2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

Division of Labor: A More Effective Approach to Prefetching

Sushant Kondguli and Michael Huang

Dept. of Electrical and Computer Engineering
University of Rochester
Rochester, NY 14620, USA
{sushant.kondguli, michael.huang} @rochester.edu

Abstract

Prefetching is a central component in most microarchitec-
tures. Many different algorithms have been proposed with
varying degrees of complexity and effectiveness. There are
inherent tradeoffs among various metrics especially when
we try to exploit both simpler access patterns and more
complex ones simultaneously. Hypothetically, therefore, it
is better to have collaboration of sub-components each
specialized in exploiting a different access pattern than to
have a monolithic design trying to have a similar prefetching
scope. In this paper, we present some empirical evidence. We
use a few components dedicated for some simple patterns
such as canonical strided accesses. We show that a com-
posite prefetcher with these components can significantly
out-perform state-of-the-art prefetchers. But more impor-
tantly, the composite prefetcher achieves better performance
through a more limited prefetching scope while attaining a
much higher accuracy. This suggests that the design can be
more readily expanded with additional components targeting
other patterns.

Keywords-Prefetching

I. INTRODUCTION

Prefetching is a tried-and-true mechanism to hide long la-
tencies and thus to reduce the chance of costly pipeline stalls.
Over time, innumerable prefetching algorithms have been
proposed. Fundamentally, they all exploit some predictabil-
ity of the memory access patterns, but they differ quite a
bit in almost every aspect: the specific patterns targeted,
the amount of resources required, accuracy of prefetches,
the percentage of misses eliminated etc. There are usu-
ally some inherent tradeoffs in the design. For instance,
simpler patterns (such as constant-stride accesses) lead to
good prefetch accuracies but may have limited scope'. A
prefetcher is ultimately evaluated by its contribution to
performance. Implicitly, this puts pressure on designers to
broaden prefetch targets.

This work is supported in part by NSF under grants 1514433 and
1533842.

By scope we mean what is being targeted or attempted by the prefetcher.
We will have a more precise definition in Sec. III
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Prefetching scope can be broadened to include variations
of the pattern targeted or more directly by combining
different types of prefetchers. Whatever the approach, in-
creasing scope often leads to reduced accuracies. Inaccurate
prefetches not only slow down other prefetches and demand
accesses but can also pollute the cache and can thus actively
hurt performance. We need to carefully analyze the marginal
effect of expanding scope. As we will show later — and to our
surprise — many state-of-the-art prefetchers that cover vari-
ations of the strided access pattern have poor marginal ben-
efits on these variations. In general, a monolithic prefetcher
with a single target pattern will unlikely achieve broad scope
while maintaining high accuracies. We believe that it is
better in practice to design more than one component within
a composite prefetcher, each specialized for its own focused
prefetching targets. With this division of labor, scope and
accuracy are decoupled. The former is achieved with better
combinations, while the latter, improvement of components.
We will present some analyses in this paper to support this
view.

Designing composite prefetchers requires a different ap-
proach to the analysis of prefetcher performance. Ultimately,
the figure of merit of a product prefetcher is some kind of
cost-benefit ratio. The benefits include cycles saved and the
concomitant energy savings. The costs involve static invest-
ments (logic and storage) and dynamic energy expenditures.
Since the vast majority of prefetchers use relatively simple
automata, the energy cost is almost always outweighed
by the energy savings resulting from successful prefetches
and thus commonly ignored. Consequently, prefetchers are
mostly evaluated and compared by their performance ben-
efits (with some attention to the storage cost induced if
it is non-trivial). While this comparison can show how
individual prefetchers fare relative to each other in their
ultimate figure of merit, it is insufficient to evaluate the
merit of the algorithm as a component or to guide the
selection of components. For example, if a modification
to a prefetcher sacrifices its scope but vastly improves the
accuracy, the modification will fare poorly in the traditional
merit analysis but the design can be an excellent component
in a composite prefetcher. Indeed, in this paper, we make a
case for designing such components with limited prefetching
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scope.

Rather than broadening the scope via more sophisticated
designs to accommodate variations of a basic pattern, we opt
for more focused components that each only handles a more
limited case, but does so with a high accuracy and efficiency.
When used together, these components complement each
other and form a composite prefetcher whose scope is
largely the sum of that of the components’ and an accuracy
that is not intrinsically affected by the expanding scope.
With this division of labor approach, we can lower the
barrier to innovation. Improving the accuracy of existing
components or inventing additional components that expand
scope will slowly but surely increase the performance of
future prefetchers.

II. RELATED WORK

Various prefetching approaches have been proposed over
the years, targeting different types of memory access pat-
terns. Characterizing patterns can be an imprecise endeavor.
An observed pattern can be the result of a simpler underlying
pattern obfuscated due to a number of factors such as
out of order execution, non-linear transformation of the
address and so on. A state machine designed to capture
certain pattern may capture other patterns or false positive
instances. Nevertheless, we can still divide these access
patterns being targeted roughly into four different categories:
regular strided patterns, pointer patterns, irregular patterns,
and region patterns.

Prefetchers targeting regular strided patterns can be as
simple as prefetching the next cache line following the
access of one [15] or could involve identifying unique stride
that separates addresses in a memory stream based on the PC
of the instructions that access them [18] or based on global
order [23]. Using a global history buffer (GHB) [21] helps
in identifying multiple unique strides in an address stream.
GHB, however, requires a lot of storage and variations with
smaller storage costs have been studied [12], [34], [36].

Pointer chasing prefetchers try to predict future accesses
by using hardware/software approaches to predict the ad-
dress being pointed to by the pointers. This can be done
by inserting prefetch instructions via compiler optimiza-
tions [25] or by correlating the data in the data cache with its
address and predicting its likelihood of being a pointer [7].
It has been observed that pointer based prefetching has
poor timeliness [7], [13], [26]. By chaining PC localized
streams Diaz et al. [8] attempt at improving timeliness of
such prefetches.

Irregular memory access pattern based prefetchers target
harder to prefetch addresses by identifying certain key
characteristics of the memory stream [4], [5], [24], [31].
Markov prefetchers [6], [14], [35] predict from an observed
memory sequence, the sets of unique addresses that are
likely to occur in the future. Markov prefetchers require
a lot of storage space, ISB [13] uses translation buffers to
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implement Markov prefetchers in a reduced space. SMS [30]
takes a different approach to identifying irregular streams by
storing the accesses pattern of a page and speculating that
the future reference to another page by the same instruction
can result in a similar access pattern.

