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Abstract. Quantum memories are critical for solid-state quantum computing devices

and a good quantum memory requires both long storage time and fast read/write

operations. A promising system is the Nitrogen-Vacancy (NV) center in diamond,

where the NV electronic spin serves as the computing qubit and a nearby nuclear

spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear

spins, trading read/write speed for long storage time. Here we focus instead on the

intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its

decoherence mechanism, identifying as its source the electronic spin that acts as a

quantum fluctuator. We then propose a scheme to protect the quantum memory from

the fluctuating noise by applying dynamical decoupling on the environment itself.

We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle

experiment, showing the potential for a quantum memory that combines fast operation

with long coherence time.
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1. Introduction

Quantum technologies, especially those based on solid-state systems such as

superconducting qubits [1], Nitrogen-Vacancy (NV) centers in diamond [2, 3], and

dopant spins in silicon [4], have seen significant progress over the past few decades.

Qubits embedded in solid-state systems are advantageous because of their compatibility

with existing semiconductor fabrication techniques that can offer avenues for scalability.

The drawback, however, is their intrinsic noisy environment due to strong couplings

to their solid-state host. The fluctuating environment renders qubits fragile,

leaving demonstrations of even small scale quantum computing devices (20-50 qubits)

challenging [5].

While further improvements can come from more carefully engineering the qubit

systems to remove undesired noise sources and reduce the number of decoherence

channels, achieving fault tolerance will still require some form of quantum error

correction (QEC). Recent developments include both theoretical proposals for more

powerful QEC protocols [6] and experimental attempts at correcting or detecting

quantum errors [7, 8, 9, 10]. Despite these advances, we have rarely seen experiments

yielding better error rate of the error-corrected qubit than the best single qubit in the

same system [11]. This is because the recovery operation needed for QEC has so far

introduced more error than it corrected. A simpler QEC strategy, avoiding measurement

and recovery operations, is to decouple qubits from the environment using dynamical

decoupling (DD). This technique, going back to NMR’s spin echo [12], enjoys great

success thanks to its ease of implementation. In addition, it is compatible with many

quantum information processing protocols [13, 14, 15] and can be concatenated with

active QEC [16, 17, 18]. Still, DD has traditionally been applied to refocus slow-varying,

weakly coupled environments that can often be modeled as classical bath [19], while its

usefulness to decouple from strongly interacting quantum environments is less clear [20].

Here, we explore the effectiveness of DD to increase the coherence time of a spin

qubit in the presence of a strongly interacting quantum fluctuator. We first introduce

and test a quantitive model of the decoherence process of a qubit (the 14N nuclear

spin of a Nitrogen-Vacancy center) subject to random telegraph noise (RTN) arising

from the fluctuation of either a spin-1/2 or spin-1. Then, based on the model, we

find the requirement on the DD control sequence that achieves qubit protection from

the RTN. It turns out that, due to the slow control on nuclear spin compared to the

hyperfine interaction A, any DD sequence applied to the nuclear spin would not meet

the requirement and still yield the same coherence time, T ∗n2 . However, we find that

by modulating the noise source itself we can efficiently refocus its effects: control on

the NV electronic spin is fast enough to satisfy the DD requirement, and can extend

the qubit coherence time beyond the limit imposed by the fluctuator noise. Finally, we

realize a proof-of-principle demonstration of these ideas, by protecting the 14N nuclear

spin from RTN of a short-lived effective electronic spin-1/2.
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2. Fluctuator Model & Experiment

Random telegraph noise (RTN), often responsible for 1/f noise, is ubiquitous in solid-

state nanodevices [21] and is often the main source of decoherence for quantum dots [22]

and most notably for superconducting qubits [23, 22, 24]. Here we focus on another

exemplary system, nuclear spin qubits in the presence of a fluctuating electronic spin.

Specifically, we consider a quantum register consisting of the electronic spin-1 of NV

(in the following, we will refer to this simply as NV), its native 14N nuclear spin-1,

and possibly a few close-by 13C nuclear spins. With this system, researchers have

demonstrated quantum information storage [25, 26], quantum error correction [7, 8, 9],

quantum feedback control [27] and high-sensitivity magnetometry [28, 29], taking

advantage of the long dephasing time T ∗n2 of the nuclear spin, which is usually one to two

orders or magnitude longer than that of the NV. Long though it is, T ∗n2 is limited by the

NV relaxation time T e1 (∼ few ms) [25, 29, 30]. Random NV flips due to T e1 process result

in a 3-level RTN; the nuclear spin picks up a random phase from the RTN and decoheres.

As explained below, when the hyperfine interaction strength is larger than the T e1 flip

rate, T ∗n2 is strictly limited by T e1 . To extend T ∗n2 beyond this limit, previous efforts

have focused on weakly coupled nuclear spins, employing motional narrowing [25, 31],

or decoherence-free subspace [32, 33]. On the other hand, strongly coupled nuclear spins

are favorable because they provide fast [34, 35, 30], and direct control. Here, we look

into the regime of strongly coupled nuclear spins, where previous methods do not work

well. In particular, we work with the native 14N nuclear spin, because it is ubiquitous

and has proven useful in the NV-14N quantum register [26, 36, 28, 29, 27]. For this

system, the previous approaches do not work well, nor does implementing a simple spin

echo [30]. After gaining a deeper insight into the fluctuator model, we will show how to

overcome this challenge.

