
Division of Labor: A More Effective Approach to Prefetching

Sushant Kondguli and Michael Huang

Dept. of Electrical and Computer Engineering

University of Rochester

Rochester, NY 14620, USA

{sushant.kondguli, michael.huang}@rochester.edu

Abstract

Prefetching is a central component in most microarchitec-

tures. Many different algorithms have been proposed with

varying degrees of complexity and effectiveness. There are

inherent tradeoffs among various metrics especially when

we try to exploit both simpler access patterns and more

complex ones simultaneously. Hypothetically, therefore, it

is better to have collaboration of sub-components each

specialized in exploiting a different access pattern than to

have a monolithic design trying to have a similar prefetching

scope. In this paper, we present some empirical evidence. We

use a few components dedicated for some simple patterns

such as canonical strided accesses. We show that a com-

posite prefetcher with these components can significantly

out-perform state-of-the-art prefetchers. But more impor-

tantly, the composite prefetcher achieves better performance

through a more limited prefetching scope while attaining a

much higher accuracy. This suggests that the design can be

more readily expanded with additional components targeting

other patterns.

Keywords-Prefetching

I. INTRODUCTION

Prefetching is a tried-and-true mechanism to hide long la-

tencies and thus to reduce the chance of costly pipeline stalls.

Over time, innumerable prefetching algorithms have been

proposed. Fundamentally, they all exploit some predictabil-

ity of the memory access patterns, but they differ quite a

bit in almost every aspect: the specific patterns targeted,

the amount of resources required, accuracy of prefetches,

the percentage of misses eliminated etc. There are usu-

ally some inherent tradeoffs in the design. For instance,

simpler patterns (such as constant-stride accesses) lead to

good prefetch accuracies but may have limited scope1. A

prefetcher is ultimately evaluated by its contribution to

performance. Implicitly, this puts pressure on designers to

broaden prefetch targets.

This work is supported in part by NSF under grants 1514433 and
1533842.

1By scope we mean what is being targeted or attempted by the prefetcher.
We will have a more precise definition in Sec. III

Prefetching scope can be broadened to include variations

of the pattern targeted or more directly by combining

different types of prefetchers. Whatever the approach, in-

creasing scope often leads to reduced accuracies. Inaccurate

prefetches not only slow down other prefetches and demand

accesses but can also pollute the cache and can thus actively

hurt performance. We need to carefully analyze the marginal

effect of expanding scope. As we will show later – and to our

surprise – many state-of-the-art prefetchers that cover vari-

ations of the strided access pattern have poor marginal ben-

efits on these variations. In general, a monolithic prefetcher

with a single target pattern will unlikely achieve broad scope

while maintaining high accuracies. We believe that it is

better in practice to design more than one component within

a composite prefetcher, each specialized for its own focused

prefetching targets. With this division of labor, scope and

accuracy are decoupled. The former is achieved with better

combinations, while the latter, improvement of components.

We will present some analyses in this paper to support this

view.

Designing composite prefetchers requires a different ap-

proach to the analysis of prefetcher performance. Ultimately,

the figure of merit of a product prefetcher is some kind of

cost-benefit ratio. The benefits include cycles saved and the

concomitant energy savings. The costs involve static invest-

ments (logic and storage) and dynamic energy expenditures.

Since the vast majority of prefetchers use relatively simple

automata, the energy cost is almost always outweighed

by the energy savings resulting from successful prefetches

and thus commonly ignored. Consequently, prefetchers are

mostly evaluated and compared by their performance ben-

efits (with some attention to the storage cost induced if

it is non-trivial). While this comparison can show how

individual prefetchers fare relative to each other in their

ultimate figure of merit, it is insufficient to evaluate the

merit of the algorithm as a component or to guide the

selection of components. For example, if a modification

to a prefetcher sacrifices its scope but vastly improves the

accuracy, the modification will fare poorly in the traditional

merit analysis but the design can be an excellent component

in a composite prefetcher. Indeed, in this paper, we make a

case for designing such components with limited prefetching

83

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00018

scope.

Rather than broadening the scope via more sophisticated

designs to accommodate variations of a basic pattern, we opt

for more focused components that each only handles a more

limited case, but does so with a high accuracy and efficiency.

When used together, these components complement each

other and form a composite prefetcher whose scope is

largely the sum of that of the components’ and an accuracy

that is not intrinsically affected by the expanding scope.

With this division of labor approach, we can lower the

barrier to innovation. Improving the accuracy of existing

components or inventing additional components that expand

scope will slowly but surely increase the performance of

future prefetchers.

II. RELATED WORK

Various prefetching approaches have been proposed over

the years, targeting different types of memory access pat-

terns. Characterizing patterns can be an imprecise endeavor.

An observed pattern can be the result of a simpler underlying

pattern obfuscated due to a number of factors such as

out of order execution, non-linear transformation of the

address and so on. A state machine designed to capture

certain pattern may capture other patterns or false positive

instances. Nevertheless, we can still divide these access

patterns being targeted roughly into four different categories:

regular strided patterns, pointer patterns, irregular patterns,

and region patterns.

Prefetchers targeting regular strided patterns can be as

simple as prefetching the next cache line following the

access of one [15] or could involve identifying unique stride

that separates addresses in a memory stream based on the PC

of the instructions that access them [18] or based on global

order [23]. Using a global history buffer (GHB) [21] helps

in identifying multiple unique strides in an address stream.

GHB, however, requires a lot of storage and variations with

smaller storage costs have been studied [12], [34], [36].

Pointer chasing prefetchers try to predict future accesses

by using hardware/software approaches to predict the ad-

dress being pointed to by the pointers. This can be done

by inserting prefetch instructions via compiler optimiza-

tions [25] or by correlating the data in the data cache with its

address and predicting its likelihood of being a pointer [7].

It has been observed that pointer based prefetching has

poor timeliness [7], [13], [26]. By chaining PC localized

streams Diaz et al. [8] attempt at improving timeliness of

such prefetches.

Irregular memory access pattern based prefetchers target

harder to prefetch addresses by identifying certain key

characteristics of the memory stream [4], [5], [24], [31].

Markov prefetchers [6], [14], [35] predict from an observed

memory sequence, the sets of unique addresses that are

likely to occur in the future. Markov prefetchers require

a lot of storage space, ISB [13] uses translation buffers to

implement Markov prefetchers in a reduced space. SMS [30]

takes a different approach to identifying irregular streams by

storing the accesses pattern of a page and speculating that

the future reference to another page by the same instruction

can result in a similar access pattern.

VLDP [29] and SPP [17] target both regular and irregular

access patterns. Unlike a regular access pattern prefetcher,

both of these prefetchers try to identify a pattern amongst the

strides of memory accesses. KPC [16] extends the design of

SPP to synergistically integrate cache replacement policies

with prefetching. BOP [20] identifies a best possible offset

that matches the strides of most of the memory accesses in

a phase.

Region prefetchers [9], [33] try to predict a region of

memory that is most likely to have a future access and

prefetch the entire region. Such a prefetcher suffers from

excessive amount of inaccurate prefetches. Controlling the

aggressiveness using different heuristics has been shown to

improve prefetch accuracy and performance [11], [32].