VLDP [29] and SPP [17] target both regular and irregular
access patterns. Unlike a regular access pattern prefetcher,
both of these prefetchers try to identify a pattern amongst the
strides of memory accesses. KPC [16] extends the design of
SPP to synergistically integrate cache replacement policies
with prefetching. BOP [20] identifies a best possible offset
that matches the strides of most of the memory accesses in
a phase.

Region prefetchers [9], [33] try to predict a region of
memory that is most likely to have a future access and
prefetch the entire region. Such a prefetcher suffers from
excessive amount of inaccurate prefetches. Controlling the
aggressiveness using different heuristics has been shown to
improve prefetch accuracy and performance [11], [32].

III. BUILDING COMPOSITE PREFETCHERS

Programs have many different data structures and their
memory access patterns change depending on the data struc-
ture and the code. They thus exhibit a variety of memory
access patterns. Prefetchers detect some of these patterns
and make predictions about future accesses. The design of
a prefetcher involves tradeoffs. For instance, targeting more
access patterns may lower the accuracy of the prefetches and
creates more pollutions. To understand the effect of these
tradeoffs in more concrete terms, we take some prefetchers
and quantify two aspects of the design choices: how ambi-
tious the goal is and how well it is achieved.

The first metric measures how much of the miss stream a
prefetcher attempts to cover, or its “ambition”. We purposely
want to separate attempt from how well it is achieved.
Thus we are only concerned with what addresses are being
prefetched and completely ignore whether the prefetch helps
or hurts. We call this metric prefetching scope (or scope
for short), which measures the fraction of footprint at least
attempted by a prefetcher at some point as follows.

Let FP = {A;} be the footprint (of a particular cache
level, the same below), i.e., the set of unique cache line
addresses of misses’ in the baseline system without a
prefetcher. Since not every line is equally important, the
weight factor W; (for cache line A;) is the number of misses
of address A; (over a particular window of observation).
Let PFP be the prefetching footprint (addresses being
prefetched) over the same observation window. The scope
of a prefetcher P over that observation window is defined
as the fraction of F'P covered by PF P, weighted by the

2In all cases, we ignore secondary misses — those with a pending fetch
to the same cache line.



weight factors as shown below.

Zj\AjeFPﬁPFP W;
Zi|Ai€FP Wi

Note here that a line is considered covered as long as the
prefetcher has attempted to prefetch the line (within the
observation window), without regard to the frequency or
utility of the prefetch. In other words, 1 — S(P) shows
how much of the target address space the prefetcher did
not attempt to cover.

The second metric, effective accuracy, measures how
useful each of the issued prefetch is. We define it as the
number of misses that are avoided (as a result of engaging
a prefetcher) divided by the number of prefetches issued.’
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Figure 1. Accuracy vs scope for four different prefetchers.
Each dot in the plots represent one application. Details of
the observation windows are discussed in Sec. V-A. The per-
prefetcher global average (stared circle) is calculated as the
result of one large observation window strung together from
those of the individual applications.

In Figure 1, we show the scope and (effective) accuracy
of three prefetchers (AMPM [12], BOP [20] and SMS [31])
over the entire suite of SPEC 2006 applications.* For a
broad-brushed characterization, we can look at the overall
average. As we go from AMPM to BOP and then to SMS,
the scope increases from 67% to 76% and then to 87%;
but accuracy reduces from 58% to 49% and then to 48%.
The inherent tradeoff between scope and accuracy is clearly
reflected in these statistics. Unfortunately, improving scope
at the cost of reducing accuracy may not yield much ultimate
performance benefit — and it certainly increases the cost of
prefetching.

Given these observations, our intuition is that prefetching
may be better achieved through division of labor, where mul-
tiple components are used (Figure 2). In such a composite
prefetcher, scope can be improved by finding specialized
prefetcher components aiming at those prefetch targets not
already covered by existing components. Under such a
system, the figure of merit for a prefetcher component is no

3There is a commonly used metric of accuracy which measures the
fraction of prefetches issued that are accurate — defined as accessed before
being evicted from the cache. This definition is somewhat optimistic as it
does not take into account misses induced by prefetching. The accuracy
of a prefetcher can be no worse than 0, where the effective accuracy of a
prefetcher can be negative. In our analysis, we found that effective accuracy
is between 62% and 100% of accuracy.

4Note that neither scope nor effective accuracy is a figure of merit. They
are intended to help understand the tradeoffs in prefetcher design in a more
concrete manner.
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longer large scope and accuracy, but just high accuracy (with

a meaningful scope). This is analogous to the human society:

with division of labor, a successful member no longer needs

to excel in a lot of areas but can be specialized in a narrower

domain and still be valuable.
A number of

potential ~ benefits

may derive from

a composite

prefetcher

compared to a PL | P2 | e | P

monolithic design.

Some benefits can

Access Prefetch

Controller

Figure 2. A logical overview of

already ~ be se.en composite prefetchers.
from composite
prefetchers  using

existing algorithms as components, which will be analyzed
later. Other benefits are conjectural and may materialize
over time as designers adopt the approach and come up
with more component designs. We discuss some benefits
below.

1) Efficiency: Most prefetchers need storage and energy
to memorize and analyze addresses to recognized
patterns. With specialized patterns, each component
can maximize storage efficiency. For instance, some
prefetchers memorize spatial patterns. Strided accesses
would be an inefficient use of such storage. In a
composite prefetcher, with appropriate coordination,
each component can ignore addresses known to be as-
sociated with other components. This also minimizes
the chance a prefetcher recognizing false positive
patterns.

Clarity: Different access patterns have different prob-
ability of prediction success. Separately tracking each
pattern allows better decision. For instance, given
limited resource, the system may preferentially handle
requests from some components over others. Given
different success probability, it is also easier to decide
the appropriate prefetch destination.
Flexibility/configurability: Different applications
may have different likelihood of showing certain
patterns. Based on feedback, programs may be
able to adjust the parameters of different prefetch
components, disable certain components, or even
bring their own ad-hoc prefetch logic.

2)

3)

In addition to higher production efficiencies, division of
labor in human society brought increasing specialization and
deep expertise. We hope a similar benefit may follow over
time where component design becomes more sophisticated,
highly accurate, and comprehensive. We believe a future
composite prefetcher will be significantly more capable than
what we can present in this paper. Next, we will discuss a
specific implementation which should be considered only as



a proof-of-concept prototype.

