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Abstract. Quantum memories are critical for solid-state quantum computing devices
and a good quantum memory requires both long storage time and fast read/write
operations. A promising system is the Nitrogen-Vacancy (NV) center in diamond,
where the NV electronic spin serves as the computing qubit and a nearby nuclear
spin as the memory qubit. Previous works used remote, weakly coupled '3C nuclear
spins, trading read/write speed for long storage time. Here we focus instead on the
intrinsic strongly coupled N nuclear spin. We first quantitatively understand its
decoherence mechanism, identifying as its source the electronic spin that acts as a
quantum fluctuator. We then propose a scheme to protect the quantum memory from
the fluctuating noise by applying dynamical decoupling on the environment itself.
We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle
experiment, showing the potential for a quantum memory that combines fast operation
with long coherence time.
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1. Introduction

Quantum technologies, especially those based on solid-state systems such as
superconducting qubits [1], Nitrogen-Vacancy (NV) centers in diamond [2, 3], and
dopant spins in silicon [4], have seen significant progress over the past few decades.
Qubits embedded in solid-state systems are advantageous because of their compatibility
with existing semiconductor fabrication techniques that can offer avenues for scalability.
The drawback, however, is their intrinsic noisy environment due to strong couplings
to their solid-state host.  The fluctuating environment renders qubits fragile,
leaving demonstrations of even small scale quantum computing devices (20-50 qubits)
challenging [5].

While further improvements can come from more carefully engineering the qubit
systems to remove undesired noise sources and reduce the number of decoherence
channels, achieving fault tolerance will still require some form of quantum error
correction (QEC). Recent developments include both theoretical proposals for more
powerful QEC protocols [6] and experimental attempts at correcting or detecting
quantum errors [7, 8, 9, 10]. Despite these advances, we have rarely seen experiments
yielding better error rate of the error-corrected qubit than the best single qubit in the
same system [11]. This is because the recovery operation needed for QEC has so far
introduced more error than it corrected. A simpler QEC strategy, avoiding measurement
and recovery operations, is to decouple qubits from the environment using dynamical
decoupling (DD). This technique, going back to NMR’s spin echo [12], enjoys great
success thanks to its ease of implementation. In addition, it is compatible with many
quantum information processing protocols [13, 14, 15] and can be concatenated with
active QEC [16, 17, 18]. Still, DD has traditionally been applied to refocus slow-varying,
weakly coupled environments that can often be modeled as classical bath [19], while its
usefulness to decouple from strongly interacting quantum environments is less clear [20].

Here, we explore the effectiveness of DD to increase the coherence time of a spin
qubit in the presence of a strongly interacting quantum fluctuator. We first introduce
and test a quantitive model of the decoherence process of a qubit (the N nuclear
spin of a Nitrogen-Vacancy center) subject to random telegraph noise (RTN) arising
from the fluctuation of either a spin-1/2 or spin-1. Then, based on the model, we
find the requirement on the DD control sequence that achieves qubit protection from
the RTN. It turns out that, due to the slow control on nuclear spin compared to the
hyperfine interaction A, any DD sequence applied to the nuclear spin would not meet
the requirement and still yield the same coherence time, 7,". However, we find that
by modulating the noise source itself we can efficiently refocus its effects: control on
the NV electronic spin is fast enough to satisfy the DD requirement, and can extend
the qubit coherence time beyond the limit imposed by the fluctuator noise. Finally, we
realize a proof-of-principle demonstration of these ideas, by protecting the *N nuclear
spin from RTN of a short-lived effective electronic spin-1/2.
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2. Fluctuator Model & Experiment

Random telegraph noise (RTN), often responsible for 1/f noise, is ubiquitous in solid-
state nanodevices [21] and is often the main source of decoherence for quantum dots [22]
and most notably for superconducting qubits [23, 22, 24]. Here we focus on another
exemplary system, nuclear spin qubits in the presence of a fluctuating electronic spin.
Specifically, we consider a quantum register consisting of the electronic spin-1 of NV
(in the following, we will refer to this simply as NV), its native YN nuclear spin-1,
and possibly a few close-by 3C nuclear spins. With this system, researchers have
demonstrated quantum information storage [25, 26], quantum error correction [7, 8, 9],
quantum feedback control [27] and high-sensitivity magnetometry [28, 29|, taking
advantage of the long dephasing time 75" of the nuclear spin, which is usually one to two
orders or magnitude longer than that of the NV. Long though it is, 75" is limited by the
NV relaxation time Tf (~ few ms) [25, 29, 30]. Random NV flips due to T} process result
in a 3-level RT'N; the nuclear spin picks up a random phase from the RTN and decoheres.
As explained below, when the hyperfine interaction strength is larger than the 77 flip
rate, T5™ is strictly limited by 77. To extend 73" beyond this limit, previous efforts
have focused on weakly coupled nuclear spins, employing motional narrowing [25, 31],
or decoherence-free subspace [32, 33]. On the other hand, strongly coupled nuclear spins
are favorable because they provide fast [34, 35, 30|, and direct control. Here, we look
into the regime of strongly coupled nuclear spins, where previous methods do not work
well. In particular, we work with the native "N nuclear spin, because it is ubiquitous
and has proven useful in the NV-"'N quantum register [26, 36, 28, 29, 27]. For this
system, the previous approaches do not work well, nor does implementing a simple spin
echo [30]. After gaining a deeper insight into the fluctuator model, we will show how to
overcome this challenge.