III. BUILDING COMPOSITE PREFETCHERS

Programs have many different data structures and their

memory access patterns change depending on the data struc-

ture and the code. They thus exhibit a variety of memory

access patterns. Prefetchers detect some of these patterns

and make predictions about future accesses. The design of

a prefetcher involves tradeoffs. For instance, targeting more

access patterns may lower the accuracy of the prefetches and

creates more pollutions. To understand the effect of these

tradeoffs in more concrete terms, we take some prefetchers

and quantify two aspects of the design choices: how ambi-

tious the goal is and how well it is achieved.

The first metric measures how much of the miss stream a

prefetcher attempts to cover, or its “ambition”. We purposely

want to separate attempt from how well it is achieved.

Thus we are only concerned with what addresses are being

prefetched and completely ignore whether the prefetch helps

or hurts. We call this metric prefetching scope (or scope

for short), which measures the fraction of footprint at least

attempted by a prefetcher at some point as follows.

Let FP = {Ai} be the footprint (of a particular cache

level, the same below), i.e., the set of unique cache line

addresses of misses2 in the baseline system without a

prefetcher. Since not every line is equally important, the

weight factor Wi (for cache line Ai) is the number of misses

of address Ai (over a particular window of observation).

Let PFP be the prefetching footprint (addresses being

prefetched) over the same observation window. The scope

of a prefetcher P over that observation window is defined

as the fraction of FP covered by PFP , weighted by the

2In all cases, we ignore secondary misses – those with a pending fetch
to the same cache line.

84

weight factors as shown below.

S(P) ≡

∑
j|Aj∈FP∩PFP Wj
∑

i|Ai∈FP Wi

Note here that a line is considered covered as long as the

prefetcher has attempted to prefetch the line (within the

observation window), without regard to the frequency or

utility of the prefetch. In other words, 1 − S(P) shows

how much of the target address space the prefetcher did

not attempt to cover.

The second metric, effective accuracy, measures how

useful each of the issued prefetch is. We define it as the

number of misses that are avoided (as a result of engaging

a prefetcher) divided by the number of prefetches issued.3

Figure 1. Accuracy vs scope for four different prefetchers.
Each dot in the plots represent one application. Details of
the observation windows are discussed in Sec. V-A. The per-
prefetcher global average (stared circle) is calculated as the
result of one large observation window strung together from
those of the individual applications.

In Figure 1, we show the scope and (effective) accuracy

of three prefetchers (AMPM [12], BOP [20] and SMS [31])

over the entire suite of SPEC 2006 applications.4 For a

broad-brushed characterization, we can look at the overall

average. As we go from AMPM to BOP and then to SMS,

the scope increases from 67% to 76% and then to 87%;

but accuracy reduces from 58% to 49% and then to 48%.

The inherent tradeoff between scope and accuracy is clearly

reflected in these statistics. Unfortunately, improving scope

at the cost of reducing accuracy may not yield much ultimate

performance benefit – and it certainly increases the cost of

prefetching.

Given these observations, our intuition is that prefetching

may be better achieved through division of labor, where mul-

tiple components are used (Figure 2). In such a composite

prefetcher, scope can be improved by finding specialized

prefetcher components aiming at those prefetch targets not

already covered by existing components. Under such a

system, the figure of merit for a prefetcher component is no

3There is a commonly used metric of accuracy which measures the
fraction of prefetches issued that are accurate – defined as accessed before
being evicted from the cache. This definition is somewhat optimistic as it
does not take into account misses induced by prefetching. The accuracy
of a prefetcher can be no worse than 0, where the effective accuracy of a
prefetcher can be negative. In our analysis, we found that effective accuracy
is between 62% and 100% of accuracy.

4Note that neither scope nor effective accuracy is a figure of merit. They
are intended to help understand the tradeoffs in prefetcher design in a more
concrete manner.

longer large scope and accuracy, but just high accuracy (with

a meaningful scope). This is analogous to the human society:

with division of labor, a successful member no longer needs

to excel in a lot of areas but can be specialized in a narrower

domain and still be valuable.

����������	

�	
�	
�	

Access Prefetch

�
	

Figure 2. A logical overview of
composite prefetchers.

A number of

potential benefits

may derive from

a composite

prefetcher

compared to a

monolithic design.

Some benefits can

already be seen

from composite

prefetchers using

existing algorithms as components, which will be analyzed

later. Other benefits are conjectural and may materialize

over time as designers adopt the approach and come up

with more component designs. We discuss some benefits

below.

1) Efficiency: Most prefetchers need storage and energy

to memorize and analyze addresses to recognized

patterns. With specialized patterns, each component

can maximize storage efficiency. For instance, some

prefetchers memorize spatial patterns. Strided accesses

would be an inefficient use of such storage. In a

composite prefetcher, with appropriate coordination,

each component can ignore addresses known to be as-

sociated with other components. This also minimizes

the chance a prefetcher recognizing false positive

patterns.

2) Clarity: Different access patterns have different prob-

ability of prediction success. Separately tracking each

pattern allows better decision. For instance, given

limited resource, the system may preferentially handle

requests from some components over others. Given

different success probability, it is also easier to decide

the appropriate prefetch destination.

3) Flexibility/configurability: Different applications

may have different likelihood of showing certain

patterns. Based on feedback, programs may be

able to adjust the parameters of different prefetch

components, disable certain components, or even

bring their own ad-hoc prefetch logic.

In addition to higher production efficiencies, division of

labor in human society brought increasing specialization and

deep expertise. We hope a similar benefit may follow over

time where component design becomes more sophisticated,

highly accurate, and comprehensive. We believe a future

composite prefetcher will be significantly more capable than

what we can present in this paper. Next, we will discuss a

specific implementation which should be considered only as

85

a proof-of-concept prototype.

IV. EXAMPLE IMPLEMENTATIONS

Our composite prefetcher consists of a few custom com-

ponents. They target patterns such as strided streams and

pointer traversal. They will be combined with a simple

coordinator to control their runtime action. We will also

experiment with existing (monolithic) prefetchers as com-

ponents.

A. Targeting Strided Streams

Among all the prefetching targets, the canonical strided

streams are perhaps the easiest from the hardware stand-

point. Many prefetchers target these streams either explicitly

or implicitly. However, most of these prefetchers target

variations of the basic pattern. Our component, which we

call T2, only targets canonical streams, by which we mean

those generated from the repetition of a single instruction

within the inner loop. The implementation can be viewed as

going through three high-level steps: � identifying loops, �

detecting streams associated with the loop, and � prefetch-

ing.

1) Identifying loops: When execution is broken down

into iterations of loops, canonical strided streams are both

relatively easy to detect and to prefetch. The loop hardware,

therefore, tries to identify inner loops. The general idea is

to capture the “loop branches” which manifest as back-to-

back instances of the same backward branch, with no other

backward branches occurring in between. These branches

then serve to mark the boundaries between iterations of the

same code.

Certain complications prevent these branches from occur-

ring back-to-back. For example, a backward branch within

the loop body can intersperse among instances of the loop

branch. To filter these branches out, we use a loop-branch

register to keep track of both the PC and the target of a

backward branch (Figure 3-a). When a newly encountered

backward branch matches that stored in the loop-branch

register, the loop is identified. This simple heuristic does

not cover all possibilities but works well in typical cases.