2.1. Spin-Fluctuator modeled as a random walker

We consider a system of two spins interacting via an hyperfine coupling A that we

describe semi-classically using a spin-fluctuator model [37].

We model the intrinsic 14N nuclear spin I of the NV center as a random walker,

whose phase evolves subject to the state of its neighboring electronic spin S that acts as

a strongly coupled fluctuator and generates RTN (Fig. 1). In such analogy, the velocity

v of the random walker is linked to the phase accumulation rate of the qubit, and is set

by the hyperfine interaction, v = mSA. The fluctuator flips at a rate γ between any two

mS states due to spin-lattice relaxation, inducing a change in the value of the hyperfine

coupling, mSA, thus at each such event the walker’s velocity v also changes. In between

fluctuator jumps, the walker covers a distance ϕ, representing the accumulated phase

between qubit states.

For a 2-level fluctuator (2LF), the random walker has only two possible directions of

motion, left or right. The probability p̂r(p̂l) of reaching a position ϕ from the right(left)

is therefore the sum of probabilities of keeping going right(left) from ϕ− vdt or turning
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Figure 1: Qubit decoherence under random telegraph noise. The fluctuator (NV)

randomly flips between its two eigenstates (here from |↑〉 to |↓〉) changing the rate

at which the qubit (14N ) accumulates a phase. For a representative RTN trace, we

show that in the absence of a fluctuator jump, the qubit population would continue to

oscillate at the same rate (dashed line), while after a fluctuator jump, the oscillation

rate accelerates (solid red line). As the jump timing is random, the observed average

dynamics is decoherent.

right(left) (with probability γ) from ϕ+ vdt. The random walker’s motion can then be

described by a system of differential equations [37]:{
∂tp̂l(ϕ, t) = −γ[p̂l(ϕ, t)− p̂r(ϕ, t)] + v∂ϕp̂l(ϕ, t)

∂tp̂r = −γ(p̂r − p̂l)− v∂ϕp̂r.
(1)

The spin coherence is given by the average accumulated phase, 〈eiϕ(t)〉 =
∫
P̂ (ϕ, t)eiϕdϕ,

where P̂ (ϕ, t) = p̂l + p̂r is the total probability of reaching ϕ at time t. Note that this is

the Fourier transform of P̂ , P (k, t), evaluated at k = −1. We can thus more compactly

write the relevant equations of motion as ∂t ~P (k, t) = Mk
~P (k, t), that is

∂

∂t

(
P

p

)
=

(
0 −ikv
−ikv −2γ

)(
P

p

)
, (2)

where p(k, t) = pr(k, t)− pl(k, t).
We can similarly describe the spin dynamics in the presence of a three-level

fluctuator (3LF), where one of the levels corresponds to a “rest” state v = 0 (no phase

accumulation), with corresponding probability p0:

∂

∂t

P

p+

p

 =

 0 0 −ikv
2γ −3γ −ikv
0 −ikv −3γ


P

p+

p

 , (3)

where p+ = pl + pr and here P = pl + pr + p0. The spin decay is then given by

〈eiϕ(t)〉 = eM−1tP (−1, 0) and is characterized by a typical timescale T ∗n2 . Note that

since we consider the fluctuator to be either a spin-1/2 or a spin-1, we have v = A/2(A)

and γ = 1/2T e1 (1/3T e1 ) for the 2LF(3LF).
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In the strong fluctuator regime that we focus on, intuitively a single fluctuator

jump is enough to totally decohere the nuclear spin. Then, provided v/γ � 1, the spin

decay rates doe not depend anymore on v but only on the jump rate. Indeed, we find

T ∗n2 = 2T e1 (1.5T e1 ) for the 2LF(3LF) (See Appendix. 6.5). This strict limit on T ∗n2 for the

strong fluctuator is in sharp contrast to the weak fluctuator case, where T ∗n2 increases

as the hyperfine interaction strength decreases (See Appendix. 6.4).

2.2. Experimental results

To experimentally test the spin-fluctuator model, we measure and compare T e1 of

the Nitrogen-Vacancy center electronic spin and T ∗n2 of its native 14N nuclear spin.

All experiments are performed using a home-built confocal microscope, with single

NV centers in an electronic grade diamond sample (Element 6, 14N concentration

[14N ] < 5 ppb, natural abundance of 13C ). We work at a magnetic field of 424G, close

to the excited state level anti-crossing, to polarize the 14N nuclear spin [38]. A 1.5mW

laser of 2µs duration polarizes the hybrid NV-14N system into |mS = 0,mI = +1〉 with

high fidelity. Microwave (MW) and radiofrequency (RF) pulses are delivered through a

25µm wide copper wire to have precise control of the NV and 14N spin states.

For T e1 measurement, a laser pulse first initializes the system into |0,+1〉. Then we

apply a strong MW pulse (tπ = 44 ns) to prepare it to the desired state |−1,+1〉. The

NV is free to fluctuate due to T e1 process before we measure the remaining population in

|−1,+1〉 obtaining the signal S−1
−1 where the sub(super)script refers to the initial (final)

electronic spin state. We also measure the population in the state |0,+1〉 obtaining the

signal S0
−1. T e1 is extracted to be 4.3 ± 0.3 ms by fitting to the difference of the two

measurements S−1
−1−S0

−1 (here and throughout the paper, uncertainty in all fitted values

are 95% confidence interval).