2.1. Spin-Fluctuator modeled as a random walker

We consider a system of two spins interacting via an hyperfine coupling A that we
describe semi-classically using a spin-fluctuator model [37].

We model the intrinsic 4N nuclear spin I of the NV center as a random walker,
whose phase evolves subject to the state of its neighboring electronic spin S that acts as
a strongly coupled fluctuator and generates RTN (Fig. 1). In such analogy, the velocity
v of the random walker is linked to the phase accumulation rate of the qubit, and is set
by the hyperfine interaction, v = mgA. The fluctuator flips at a rate v between any two
mg states due to spin-lattice relaxation, inducing a change in the value of the hyperfine
coupling, mgA, thus at each such event the walker’s velocity v also changes. In between
fluctuator jumps, the walker covers a distance ¢, representing the accumulated phase
between qubit states.

For a 2-level fluctuator (2LF), the random walker has only two possible directions of
motion, left or right. The probability p,(p;) of reaching a position ¢ from the right(left)
is therefore the sum of probabilities of keeping going right(left) from ¢ — vdt or turning
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Figure 1: Qubit decoherence under random telegraph noise. The fluctuator (NV)
randomly flips between its two eigenstates (here from [1) to |])) changing the rate
at which the qubit (N ) accumulates a phase. For a representative RTN trace, we
show that in the absence of a fluctuator jump, the qubit population would continue to
oscillate at the same rate (dashed line), while after a fluctuator jump, the oscillation
rate accelerates (solid red line). As the jump timing is random, the observed average
dynamics is decoherent.

right(left) (with probability ) from ¢ 4 vdt. The random walker’s motion can then be
described by a system of differential equations [37]:

atﬁl(907 t) = _7[ﬁ1(¢7 t) - ﬁT“Ov t)] + Uacpﬁl(% t) (1)
atﬁr = _’7(157‘ - ﬁl) - Ua@ﬁr-

The spin coherence is given by the average accumulated phase, (¢¥(t)) = [ P(p,t)e*dyp,
where P(p,t) = p; + p, is the total probability of reaching ¢ at time ¢. Note that this is
the Fourier transform of P, P(k,t), evaluated at k = —1. We can thus more compactly

—

write the relevant equations of motion as 9,P(k,t) = M, P(k,t), that is
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where p(k,t) = p.(k,t) — pi(k, t).

We can similarly describe the spin dynamics in the presence of a three-level
fluctuator (3LF), where one of the levels corresponds to a “rest” state v = 0 (no phase
accumulation), with corresponding probability po:

5 P 0 0 —1kv P
5 ptl=12v =3y —ikv] |p"|, (3)
P 0 —ikv —3v P

where p™ = p; + p, and here P = p; + p, + po. The spin decay is then given by
(e (t)) = eM-11P(—1,0) and is characterized by a typical timescale T;". Note that
since we consider the fluctuator to be either a spin-1/2 or a spin-1, we have v = A/2(A)
and v = 1/2T¢(1/3T¢) for the 2LF(3LF).
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In the strong fluctuator regime that we focus on, intuitively a single fluctuator
jump is enough to totally decohere the nuclear spin. Then, provided v/y > 1, the spin
decay rates doe not depend anymore on v but only on the jump rate. Indeed, we find
T5™ = 2T¢(1.577) for the 2LF(3LF) (See Appendix. 6.5). This strict limit on 75" for the
strong fluctuator is in sharp contrast to the weak fluctuator case, where 75" increases
as the hyperfine interaction strength decreases (See Appendix. 6.4).

2.2. Experimental results

To experimentally test the spin-fluctuator model, we measure and compare 77 of
the Nitrogen-Vacancy center electronic spin and T3" of its native “N nuclear spin.
All experiments are performed using a home-built confocal microscope, with single
NV centers in an electronic grade diamond sample (Element 6, N concentration
[1*N] < 5 ppb, natural abundance of *C ). We work at a magnetic field of 424G, close
to the excited state level anti-crossing, to polarize the N nuclear spin [38]. A 1.5mW
laser of 2us duration polarizes the hybrid NV-N system into |mg = 0,m; = +1) with
high fidelity. Microwave (MW) and radiofrequency (RF) pulses are delivered through a
25um wide copper wire to have precise control of the NV and N spin states.

For Tf measurement, a laser pulse first initializes the system into |0, +1). Then we
apply a strong MW pulse (¢, = 44 ns) to prepare it to the desired state |—1,+41). The
NV is free to fluctuate due to T} process before we measure the remaining population in
|—1,+1) obtaining the signal S~! where the sub(super)script refers to the initial (final)
electronic spin state. We also measure the population in the state |0, +1) obtaining the
signal S°,. T¢ is extracted to be 4.3 £+ 0.3 ms by fitting to the difference of the two
measurements S~} —S°, (here and throughout the paper, uncertainty in all fitted values
are 95% confidence interval).