IV. EXAMPLE IMPLEMENTATIONS

Our composite prefetcher consists of a few custom com-
ponents. They target patterns such as strided streams and
pointer traversal. They will be combined with a simple
coordinator to control their runtime action. We will also
experiment with existing (monolithic) prefetchers as com-
ponents.

A. Targeting Strided Streams

Among all the prefetching targets, the canonical strided
streams are perhaps the easiest from the hardware stand-
point. Many prefetchers target these streams either explicitly
or implicitly. However, most of these prefetchers target
variations of the basic pattern. Our component, which we
call T2, only targets canonical streams, by which we mean
those generated from the repetition of a single instruction
within the inner loop. The implementation can be viewed as
going through three high-level steps: @ identifying loops, &
detecting streams associated with the loop, and @ prefetch-
ing.

1) Identifying loops: When execution is broken down
into iterations of loops, canonical strided streams are both
relatively easy to detect and to prefetch. The loop hardware,
therefore, tries to identify inner loops. The general idea is
to capture the “loop branches” which manifest as back-to-
back instances of the same backward branch, with no other
backward branches occurring in between. These branches
then serve to mark the boundaries between iterations of the
same code.

Certain complications prevent these branches from occur-
ring back-to-back. For example, a backward branch within
the loop body can intersperse among instances of the loop
branch. To filter these branches out, we use a loop-branch
register to keep track of both the PC and the target of a
backward branch (Figure 3-a). When a newly encountered
backward branch matches that stored in the loop-branch
register, the loop is identified. This simple heuristic does
not cover all possibilities but works well in typical cases.
Some backward branches are not loop branches. Once the
hardware realizes that, it remembers them in a table to help
reduce the time it takes to identify a stable loop. In our
evaluation we use a Non-Loop PC Table (NLPCT) of 20
entries to store the PC of such branches. If a branch is found
in this table, it is skipped by the loop marker.

2) Strided stream detection: T2 only targets the most
common type of canonical streams: those generated from
the same static instruction inside the innermost loop. This
is mainly achieved using the stride identifier table (SIT).
The basic idea is to keep track of every memory accessing
instruction (using its PC), the address of its last execution
instance (LastAddr in Figure 3-b), and the delta between
the addresses in two consecutive accesses (Delta). When
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the detected delta is stable, we mark the instruction in the
I-cache, so that the issue logic will notify T2 every time it
issues the instruction and T2 can prefetch accordingly.
From this basic idea, there are two modifications. First,
it is common for a number of different memory instruc-
tions to be accessing the same stream. This could be the
result of loop unrolling for example. Instead of tracking
all such instructions, we activate tracking only when an
instruction triggers a primary cache miss (in L1). This is
achieved by labeling a memory instruction in one of four
states in the I-cache: When an I-cache line-fill occurs, all
memory instructions start in state O (unknown). Until the
instruction encounters a primary cache miss, the system
ignores instructions in state 0. When it triggers a primary
miss, it transitions into state 1 (observation). In this state,
every instance of the instruction will cause an update in
SIT. If we see the delta is stable, we move the instruction
to state 2 (strided), otherwise, we label it state 3 (non-
strided). We find that the system is not sensitive to the
criterion of labeling an instruction strided. In this paper,
when we see sixteen consecutive instances of the same delta,
we label the instruction strided. Conversely, when we see
four consecutive instances of changing delta we label the
instruction non-strided. We begin issuing prefetches in state
1 if we have seen four consecutive instances of the same
delta if T2 is not already issuing too many prefetches.

Loop Switch

backward LOOP PC=inst PC
TARGET PC = inst target
- $=0,cnt=0

yes

++

inst P(/S (Target PC,, Loop PC) &
target PC/ (Target PC, Loop PC)
A

NON-LOOP PC TABLE

matched

’ LOOP PC ‘ S ‘ CNT‘TARGET PC‘

not-matched

CNT > MIN_SEG_SIZE }

(@)
lastPref
0xxx

{ insert Loop PC

mPC
0x12840
OxxxX

lastAddr
0x4340

delta
0x40

state
u2
New

SIT
[ox12678 [ ox6840
[ox12574 | ox1384

loopPeriod previterCyle

S4
S3

[oxso
[ oxa0

0x68c0
0xxx

b)

Figure 3. (a)Loop hardware. (b)Stride identifier table.

The second modification is to disambiguate between dif-
ferent call sites. In some loops, two different strided streams
are being accessed. However, both accesses may be done
through function calls. This is especially common when the
code is written in an object-oriented language. Using simple
PC, we can not distinguish between multiple call sites and
would fail to detect strides. A simple fix is to take the PC
and xor it with the top entry of the return address stack
(RAS). We use this modified PC (mPC in Figure 3-b) in the



design.

3) Prefetching: Once a memory instruction is labeled as
strided, the act of calculating future addresses is straight-
forward. Moreover, given the loop hardware, we have a
good estimate on the execution time per iteration. If we
track average memory access time, we can control prefetch
distance. Specifically, the appropriate prefetch distance is
d = AMT[?# where AM AT, m, and T, are average
memory access time, margin constant, and average execution
time per iteration, respectively.

B. Targeting Pointer Chains

Taint P ion Unit
dest 0 |0 (TPU)

21 |2 |1 1 |0

Inst

srcl| src2

{2 1

’ if (PC == stridePC) -> free TPU ] 21 |10
" set bus
lyes [ isTPU | no |
r ro—>L_busy? |
addr, PGl s trained ep Yes| | destPC = tainted load PC
T by P12 ) isStridePC? - X
lastAddr = lastAddr of stridePC
yes lno
no ) > test for self
IsPtrPC? driving load
yesl ldestpc =PC
isStridePC? NO | state | destPC | lastAddr | delta | lastPrefAddr
u2 0x128400 | 0x4340 0x40 | Oxxx
- sS4 0x126788 | 0x6840 0x80 | 0x68c0
is present
in SIT? Stride Identifier Table (SIT)
prefetch‘address mark trained by P1/ ptrPC

Figure 4. P1 Prefetcher.

A second type of access pattern that we target involves
pointer, that is, the address of a later access depends on the
outcome of an earlier one. Earlier prefetcher designs have
targeted such accesses (e.g., [7]), but one challenge is to
achieve timely prefetches. There are two special patterns of
pointer accesses that lend themselves to timely prefetching
with relatively simple finite state machines. For notational
convenience, we call this component P1 (Figure 4).