Some backward branches are not loop branches. Once the

hardware realizes that, it remembers them in a table to help

reduce the time it takes to identify a stable loop. In our

evaluation we use a Non-Loop PC Table (NLPCT) of 20

entries to store the PC of such branches. If a branch is found

in this table, it is skipped by the loop marker.

2) Strided stream detection: T2 only targets the most

common type of canonical streams: those generated from

the same static instruction inside the innermost loop. This

is mainly achieved using the stride identifier table (SIT).

The basic idea is to keep track of every memory accessing

instruction (using its PC), the address of its last execution

instance (LastAddr in Figure 3-b), and the delta between

the addresses in two consecutive accesses (Delta). When

the detected delta is stable, we mark the instruction in the

I-cache, so that the issue logic will notify T2 every time it

issues the instruction and T2 can prefetch accordingly.

From this basic idea, there are two modifications. First,

it is common for a number of different memory instruc-

tions to be accessing the same stream. This could be the

result of loop unrolling for example. Instead of tracking

all such instructions, we activate tracking only when an

instruction triggers a primary cache miss (in L1). This is

achieved by labeling a memory instruction in one of four

states in the I-cache: When an I-cache line-fill occurs, all

memory instructions start in state 0 (unknown). Until the

instruction encounters a primary cache miss, the system

ignores instructions in state 0. When it triggers a primary

miss, it transitions into state 1 (observation). In this state,

every instance of the instruction will cause an update in

SIT. If we see the delta is stable, we move the instruction

to state 2 (strided), otherwise, we label it state 3 (non-

strided). We find that the system is not sensitive to the

criterion of labeling an instruction strided. In this paper,

when we see sixteen consecutive instances of the same delta,

we label the instruction strided. Conversely, when we see

four consecutive instances of changing delta we label the

instruction non-strided. We begin issuing prefetches in state

1 if we have seen four consecutive instances of the same

delta if T2 is not already issuing too many prefetches.

������ ��	�
������
� ��
���
����
���

��	 �������	 ������	 ����	 ����	

���	 �����	

���	
��	 �������	 ������	 ����	 ������	

��	 �������	 ������	 ����	 ����	

�����
���� �
�����
	�
��

��������	��	��	�
	

�
�
�
�

�
	�
�
	

�
�
�
	

�
	

�
�
�
�
	�
�
	

����	��	 	!"#$	��	

����
�	��	 	!"#$	$%&'�$	

						�	 	�	(�"$	 �	

������	����	

)*+",-	

.%�/�%&,	

.&%"�0-	
yes

no
 	

m
a

tc
h

e
d

!"#�&$	�**1	��	 ���	2	
��3�
�3��4
	

not-matched

!"#$	��		5	6�%&'�$	��	(�**1	��7	8	

$%&'�$	��		5	6�%&'�$	��	(�**1	��7	

Loop Switch

PC

++

set

(a)

(b)

�	 	�	

Figure 3. (a)Loop hardware. (b)Stride identifier table.

The second modification is to disambiguate between dif-

ferent call sites. In some loops, two different strided streams

are being accessed. However, both accesses may be done

through function calls. This is especially common when the

code is written in an object-oriented language. Using simple

PC, we can not distinguish between multiple call sites and

would fail to detect strides. A simple fix is to take the PC

and xor it with the top entry of the return address stack

(RAS). We use this modified PC (mPC in Figure 3-b) in the

86

design.

3) Prefetching: Once a memory instruction is labeled as

strided, the act of calculating future addresses is straight-

forward. Moreover, given the loop hardware, we have a

good estimate on the execution time per iteration. If we

track average memory access time, we can control prefetch

distance. Specifically, the appropriate prefetch distance is

d = AMAT+m
Titer

where AMAT , m, and Titer are average

memory access time, margin constant, and average execution

time per iteration, respectively.

B. Targeting Pointer Chains

Inst
����	 ����	 ���		

��	 �	 �	

��	 �
��		

�	 �	

�	 �	

�	 �	

��	

��	 �	

��	

addr, PC ��		�
����	

��	���	

���	����	

prefetch address

���	�������	

yes

no

no

	��		���	����	

�������	��
�	

������ �����	� �������	� ������ �����	�
���	�

��	 �����9��	 ��9�9�	 ��9�	 ����	

�9	 ����: ��	 ��:�9�	 ����	 ��:���	

�	����	!���"#��	�
���	$�!�%	

destPC = PC

mark trained by P1/ ptrPC

��	���	

�&���	

Taint Propagation Unit
 (TPU)

yes no

���	��	 '		
��	��	��
�	��	

�
�	(���	 '	 �
�	(���	��	�	������	

����			
��	�)		

��		�&��	

��
��	

set/reset

yes

���	�������	
no

��	$��	''	�	������%	*+	����	���	

��	,�����		

��	�!��	
yes

no

no

yes

yes

Figure 4. P1 Prefetcher.

A second type of access pattern that we target involves

pointer, that is, the address of a later access depends on the

outcome of an earlier one. Earlier prefetcher designs have

targeted such accesses (e.g., [7]), but one challenge is to

achieve timely prefetches. There are two special patterns of

pointer accesses that lend themselves to timely prefetching

with relatively simple finite state machines. For notational

convenience, we call this component P1 (Figure 4).

1) Array of pointers: The first pattern is an offshoot of

the strided access pattern: the address of a later access is

the value from a strided access stream (plus a constant

offset). Figure 5-a shows a real code snippet that generates

this pattern and an illustration of the logical data structure.

The implementation of the prefetcher is straightforward,

especially in the presence of T2.

In the detection phase, we search for load instructions

whose address (transitively) depends on a strided load. To

find out dependent loads of a particular strided memory

instruction i, we use a simple taint propagation circuit at the

decoder. A bit vector corresponding to all logical registers

will first be cleared. Then a single bit corresponding to the

destination register of instruction i will be set. From then

on, if an instruction has a source register that is tainted/set

in the bit vector, the corresponding bit of its destination

register will be set. Otherwise, the destination register bit

will be cleared. This process will stop when instruction i is

encountered again. During this process, any load instruction

that is tainted will be a candidate for our pointer access

pattern. Suppose instruction j is such a candidate. We then

check to see if j’s address is always a constant offset from

the value of i. This checking process is similar to that

used in detecting constant stride in T2. Specifically, every

iteration, we keep the value of instruction i and calculate

the delta between it and the address of instruction j. If the

delta remains constant for a number of iterations (4 in all

experiments in this paper), we mark i as special strided

pointer instruction in the (expanded) stride identifier table

(SIT) and keep the corresponding delta found (between i’s
value and j’s address).

(a) (b)

Figure 5. P1 target access patterns.

In the steady

state, when

instruction

i executes,

in addition

to the stride

prefetching,

the value of

instruction

i will be

delivered to P1,

which then adds

the delta and

issues another

prefetch. Note

that once instruction i is identified as a strided pointer

instruction, not just a plain strided instruction any more,

its prefetch distance will be doubled to compensate for the

back-to-back nature of i and j.

2) Pointer chains: The second pattern P1 targets is a

more classic pointer-chain pattern as shown in Figure 5-b.

