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Quantum systems can be exquisite sensors thanks to their sensitivity to external perturbations. This same
characteristic also makes them fragile to external noise. Quantum control can tackle the challenge of protecting
quantum sensors from environmental noise, while leaving their strong coupling to the target field to be measured.
As the compromise between these two conflicting requirements does not always have an intuitive solution,
optimal control based on numerical search could prove very effective. Here we adapt optimal control theory to
the quantum sensing scenario, by introducing a cost function that, unlike the usual fidelity of operation, correctly
takes into account both the unknown field to be measured and the environmental noise. We experimentally
implement this novel control paradigm using a Nitrogen Vacancy center in diamond, finding improved sensitivity
to a broad set of time varying fields. The demonstrated robustness and efficiency of the numerical optimization,
as well as the sensitivity advantaged it bestows, will prove beneficial to many quantum sensing applications.

I. INTRODUCTION

Quantum control has been demonstrated to be a crucial tool
both in quantum information processing [1] and in quantum
sensing [2, 3] on a variety of experimental platforms, ranging
from trapped ions [4, 5], to ultracold atoms [6, 7], supercon-
ducting qubits [8, 9], as well as nuclear [10, 11] and electronic
spin qubits [12, 13]. Quantum sensing poses peculiar chal-
lenges to control, as sensor qubits need to interact strongly
with the target field to be probed, but this also leads to unde-
sired coupling with external noise of the same nature of the
target field, which often gives rise to either energy losses or
decoherence. A paradigmatic scenario is when one wants to
measure a frequency shift of a spin qubit sensor, as due to a
magnetic field, in the presence of magnetic dephasing noise.

Optimal control theory [14, 15] exploits numerical opti-
mization methods [16-20], to find the best control fields that
steer the dynamics of a system towards the desired goal.
Quantum optimal control has been successfully applied in
the case of one- and few-body systems [21-27], as well
as ensembles [28] and correlated many-body quantum sys-
tems [7, 29, 30].

Typically, the optimal control problem involves the search
for the optimal transformation that, given a system Hamilto-
nian H dependent on a set of time-dependent control fields,
drives the system from an initial state into a target state, whose
desired properties are expressed by a cost function F that one
wants to minimize. Often this means maximizing the fidelity
of the unitary operation, which describes this transformation,
with the desired one.

The goal of quantum sensing is however different. Since in
principle we do not have any a priori knowledge of the exter-
nal field to be measured, we do not know what is the expected
unitary dynamics, and thus we cannot use the fidelity to op-
timize control. In addition, quantum sensing is usually con-
cerned with optimizing sensitivity, a quantity that intrinsically
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includes noise, also arising from the external environment.

Here we devise and experimentally demonstrate a robust
and efficient scheme for optimal control of a sensing qubit,
which enhances its sensitivity as a probe of time-varying tar-
get fields. To this purpose, we use an unconventional opti-
mization metric, the sensitivity, and develop a practical way
of computing it (which allows for fast numerical searches).
Furthermore our search method does include in the cost met-
ric itself the presence of an environment and consequent de-
coherence induced on the qubit. While optimal control has
been used before for sensing [31, 32], the optimization was
only targeted at improving the control fidelity and bandwidth,
not the sensitivity itself.

We tackle here the complex task of measuring multi-
chromatic AC target fields, and different significant wave-
forms, such as trains of magnetic impulses, which are relevant
for applications in biology, physiology, and neuroscience [33—
36]. We show that in these cases optimal control demon-
strates better performance than traditional dynamical decou-
pling, since it allows for both a larger accumulation of the
spin phase that encodes the field information, and for an im-
proved compensation of environment-induced decoherence,
thus boosting qubit’s sensitivity and enabling detection of very
weak magnetic fields.

II. OPTIMAL CONTROL OF A QUBIT SENSOR WITH
DEPHASING NOISE.

We use the electron spin states of a negatively-charged
nitrogen-vacancy center (NV) in diamond as a sensing qubit
of time-varying magnetic fields in the presence of magnetic
noise, which induces dephasing of the sensing qubit. While
the NV center forms a spin S = 1, a static bias magnetic
field removes the degeneracy of levels with spin projection
S, = =41, and a microwave excitation selectively addresses
the S, = 0 — —1 transition, therefore the NV center can
be effectively described as a single two-level system[63]. The
electron spin qubit can be prepared in a well defined initial
state, coherently manipulated, and read out [37].