1) Array of pointers: The first pattern is an offshoot of
the strided access pattern: the address of a later access is
the value from a strided access stream (plus a constant
offset). Figure 5-a shows a real code snippet that generates
this pattern and an illustration of the logical data structure.
The implementation of the prefetcher is straightforward,
especially in the presence of T2.

In the detection phase, we search for load instructions
whose address (transitively) depends on a strided load. To
find out dependent loads of a particular strided memory
instruction 7, we use a simple taint propagation circuit at the
decoder. A bit vector corresponding to all logical registers
will first be cleared. Then a single bit corresponding to the
destination register of instruction ¢ will be set. From then
on, if an instruction has a source register that is tainted/set
in the bit vector, the corresponding bit of its destination
register will be set. Otherwise, the destination register bit
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will be cleared. This process will stop when instruction ¢ is
encountered again. During this process, any load instruction
that is tainted will be a candidate for our pointer access
pattern. Suppose instruction j is such a candidate. We then
check to see if j’s address is always a constant offset from
the value of ¢. This checking process is similar to that
used in detecting constant stride in T2. Specifically, every
iteration, we keep the value of instruction ¢ and calculate
the delta between it and the address of instruction j. If the
delta remains constant for a number of iterations (4 in all
experiments in this paper), we mark ¢ as special strided
pointer instruction in the (expanded) stride identifier table
(SIT) and keep the corresponding delta found (between i’s
value and j’s address).
In the steady

state, when —
instruction A: (xalancbmk) B: (mcf)
. addq r5,-8, 15 Idqg  ri,128(r2)
7 executes, . subg  r1,r22,r1
in addition Idg  r2,0(r5) stq  rl,128(r2)
to the stride . Idg  r2,24(r2)
. Idl r19,44(r2) -
prefetchlng, 9 cmpeq r25,r2,rl
the value of br A bne  rl, B (biased taken)
instruction
i will be

delivered to PI,
which then adds

N A iy

the delta and @ (b
issues  another Figure 5. P1 target access patterns.
prefetch. Note

that once instruction ¢ is identified as a strided pointer
instruction, not just a plain strided instruction any more,
its prefetch distance will be doubled to compensate for the
back-to-back nature of 7 and j.

2) Pointer chains: The second pattern P1 targets is a
more classic pointer-chain pattern as shown in Figure 5-b.
Identifying this pattern is very similar to the tainting-based
approach just discussed: If memory instruction i’s address
register transitively depends on its own destination register
(from the previous iteration) then it forms the pointer-chain
pattern. Prefetching the main list (accessed by instruction 1)
can be thought of as a variation of prefetching for the strided
access: in addition to adding a delta (A,+1 = A, + A),
we need to access the memory (A,11 = M[A, + A)).
This creates two main differences in the design of the finite
state machine (FSM). First, unlike prefetching for strided
accesses, in pointer-chain prefetching, the FSM can only
issue the next prefetch after the previous prefetch returns
the value. So in the initial “catch-up” stage (before reaching
the proper prefetching distance), the FSM for strided access
pattern simply issues, say, one prefetch every cycle. The
FSM for pointer chain will have to wait for the previous
prefetch to return. In the steady state (after reaching the
proper prefetching distance), the value from the previous
prefetch will be stored. The next prefetch will be issued



when the next instance of the triggering instruction executes.

A second difference concerns the correction mechanism.
It is possible that the address stream deviates from the
actual access stream after some iterations. This could be the
result of control flow inside the iteration. For strided access
pattern, the design is largely self-correcting as in the steady
state, the FSM takes the current address and adds proper
adjustments. For pointer-chain, once we are on the wrong
track, it is possible that the FSM will continue to prefetch
along the wrong track and generate only pollution. We see
no such situations in our experiments. We believe this is
an unlikely situation in the real world and any reasonable
solution to prevent continuous pollution is perhaps sufficient.
One solution is to keep one prefetch address in the SIT and
compare it to the actual addresses from upcoming iterations
of the corresponding memory instructions. If no match is
found in a time-out period (say, after m iterations), the state
of the memory instruction can be reset to test for the pointer-
chain pattern again.

C. Targeting High Spatial Locality Streams

Some regions of memory demonstrate sufficiently high
spatial locality that any number of patterns may show good
matching merely due to coincidence. Clearly a high-quality
prefetcher component that matches the underlying access
pattern with high accuracy is still superior to one with lower
accuracy. Until such a high-quality component is invented,
these regions can be targeted by a more simple-minded
design that brings in every line in the vicinity. We call
our implementation of such a “carpet bombing” prefetcher
component C1 (Figure 6).

if (totalR > maxRegion)

D[V pC TotalR | denseR |1 22 oy C1
0 |1 |0x1286A0 |2 2 b. denseR > minDense => densePC
1 o [oox xx x & evict entry
2 |1 |oxi14288 |3 2
™ PC trained [¢29dLPC_
. addr, PC No| byc1?
15 |1 |ox10804C |3 0 primary miss w Yos
; 7]
addr, ID PC bit vector <
(if PC found in IM) (of evicted region) addi T
Region | LRU | Cache line bit vector PC bit vector o No
2! | densepc?
0x1404 | 1011 | 0010101001100100 | 0000001000000101 |
0xA244 | 0010 [ 010111001101 0001 | 0001 000000100000 | Yes
0xD2A0 | 0001 | 0200 000000000000 | 0000010000000000 | F
i s
0x8800 | 1011 | 00100000 01000100 | 0000 0000 1100 0000 egion

Figure 6. C1 Prefetcher.