Identifying this pattern is very similar to the tainting-based

approach just discussed: If memory instruction i’s address

register transitively depends on its own destination register

(from the previous iteration) then it forms the pointer-chain

pattern. Prefetching the main list (accessed by instruction i)
can be thought of as a variation of prefetching for the strided

access: in addition to adding a delta (An+1 = An + ∆),

we need to access the memory (An+1 = M [An + ∆]).
This creates two main differences in the design of the finite

state machine (FSM). First, unlike prefetching for strided

accesses, in pointer-chain prefetching, the FSM can only

issue the next prefetch after the previous prefetch returns

the value. So in the initial “catch-up” stage (before reaching

the proper prefetching distance), the FSM for strided access

pattern simply issues, say, one prefetch every cycle. The

FSM for pointer chain will have to wait for the previous

prefetch to return. In the steady state (after reaching the

proper prefetching distance), the value from the previous

prefetch will be stored. The next prefetch will be issued

87

when the next instance of the triggering instruction executes.

A second difference concerns the correction mechanism.

It is possible that the address stream deviates from the

actual access stream after some iterations. This could be the

result of control flow inside the iteration. For strided access

pattern, the design is largely self-correcting as in the steady

state, the FSM takes the current address and adds proper

adjustments. For pointer-chain, once we are on the wrong

track, it is possible that the FSM will continue to prefetch

along the wrong track and generate only pollution. We see

no such situations in our experiments. We believe this is

an unlikely situation in the real world and any reasonable

solution to prevent continuous pollution is perhaps sufficient.

One solution is to keep one prefetch address in the SIT and

compare it to the actual addresses from upcoming iterations

of the corresponding memory instructions. If no match is

found in a time-out period (say, after m iterations), the state

of the memory instruction can be reset to test for the pointer-

chain pattern again.

C. Targeting High Spatial Locality Streams

Some regions of memory demonstrate sufficiently high

spatial locality that any number of patterns may show good

matching merely due to coincidence. Clearly a high-quality

prefetcher component that matches the underlying access

pattern with high accuracy is still superior to one with lower

accuracy. Until such a high-quality component is invented,

these regions can be targeted by a more simple-minded

design that brings in every line in the vicinity. We call

our implementation of such a “carpet bombing” prefetcher

component C1 (Figure 6).

��� �� ��� ������� �	��	��

-	 �	 -�����(-	 �	 �	

�	 -	 -����	 ��	 ��	

�	 �	 -�������	 �	 �	

��	 �
�

��	 �	 �������		
	 �	

�	�����
��� ����	����	������	����� ��������	�����

������	 ����	 ����	����	����	����	 ����	����	����	����	

������	 ����	 ����	����	����	����	 ����	����	����	����	

��
���	 ����	 ����	����	����	����	 ����	����	����	����	

��	 �
�

������	 ����	 ����	����	����	����	 ����	����	����	����	

addr, PC

primary miss

	
addr, ID

(if PC found in IM)

PC bit vector

(of evicted region)
�	

�	

�	

addr

 if (totalR > maxRegion)
 a. PC trained by C1
 b. denseR > minDense => densePC
 c. evict entry

�	

addr, PC
�		�������	

��		�	�	No

������	�	

Yes

Yes

��������	

������	

No

N

T
R

A
IN

IN
G

 P
H

A
S

E

Figure 6. C1 Prefetcher.

Fetching an entire region to the cache is effectively

making the cache line longer. In this paper, a region is thus

just a super cache line with 16 constituent cache lines in

them. To track the spatial locality in the region, we use a

Region Monitor (RM), which contains multiple entries (16

in this paper), each tracking a different region. The entry

contains a tag and a cache line bit vector to track each cache

line within the region. On every cache access, if the region

is present in RM, the corresponding bit is set. If the region is

not monitored in RM, an invalid or a victim entry is selected.

In our design we try to associate a high locality access

stream with instructions. This is facilitated by another struc-

ture called the Instruction Monitor (IM). When we start to

monitor a candidate instruction, a new entry in IM will be

allocated. The entry will remain until a decision is made

about the candidate instruction. Thus there is no eviction

of entries in IM. To tie a monitored instruction with the

region it touches, each entry in RM contains a PC bit vector,

wherein each bit corresponds to one entry in IM. When a

monitored instruction accesses region r, we find out its IM

entry ID (say k); go to the entry corresponding to r in RM;

and set the kth bit in the instruction vector of the entry.

This way, the instruction vector of an entry in RM tells us

which instructions (currently being monitored by IM) have

accessed this region. When the region entry is evicted, we

will update every instruction that has touched this region as

follows. Each entry in IM has two counters: TotalRegions
and DenseRegions. The former is always incremented; and

the latter only if the evicted region is dense (more than six

bits in its cache line vector are set). When TotalRegions
reaches a certain threshold value (4 in this paper), we make

a decision about the instruction (and vacate the entry in IM

for another candidate). If the instruction is found to access

a dense region with a high probability (> 3/4), it is marked

as such. When such instructions execute in the future, C1

will trigger region prefetch.

D. Coordinator Design

In an ideal world, experts possess not only specific

expertise, but also the recognition of its boundaries. If

prefetcher components also clearly recognize their boundary

of effectiveness, the coordinator only needs to aggregate

this knowledge and stratify accesses for each component.

In reality, the design of the coordinator depends a lot on

the availability and idiosyncrasies of the (non-ideal) compo-

nents. A thorough exploration of the topic is premature at

this moment. We discuss two conjectures and how they lead

to a design instance in our current example.

• Expertise can be measured: Even with potentially over-

lapping expertise from different components, we can

measure the effective accuracy of each component and

pick the best performing component for each pattern.

• Patterns are tied to static instructions: If so, at least we

can empirically characterize the prefetch accuracy of a

component for the subset of accesses generated by one

static instruction. This will allow us to empirically and

probabilistically establish a reasonable division of labor

based on static instructions.

Note that these conjectural principles only suggest that a

first-effort coordinator can be constructed. There are most

certainly issues that need investigations. At the same time,

the coordinator also present new optimization opportunities.

For instance, different components may demonstrate differ-

ent prefetching accuracies and cache pollution. In a shared-

88

����	

��	

�����		��
�������	

�

	

����	

��	

�

	

�

	

�

	

����	

����	

��	

��	��	

������
����	

��	 �
	�
	

addr, PC ����
��	

�		��	�	
�����������	

No

Yes ����
��	

�		�
�	
��������	

����
��	

�		�
�	
����
�����	

No No

Yes Yes

Yes

No No

Yes

update
PC mask

prefetch address

Yes

Figure 7. A schematic of the proposed composite prefetcher.

cache environment, the competition for shared resources

expands to include prefetches from different threads. The

coordinators should take all these factors into account and

adjust various parameters of prefetching such as the aggres-

siveness of prefetching and the destination cache level of the

prefetches.

In our example implementation, the coordinator of our

three components is straightforward. Both T2 and P1 are

already instructions based. Generally speaking, they only

identify instructions they can handle and achieve good

results. In other words, they recognize the boundary of

their expertise, which makes division of labor easy. Thus

our controller is a hardwired decision logic that presents a

memory instruction to each component in turn. Since T2

targets more cases, we start with T2; and try P1 when T2

does not handle it; and finally try C1. In other words, this

particular controller uses no additional storage and just com-

binational logic to steer accesses to different components as

shown in Figure 7. Finally, for both T2 and P1, the high

accuracy warrants prefetching all the way to L1 while the

lower accuracy of C1 suggests that L2 is a more appropriate

target. This is the policy the coordinator implements.