For T ∗n2 measurement, we implement a nuclear Ramsey sequence in the electronic

ms = −1 manifold, where the larger nuclear spin energy splitting (due to the hyperfine

coupling) allows faster driving. The system is first prepared to |−1,+1〉, as described

above, before being coherently driven to a nuclear superposition state (|−1,+1〉 +

|−1, 0〉)/
√

2 using on-resonant RF field. After a free evolution period, we convert nuclear

spin coherence to populations with a second RF π/2 pulse, α |−1,+1〉 + β |−1, 0〉.
Finally, the nuclear spin is read out by mapping its state to the NV electronic spin,

using a selective MW pulse (tπ = 1.1µs). This pulse creates the entangled state

α |0,+1〉 + β |−1, 0〉 between the NV and 14N , allowing optical readout of the nuclear

spin state population |α|2, |β|2 with high SNR.

Isolating the bare contribution of the nuclear spin dephasing in the fluorescence

signal decay is nonetheless not straightforward as the consequences of NV random flips

are three-fold. First, they induce the nuclear spin dephasing that we aim at measuring.

Second, they modify the NV state, leading the second RF π/2 pulse to be off-resonance

and preventing the transfer of the nuclear coherence into population difference. Finally,

they also induces errors in the mapping between nuclear and electronic spin states as
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Figure 2: (a) Natural relaxation decay of a single NV population and (b) cohernce

decay of its native 14N under a Ramsey sequence. The dashed lines are fits to the

expected dynamics, yielding T e1 = 4.3(3) ms and T ∗n2 = 5.6(1.7) ms. These values satisfy

T ∗n2 = 1.5T e1 , as predicted by the spin fluctuator model. All error bars in the figure are

one standard error of the mean (SEM).

the NV state is not fully polarized anymore.

Fortunately, in the strong fluctuator regime, one flip of the fluctuator is enough to

decohere our qubit, which allows us to neglect the two last errors. The bare contribution

of the nuclear spin dephasing can be isolated by recording the signals obtained from

nuclear Ramsey sequence with 1) no phase difference between the two RF π/2 pulses

and 2) a π phase shift. The last two effects that cause imperfect readout of the nuclear

spin have an equivalent contribution in both Ramsey sequences, just creating a common

error that is suppressed when subtracting the two Ramsey signals (Appendix. 5.1). We

can then measure a dephasing time T ∗n2 = 5.6 ± 1.7 ms as shown in Fig. 2b. This

measurement is consistent with our prediction from spin-fluctuator model with 3 levels,

T ∗n2 = 1.5T e1 .

3. Dynamical Decoupling in the strong coupling regime

3.1. Theory

To protect the nuclear spin qubit from RTN generated by the NV, we resort to dynamical

decoupling (DD). Usual DD schemes are highly effective in protecting qubits from noise

provided the pulses are applied at a higher repetition rate than the typical correlation

time of the noise. Unfortunately, because of the Markovian nature of RTN, this condition

does not apply here. Instead of being set by the fluctuator rate γ, in order for DD to

be effective the π-pulse separation time τ must satisfy

A · τ . 1. (4)

When applying DD following the well-known CPMG sequence [39] with time



Protecting solid-state spins from a strongly coupled environment 7

between pulses τ , the spin coherence after N pulses is given by

〈eiϕ(Nτ)〉 = {[eM−1τ/2 · Uπ · eM−1τ/2]N ~P}1, (5)

where Uπ is the π-pulse operator in the ~P basis. For a 2LF this is diag(1,−1), while

it is diag(1, 1,−1) for a 3LF. As discussed below, it might be possible, and even more

convenient, to apply π-pulses on the fluctuator instead of the qubit. Indeed, the desired

effect is to invert the sign of the coupling between the two systems. For a 3LF, this can

be achieved by driving the double quantum (DQ) transition |+1〉 ↔ |−1〉. However, for

a 3LF there is some freedom on the type of pulses applied. In addition to driving the DQ

transition, one can also drive one of the single quantum (SQ) transitions, |0〉 ↔ |±1〉,
resulting in

Uπ =

1 0 0

1 −1/2 ∓1/2

1 ∓3/2 1/2

 .

Since the qubit decay under DD is not necessarily purely exponential [Ap-

pendix. 6.3], we define an effective coherence time T n2 (τ) through:

〈eiϕ(Nτ = T n2 (τ))〉 = 1/e (6)

The dependence of T n2 on the DD interval τ is shown in Fig. 4a. As expected, smaller

τ ’s are better at decoupling the qubit from RTN and at extending T n2 . Interestingly, the

behavior for the 2LF and 3LF is different. For 2LF, DD leaves the decay approximately

exponential (see Appendix. 6.2), with a decay rate

1/T n2 = γ − 1

τ
ln

[
γ sin(Wτ) +

√
v2 − γ2 cos2(Wτ)

W

]
, (7)

where W =
√
v2 − γ2. For a 3LF, however, the coherence decay is not exponential (See

Appendix. 6.3). Still, we see that, by using DQ pulses to refocus the fluctuator (or

applying pulses directly to the qubit), one could in principle fully decouple the qubit

from RTN noise when τ → 0, until nuclear-nuclear dipolar interactions become the

dominant noise source [25]. With SQ drive, however, one only protects the qubit from

RTN half of the time, therefore the decay rate can at most be reduced to half of its

value without DD (Fig. 4a).