Fetching an entire region to the cache is effectively
making the cache line longer. In this paper, a region is thus
just a super cache line with 16 constituent cache lines in
them. To track the spatial locality in the region, we use a
Region Monitor (RM), which contains multiple entries (16
in this paper), each tracking a different region. The entry
contains a tag and a cache line bit vector to track each cache
line within the region. On every cache access, if the region
is present in RM, the corresponding bit is set. If the region is
not monitored in RM, an invalid or a victim entry is selected.
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In our design we try to associate a high locality access
stream with instructions. This is facilitated by another struc-
ture called the Instruction Monitor (IM). When we start to
monitor a candidate instruction, a new entry in IM will be
allocated. The entry will remain until a decision is made
about the candidate instruction. Thus there is no eviction
of entries in IM. To tie a monitored instruction with the
region it touches, each entry in RM contains a PC bit vector,
wherein each bit corresponds to one entry in IM. When a
monitored instruction accesses region r, we find out its IM
entry ID (say k); go to the entry corresponding to 7 in RM;
and set the k'" bit in the instruction vector of the entry.
This way, the instruction vector of an entry in RM tells us
which instructions (currently being monitored by IM) have
accessed this region. When the region entry is evicted, we
will update every instruction that has touched this region as
follows. Each entry in IM has two counters: T'otal Regions
and DenseRegions. The former is always incremented; and
the latter only if the evicted region is dense (more than six
bits in its cache line vector are set). When Total Regions
reaches a certain threshold value (4 in this paper), we make
a decision about the instruction (and vacate the entry in IM
for another candidate). If the instruction is found to access
a dense region with a high probability (> 3/4), it is marked
as such. When such instructions execute in the future, C1
will trigger region prefetch.

D. Coordinator Design

In an ideal world, experts possess not only specific
expertise, but also the recognition of its boundaries. If
prefetcher components also clearly recognize their boundary
of effectiveness, the coordinator only needs to aggregate
this knowledge and stratify accesses for each component.
In reality, the design of the coordinator depends a lot on
the availability and idiosyncrasies of the (non-ideal) compo-
nents. A thorough exploration of the topic is premature at
this moment. We discuss two conjectures and how they lead
to a design instance in our current example.

o Expertise can be measured: Even with potentially over-
lapping expertise from different components, we can
measure the effective accuracy of each component and
pick the best performing component for each pattern.

o Patterns are tied to static instructions: If so, at least we
can empirically characterize the prefetch accuracy of a
component for the subset of accesses generated by one
static instruction. This will allow us to empirically and
probabilistically establish a reasonable division of labor
based on static instructions.

Note that these conjectural principles only suggest that a
first-effort coordinator can be constructed. There are most
certainly issues that need investigations. At the same time,
the coordinator also present new optimization opportunities.
For instance, different components may demonstrate differ-
ent prefetching accuracies and cache pollution. In a shared-
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Figure 7. A schematic of the proposed composite prefetcher.

cache environment, the competition for shared resources
expands to include prefetches from different threads. The
coordinators should take all these factors into account and
adjust various parameters of prefetching such as the aggres-
siveness of prefetching and the destination cache level of the
prefetches.

In our example implementation, the coordinator of our
three components is straightforward. Both T2 and P1 are
already instructions based. Generally speaking, they only
identify instructions they can handle and achieve good
results. In other words, they recognize the boundary of
their expertise, which makes division of labor easy. Thus
our controller is a hardwired decision logic that presents a
memory instruction to each component in turn. Since T2
targets more cases, we start with T2; and try P1 when T2
does not handle it; and finally try C1. In other words, this
particular controller uses no additional storage and just com-
binational logic to steer accesses to different components as
shown in Figure 7. Finally, for both T2 and P1, the high
accuracy warrants prefetching all the way to L1 while the
lower accuracy of C1 suggests that L2 is a more appropriate
target. This is the policy the coordinator implements.

E. Existing Prefetchers as Components

The ultimate merit of a composite prefetcher clearly
depends on the quality of its underlying components. While
it takes further explorations to develop these components,
existing prefetchers can also serve as ready-made compo-
nents. However, as components, they are far from ideal,
especially the typical pattern-based prefetchers. The reason
is two-fold.

First, a typical pattern-based prefetcher derives significant
results from prefetching canonical streams. As we will show
later, we find T2 to be a much more compelling component
for canonical streams. Thus, when we use existing prefetch-
ers alongside T2, we are really using them beyond the core
competency.

Second, their prefetching beyond canonical strided
streams is usually not carefully optimized (if at all). Indeed,
there may not even be a simple, coherent pattern of accesses
(beyond canonical strided streams) that the prefetcher cap-
tures well. When we use a number of existing prefetchers
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simultaneously, the challenge at the coordinator level is
significant: it is hard to tell who should get the job. If we
blindly allow all to try, there is a higher chance that some
prefetchers will get the right prefetch, but there is perhaps
a much higher degree of pollution to offset and even negate
the benefit.

It is worth repeating the emphasis: we advocate a dif-
ferent way of building prefetchers and existing monolithic
prefetchers are decidedly poor examples of prefetcher com-
ponents. Using them as a component is in general inefficient
and brings in extra design challenges. On the other hand,
they point to possible future target patterns.

In our experiments making use of existing prefetch-
ers as components, we use the following heuristics for
the coordinator. First, we want to identify the component
most suitable to a particular access pattern to handle it.
Second, once a component is identified, relevant accesses
are filtered out from other components so as to minimize
erroneous prefetches. In our experimental setup, we find our
three components to have higher accuracies than monolithic
prefetchers we experimented with. The coordinator thus only
pass on accesses from instructions not recognized by T2,
P1, or C1 to other components. When there are more than
one other components, we first figure out the appropriate
component to handle the access pattern from a particular
memory instruction as follows. We distribute the accesses
in a round robin fashion to each component. The prefetched
lines will be tagged by the identity of the component issuing
the prefetch. When a demand access hits a prefetched line,
we will use the component that brought in the line to handle
the instruction going forward.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

To quantitatively analyze the behavior of various prefetch-
ers, we use an execution-driven simulator gem5 [3]. Table I
summarizes the configuration for the tested systems. We
perform experimental analyses on a diverse set of work-
loads, including SPEC CPU2006 benchmark suite (reference
input), a graph application suite (CRONO [1], using graph
input data structures from google, amazon, twitter, math-
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Figure 8. Comparison of speedup of individual prefetchers. Applications are sorted in increasing average performance gain from

all prefetchers. Note that the vertical axis is in log scale.

overflow, and california road-networks), embedded applica-
tions (STARBENCH [2] with large inputs), and scientific
workloads (NPB using C class workloads). We use individ-
ual applications in a single-core environment and 4-thread
mixes randomly drawn from the above suites for a 4-core
environment. To reduce the simulation time we generate five
simpoints [28] per benchmark, each with an interval of 10M
instructions. All the results reported are obtained from these
simpoints.