For T5™ measurement, we implement a nuclear Ramsey sequence in the electronic
ms = —1 manifold, where the larger nuclear spin energy splitting (due to the hyperfine
coupling) allows faster driving. The system is first prepared to |—1,+1), as described
above, before being coherently driven to a nuclear superposition state (|—1,+1) +
|—1,0))/+/2 using on-resonant RF field. After a free evolution period, we convert nuclear
spin coherence to populations with a second RF 7/2 pulse, a|—1,+1) + |—1,0).
Finally, the nuclear spin is read out by mapping its state to the NV electronic spin,
using a selective MW pulse (t, = 1.1us). This pulse creates the entangled state
a0, 4+1) + B|—1,0) between the NV and N | allowing optical readout of the nuclear
spin state population |«|?, |3|* with high SNR.

[solating the bare contribution of the nuclear spin dephasing in the fluorescence
signal decay is nonetheless not straightforward as the consequences of NV random flips
are three-fold. First, they induce the nuclear spin dephasing that we aim at measuring.
Second, they modify the NV state, leading the second RF 7/2 pulse to be off-resonance
and preventing the transfer of the nuclear coherence into population difference. Finally,
they also induces errors in the mapping between nuclear and electronic spin states as
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Figure 2: (a) Natural relaxation decay of a single NV population and (b) cohernce
decay of its native N under a Ramsey sequence. The dashed lines are fits to the
expected dynamics, yielding T7= 4.3(3) ms and 75"= 5.6(1.7) ms. These values satisfy
T5™ = 1.5T7, as predicted by the spin fluctuator model. All error bars in the figure are
one standard error of the mean (SEM).

the NV state is not fully polarized anymore.

Fortunately, in the strong fluctuator regime, one flip of the fluctuator is enough to
decohere our qubit, which allows us to neglect the two last errors. The bare contribution
of the nuclear spin dephasing can be isolated by recording the signals obtained from
nuclear Ramsey sequence with 1) no phase difference between the two RF 7/2 pulses
and 2) a 7 phase shift. The last two effects that cause imperfect readout of the nuclear
spin have an equivalent contribution in both Ramsey sequences, just creating a common
error that is suppressed when subtracting the two Ramsey signals (Appendix. 5.1). We
can then measure a dephasing time 75"= 5.6 & 1.7 ms as shown in Fig. 2b. This

measurement is consistent with our prediction from spin-fluctuator model with 3 levels,
5" = 1.5T7.

3. Dynamical Decoupling in the strong coupling regime

3.1. Theory

To protect the nuclear spin qubit from RTN generated by the NV, we resort to dynamical
decoupling (DD). Usual DD schemes are highly effective in protecting qubits from noise
provided the pulses are applied at a higher repetition rate than the typical correlation
time of the noise. Unfortunately, because of the Markovian nature of RTN, this condition
does not apply here. Instead of being set by the fluctuator rate v, in order for DD to
be effective the m-pulse separation time 7 must satisfy

A-T<1. (4)

When applying DD following the well-known CPMG sequence [39] with time
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between pulses 7, the spin coherence after N pulses is given by
(9(N7)) = {[712 - U, - MV B, (5)

where U, is the m-pulse operator in the P basis. For a 2LF this is diag(1, —1), while
it is diag(1,1,—1) for a 3LF. As discussed below, it might be possible, and even more
convenient, to apply m-pulses on the fluctuator instead of the qubit. Indeed, the desired
effect is to invert the sign of the coupling between the two systems. For a 3LF, this can
be achieved by driving the double quantum (DQ) transition |+1) <> |—1). However, for
a 3LF there is some freedom on the type of pulses applied. In addition to driving the DQ
transition, one can also drive one of the single quantum (SQ) transitions, |0) <> |£1),
resulting in

1 0 0
U.=[1 —1/2 F1/2
1 T3/2 1/2

Since the qubit decay under DD is not necessarily purely exponential [Ap-
pendix. 6.3], we define an effective coherence time 73'(7) through:

(N7 =T5(r))) =1/e (6)

The dependence of T3' on the DD interval 7 is shown in Fig. 4a. As expected, smaller
T’s are better at decoupling the qubit from RTN and at extending 77'. Interestingly, the
behavior for the 2LF and 3LF is different. For 2LF, DD leaves the decay approximately
exponential (see Appendix. 6.2), with a decay rate

. 1 vsin(Wr) 4+ /v?2 — 2 cos?(Wr

where W = /v% — 42, For a 3LF, however, the coherence decay is not exponential (See
Appendix. 6.3). Still, we see that, by using DQ pulses to refocus the fluctuator (or
applying pulses directly to the qubit), one could in principle fully decouple the qubit
from RTN noise when 7 — 0, until nuclear-nuclear dipolar interactions become the
dominant noise source [25]. With SQ drive, however, one only protects the qubit from
RTN half of the time, therefore the decay rate can at most be reduced to half of its
value without DD (Fig. 4a).

