one joint. A feedback controller similar to the

one developed in the kinematic case, but more robust due to the

absence of singularities, was also demonstrated in order to intu-

itively achieve gaits in the joint space. These results were then

discussed in relation to geometric phase analysis for a three-link

robot in order to describe the robot’s motion.

Going forward we would like to find more quantitative re-

lationships among the various joints for both the kinematic and

dynamic models. Although the differential equations cannot be

solved exactly, a major step forward would be to analytically

solve for features such as the phase of a passive joint given a

particular input form. This would then lead to provably stabi-

lizing feedback controllers that converge toward desired trajec-

tories and away from singularities. With the dynamic model, we

also plan to fully characterize the robot’s fiber motion in terms

of all the joints, as the kinematic model that only depends on the

first two proximal joints is only an approximation when they are

not commanded together. Another dynamic aspect that we plan

to explore is that of wheel slip or lateral friction, which would

likely be more faithful to a physical system. By “softening” the

constraints we can then extend our work to analogous kinematic

systems such as a low or high Reynolds swimmer snake robot.
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