Core Parameters: 1-4 Cores, 000, 4-wide, 3.0GHz, 192 ROB, 96
LSQ, 128INT/128FP PRF, 4INT/ 2MEM/ 4FP FUs, L-Tage (1+12
Components + 256-Entry Loop Predictor [27]), 4K Entry BTB,
32-entry RAS, 15 cycle branch miss penalty

Private L1: Split I/D, 64KB, 4-way, 64B blocks, 3ports, Ins,
32MSHRs, LRU

Private L2: 256kB, 8-way, 2 ports, 3ns, 32MSHRs, LRU
Shared L3: 2MB/Core, 16-way, 12ns, LRU

Main Memory: 4GB, DDR3 1600MHz, 2 channels, 2
ranks/channel, 8 banks/rank, trcp=13.75ns, tras=35ns,
tp aw=30ns, tyyr=7.5ns, tgp p=13.75ns

Table I. Processor Configuration.

GHB- 4KB | 256 Entry GHB, 256 Entry Index Table

PC/DC [22]

SPP [17] SKB | 256 Entry ST, 512 Entry PT, 1024 Entry PF,
8 Entry GHR

VLDP [29] | 3.25KB | 64 Entry DHB, 128 Entry DPT, 128 Entry
OPT

BOP [20] 4KB 1K Entry RR Table, 1Kb Prefetch bits

FDP [32] 2.5KB 1Kb Tag Array, 8Kb Bloom Filter, 64
streams

SMS [31] 12KB | 64 Entry AT, 32 Entry FR, 512 Entry PHT,
1 PR

AMPM [12] 4KB | 128 Access Maps, 256b per Map

T2 2.3KB 32 Entry SIT, 2KB state bits in I-cache and
LH (1 Entry LR and 16 Entry NLPCT)

P1 1.07KB 1Entry PtrPC, 8 Entry SIT, TPU(64bits),
1KB state bits

Cl 1.2KB | 16Entry IM (640 bits), 16 Entry RM (1248
bits), 1KB state bits

TPC 457KB | T2 + P1 +Cl1

Table II. Storage cost of evaluated prefetchers.

B. Overall Effect of the Example Implementation

The main conjecture of this paper is that through proper
division of labor among prefetching components, we can
build composite prefetchers that are more efficient and
more effective than conventional monolithic prefetchers. We
have yet to fully explore the design space of composite
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prefetchers. The design used in this paper is thus but an
example of a potentially very diverse design space.

We first discuss the bottom-line result: can composite
prefetchers be more effective and efficient. This configu-
ration takes the three components discussed in Sec. IV: T2,
P1, and C1. For notational convenience, we will refer to
this prefetcher as TPC for short. For comparison, a number
of commonly used or recent prefetchers (GHB-PC/DC [22],
FDP [32], VLDP [29], SPP [17], BOP [20], AMPM [12],
and SMS [30]) are also included. The configurations of all
these are specified in Table II. Note that with the exception
of SMS, the tested prefetchers all use a small amount of
storage and their performance are insensitive to additional
storage. We first focus on SPEC result as it is the most
commonly used suite to evaluate prefetcher designs. We
can see that our simulated performance of the comparison
prefetchers show broad agreement with published results.

Effectiveness: Figure 8 shows the speedups of TPC
and monolithic prefetchers over a baseline microarchitecture
(without prefetching) for the entire suite of benchmarks. The
first thing to note from the figure is that TPC is noticeably
more effective than the state-of-the-art monolithic prefetch-
ers. The geometric mean speedup of TPC is 1.41, compared
to 1.21 to 1.33 for monolithic designs. In other words, TPC
is 6% faster than its nearest competitor. Secondly, TPC is
broadly effective. It is the best-performing prefetcher in 11
out of 21 benchmarks and performs within 5% of the best
performing prefetcher for the rest of the benchmarks.

[Em ss T GuBPCDC mem foP B AP mem vior T S mm nor =1 vec]

Em BN

Figure 9. Comparison of normalized memory traffic of
individual prefetchers. We show the suite-wide geometric
mean as bars and the range of all applications as “I-beams”
on top of the bar.

Efficiency: Figure 9 compares the total memory traf-
fic of the system under different prefetchers. For each
benchmark, we normalize the traffic to that of the baseline
system without prefetching. On average, memory traffic
overhead under TPC is 6%, the least among tested hardware
prefetchers. The next best-performing prefetcher (BOP) has
an overhead of 12%. To put this into perspectives, even
in a decoupled look-ahead system with a dedicated, full-
custom look-ahead thread, there is a traffic overhead of about
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4% [10], [19].

Different workloads: Next we broaden the testing
benchmarks, which include running application mixes in a
multicore environment, where the speedup is measured as
weighted speedup for each application. With these new tests,
the general conclusion remains the same. As summarized
in Figure 11, TPC consistently outperforms its competitors,
albeit with varying effectiveness. Taking the geometric mean
result of all 68 workloads, TPC achieves a speedup of 1.39
compared to 1.22-1.31 for the other seven prefetchers.

BN SMS [ GHBPC/DC WM FDP ] AMPM  WEN VIDP [ SPP NN BOP [ TPC
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Figure 11. Comparison of speedup of individual prefetchers
with different benchmark suites.

C. In-depth Analysis

To sum, our composite prefetcher TPC obtains noticeably
better performance compared to the state-of-the-art mono-
lithic prefetchers while generating less traffic. While we
certainly believe this particular design is worth considering
by processor designers, the central argument of this paper is
rather on the design methodology. Specifically, as conven-
tional prefetcher design matures, it is increasingly difficult
to simultaneously improve prefetching scope and accuracy
with a single idea. We believe it is a better practice to
decouple the goals of improving each and design composite
prefetchers with multiple specialized components. With such
a methodology, we lower the entry barrier of new ideas. In
the following, we will perform a number of experiments to
show some supporting evidence for this view.

1) Coverage, accuracy, and scope: As discussed in
Sec. III, we use scope to quantify a prefetcher’s attempt
without considering its actual achieved result. We use effec-
tive accuracy to fully account for the pollution of prefetches.
In Figure 10, we plot the effective accuracy of L1 cache °
and scope for every benchmark under every prefetcher.

SNote that many prefetchers are not designed to prefetch into L1. But
in almost all designs, the version prefetching into L1 is (slightly) better
in overall speed than prefetching into L2. We will discuss this point more
later.
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In the figure, each box shows one prefetcher. Within the
box, each dot represents the result of a benchmark. To get
a suite-wide average, we calculate weighted-average from
each benchmark, with the miss per kilo instruction (MPKI)
as the weight. This way, applications with more misses are
given more weight in evaluating prefetcher behavior. To
show the weight visually, the area of each dot is proportional
to the weight.