3.2. Experimental results

We now apply these ideas to protect the nuclear spin from the NV RTN and extend its
T3 beyond the limit of T7.

Due to the strong hyperfine coupling A = 2.16 MHz between the electronic and
nuclear spin of the NV, the condition (4) requires 7 < 1us, which is not feasible given
the slow control of the nuclear spin qubit (with typical m-pulse times 50us). However, as
the hyperfine interaction is symmetric with respect to the state of both spins, applying
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m-pulses on either the qubit or the fluctuator modulates the hyperfine interaction sign
and will lead to an effectively weaker averaged hyperfine coupling and thus a slower
rate at which nuclear states acquire a random phase. It is consequently possible to
take benefit from the electronic driving strength that are typically a few tens to a few
hundreds of MHz [40, 41, 42], yielding 7-pulses fast enough to meet the requirement of
Eq. (4).

Another challenge in the experiment is due to the nuclear spin readout, which is
indirectly obtained by measuring the NV spin. As mentioned in Sec. 2.2, as the NV
center state is unknown at the end of the evolution due to 77 processes, the nuclear spin
mapping from coherence to population states and its readout via the NV electronic spin
might fail. This problem is exacerbated when DD is applied, as we expect some qubit
coherence to be stored in all NV manifolds. Thus, the differential measurement scheme
applied above no longer provides an accurate picture of the nuclear spin coherence decay.
In particular, it is no longer possible to fully measure gains in 73 beyond 75" (see
Appendix. 5.1).

To remove this undesired effect and more precisely verify the protection of the
nuclear spin afforded by DD, we engineer a short-lived 2LF, decoupling its evolution
(and final state) from the state needed for the correct readout of the nuclear spin.
The engineered noise also allows shorter experiments, further avoiding slow external
experimental drifts that could hide the gains in coherence time. In addition, engineering
a 2LF instead of 3LF eliminates the need of dual frequency driving. The artificial 2LF
is engineered by applying fast, on-resonant MW pulses to flip the NV electronic spin
state between |0) and |—1) (engineered T flip) at random times following a Poisson
distribution. Figure 3a displays one of the 200 engineered 77 traces that once averaged
simulate an exponential 7} decay process. We set the flipping constant of the artificial
2LF in order to obtain a relaxation time 77= 10us. This time scale is much longer than
the m-pulse length ¢, = 44ns, and is two orders smaller than that of the natural 17,
guaranteeing the third level |[4+1) of the NV center is not involved in the dynamics and
we indeed have an effective 2-level fluctuator.

Figure. 3b shows measurement of the engineered 77 decay, matching very well
with the simulation of the applied 200 engineered T traces. An exponential fit gives a
decay time of 10.0 4 0.4us, in good agreement with our 10us design. We then use the
same engineered 77 traces to perform a nuclear Ramsey experiment and measure the
resulting coherence time by fitting data to an oscillating exponential curve, obtaining
an engineered T5"= 22 + 4us = 277 (Figure 4b), as expected from the 2LF theory. In
order for the nuclear spin state readout to be accurate, if the NV ends up in |0) due to
the engineered flips we apply an extra m-pulse immediately before the readout process,
which brings it back to |—1).

Finally, in addition to the engineered 77 traces, we apply the Knill-Dynamical
Decoupling (KDD) sequence [43] with an interval of 7 = 200ns on the NV to decouple
YN from the RTN. We choose KDD instead of CPMG because it is robust against pulse
errors (In the following experiments, we use DD to refer to KDD pulses). We apply
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Figure 3: (a) Pulse sequence for one engineered T trace with three fluctuator jumps.
The red MW 7m-pulses prepare and readout the desired NV state. The black MW m-pulses
mimic engineered 77 flips. (b) Decay of a single NV under engineered T relaxation
noise, simulated by 200 traces of engineered 77 flips as described in the main text. Red
and black diamonds: S~} and S°, experimental decays. Solid gray line: simulation
of TY using the same traces. Gray dashed line: fit to an exponential decay, giving
Tf = 10.0(4)us. Error bars in the figure are one SEM.

~ 100 7 pulses to measure the nuclear spin coherence decay, which according to Eq. 7, is
expected to follow an exponential behavior. In Fig. 4b we compare the experimental (and
theoretical) decays with and without DD, clearly showing the improvement achieved by
applying a decoupling scheme, proving the successful protection of nuclear spin from
its RTN environment. This is confirmed by the measured 73" value, extracted from
an oscillating exponential fit to be T9'= 67 + 17us, (Fig. 4b), clearly exceeding 75",
and matching well with theoretical prediction of 71us. We repeat this experiment with
different DD intervals 7, to compare the trend in 73" with our theory. The results,
shown in Fig. 4a, are in quantitative agreement with the predicted behavior, including
the somewhat counterintuitive result for 7 = 600ns, where the applied DD accelerates
decoherence, giving 15" <T5".