3.2. Experimental results

We now apply these ideas to protect the nuclear spin from the NV RTN and extend its

T n2 beyond the limit of T e1 .

Due to the strong hyperfine coupling A = 2.16 MHz between the electronic and

nuclear spin of the NV, the condition (4) requires τ . 1µs, which is not feasible given

the slow control of the nuclear spin qubit (with typical π-pulse times 50µs). However, as

the hyperfine interaction is symmetric with respect to the state of both spins, applying
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π-pulses on either the qubit or the fluctuator modulates the hyperfine interaction sign

and will lead to an effectively weaker averaged hyperfine coupling and thus a slower

rate at which nuclear states acquire a random phase. It is consequently possible to

take benefit from the electronic driving strength that are typically a few tens to a few

hundreds of MHz [40, 41, 42], yielding π-pulses fast enough to meet the requirement of

Eq. (4).

Another challenge in the experiment is due to the nuclear spin readout, which is

indirectly obtained by measuring the NV spin. As mentioned in Sec. 2.2, as the NV

center state is unknown at the end of the evolution due to T e1 processes, the nuclear spin

mapping from coherence to population states and its readout via the NV electronic spin

might fail. This problem is exacerbated when DD is applied, as we expect some qubit

coherence to be stored in all NV manifolds. Thus, the differential measurement scheme

applied above no longer provides an accurate picture of the nuclear spin coherence decay.

In particular, it is no longer possible to fully measure gains in T n2 beyond T ∗n2 (see

Appendix. 5.1).

To remove this undesired effect and more precisely verify the protection of the

nuclear spin afforded by DD, we engineer a short-lived 2LF, decoupling its evolution

(and final state) from the state needed for the correct readout of the nuclear spin.

The engineered noise also allows shorter experiments, further avoiding slow external

experimental drifts that could hide the gains in coherence time. In addition, engineering

a 2LF instead of 3LF eliminates the need of dual frequency driving. The artificial 2LF

is engineered by applying fast, on-resonant MW pulses to flip the NV electronic spin

state between |0〉 and |−1〉 (engineered T e1 flip) at random times following a Poisson

distribution. Figure 3a displays one of the 200 engineered T e1 traces that once averaged

simulate an exponential T e1 decay process. We set the flipping constant of the artificial

2LF in order to obtain a relaxation time T e1 = 10µs. This time scale is much longer than

the π-pulse length tp = 44ns, and is two orders smaller than that of the natural T e1 ,

guaranteeing the third level |+1〉 of the NV center is not involved in the dynamics and

we indeed have an effective 2-level fluctuator.

Figure. 3b shows measurement of the engineered T e1 decay, matching very well

with the simulation of the applied 200 engineered T e1 traces. An exponential fit gives a

decay time of 10.0 ± 0.4µs, in good agreement with our 10µs design. We then use the

same engineered T e1 traces to perform a nuclear Ramsey experiment and measure the

resulting coherence time by fitting data to an oscillating exponential curve, obtaining

an engineered T ∗n2 = 22 ± 4µs = 2T e1 (Figure 4b), as expected from the 2LF theory. In

order for the nuclear spin state readout to be accurate, if the NV ends up in |0〉 due to

the engineered flips we apply an extra π-pulse immediately before the readout process,

which brings it back to |−1〉.
Finally, in addition to the engineered T e1 traces, we apply the Knill-Dynamical

Decoupling (KDD) sequence [43] with an interval of τ = 200ns on the NV to decouple
14N from the RTN. We choose KDD instead of CPMG because it is robust against pulse

errors (In the following experiments, we use DD to refer to KDD pulses). We apply
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Figure 3: (a) Pulse sequence for one engineered T e1 trace with three fluctuator jumps.

The red MW π-pulses prepare and readout the desired NV state. The black MW π-pulses

mimic engineered T e1 flips. (b) Decay of a single NV under engineered T e1 relaxation

noise, simulated by 200 traces of engineered T e1 flips as described in the main text. Red

and black diamonds: S−1
−1 and S0

−1 experimental decays. Solid gray line: simulation

of T e1 using the same traces. Gray dashed line: fit to an exponential decay, giving

T e1 = 10.0(4)µs. Error bars in the figure are one SEM.

∼ 100 π pulses to measure the nuclear spin coherence decay, which according to Eq. 7, is

expected to follow an exponential behavior. In Fig. 4b we compare the experimental (and

theoretical) decays with and without DD, clearly showing the improvement achieved by

applying a decoupling scheme, proving the successful protection of nuclear spin from

its RTN environment. This is confirmed by the measured T n2 value, extracted from

an oscillating exponential fit to be T n2 = 67 ± 17µs, (Fig. 4b), clearly exceeding T ∗n2 ,

and matching well with theoretical prediction of 71µs. We repeat this experiment with

different DD intervals τ , to compare the trend in T n2 with our theory. The results,

shown in Fig. 4a, are in quantitative agreement with the predicted behavior, including

the somewhat counterintuitive result for τ = 600ns, where the applied DD accelerates

decoherence, giving T n2 <T
∗n
2 .