The first thing to note is the sheer range of accuracy in
essentially all monolithic prefetchers. The worst-performing
application for each monolithic prefetcher achieves an ef-
fective accuracy between 7% and 23%. On average, the
effective accuracy of the monolithic prefetchers ranges from
45% to 69%. In contrast, TPC has a much more limited
range, with the worst application having an effective accu-
racy of 49% and the global average is 82%. To see this
a bit better, we summarize the global average of effective
accuracy of each prefetcher in Figure 12. For TPC, we
show the effect as we add one component after another.
Similar to effective accuracy, we define effective coverage
as the percentage reduction of misses as a result of using
a prefetcher. We show effective accuracy and coverage for
both L1 and L2 caches. We see that the effective coverage of
TPC is significantly better than monolithic prefetchers in the
L1 cache. The difference is much smaller in the L2 cache.
Despite issuing fewer prefetches, TPC has higher effective
coverage. This is because of better accuracies.
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Figure 12. Effective accuracy and coverage vs scope for dif-
ferent prefetchers at L1 and L2 caches. Monolithic prefetch-
ers are shown in solid dots. Composite prefetcher TPC’s
result is shown in hollow circles from left to right as we
incrementally turn on T2, P1, and C1 components.

Intuitively, as we increase the scope, we are facing more
difficult targets, which lowers the effective accuracy. This in-
tuition largely agrees with empirical results. For TPC, as we
go from strided stream, to pointer chasing, to high locality
streams, the accuracy of prefetches issued understandably
drops. In monolithic prefetchers, those with a high scope
tend to have a lower effective accuracy. The line in the figure
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shows the result of linear regression. As we increase the
scope, some of the drop in accuracy may be inevitable. But
for the current target, there is an accuracy gap between TPC
and the monolithic prefetchers.

To understand this accuracy gap better, we divide all
accesses subjectively into three categories with increasing
difficulty of prefetch and see the accuracies in each category.
We call these categories low-, mid-, and high-hanging fruit
(LHF, MHF, and HHF for short). They correspond to strided
accesses, non-strided accesses with high spatial locality, and
everything else. Note that the division is done offline to have
a better approximation to “ground truth”. Nevertheless, it is
still a somewhat subjective division. Every prefetch issued
is labeled as one of the categories.

To properly account for overall impact of each prefetcher’s
effort in these categories, we follow every prefetch and try to
account for its pollution impact. Specifically, any prefetched
line is marked. If it serves an on-demand access later, the
line earns a positive credit. If it causes an additional miss,
then it earns a negative credit. We maintain an additional set
of cache tags, which track the alternative reality where no
prefetch is issued. When an access misses in the cache but
finds its tag in the alternative-reality cache tags, we have a
prefetching-induced miss. In this case, one negative credit is
equally divided among the prefetched lines currently in the
set.

Figure 13 shows the results of this analysis. Several
observations can be made about these results:

1) We can see that for most prefetchers, the vast ma-
jority of prefetches belong to LHF (canonical strided
streams). Having a higher accuracy can be an impor-
tant factor in the overall performance of the prefetcher.
In this seemingly simple category, there is still sub-
stantial variation across prefetcher as well as applica-
tions, suggesting potential optimization opportunities.
For this category of targets, T2 offers noticeably
better accuracies and is a compelling component for
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a composite prefetcher.

Many stride prefetchers are designed to capture varia-
tions of canonical strided streams. Whether the design
actually does a good job capturing these variations
remains unclear. We can see that the almost all
monolithic prefetchers register a very high scope in
the MHF category. While they do show reasonably
good effective accuracies (between 32% and 56%
on average, Cl’s effective accuracy is 61%, which
is noticeably better. In other words, to explain the
access behavior, Cl’s access pattern is arguably a
better hypothesis than other patterns targeted in those
prefetchers.

Finally, HHF is indeed a more challenging category.
While for LHF all application-prefetcher pairs show
positive effective accuracy, and for MHF, only a few
points show up in the negative range for effective
accuracy, for HHF, there are many more points. In
other words, for all monolithic prefetchers, there
are often many applications, where on the balance,
the prefetches issued for this category are counter-
productive. Indeed, some points hover around -1 ef-
fective accuracy, which means for those cases, almost
every single prefetch in this category is harmful —
not just useless! The overall average is only 38% for
the best monolithic prefetcher. P1, in contrast, has a
comparatively higher effective accuracy 86%. On the
other hand, its scope is relatively limited.

2)

3)

Note that not only do incorrect prefetches hurt perfor-
mance, they also present a number of other challenges in
a monolithic prefetcher. First, there is the subtle impact
of increasing design efforts. When designing a monolithic
prefetcher, results from these categories are lumped together,
making it hard to isolate the reason for lower accuracies.

Second, consider a multicore environment where both
cache space and memory bandwidth could be precious re-
sources. Issuing highly speculative prefetches simply should



not be a local decision. Take their HHF performance for
example, if we take the monolithic prefetcher with the
lowest average effective accuracy of 8%, it suggests that
for every 12 prefetches issued in this category, only one
miss is avoided. Yet, these highly inefficient prefetches are
distributed among all other prefetches, making it hard to
make judicious global tradeoffs.

By separating the prefetch of different patterns into differ-
ent components, it is much easier to attribute problems to a
particular component. It makes improving the design easier
as we can add components to increase scope and upgrade
individual components to improve accuracy. This also makes
it easier to perform high-level control dynamically in shared-
resource environments. Though this is largely outside the
scope of this paper, we note the following result. We change
the memory controller such that when it is forced to drop a
request, (when the queue fills up) it chooses low-probability
prefetches (in our case from the C1 component). Compared
to the default option where the memory controller randomly
drops prefetches, this change alone accounts for an average
of 6% performance gain in a multicore enviroment.

2) Existing prefetchers as components: As discussed
in Sec. IV-E, future designs of components will improve
the overall capability of a composite prefetcher. Existing
prefetchers serve as possible examples, though they are
far from ideal. If an existing prefetcher design has better
accuracies than one of our components in its scope of
prefetch, we can replace the component. If the design covers
additional scope that we do not cover, then they can serve
as an additional component. Given the set of prefetchers we
have experimented, we have no example of the former case,
but almost all designs offer some additional scope. Here we
take a few examples: VLDP, SPP, FDP, and SMS.