E. Existing Prefetchers as Components

The ultimate merit of a composite prefetcher clearly

depends on the quality of its underlying components. While

it takes further explorations to develop these components,

existing prefetchers can also serve as ready-made compo-

nents. However, as components, they are far from ideal,

especially the typical pattern-based prefetchers. The reason

is two-fold.

First, a typical pattern-based prefetcher derives significant

results from prefetching canonical streams. As we will show

later, we find T2 to be a much more compelling component

for canonical streams. Thus, when we use existing prefetch-

ers alongside T2, we are really using them beyond the core

competency.

Second, their prefetching beyond canonical strided

streams is usually not carefully optimized (if at all). Indeed,

there may not even be a simple, coherent pattern of accesses

(beyond canonical strided streams) that the prefetcher cap-

tures well. When we use a number of existing prefetchers

simultaneously, the challenge at the coordinator level is

significant: it is hard to tell who should get the job. If we

blindly allow all to try, there is a higher chance that some

prefetchers will get the right prefetch, but there is perhaps

a much higher degree of pollution to offset and even negate

the benefit.

It is worth repeating the emphasis: we advocate a dif-

ferent way of building prefetchers and existing monolithic

prefetchers are decidedly poor examples of prefetcher com-

ponents. Using them as a component is in general inefficient

and brings in extra design challenges. On the other hand,

they point to possible future target patterns.

In our experiments making use of existing prefetch-

ers as components, we use the following heuristics for

the coordinator. First, we want to identify the component

most suitable to a particular access pattern to handle it.

Second, once a component is identified, relevant accesses

are filtered out from other components so as to minimize

erroneous prefetches. In our experimental setup, we find our

three components to have higher accuracies than monolithic

prefetchers we experimented with. The coordinator thus only

pass on accesses from instructions not recognized by T2,

P1, or C1 to other components. When there are more than

one other components, we first figure out the appropriate

component to handle the access pattern from a particular

memory instruction as follows. We distribute the accesses

in a round robin fashion to each component. The prefetched

lines will be tagged by the identity of the component issuing

the prefetch. When a demand access hits a prefetched line,

we will use the component that brought in the line to handle

the instruction going forward.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

To quantitatively analyze the behavior of various prefetch-

ers, we use an execution-driven simulator gem5 [3]. Table I

summarizes the configuration for the tested systems. We

perform experimental analyses on a diverse set of work-

loads, including SPEC CPU2006 benchmark suite (reference

input), a graph application suite (CRONO [1], using graph

input data structures from google, amazon, twitter, math-

89

Figure 8. Comparison of speedup of individual prefetchers. Applications are sorted in increasing average performance gain from
all prefetchers. Note that the vertical axis is in log scale.

overflow, and california road-networks), embedded applica-

tions (STARBENCH [2] with large inputs), and scientific

workloads (NPB using C class workloads). We use individ-

ual applications in a single-core environment and 4-thread

mixes randomly drawn from the above suites for a 4-core

environment. To reduce the simulation time we generate five

simpoints [28] per benchmark, each with an interval of 10M

instructions. All the results reported are obtained from these

simpoints.

Core Parameters: 1-4 Cores, OoO, 4-wide, 3.0GHz, 192 ROB, 96
LSQ, 128INT/128FP PRF, 4INT/ 2MEM/ 4FP FUs, L-Tage (1+12
Components + 256-Entry Loop Predictor [27]), 4K Entry BTB,
32-entry RAS, 15 cycle branch miss penalty

Private L1: Split I/D, 64KB, 4-way, 64B blocks, 3ports, 1ns,
32MSHRs, LRU

Private L2: 256kB, 8-way, 2 ports, 3ns, 32MSHRs, LRU

Shared L3: 2MB/Core, 16-way, 12ns, LRU

Main Memory: 4GB, DDR3 1600MHz, 2 channels, 2
ranks/channel, 8 banks/rank, tRCD=13.75ns, tRAS=35ns,
tFAW =30ns, tWTR=7.5ns, tRP =13.75ns

Table I. Processor Configuration.

GHB-
PC/DC [22]

4KB 256 Entry GHB, 256 Entry Index Table

SPP [17] 5KB 256 Entry ST, 512 Entry PT, 1024 Entry PF,
8 Entry GHR

VLDP [29] 3.25KB 64 Entry DHB, 128 Entry DPT, 128 Entry
OPT

BOP [20] 4KB 1K Entry RR Table, 1Kb Prefetch bits

FDP [32] 2.5KB 1Kb Tag Array, 8Kb Bloom Filter, 64
streams

SMS [31] 12KB 64 Entry AT, 32 Entry FR, 512 Entry PHT,
1 PR

AMPM [12] 4KB 128 Access Maps, 256b per Map

T2 2.3KB 32 Entry SIT, 2KB state bits in I-cache and
LH (1 Entry LR and 16 Entry NLPCT)

P1 1.07KB 1Entry PtrPC, 8 Entry SIT, TPU(64bits),
1KB state bits

C1 1.2KB 16Entry IM (640 bits), 16 Entry RM (1248
bits), 1KB state bits

TPC 4.57KB T2 + P1 + C1

Table II. Storage cost of evaluated prefetchers.

B. Overall Effect of the Example Implementation

The main conjecture of this paper is that through proper

division of labor among prefetching components, we can

build composite prefetchers that are more efficient and

more effective than conventional monolithic prefetchers. We

have yet to fully explore the design space of composite

prefetchers. The design used in this paper is thus but an

example of a potentially very diverse design space.

We first discuss the bottom-line result: can composite

prefetchers be more effective and efficient. This configu-

ration takes the three components discussed in Sec. IV: T2,

P1, and C1. For notational convenience, we will refer to

this prefetcher as TPC for short. For comparison, a number

of commonly used or recent prefetchers (GHB-PC/DC [22],

FDP [32], VLDP [29], SPP [17], BOP [20], AMPM [12],

and SMS [30]) are also included. The configurations of all

these are specified in Table II. Note that with the exception

of SMS, the tested prefetchers all use a small amount of

storage and their performance are insensitive to additional

storage. We first focus on SPEC result as it is the most

commonly used suite to evaluate prefetcher designs. We

can see that our simulated performance of the comparison

prefetchers show broad agreement with published results.

Effectiveness: Figure 8 shows the speedups of TPC

and monolithic prefetchers over a baseline microarchitecture

(without prefetching) for the entire suite of benchmarks. The

first thing to note from the figure is that TPC is noticeably

more effective than the state-of-the-art monolithic prefetch-

ers. The geometric mean speedup of TPC is 1.41, compared

to 1.21 to 1.33 for monolithic designs. In other words, TPC

is 6% faster than its nearest competitor. Secondly, TPC is

broadly effective. It is the best-performing prefetcher in 11

out of 21 benchmarks and performs within 5% of the best

performing prefetcher for the rest of the benchmarks.

Figure 9. Comparison of normalized memory traffic of
individual prefetchers. We show the suite-wide geometric
mean as bars and the range of all applications as “I-beams”
on top of the bar.