While we demonstrated that dynamical decoupling can be effective in increasing
the coherence time affected by a strong random fluctuator only for engineered noise,
we remark that our experimental results show that it would be possible to refocus the
natural noise as well. Indeed, using a direct readout of the nuclear spin [44, 36] or with
a different protocol to map its state onto the electronic spin, it would be possible to
avoid seeing direct effects of the NV 77 on the measured nuclear spin coherence. We
further performed DD experiments to show that it is practically feasible to implement
the necessary number of pulses for decoupling (see Appendix 5.4) without introducing
additional noise due to pulse errors.
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Figure 4: (a) Effective coherence time T3 for 2LF (theory: black solid line; experiment:
red diamond), and 3LF for double quantum drive (theory, red dashed line) and
single quantum drive (theory, gray dashed line). The experimental results (for 7 =
200, 260, 280, 300, 400, 600, and 1000 ns) agree well with the theoretical prediction
of the 2LF, including the somewhat counterintuitive result for 7 = 600ns which
indeed gives T3'<Ty™. FError bars are 95% confidence interval; (b) Corresponding
T5™ (experiment, black diamond) and 73" (experiment, red diamond, 7 = 200ns DD
interval) decay. Dashed lines are fits to an oscillating exponential decay. Gray solid
lines are the theoretical 75" and T3 decays calculated according to the spin-fluctuator
model (amplitude renormalized). Error bars are one SEM (see Appendix 5).

4. Conclusion

Protecting a qubit strongly coupled to a fluctuating quantum environment is often a
challenging task. Here we studied an exemplary system comprising the electronic and
N nuclear spins associated with the NV center in diamond. While the nuclear spin
can act as a long-lived qubit (or memory), the electronic spin, which is necessary for
initialization and readout, is also the main source of noise for the qubit. We theoretically
analyzed the decoherence mechanism of the nuclear spin qubit and introduced a simple
model in terms of a random fluctuator to describe its decoherence. Measurements on
the fluctuator and N qubit are consistent with our spin-fluctuator model and show the
limit on the qubit coherence. Based on this model, we proposed a method to decouple
and protect the nuclear spin from its environment, and demonstrated a factor of 3
increase in coherence time in a proof-of-principle experiment.

Our results pave the way to using strongly coupled nuclear spins, including the
ubiquitous native Nitrogen of the NV center, for demanding experiments requiring long
quantum memory times, complementing existing techniques applicable only to weakly
coupled nuclear spins [25, 32, 33]. In addition, the proposed technique based on DD is
compatible with many quantum information processing protocols [13, 14, 15], allowing
the full functionality of a quantum register, where the electronic spin performs local
operations while the quantum memory is protected. This is in contrast to other protocols
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where the electronic spin is inaccessible during protection of nuclear spins [45, 25, 31].
Proposals concatenating DD with active QEC [16, 17, 18] also makes it potentially a
first layer of protection before applying QEC, enabling scaling-up with less overhead.
Finally, the proposed control technique is also applicable to other solid-state systems, for
example, superconducting qubits, where single or ensembles of fluctuators are believed
to be the major noise source [37, 46, 21].
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5. Appendix 1: Experimental Methods

5.1. Differential Measurement of Nuclear Spin Coherence

In our experiments we do not have a direct measurement of the nuclear spin qubit,
which would reveal its coherence time. A common strategy to overcome this limitation
is to initialize the NV and apply a CNOT gate, flipping the NV state conditional on the
nuclear spin state. This effectively maps the state information from the nuclear to the
electronic spin. In the nuclear Ramsey experiment in Sec. 2.2, we create the entangled
state a |0, +1) + §|—1,0) with this protocol. The NV is then optically read out, giving
the same probability distribution |a|?,|8|* as if directly measuring the nuclear spin.
However, when we measure the nuclear spin coherence, the NV undergoes 77 flips,
potentially introducing errors in this readout process. First, if the NV final state
is different from the nominal one, the second RF pulse operates in the incorrect NV
manifold and is thus off-resonance, failing to transfer the nuclear coherence into state
populations. Second, the mapping between nuclear and electronic spin states might fail
as the NV state is not fully polarized anymore.

To account for these errors, we perform a differential readout to obtain 75": the first
measurement is the regular nuclear Ramsey experiment, measured by applying a CNOT
on the NV, subject to possible readout failure; for the second measurement, we add a
7 phase shift on the second RF 7/2 pulse in the nuclear Ramsey sequence, and then
apply the same readout. The difference of the two measurements yields the expected
T5™ decay, as shown in Fig. 5a. The intuitive explanation is that since one jump of the
strong fluctuator totally decoheres the qubit, any nuclear spin coherence is preserved
only when the NV stays in the original state. No coherence is left when the final state
is different. Therefore, measurements (including unsuccessful ones) already contain
all the information about the nuclear spin coherence. The purpose of the differential
readout is to remove the two errors mentioned above, which are not related to the
nuclear spin coherence decay. Therefore, one could even choose a different measurement
as the second data set, as long as it contains the same common mode error. One
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Figure 5: (a) Simulation of differential measurement for 7;™. Red solid line assumes
perfect readout of the nuclear spin coherence. Black solid line is one set of the differential
data. The asymmetric shape and non-zero asymptotic value indicate the presence
of a common mode signal not related to nuclear coherence. Gray dashed line shows
differential measurement, revealing 7;™. (b) Nuclear coherence stored in different NV
manifolds when we apply DQ DD. Gray solid line is the full coherence. Red solid line
is the coherence stored in |mg = 1) and black solid line in |mgs) = 0. As coherence is
stored in all manifolds, the differential measurement is no longer effective in removing
common mode noise from the NV 77 process.