While we demonstrated that dynamical decoupling can be effective in increasing

the coherence time affected by a strong random fluctuator only for engineered noise,

we remark that our experimental results show that it would be possible to refocus the

natural noise as well. Indeed, using a direct readout of the nuclear spin [44, 36] or with

a different protocol to map its state onto the electronic spin, it would be possible to

avoid seeing direct effects of the NV T e1 on the measured nuclear spin coherence. We

further performed DD experiments to show that it is practically feasible to implement

the necessary number of pulses for decoupling (see Appendix 5.4) without introducing

additional noise due to pulse errors.
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Figure 4: (a) Effective coherence time T n2 for 2LF (theory: black solid line; experiment:

red diamond), and 3LF for double quantum drive (theory, red dashed line) and

single quantum drive (theory, gray dashed line). The experimental results (for τ =

200, 260, 280, 300, 400, 600, and 1000 ns) agree well with the theoretical prediction

of the 2LF, including the somewhat counterintuitive result for τ = 600ns which

indeed gives T n2 <T
∗n
2 . Error bars are 95% confidence interval; (b) Corresponding

T ∗n2 (experiment, black diamond) and T n2 (experiment, red diamond, τ = 200ns DD

interval) decay. Dashed lines are fits to an oscillating exponential decay. Gray solid

lines are the theoretical T ∗n2 and T n2 decays calculated according to the spin-fluctuator

model (amplitude renormalized). Error bars are one SEM (see Appendix 5).

4. Conclusion

Protecting a qubit strongly coupled to a fluctuating quantum environment is often a

challenging task. Here we studied an exemplary system comprising the electronic and
14N nuclear spins associated with the NV center in diamond. While the nuclear spin

can act as a long-lived qubit (or memory), the electronic spin, which is necessary for

initialization and readout, is also the main source of noise for the qubit. We theoretically

analyzed the decoherence mechanism of the nuclear spin qubit and introduced a simple

model in terms of a random fluctuator to describe its decoherence. Measurements on

the fluctuator and 14N qubit are consistent with our spin-fluctuator model and show the

limit on the qubit coherence. Based on this model, we proposed a method to decouple

and protect the nuclear spin from its environment, and demonstrated a factor of 3

increase in coherence time in a proof-of-principle experiment.

Our results pave the way to using strongly coupled nuclear spins, including the

ubiquitous native Nitrogen of the NV center, for demanding experiments requiring long

quantum memory times, complementing existing techniques applicable only to weakly

coupled nuclear spins [25, 32, 33]. In addition, the proposed technique based on DD is

compatible with many quantum information processing protocols [13, 14, 15], allowing

the full functionality of a quantum register, where the electronic spin performs local

operations while the quantum memory is protected. This is in contrast to other protocols
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where the electronic spin is inaccessible during protection of nuclear spins [45, 25, 31].

Proposals concatenating DD with active QEC [16, 17, 18] also makes it potentially a

first layer of protection before applying QEC, enabling scaling-up with less overhead.

Finally, the proposed control technique is also applicable to other solid-state systems, for

example, superconducting qubits, where single or ensembles of fluctuators are believed

to be the major noise source [37, 46, 21].
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5. Appendix 1: Experimental Methods

5.1. Differential Measurement of Nuclear Spin Coherence

In our experiments we do not have a direct measurement of the nuclear spin qubit,

which would reveal its coherence time. A common strategy to overcome this limitation

is to initialize the NV and apply a CNOT gate, flipping the NV state conditional on the

nuclear spin state. This effectively maps the state information from the nuclear to the

electronic spin. In the nuclear Ramsey experiment in Sec. 2.2, we create the entangled

state α |0,+1〉+ β |−1, 0〉 with this protocol. The NV is then optically read out, giving

the same probability distribution |α|2, |β|2 as if directly measuring the nuclear spin.

However, when we measure the nuclear spin coherence, the NV undergoes T e1 flips,

potentially introducing errors in this readout process. First, if the NV final state

is different from the nominal one, the second RF pulse operates in the incorrect NV

manifold and is thus off-resonance, failing to transfer the nuclear coherence into state

populations. Second, the mapping between nuclear and electronic spin states might fail

as the NV state is not fully polarized anymore.

To account for these errors, we perform a differential readout to obtain T ∗n2 : the first

measurement is the regular nuclear Ramsey experiment, measured by applying a CNOT

on the NV, subject to possible readout failure; for the second measurement, we add a

π phase shift on the second RF π/2 pulse in the nuclear Ramsey sequence, and then

apply the same readout. The difference of the two measurements yields the expected

T ∗n2 decay, as shown in Fig. 5a. The intuitive explanation is that since one jump of the

strong fluctuator totally decoheres the qubit, any nuclear spin coherence is preserved

only when the NV stays in the original state. No coherence is left when the final state

is different. Therefore, measurements (including unsuccessful ones) already contain

all the information about the nuclear spin coherence. The purpose of the differential

readout is to remove the two errors mentioned above, which are not related to the

nuclear spin coherence decay. Therefore, one could even choose a different measurement

as the second data set, as long as it contains the same common mode error. One
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Figure 5: (a) Simulation of differential measurement for T ∗n2 . Red solid line assumes

perfect readout of the nuclear spin coherence. Black solid line is one set of the differential

data. The asymmetric shape and non-zero asymptotic value indicate the presence

of a common mode signal not related to nuclear coherence. Gray dashed line shows

differential measurement, revealing T ∗n2 . (b) Nuclear coherence stored in different NV

manifolds when we apply DQ DD. Gray solid line is the full coherence. Red solid line

is the coherence stored in |ms = ±1〉 and black solid line in |ms〉 = 0. As coherence is

stored in all manifolds, the differential measurement is no longer effective in removing

common mode noise from the NV T e1 process.