Efficiency: Figure 9 compares the total memory traf-

fic of the system under different prefetchers. For each

benchmark, we normalize the traffic to that of the baseline

system without prefetching. On average, memory traffic

overhead under TPC is 6%, the least among tested hardware

prefetchers. The next best-performing prefetcher (BOP) has

an overhead of 12%. To put this into perspectives, even

in a decoupled look-ahead system with a dedicated, full-

custom look-ahead thread, there is a traffic overhead of about

90

Figure 10. Effective accuracy vs scope for different prefetchers. Each small circle in the plots represents one application. The size
(area) of the dot is proportional to the number of prefetches issued. The hollow dot with a cross in each plot summarizes the
suite-wide average, weighted by the size of each small dot. The per-prefetcher summary is shown as a big circle with a cross.

4% [10], [19].

Different workloads: Next we broaden the testing

benchmarks, which include running application mixes in a

multicore environment, where the speedup is measured as

weighted speedup for each application. With these new tests,

the general conclusion remains the same. As summarized

in Figure 11, TPC consistently outperforms its competitors,

albeit with varying effectiveness. Taking the geometric mean

result of all 68 workloads, TPC achieves a speedup of 1.39

compared to 1.22-1.31 for the other seven prefetchers.

Figure 11. Comparison of speedup of individual prefetchers
with different benchmark suites.

C. In-depth Analysis

To sum, our composite prefetcher TPC obtains noticeably

better performance compared to the state-of-the-art mono-

lithic prefetchers while generating less traffic. While we

certainly believe this particular design is worth considering

by processor designers, the central argument of this paper is

rather on the design methodology. Specifically, as conven-

tional prefetcher design matures, it is increasingly difficult

to simultaneously improve prefetching scope and accuracy

with a single idea. We believe it is a better practice to

decouple the goals of improving each and design composite

prefetchers with multiple specialized components. With such

a methodology, we lower the entry barrier of new ideas. In

the following, we will perform a number of experiments to

show some supporting evidence for this view.

1) Coverage, accuracy, and scope: As discussed in

Sec. III, we use scope to quantify a prefetcher’s attempt

without considering its actual achieved result. We use effec-

tive accuracy to fully account for the pollution of prefetches.

In Figure 10, we plot the effective accuracy of L1 cache 5

and scope for every benchmark under every prefetcher.

5Note that many prefetchers are not designed to prefetch into L1. But
in almost all designs, the version prefetching into L1 is (slightly) better
in overall speed than prefetching into L2. We will discuss this point more
later.

In the figure, each box shows one prefetcher. Within the

box, each dot represents the result of a benchmark. To get

a suite-wide average, we calculate weighted-average from

each benchmark, with the miss per kilo instruction (MPKI)

as the weight. This way, applications with more misses are

given more weight in evaluating prefetcher behavior. To

show the weight visually, the area of each dot is proportional

to the weight.

The first thing to note is the sheer range of accuracy in

essentially all monolithic prefetchers. The worst-performing

application for each monolithic prefetcher achieves an ef-

fective accuracy between 7% and 23%. On average, the

effective accuracy of the monolithic prefetchers ranges from

45% to 69%. In contrast, TPC has a much more limited

range, with the worst application having an effective accu-

racy of 49% and the global average is 82%. To see this

a bit better, we summarize the global average of effective

accuracy of each prefetcher in Figure 12. For TPC, we

show the effect as we add one component after another.

Similar to effective accuracy, we define effective coverage

as the percentage reduction of misses as a result of using

a prefetcher. We show effective accuracy and coverage for

both L1 and L2 caches. We see that the effective coverage of

TPC is significantly better than monolithic prefetchers in the

L1 cache. The difference is much smaller in the L2 cache.

Despite issuing fewer prefetches, TPC has higher effective

coverage. This is because of better accuracies.

Figure 12. Effective accuracy and coverage vs scope for dif-
ferent prefetchers at L1 and L2 caches. Monolithic prefetch-
ers are shown in solid dots. Composite prefetcher TPC’s
result is shown in hollow circles from left to right as we
incrementally turn on T2, P1, and C1 components.

Intuitively, as we increase the scope, we are facing more

difficult targets, which lowers the effective accuracy. This in-

tuition largely agrees with empirical results. For TPC, as we

go from strided stream, to pointer chasing, to high locality

streams, the accuracy of prefetches issued understandably

drops. In monolithic prefetchers, those with a high scope

tend to have a lower effective accuracy. The line in the figure

91

Figure 13. Effective accuracy vs scope by different prefetchers (left to right) in three categories: from top to bottom LHF, MHF,
and HHF. For one application using one prefetcher, one dot shows the effective accuracy and scope in the corresponding category.

shows the result of linear regression. As we increase the

scope, some of the drop in accuracy may be inevitable. But

for the current target, there is an accuracy gap between TPC

and the monolithic prefetchers.

To understand this accuracy gap better, we divide all

accesses subjectively into three categories with increasing

difficulty of prefetch and see the accuracies in each category.

We call these categories low-, mid-, and high-hanging fruit

(LHF, MHF, and HHF for short). They correspond to strided

accesses, non-strided accesses with high spatial locality, and

everything else. Note that the division is done offline to have

a better approximation to “ground truth”. Nevertheless, it is

still a somewhat subjective division. Every prefetch issued

is labeled as one of the categories.

To properly account for overall impact of each prefetcher’s

effort in these categories, we follow every prefetch and try to

account for its pollution impact. Specifically, any prefetched

line is marked. If it serves an on-demand access later, the

line earns a positive credit. If it causes an additional miss,

then it earns a negative credit. We maintain an additional set

of cache tags, which track the alternative reality where no

prefetch is issued. When an access misses in the cache but

finds its tag in the alternative-reality cache tags, we have a

prefetching-induced miss. In this case, one negative credit is

equally divided among the prefetched lines currently in the

set.

Figure 13 shows the results of this analysis. Several

observations can be made about these results:

1) We can see that for most prefetchers, the vast ma-

jority of prefetches belong to LHF (canonical strided

streams). Having a higher accuracy can be an impor-

tant factor in the overall performance of the prefetcher.

In this seemingly simple category, there is still sub-

stantial variation across prefetcher as well as applica-

tions, suggesting potential optimization opportunities.

For this category of targets, T2 offers noticeably

better accuracies and is a compelling component for

a composite prefetcher.

2) Many stride prefetchers are designed to capture varia-

tions of canonical strided streams. Whether the design

actually does a good job capturing these variations

remains unclear. We can see that the almost all

monolithic prefetchers register a very high scope in

the MHF category. While they do show reasonably

good effective accuracies (between 32% and 56%

on average, C1’s effective accuracy is 61%, which

is noticeably better. In other words, to explain the

access behavior, C1’s access pattern is arguably a

better hypothesis than other patterns targeted in those

prefetchers.

3) Finally, HHF is indeed a more challenging category.

While for LHF all application-prefetcher pairs show

positive effective accuracy, and for MHF, only a few

points show up in the negative range for effective

accuracy, for HHF, there are many more points. In

other words, for all monolithic prefetchers, there

are often many applications, where on the balance,

the prefetches issued for this category are counter-

productive. Indeed, some points hover around -1 ef-

fective accuracy, which means for those cases, almost

every single prefetch in this category is harmful –

not just useless! The overall average is only 38% for

the best monolithic prefetcher. P1, in contrast, has a

comparatively higher effective accuracy 86%. On the

other hand, its scope is relatively limited.