Adding these components all contribute to a small perfor-
mance improvement, which we will show in more detail later
in Figure 15. But first, we highlight one underlying benefit of
the overall division-of-labor approach. And that is efficiency.
Each of these existing prefetchers use some storage to
track access patterns in order to generate prefetch. Through
division of labor, when we use them as a component, they
are only focusing on the prefetching scope beyond what we
already covered with TPC. This frees up some resources
and in theory can make the design work better. Figure 14
illustrates this effect.

In this figure, we zoom into the region TPC does not
cover. We observe the effective accuracy and scope of these
prefetchers in this region in two states: working alone or
as an additional component to TPC. In all cases, there is
an improvement in effective accuracy when the prefetcher
is used as a component as indicated by the arrows. In fact,
when used as standalone prefetchers, in each case, many
applications have an overall negative accuracy in this re-
gion. When used as components, all accuracies are positive.
Overall, the improvement is clearly noticeable. For instance,
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in SMS, the effective accuracy is 43% as a component
compared to 27% of a standalone prefetcher. This example
shows that division of labor can already help a somewhat
general-purpose design do its job better. We conjecture that
if the design is further specialized to purposefully target the
region of interest, the benefit will be even more pronounced.
Finally, there is an improvement in scope as well, but the
magnitude is too small to be noticed.

3) Division of labor and stratification: An important
point of forming a composite prefetcher is that through
division of labor, each component can focus on its strengths.
This is different from having multiple prefetchers working in
parallel (or shunting). Though they both increase prefetching
scope, the latter has overlapping efforts instead of a division
of labor. To see the difference, we compare compositing with
shunting, where components are unaware of each other.

\- Shunting

VLDP SPP GHB SMS

Figure 15. The effect of shunting vs compositing an existing
prefetcher with TPC.
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In Figure 15, we compare the performance impact of
compositing and shunting, both using the same components
TPC and the existing prefetchers VLDP, SPP, FDP, and SMS.
We normalize all performance to that of using TPC alone.
We show the suite-wide average as bars and the range of all
applications as “I-beams” on top of the bar. The difference is
clear and similar across all experiments. When compositing
an existing prefetcher with TPC, the performance is never
worse than TPC alone and on average somewhat better than
TPC by 3-8%. On the other hand, if we shunt the two
prefetchers, the result is almost always worse than having
TPC alone. On average, it is clearly worse (by 1-6%). The
division of labor is performed by the coordinator, which
implicitly depends on the knowledge of each component’s
expected accuracy. In a shared-resource environment, this
knowledge can help improve resource utilization. Even



within a single thread context, this knowledge can help too,
for instance, in deciding prefetch destination.

As discussed earlier, in monolithic prefetchers we used in
this paper, we prefetch to L1 cache. This is after verifying
that for most prefetchers, on average, it is better than
prefetching only into L2. However, if we stratify the accesses
into LHF, MHEF, and HHF, we can make individual decisions
about prefetch destination. We found that LHF usually has
sufficiently high prefetch accuracy for all prefetchers and
on average benefits from prefetching into L1. For the rest,
prefetching into L2 is better on average. Figure 16 shows
the effect in more detail. Unfortunately for the monolithic
prefetchers, the stratification of accesses into LHF, MHF,
and HHF is only an analysis mechanism similar to having an
oracle. In a real implementation, there is no such information
to help decide prefetch destination. In TPC, the components
naturally performs a stratification (which is reasonably ac-
curate) and we can thus decide prefetch destination based
on which component issues the prefetch.

\- 2 3L -LlLZ‘
a3
3207 TTTTTTT TTTTTT
Ql
wn
SMS  GHB  FDP AMPM VLDP  SPP  BOP  TPC

Figure 16. Effect of different prefetch destination. From left
to right, the bars show the average speedup when the prefetch
destination is L2, L1, and when it depends on the category
of the access. The I-beam on each bar shows the range of
speedups in the suite.

Recap: Based on the various analyses presented
above, we can gain some insights as to why a composite
prefetcher such as TPC outperforms state-of-the-art mono-
lithic prefetchers and what future work can further improve
such a design.

1) Monolithic prefetchers all have high prefetching
scope. But in the effort to target more, there is a
sacrifice in accuracy.

In contrast, TPC maintains a high accuracy that more
than compensate for a more limited prefetching scope.
Thus, it achieves better performance impact with less
traffic demand.

TPC currently lacks in HHF scope, suggesting more
components targeting this area will be helpful. Ex-
isting prefetchers as a group perform rather poorly
at the moment. However, when they are composited
with TPC, they already improve its effectiveness in
targeting HHEF, thanks to efficiency gained through
proper division of labor. Further specialization is likely
to deliver additional benefits.

2)

3)

VI. CONCLUSION

Prefetchers are important components in modern microar-
chitectures. Most proposals of prefetch designs are what we

94

call monolithic ones, where a single heuristic is used to ob-
serve access patterns and predict future accesses accordingly.
Intuitively, a monolithic design faces inherent tradeoffs in
scope and accuracy and may not be the best approach.
Instead, we believe building composite prefetchers through
division of labor among multiple, specialized prefetcher
components may be a more effective approach.

In this paper, we have shown a composite prefetcher
(called TPC) with three components targeting strided ac-
cesses, a subset of pointer-chasing accesses, and high spatial
locality accesses. Our design is effective, achieving 1.41
speedup compared to that of 1.21-1.33 from an array of
state-of-the-art prefetchers. It is also efficient, increasing
traffic by 6% compared to 8-12% in other prefetchers.
While this design is a high-performance prefetcher, it is
only a proof-of-concept example of a different approach to
prefetcher design. In this approach, we decouple the goals of
high accuracy and scope, achieving the former with focused,
specialized components and the latter with a coordinated
composite of components.

Through in-depth analyses of TPC and conventional
monolithic prefetchers, we gain a number of insights about
the behavior of the prefetchers which can help guide future
work improving designs. First, we can see that TPC achieves
superior result mainly through higher accuracies, thanks
to its components dedicated each to simpler patterns than
conventional designs. The higher accuracies in turn allow
easier division of labor, which makes the overall composite
prefetcher effective. Second, TPC’s effectiveness can be fur-
ther improved by increasing its scope and further improving
the components’ accuracy. Adding existing prefetchers as a
component already shows tangible benefits.
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