such choice is to apply a CNOT gate conditional on the nuclear spin being in the

|mI = 0〉 state (instead of |mI = +1〉). We chose to apply a π phase shift on the nuclear

Ramsey because when taking the difference of the two measurements this also doubles

the signal amplitude. When the qubit is protected against RTN by the DD control,

this differential measurement is no longer effective because some nuclear spin coherence

is stored in all NV manifolds (Fig. 5b). We emphasize that this is not a fundamental

limit. Single-shot readout, either using on-resonant laser at cryogenic temperature [44]

or using intermediate-high magnetic field at room-temperature [36] solves this issue and

has been experimentally demonstrated.

5.2. Data Analysis for Engineered T e1

In the engineered T e1 experiment, we consider NT = 200 predetermined traces. Each

trace is repeated 4 × 104 times in order to build enough statistics to determine the

final population state of the NV. In Fig. 6a, we plot the average signal at t= 16µs for

each one of the 200 T e1 traces, clearly showing that the final state of each trace can be

reliably determined to be either |0〉 or |−1〉. As another demonstration, in Fig. 6b we

plot out the #47 engineered T e1 trace in black solid line, and the experimental result in

red diamonds. The error bars in all engineered T e1 experiments are then the standard

deviation resulting from the 200 × 4 × 104 acquired data for each time point, divided

by
√
NT , which corresponds to the usual standard error of the mean used for the other

experimental results.
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5.3. Engineered T e1 with DD

In order to simulate a T e1 flip, we apply a π pulse, the same pulse used for DD. As the

pulse length (44ns) is comparable to the smallest time interval between pulses of the

DD sequence (200ns), there is a non-negligible probability that a T e1 flip overlaps with

DD pulses for some of the T e1 traces. We deal with this possibility in two ways: if the

overlap of the T e1 flip and DD π-pulse is larger than half the pulse duration, we do not

apply either pulses; also, we discard all traces that contain an overlap of less than half

of the pulse duration. We verify that this strategy does not bias the overall engineered

noise by measuring T e1 with and without DD sequence. The results in Fig. 7a show that

the fitted T e1DD = 10.0± 0.4µs is the same as T e1 without DD (10.0± 0.4µs) within the

errorbars. This verifies that our treatment of overlapping π-pulses does not change the

underlying physics, and that the protection of nuclear spin coherence derives from DD,

rather than from changes in the engineered T e1 under DD.

5.4. Natural T e1 with DD

To show that even for the natural T e1 noise our DD method can efficiently decouple the

nuclear spin from its RTN, we measure the natural T e1 while applying a DD sequence

(Fig. 7b). In order to have a sequence robust against flip angle error and off-resonance

pulses, we employ the KDD pulse sequence [43],

KDDϕ = τ/2− (π)π/6+ϕ − τ − (π)ϕ − τ − (π)π/2+ϕ − τ − (π)ϕ − τ − (π)π/6+ϕ,

and concatenate this 5-pulse block following the XY-16 phase cycle [47]: KDDx −
KDDy −KDDx −KDDy −KDDy −KDDx −KDDy −KDDx −KDDx̄ −KDDȳ −
KDDx̄ − KDDȳ − KDDȳ − KDDx̄ − KDDȳ − KDDx̄. We measure up to 8ms,
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Figure 6: Engineered T e1 measurement. (a) We compare the measured NV fluorescence

at a fixed time, t= 16µs, to the “bright” and “dark” reference lines, given by the

population states |0〉, |−1〉, for all 200 different traces. We clearly see that the final

state can be read out with high fidelity. (b) One of the engineered T e1 trace of theory

(black solid line) and experiment (red diamond). Error bars are one SEM.
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Figure 7: (a) Same T e1 experiment as shown in Fig. 3b, but with DD sequence. In

this experiment, we deal with the overlap of T e1 flip and DD pulses the same way as to

measure T n2 , demonstrating the same RTN environment when we apply DD sequence

and protect 14N . Red diamond: experiment; black solid line: simulation; gray dashed

line: fit. (b) natural T e1 measurement under a DD sequence with τ = 200ns interval

(red diamond). The fit to an exponential decay (gray dashed line) gives 3.7 ± 1.3ms in

good agreement with the T e1 measured in the absence of DD pulses. All error bars are

one SEM.

corresponding to 4 × 104 pulses, longer than T ∗n2 . We fit the data to an exponential

decay and find the 1/e time to be 3.7± 1.3ms, matching T e1 = 4.3± 0.3ms. At this τ , we

expect more than a factor of 3 gain in T n2 , therefore there should be a net improvement

in nuclear spin coherence. This suggests that for up to about ∼ 105 pulses, pulse errors

in the DD do not accumulate so significantly to counteract potential gains in T n2 . We

expect our method to protect 14N beyond the limit set by natural T e1 of a few ms, as it

could be verified with single-shot readout of the nuclear spin coherence.