Note that not only do incorrect prefetches hurt perfor-

mance, they also present a number of other challenges in

a monolithic prefetcher. First, there is the subtle impact

of increasing design efforts. When designing a monolithic

prefetcher, results from these categories are lumped together,

making it hard to isolate the reason for lower accuracies.

Second, consider a multicore environment where both

cache space and memory bandwidth could be precious re-

sources. Issuing highly speculative prefetches simply should

92

not be a local decision. Take their HHF performance for

example, if we take the monolithic prefetcher with the

lowest average effective accuracy of 8%, it suggests that

for every 12 prefetches issued in this category, only one

miss is avoided. Yet, these highly inefficient prefetches are

distributed among all other prefetches, making it hard to

make judicious global tradeoffs.

By separating the prefetch of different patterns into differ-

ent components, it is much easier to attribute problems to a

particular component. It makes improving the design easier

as we can add components to increase scope and upgrade

individual components to improve accuracy. This also makes

it easier to perform high-level control dynamically in shared-

resource environments. Though this is largely outside the

scope of this paper, we note the following result. We change

the memory controller such that when it is forced to drop a

request, (when the queue fills up) it chooses low-probability

prefetches (in our case from the C1 component). Compared

to the default option where the memory controller randomly

drops prefetches, this change alone accounts for an average

of 6% performance gain in a multicore enviroment.

2) Existing prefetchers as components: As discussed

in Sec. IV-E, future designs of components will improve

the overall capability of a composite prefetcher. Existing

prefetchers serve as possible examples, though they are

far from ideal. If an existing prefetcher design has better

accuracies than one of our components in its scope of

prefetch, we can replace the component. If the design covers

additional scope that we do not cover, then they can serve

as an additional component. Given the set of prefetchers we

have experimented, we have no example of the former case,

but almost all designs offer some additional scope. Here we

take a few examples: VLDP, SPP, FDP, and SMS.

Adding these components all contribute to a small perfor-

mance improvement, which we will show in more detail later

in Figure 15. But first, we highlight one underlying benefit of

the overall division-of-labor approach. And that is efficiency.

Each of these existing prefetchers use some storage to

track access patterns in order to generate prefetch. Through

division of labor, when we use them as a component, they

are only focusing on the prefetching scope beyond what we

already covered with TPC. This frees up some resources

and in theory can make the design work better. Figure 14

illustrates this effect.

In this figure, we zoom into the region TPC does not

cover. We observe the effective accuracy and scope of these

prefetchers in this region in two states: working alone or

as an additional component to TPC. In all cases, there is

an improvement in effective accuracy when the prefetcher

is used as a component as indicated by the arrows. In fact,

when used as standalone prefetchers, in each case, many

applications have an overall negative accuracy in this re-

gion. When used as components, all accuracies are positive.

Overall, the improvement is clearly noticeable. For instance,

Figure 14. Effective accuracy (y-axis) and scope for different
prefetchers working alone (solid circle) vs as a component
in addition to TPC (hollow circle). Each pair of circles that
represent the same application are linked with a line. The
per-prefetcher summary is shown as a big circle with a cross
inside. This summary is a weighted average of per-application
result where the weight is the number of prefetches issued.
All circles are drawn with their area proportional to the
weight.

in SMS, the effective accuracy is 43% as a component

compared to 27% of a standalone prefetcher. This example

shows that division of labor can already help a somewhat

general-purpose design do its job better. We conjecture that

if the design is further specialized to purposefully target the

region of interest, the benefit will be even more pronounced.

Finally, there is an improvement in scope as well, but the

magnitude is too small to be noticed.

3) Division of labor and stratification: An important

point of forming a composite prefetcher is that through

division of labor, each component can focus on its strengths.

This is different from having multiple prefetchers working in

parallel (or shunting). Though they both increase prefetching

scope, the latter has overlapping efforts instead of a division

of labor. To see the difference, we compare compositing with

shunting, where components are unaware of each other.

Figure 15. The effect of shunting vs compositing an existing
prefetcher with TPC.

In Figure 15, we compare the performance impact of

compositing and shunting, both using the same components

TPC and the existing prefetchers VLDP, SPP, FDP, and SMS.

We normalize all performance to that of using TPC alone.

We show the suite-wide average as bars and the range of all

applications as “I-beams” on top of the bar. The difference is

clear and similar across all experiments. When compositing

an existing prefetcher with TPC, the performance is never

worse than TPC alone and on average somewhat better than

TPC by 3-8%. On the other hand, if we shunt the two

prefetchers, the result is almost always worse than having

TPC alone. On average, it is clearly worse (by 1-6%). The

division of labor is performed by the coordinator, which

implicitly depends on the knowledge of each component’s

expected accuracy. In a shared-resource environment, this

knowledge can help improve resource utilization. Even

93

within a single thread context, this knowledge can help too,

for instance, in deciding prefetch destination.

As discussed earlier, in monolithic prefetchers we used in

this paper, we prefetch to L1 cache. This is after verifying

that for most prefetchers, on average, it is better than

prefetching only into L2. However, if we stratify the accesses

into LHF, MHF, and HHF, we can make individual decisions

about prefetch destination. We found that LHF usually has

sufficiently high prefetch accuracy for all prefetchers and

on average benefits from prefetching into L1. For the rest,

prefetching into L2 is better on average. Figure 16 shows

the effect in more detail. Unfortunately for the monolithic

prefetchers, the stratification of accesses into LHF, MHF,

and HHF is only an analysis mechanism similar to having an

oracle. In a real implementation, there is no such information

to help decide prefetch destination. In TPC, the components

naturally performs a stratification (which is reasonably ac-

curate) and we can thus decide prefetch destination based

on which component issues the prefetch.

Figure 16. Effect of different prefetch destination. From left
to right, the bars show the average speedup when the prefetch
destination is L2, L1, and when it depends on the category
of the access. The I-beam on each bar shows the range of
speedups in the suite.

Recap: Based on the various analyses presented

above, we can gain some insights as to why a composite

prefetcher such as TPC outperforms state-of-the-art mono-

lithic prefetchers and what future work can further improve

such a design.

1) Monolithic prefetchers all have high prefetching

scope. But in the effort to target more, there is a

sacrifice in accuracy.

2) In contrast, TPC maintains a high accuracy that more

than compensate for a more limited prefetching scope.

Thus, it achieves better performance impact with less

traffic demand.

3) TPC currently lacks in HHF scope, suggesting more

components targeting this area will be helpful. Ex-

isting prefetchers as a group perform rather poorly

at the moment. However, when they are composited

with TPC, they already improve its effectiveness in

targeting HHF, thanks to efficiency gained through

proper division of labor. Further specialization is likely

to deliver additional benefits.

VI. CONCLUSION

Prefetchers are important components in modern microar-

chitectures. Most proposals of prefetch designs are what we

call monolithic ones, where a single heuristic is used to ob-

serve access patterns and predict future accesses accordingly.

Intuitively, a monolithic design faces inherent tradeoffs in

scope and accuracy and may not be the best approach.

Instead, we believe building composite prefetchers through

division of labor among multiple, specialized prefetcher

components may be a more effective approach.