such choice is to apply a CNOT gate conditional on the nuclear spin being in the
|m; = 0) state (instead of |m; = +1)). We chose to apply a 7 phase shift on the nuclear
Ramsey because when taking the difference of the two measurements this also doubles
the signal amplitude. When the qubit is protected against RTN by the DD control,
this differential measurement is no longer effective because some nuclear spin coherence
is stored in all NV manifolds (Fig. 5b). We emphasize that this is not a fundamental
limit. Single-shot readout, either using on-resonant laser at cryogenic temperature [44]
or using intermediate-high magnetic field at room-temperature [36] solves this issue and
has been experimentally demonstrated.

5.2. Data Analysis for Engineered Ty

In the engineered 77 experiment, we consider Ny = 200 predetermined traces. Each
trace is repeated 4 x 10* times in order to build enough statistics to determine the
final population state of the NV. In Fig. 6a, we plot the average signal at t= 16us for
each one of the 200 77 traces, clearly showing that the final state of each trace can be
reliably determined to be either |0) or |[—1). As another demonstration, in Fig. 6b we
plot out the #47 engineered 77 trace in black solid line, and the experimental result in
red diamonds. The error bars in all engineered 7} experiments are then the standard
deviation resulting from the 200 x 4 x 10* acquired data for each time point, divided
by v/Nr, which corresponds to the usual standard error of the mean used for the other
experimental results.



Protecting solid-state spins from a strongly coupled environment 13

5.8. Engineered 17 with DD

In order to simulate a 77 flip, we apply a 7 pulse, the same pulse used for DD. As the
pulse length (44ns) is comparable to the smallest time interval between pulses of the
DD sequence (200ns), there is a non-negligible probability that a Tf flip overlaps with
DD pulses for some of the 77 traces. We deal with this possibility in two ways: if the
overlap of the 77 flip and DD 7-pulse is larger than half the pulse duration, we do not
apply either pulses; also, we discard all traces that contain an overlap of less than half
of the pulse duration. We verify that this strategy does not bias the overall engineered
noise by measuring 77 with and without DD sequence. The results in Fig. 7a show that
the fitted T¥ pp = 10.0 £ 0.4pus is the same as TY without DD (10.0 4 0.4us) within the
errorbars. This verifies that our treatment of overlapping m-pulses does not change the
underlying physics, and that the protection of nuclear spin coherence derives from DD,
rather than from changes in the engineered 77 under DD.

5.4. Natural TY with DD

To show that even for the natural 7} noise our DD method can efficiently decouple the
nuclear spin from its RTN, we measure the natural 77 while applying a DD sequence
(Fig. 7b). In order to have a sequence robust against flip angle error and off-resonance
pulses, we employ the KDD pulse sequence [43],

KDD, = T/2 — (W)W/Gﬂﬂ - T (W)w - T (W)w/2+so - T (77)<p - T (77)#/6+<P=

and concatenate this 5-pulse block following the XY-16 phase cycle [47]: KDD, —
KDD,—-KDD,—-KDD,— KDD,— KDD, — KDD,— KDD, — KDD; — KDDy —
KDD; — KDDy — KDDy — KDD; — KDDy — KDD;. We measure up to 8ms,

(a) (b)
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Figure 6: Engineered 77 measurement. (a) We compare the measured NV fluorescence
at a fixed time, t= 16us, to the “bright” and “dark” reference lines, given by the
population states |0), |—1), for all 200 different traces. We clearly see that the final
state can be read out with high fidelity. (b) One of the engineered T trace of theory
(black solid line) and experiment (red diamond). Error bars are one SEM.
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Figure 7: (a) Same Tf experiment as shown in Fig. 3b, but with DD sequence. In
this experiment, we deal with the overlap of 77 flip and DD pulses the same way as to
measure 73", demonstrating the same RTN environment when we apply DD sequence
and protect N . Red diamond: experiment; black solid line: simulation; gray dashed
line: fit. (b) natural 77 measurement under a DD sequence with 7 = 200ns interval
(red diamond). The fit to an exponential decay (gray dashed line) gives 3.7 4 1.3ms in
good agreement with the 77 measured in the absence of DD pulses. All error bars are
one SEM.

corresponding to 4 x 10* pulses, longer than T5". We fit the data to an exponential
decay and find the 1/e time to be 3.7 £ 1.3ms, matching 7= 4.3+ 0.3ms. At this 7, we
expect more than a factor of 3 gain in 73, therefore there should be a net improvement
in nuclear spin coherence. This suggests that for up to about ~ 10° pulses, pulse errors
in the DD do not accumulate so significantly to counteract potential gains in 75'. We
expect our method to protect N beyond the limit set by natural T¢ of a few ms, as it
could be verified with single-shot readout of the nuclear spin coherence.