5.5. Discussion on the relation between T e1 and T ∗n2

Given the large uncertainty in the measured natural T e1 = 4.3(3)ms and T ∗n2 = 5.6(1.7)ms

(errors are 95% confidence interval from fit), we find a T ∗n2 /T e1 ratio of 5.6/4.3 = 1.3(2),

which is compatible with the 3LF model prediction (T ∗n2 /T e1 = 1.5), but does not exclude

other models. It is then worth to examine more in depth whether the data does indeed

support the three-level spin-fluctuator model or whether other models could be a better

match.

Instead of extracting T e1 and T ∗n2 independently from the fit, we fit the two

experimental datasets together to four models: 1) fixing T ∗n2 /T e1 = 1.5; 2) fixing

T ∗n2 /T e1 = 2; 3) fixing T ∗n2 /T e1 = 1; 4) leaving T ∗n2 /T e1 as a free fitting parameter. We

compare the mean square error (MSE) of the fit and the uncertainty of the fitted

T e1 for the four models; results are summarized in Table. 1. This analysis reveals that

the model assuming T ∗n2 /T e1 = 1.5 (model 1) yields the best result both in terms of

smallest MSE and smallest uncertainty in T e1 . A more general fit (model 4) converges
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Table 1: Comparing different models for T ∗n2 /T e1

MSE T e1 (ms) σT e
1
(ms) T ∗n2 /T e1

model 1 0.0083 4.1 0.8 3/2

model 2 0.0091 3.6 0.8 2

model 3 0.0086 5.0 1.0 1

model 4 0.0084 4.3 1.2 1.3(5)

to T ∗n2 /T e1 = 1.3(5), similar to the result when the two datasets are fitted independently,

but results in larger uncertainty in T e1 . We therefore argue that the experimental data,

although with a relatively large uncertainty, are consistent with the spin-fluctuator

model predictions.

We further note that we can ascribe the slightly smaller T ∗n2 than expected

(T ∗n2 /T e1< 1.5) to environmental drift. Each data point in Fig. 2b is averaged over

100, 000 repetitions. We observe ∼ 20Hz drift in the nuclear Larmor frequency even

after recalibrating the experiment about every hour by measuring the magnetic field drift

with the NV and compensating its effect on the nuclear Larmor frequency by adding

a corresponding phase shift to the second π/2 pulse of the nuclear Ramsey sequence.

Although small, the frequency drift is non-negligible compared to the detuning in the

nuclear Ramsey experiment (∼ 800Hz). The resulting off-resonance pulses cause the

average data to have a reduced contrast at long time, which is interpreted as a shorter

T ∗n2 .

6. Appendix 2: Coherence decay for random telegraph noise

6.1. Master Equation Description of the Nuclear Coherence

While the random walker model provides an intuitive semiclassical picture of the decay

process, one could also solve the coupled fluctuator-qubit dynamics with a fully quantum

mechanical framework. In particular, as the T e1 process of the NV center is purely

Markovian, it is valid to describe the combined electron-nuclear spin dynamics using a

master equation. We can then write a Lindblad master equation

dρ

dt
= L[ρ] = −i[Hi, ρ] +

M∑
k=1

(Lkρ(t)L†k −
1

2
L†kLkρ(t)− 1

2
ρ(t)L†kLk), (8)

where the jump operators Lk describe the T e1 flips of NV, and are therefore Lk =

Γ |ms〉 〈m′s|, where ms,m
′
s = {−1, 0,+1}. Γ = 1/

√
2T e1 (1/

√
3T e1 ) for 2LF (3LF).

We note that we do not need to explicitly write jump operators for the nuclear spin,

as its decoherence is mediated by the Hamiltonian H2 = ωeSz + ωnIz + S · A · I
(H3 = DS2

z +ωeSz+ωnIz+S ·A·I) for the electron-nuclear spin register for an electronic

spin-1/2 (spin-1). The evolved density operator can be simply found by vectorizing this

equation to obtain ρ(t) = eLtρ(0). We find that the numerical results from the spin-

fluctuator model and the master equation match, indicating the validity of using the
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semiclassical spin-fluctuator model to describe a fully quantum process. We note that

the quantum mechanical treatment could handle more general cases, such as the initial

NV state being a superposition state [48].

6.2. Analytical results for the coherence time due to a 2LF

In the 2LF case, we can obtain an intuitive picture of the dynamics under DD by

diagonalizing the block [eM−1τ/2 · Uπ · eM−1τ/2] = V −1ΛddV . The diagonal elements of

Λdd are real:

λ± =
e−γτ

W
[γ sin(Wτ)±

√
v2 − γ2 cos2(Wτ) ], (9)

with W =
√
v2 − γ2. They satisfy λ+ ≥ 0 ≥ λ−, with the equal sign only for v = γ. As

we do not expect a net growth of coherence, the negative eigenvalue λ− is not expected to

contribute. As we will see soon, its coefficient is almost 0. For an initial state ~P = [1; p],

p ∈ [−1, 1], we can express the coherence explicitly:

〈eiϕ(Nτ)〉 ={V Λn
ddV

−1 ~P}1

=pc1λ
n
+ − pc2λ

n
− + c3λ

n
+ + c4λ

n
−

(10)

with cn as follows

c1 =c2 = ivγ sin2(Wτ/2)B,

c3 =
1

2
+
B

2
[v2 − γ2 cos(Wτ )],

c4 =
1

2
− B

2
[v2 − γ2 cos(Wτ )],

(11)

where B = 1/[W
√
v2 − γ2 cos2(Wτ)]. In the strong fluctuator regime, v � γ, we have

c1, c2 ∼ γ/v ≈ 0, c3 ≈ 1, c4 ≈ 0, yielding an exponential decay 〈eiϕ(Nτ)〉 ≈ λn+. Note

that Equations (9-11) are valid even in the weak fluctuator regime.