In this paper, we have shown a composite prefetcher

(called TPC) with three components targeting strided ac-

cesses, a subset of pointer-chasing accesses, and high spatial

locality accesses. Our design is effective, achieving 1.41

speedup compared to that of 1.21-1.33 from an array of

state-of-the-art prefetchers. It is also efficient, increasing

traffic by 6% compared to 8-12% in other prefetchers.

While this design is a high-performance prefetcher, it is

only a proof-of-concept example of a different approach to

prefetcher design. In this approach, we decouple the goals of

high accuracy and scope, achieving the former with focused,

specialized components and the latter with a coordinated

composite of components.

Through in-depth analyses of TPC and conventional

monolithic prefetchers, we gain a number of insights about

the behavior of the prefetchers which can help guide future

work improving designs. First, we can see that TPC achieves

superior result mainly through higher accuracies, thanks

to its components dedicated each to simpler patterns than

conventional designs. The higher accuracies in turn allow

easier division of labor, which makes the overall composite

prefetcher effective. Second, TPC’s effectiveness can be fur-

ther improved by increasing its scope and further improving

the components’ accuracy. Adding existing prefetchers as a

component already shows tangible benefits.

REFERENCES

[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A
benchmark suite for multithreaded graph algorithms executing
on futuristic multicores. In IEEE International Symposium on
Workload Characterization, pages 44–55, 2015.

[2] M. Andersch, B. Juurlink, and C. Chi. A benchmark suite
for evaluating parallel programming models. In Proceedings
of Workshop on Parallel Systems and Algorithms (PARS),
volume 28, pages 1–6, 2013.

[3] N. Binkert et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[4] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth
Prefetching. In Proceedings of the International Conference
on Arch. Support for Prog. Lang. and Operating Systems,
October 2006.

[5] C. F. Chen, Se-Hyun Yang, B. Falsafi, and A. Moshovos.
Accurate and complexity-effective spatial pattern prediction.
In Proceedings of the International Symposium on High-
Performance Computer Architecture, February 2004.

[6] T. Chilimbi and M. Hirzel. Dynamic hot data stream prefetch-
ing for general-purpose programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, June 2002.

94

[7] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless,
Content-Directed Data Prefetching Mechanism. In Proceed-
ings of the International Conference on Arch. Support for
Prog. Lang. and Operating Systems, March 2010.

[8] P. Diaz and M. Cintra. Stream chaining: Exploiting multiple
leveles of correlation in data prefetching. In Proceedings of
the International Symposium on Computer Architecture, June
2009.

[9] I. Ganusov and M. Burtscher. Future Execution: A Hardware
Prefetching Technique for Chip Multiprocessors. In Proceed-
ings of the International Conference on Parallel Architec-
ture and Compilation Techniques, pages 350–360, September
2005.

[10] A. Garg and M. Huang. A Performance-Correctness Explic-
itly Decoupled Architecture. In Proceedings of the Inter-
national Symposium on Microarchitecture, pages 306–317,
November 2008.

[11] I. Hur and C. Lin. Memory prefetching Using Adaptive
Stream Detection. In Proceedings of the International Sym-
posium on Microarchitecture, December 2006.

[12] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern
matching for high performance data cache prefetch. Journal
of Instruction-Level Parallelism, 2011.

[13] A. Jain and C. Lin. Linearizing irregular memory accesses
for improved correlated prefetching. In Proceedings of the
International Symposium on Microarchitecture, December
2013.

[14] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In Proceedings of the International Symposium
on Computer Architecture, June 1997.

[15] N. Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In Proceedings of the International Symposium on
Computer Architecture, pages 364–373, May 1990.

[16] J. Kim, Teran E, P. Gratz, D. Jimnez, S. Pugsley, and
C. Wilkerson. Kill the Program Counter: Reconstructing
Program Behavior in the Processor Cache Hierarchy. In
Proceedings of the International Conference on Arch. Support
for Prog. Lang. and Operating Systems, April 2017.

[17] J. Kim, S. Pugsley, P. Gratz, A. Reddy, C. Wilkerson, and
Z. Chishti. Path confidence based lookahead prefetching. In
Proceedings of the International Symposium on Microarchi-
tecture, October 2016.

[18] S. Kondguli and M. Huang. T2: A Highly Accurate and
Energy Efficient Stride Prefetcher. In IEEE International
Conference on Computer Design, 2017.

[19] S. Kondguli and M. Huang. A Case for a More Effective,
Power-Efficient Turbo Boosting. ACM Transactions on Ar-
chitecture and Code Optimization, 2018.

[20] P. Michaud. Best-offset hardware prefetching. In Proceed-
ings of the International Symposium on High-Performance
Computer Architecture, March 2016.

[21] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. Ac/dc: An
adaptive data cache prefetcher. In Proceedings of the Interna-
tional Conference on Parallel Architecture and Compilation
Techniques, September 2004.

[22] K. J. Nesbit and J. E. Smith. Data Cache Prefetching using a
Global History Buffer. In Proceedings of the International
Symposium on High-Performance Computer Architecture,
February 2004.

[23] S. Palacharla and R. Kessler. Evaluating Stream Buffers
as a Secondary Cache Replacement. In Proceedings of the
International Symposium on Computer Architecture, pages
24–33, April 1994.

[24] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic
locality and context-based prefetching using reinforcement
learning. In Proceedings of the International Symposium on
Computer Architecture, June 2015.

[25] A. Roth, A. Moshovos, and G. Sohi. Dependence Based
Prefetching for Linked Data Structures. In Proceedings of the
International Conference on Arch. Support for Prog. Lang.
and Operating Systems, pages 115–126, October 1998.

[26] A. Roth and G. S. Sohi. Effective jump-pointer prefetching
for linked data structures. In Proceedings of the International
Symposium on Computer Architecture, May 1999.

[27] A. Seznec. A 256 kbits l-tage branch predictor. In Journal
of Instruction-Level Parallelism (JILP) Special Issue: The
Second Championship Branch Prediction Competition (CBP-
2), pages 1–6, 2007.

[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically Characterizing Large Scale Program Behavior. In
Proceedings of the International Conference on Arch. Support
for Prog. Lang. and Operating Systems, pages 45–57, October
2002.

[29] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilk-
erson, S. Pugsley, and Z. Chishti. Efficiently prefetching
complex address patterns. In Proceedings of the International
Symposium on Microarchitecture, December 2015.

[30] S. Somogyi, T. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-
Temporal Memory Streaming. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2009.

[31] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial Memory Streaming. In Proceedings
of the International Symposium on Computer Architecture,
June 2006.

[32] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers. In Proceedings of the
International Symposium on High-Performance Computer
Architecture, February 2003.

[33] Z. Wang, D. Burger, S McKinely, S. Reinhardt, and
C. Weems. Guided region prefetching: a cooperative hard-
ware/software approach. In Proceedings of the International
Symposium on Computer Architecture, June 2003.

[34] T. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and
A. Moshovos. Practical off-chip meta-data for address-
correlated prefetching. In Proceedings of the International
Symposium on High-Performance Computer Architecture,
February 2009.

[35] T. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi. Temporal streaming of shared memory.
ACM SIGARCH Computer Architecture News, 33(2):222–
233, 2005.

[36] V. Young and A. Krishna. Towards Bandwidth-Efficient
Prefetching with Slim AMPM. In The 2nd Data Prefetching
Championship, 2015.

95