5.5. Discussion on the relation between Ty and T5"

Given the large uncertainty in the measured natural 77= 4.3(3)ms and 7, = 5.6(1.7)ms
(errors are 95% confidence interval from fit), we find a 73" /7Y ratio of 5.6/4.3 = 1.3(2),
which is compatible with the 3LF model prediction (75" /T¢= 1.5), but does not exclude
other models. It is then worth to examine more in depth whether the data does indeed
support the three-level spin-fluctuator model or whether other models could be a better
match.

Instead of extracting 77 and 75" independently from the fit, we fit the two
experimental datasets together to four models: 1) fixing 75"/Tf= 1.5; 2) fixing
T3/ Ty= 2; 3) fixing 13" /Ty= 1; 4) leaving 15" /1Y as a free fitting parameter. We
compare the mean square error (MSE) of the fit and the uncertainty of the fitted
77 for the four models; results are summarized in Table. 1. This analysis reveals that
the model assuming 75" /7T7= 1.5 (model 1) yields the best result both in terms of
smallest MSE and smallest uncertainty in 77. A more general fit (model 4) converges
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Table 1: Comparing different models for 75" /77

MSE  TY(ms) ore(ms) T5"/TY

model 1 0.0083 41 08  3/2
model 2 0.0091 3.6 08 2
model 3 0.0086 5.0 1.0 1
model 4 0.0084 43 1.2 1.3(5)

to 3" /Tf= 1.3(5), similar to the result when the two datasets are fitted independently,
but results in larger uncertainty in 77. We therefore argue that the experimental data,
although with a relatively large uncertainty, are consistent with the spin-fluctuator
model predictions.

We further note that we can ascribe the slightly smaller 75" than expected
(ITy™/Tf< 1.5) to environmental drift. Each data point in Fig. 2b is averaged over
100, 000 repetitions. We observe ~ 20Hz drift in the nuclear Larmor frequency even
after recalibrating the experiment about every hour by measuring the magnetic field drift
with the NV and compensating its effect on the nuclear Larmor frequency by adding
a corresponding phase shift to the second 7 /2 pulse of the nuclear Ramsey sequence.
Although small, the frequency drift is non-negligible compared to the detuning in the
nuclear Ramsey experiment (~ 800Hz). The resulting off-resonance pulses cause the

average data to have a reduced contrast at long time, which is interpreted as a shorter
5.

6. Appendix 2: Coherence decay for random telegraph noise

6.1. Master Equation Description of the Nuclear Coherence

While the random walker model provides an intuitive semiclassical picture of the decay
process, one could also solve the coupled fluctuator-qubit dynamics with a fully quantum
mechanical framework. In particular, as the 77 process of the NV center is purely
Markovian, it is valid to describe the combined electron-nuclear spin dynamics using a
master equation. We can then write a Lindblad master equation

M

% = Llp] = =i[Hi,p + > _(Lip(t)L} — %LZLkp(t) - %p(t)LLLk), (8)
k=1

where the jump operators Lj describe the 77 flips of NV, and are therefore L) =

['|mg) (m)], where m,,m = {-1,0,+1}. ' = 1/,/2T¢ (1//31%) for 2LF (3LF).

We note that we do not need to explicitly write jump operators for the nuclear spin,

as its decoherence is mediated by the Hamiltonian Hy = w.S, + w,l, + S - A -1

(Hs = DS?+w,S. +w,I.+S5-A-I) for the electron-nuclear spin register for an electronic

spin-1/2 (spin-1). The evolved density operator can be simply found by vectorizing this
equation to obtain p(t) = e!p(0). We find that the numerical results from the spin-
fluctuator model and the master equation match, indicating the validity of using the
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semiclassical spin-fluctuator model to describe a fully quantum process. We note that
the quantum mechanical treatment could handle more general cases, such as the initial
NV state being a superposition state [48].

6.2. Analytical results for the coherence time due to a 2LF

In the 2LF case, we can obtain an intuitive picture of the dynamics under DD by
diagonalizing the block [eM-17/2. U, . eM-17/2] = V=1A V. The diagonal elements of

Agq are real:
e

w
with W = /v%? — 42. They satisfy AT > 0 > A~, with the equal sign only for v = . As
we do not expect a net growth of coherence, the negative eigenvalue A~ is not expected to
contribute. As we will see soon, its coefficient is almost 0. For an initial state P = [1; p],

A= C [ysin(W7) £ /v2 — 42 cos2 (W) ], 9)

p € [—1,1], we can express the coherence explicitly:

(¢*(NT)) ={VARV P

(10)
=pci AL — pea AL + 3N 4 ey AT
with ¢, as follows

1 =cy = ivysin*(Wr/2)B,
1

c3 =5 + 5[ =7 cos(WT)), (11)
1 B

C4=5— 5[1}2 — % cos(WT)],

where B = 1/[W/v% — 42 cos?(Wr)]. In the strong fluctuator regime, v > v, we have
c1,c ~ y/v =0, cs 1, ¢y = 0, yielding an exponential decay (e"?(NT1)) ~ \?. Note
that Equations (9-11) are valid even in the weak fluctuator regime.