6.3. Analytical results for the coherence time due to a 3LF

The 3-level fluctuator case is more complicated, and we cannot derive an elegant

analytical form. When we apply the DQ drive, the coherence approximately follows

a simple form

〈eiϕ(nτ)〉 ≈ c+λ
n
+ + c0λ

n
0 + c−λ

n
−, (12)

where {λ+, λ0, λ−} are the eigenvalues of eM−1τ/2 · Uπ · eM−1τ/2. Instead of writing

down their cumbersome expressions, to obtain some intuition in Fig. 8 we plot how the

eigenvalues and their corresponding coefficients change as a function of τ . Similar to the

2LF case, there is one eigenvalue, λ0, that is negative but has a vanishing contribution to

the dynamics. The coherence behavior also depends on the initial state (which sets ck).

Assuming T e1 = 4ms and starting from the subspace spanned by |ms = ±1〉, we obtain

the solid lines in Fig. 8; the dashed lines represent the case of starting from |ms = 0〉.
Interestingly, in the latter case, the coefficients will go beyond 1 and below 0, causing

better coherence for some τ value than the best decay rate of the three eigenvalues.
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Figure 8: Contribution of three eigenvalues to the T n2 decay due to a 3LF. (a) Decay rate

corresponding to each eigenvalue as a function of the DD interval τ . Note the gray curve

represents the negative eigenvalue, and here we plot its absolute value. (b) Contribution

of each eigenvalue to the qubit coherence. We see the negative eigenvalue has almost

zero contribution. Solid lines: NV starts in the subspace spanned by |ms = ±1〉; Dashed

lines: NV starts in |ms = 0〉.

6.4. Weak fluctuator regime for 3-level system

For completeness, we discuss briefly the 3-level weak fluctuator regime, v � γ (results

for the 2LF can be found in reference [37]). When evaluating the decay without DD

(to obtain the dephasing time T ∗n2 ) only one of the three eigenvalues of M−1 contributes

significantly to the decay. Therefore the decoherence has an exponential form, with

1

T ∗2
=2γ − 3γ2 − v2

31/3K
− K

32/3

K =
(

9γ3 +
√

3v
√
v4 − 9v2γ2 + 27γ4

)1/3
(13)

The relationship between T ∗n2 and v is shown in Fig. 9, covering the full range from weak

fluctuator to strong fluctuator. The black circles are the approximated result from the

expression in Eq. 13, which ignores small contributions from the other two eigenvalues.

We note that this approximation captures the average behavior for any v, even if the

exact result (red curve obtained from numerical calculations) shows additional features.

Unlike in the strong fluctuator regime, where T ∗n2 = 1.5T e1 is independent of v, T ∗n2 for a

weaker fluctuator is longer in the regime where v < γ and increases with γ/v. We also

see that both in the weak and strong fluctuator regimes, an exponential decay is a good

approximation, but the behavior is more complicated in the intermediate regime.

When we apply DD to protect the nuclear spin qubit in the weak fluctuator regime,

we find that only one eigenvalue mainly contributes to the decay, while we had two

eigenvalues contributing in the strong coupling regime. The decoherence process is thus

exponential. Interestingly, the main contribution comes from the slowest decay term.

In Fig. 10, we show example of the decay component (we did not plot the other two fast

decaying components because they are many orders larger) and their contributions to
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Figure 9: T ∗n2 from weak to strong fluctuator regimes as a funcion of v/γ. In the weak

fluctuator regime, T ∗n2 increases as the fluctuator interacts more weakly with the qubit.
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Figure 10: Contribution of different eigenvalues in the T n2 decay with a 3-level RTN,

for weak fluctuator. (a): decay rate corresponding to the slowest decaying eigenvalue

as a function of the DD interval τ . (b): Contribution of each eigenvalue to the qubit

coherence. We see that only the black line corresponding to slowest decay has nonzero

contribution. Solid lines: NV start in subspace spanned by |ms = ±1〉; Dashed lines

(superimposed): NV starts in |ms = 0〉.

the total decay under DQ drive, similar to Fig. 8. Here we take T e1 = 10µs, v = 0.01γ. A

different result due to initial state as in strong fluctuator regime is not seen here (solid

lines overlap with dashed lines). The oscillatory behavior seen in Fig. 4a and Fig. 8a is

also missing for the weak fluctuator.

6.5. T ∗n2 in the strong fluctuator regime

In the strong fluctuator regime, T ∗n2 becomes independent of v (the fluctuator/qubit

coupling). This had been observed in Ref. [37] for the TLF. For the 3LF, we can find a

similar result by taking the limit of v � γ in Eq. 13,

lim
v�γ

1

T ∗2
= 2γ =

2

3T e1

T ∗n2 =
3

2
T e1 (3LF)

(14)
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Similarly, for 2LF, the two eigenvalues of M−1 are γ±
√
γ2 − v2. In the strong fluctuator

regime, the only real contribution to decay is γ,

T ∗n2 =
1

γ
= 2T e1 (2LF). (15)
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