6.3. Analytical results for the coherence time due to a SLF

The 3-level fluctuator case is more complicated, and we cannot derive an elegant
analytical form. When we apply the DQ drive, the coherence approximately follows
a simple form

(e®(nT)) & cy A+ oAy + A", (12)

where {\;, o, A_} are the eigenvalues of eM-17/2 . U_ . eM-17/2_ TInstead of writing
down their cumbersome expressions, to obtain some intuition in Fig. 8 we plot how the
eigenvalues and their corresponding coefficients change as a function of 7. Similar to the
2LF case, there is one eigenvalue, \g, that is negative but has a vanishing contribution to
the dynamics. The coherence behavior also depends on the initial state (which sets ¢).
Assuming Tf= 4ms and starting from the subspace spanned by |m, = +1), we obtain
the solid lines in Fig. 8; the dashed lines represent the case of starting from |ms = 0).
Interestingly, in the latter case, the coefficients will go beyond 1 and below 0, causing
better coherence for some 7 value than the best decay rate of the three eigenvalues.
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Figure 8: Contribution of three eigenvalues to the T3 decay due to a 3LF. (a) Decay rate
corresponding to each eigenvalue as a function of the DD interval 7. Note the gray curve
represents the negative eigenvalue, and here we plot its absolute value. (b) Contribution
of each eigenvalue to the qubit coherence. We see the negative eigenvalue has almost
zero contribution. Solid lines: NV starts in the subspace spanned by |m, = 41); Dashed
lines: NV starts in |mg = 0).

6.4. Weak fluctuator regime for 3-level system

For completeness, we discuss briefly the 3-level weak fluctuator regime, v < ~ (results
for the 2LF can be found in reference [37]). When evaluating the decay without DD
(to obtain the dephasing time T5") only one of the three eigenvalues of M_; contributes
significantly to the decay. Therefore the decoherence has an exponential form, with

1 372 — v? K

YTQ* =2y - 313 32/3
K = (973 +V3uy/vt — 922 + 2774>

s (13)

The relationship between 75" and v is shown in Fig. 9, covering the full range from weak
fluctuator to strong fluctuator. The black circles are the approximated result from the
expression in Eq. 13, which ignores small contributions from the other two eigenvalues.
We note that this approximation captures the average behavior for any v, even if the
exact result (red curve obtained from numerical calculations) shows additional features.
Unlike in the strong fluctuator regime, where 75"= 1.577 is independent of v, 75" for a
weaker fluctuator is longer in the regime where v < 7 and increases with ~v/v. We also
see that both in the weak and strong fluctuator regimes, an exponential decay is a good
approximation, but the behavior is more complicated in the intermediate regime.
When we apply DD to protect the nuclear spin qubit in the weak fluctuator regime,
we find that only one eigenvalue mainly contributes to the decay, while we had two
eigenvalues contributing in the strong coupling regime. The decoherence process is thus
exponential. Interestingly, the main contribution comes from the slowest decay term.
In Fig. 10, we show example of the decay component (we did not plot the other two fast
decaying components because they are many orders larger) and their contributions to
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Figure 9: 75" from weak to strong fluctuator regimes as a funcion of v/v. In the weak
fluctuator regime, 75" increases as the fluctuator interacts more weakly with the qubit.
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Figure 10: Contribution of different eigenvalues in the 73 decay with a 3-level RTN,
for weak fluctuator. (a): decay rate corresponding to the slowest decaying eigenvalue
as a function of the DD interval 7. (b): Contribution of each eigenvalue to the qubit
coherence. We see that only the black line corresponding to slowest decay has nonzero
contribution. Solid lines: NV start in subspace spanned by |mg = +1); Dashed lines
(superimposed): NV starts in |m, = 0).

the total decay under DQ) drive, similar to Fig. 8. Here we take TY= 10us, v = 0.01y. A
different result due to initial state as in strong fluctuator regime is not seen here (solid
lines overlap with dashed lines). The oscillatory behavior seen in Fig. 4a and Fig. 8a is
also missing for the weak fluctuator.

6.5. T5™ in the strong fluctuator regime

In the strong fluctuator regime, 75" becomes independent of v (the fluctuator/qubit
coupling). This had been observed in Ref. [37] for the TLF. For the 3LF, we can find a
similar result by taking the limit of v > v in Eq. 13,

1 2

1' —_— = 2 pr—
o Ty O 3¢

5 (14)
;" =5Tf (3LF)
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Similarly, for 2LF, the two eigenvalues of M_; are v+ /7% — v2. In the strong fluctuator
regime, the only real contribution to decay is 7,

1
Iy = =217 (2LF). (15)
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