We can model the coupling of the spin qubit with a general,
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FIG. 1: One-qubit optimization strategy. (a) The electronic spin of a single NV center is optically initialized in the |0) state, and read out at
the end of the sensing period, by means of a confocal microscope. An antenna delivers both the resonant control field (in blue) and the target
magnetic field to be measured (in red) in the proximity of the spin qubit. (b) Illustration of the optimization protocol. The starting point is an
initial guess for the control sequence described by a modulation function y2 (¢), which depends on a given number of parameters. While in the
paper we consider more general cases, for the sake of simplicity the central panel shows a search in a two-parameter space (sensing time 7'
and phase shift ) for a Carr-Purcell (CP) control sequence used to detect a monochromatic AC field b(¢) = b cos(2nwvot + ), with frequency
vo = 20.5 kHz, and unknown amplitude b to be measured. The map represents the experimentally-measured inverse sensitivity £ = C'/n (see
text). The algorithm computes the sensitivity 7 under the initial control sequence, then produces and evaluates a number of other trial points

(2)

opt

yn ' (t) and moves in the multidimensional parameter space, until global convergence is reached. The final point, described by y,*, represents

the optimal control sequence.

time-dependent, external field b(t) = b f(t) to be measured,
and the coupling with noise, through the Hamiltonian

/H:’Yb(t)gz +'76(t)0'za (1)

where [3(t) is a stochastic variable with power spectral density
S(w) in the frequency domain, v = 2.81 x 10* Hz/uT is the
NV gyromagnetic ratio, and o, is the z component of the spin
operator, Z being the NV symmetry axis. Performing metrol-
ogy means reaching a compromise between two conflicting
tasks, i.e., minimizing the noise effects while maximizing the
signal stemming from the field, during the sensing time. Here,
in particular, we assume to know the temporal dependence
f(t) of the field, and we aim at measuring its amplitude b (we
are thus interested in a parameter estimation task).

While different control strategies can be used for sensing,
here we consider control via pulsed dynamical decoupling,
which is realized with series of 7-pulses that repeatedly flip
the spin, thus reversing its evolution [64]. The control field
can be thus described by a modulation function y,,(t), with
a sign switch at the position of each 7 pulse, indicating the
direction of time evolution, forward or backward. The squared

Fourier transform of y,, (¢) defines the filter control function
Yn,T (CL}) .

The phase accumulated by the spin during the sensing time
T, under the action of the control field is

T
on(T) = / YV B(E) g (£)dt = b6, @

To read out the phase due to the target field, we embed the
control sequence within a Ramsey interferometer, which en-
ables the mapping of the phase accumulated into observable
population of the spin projection S, = —1.

As said, during the sensing process, the sensor qubit is also
subject to noise. In the case of the NV center, this is mainly
due to the nuclear spin bath that generates a stochastic time-
varying field. Therefore, the qubit acquires a random phase
during its coherent evolution, which leads to a reduction of
the observed population.

The state of the qubit after the sensing process is described,
as in a Ramsey interferometer, by population and coherence
of the density matrix

1 -1 _ _
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where x,,(T) is temporal coherence function, describing
noise-induced decoherence, that also depends on the control
field through Y,, 7(w)

o (T) = / Ao S@) [Yor@)?/(me?). @)

Thus, a projective measurement on the o, basis, |[£) = (]0) +
11))/v/2) gives a signal

S(T) = (T D)) = 5 (14D cos (D)) )

To assess the quality of parameter estimation, as achievable
under a given control protocol and within the experimental
constraints, we can evaluate the Fisher information (FI) [38,
39] associated with the measurement,

Fv=Y 1 (5p1\:9(b$|b))2. ©)

o (ald)

Here py(z|b) = Tr| ;EN)pg@ are conditional probabilities

of obtaining = as measurement result for a given field b over
N repeated measurements, F,, being the measurement esti-
mator and p the density matrix of each independent copy of
the system. Sensitivity, that is, the minimum detectable signal
per unit-time, is simply related to the Fisher information by
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where T = NT is the total sensing experiment time. For the
one-qubit sensing schemes we are considering, this reduces to

n(T)
nmin{m}\/:?ex VT. (8)
abS ‘¢n|

This is indeed the cost function that we want to minimize.
In practice, for a given field b(t), we are searching for the opti-
mal control field that steers the spin trajectory of the electronic
spin on the Bloch sphere in such a way that, while the accumu-
lated phase ¢, (T") is maximized, the effect of non-markovian
noise described by ., (T") is minimized.

To this purpose, we have designed a direct and fast search
method that looks for the optimal modulation function v (t)
that minimizes the cost function . We have investigated
various multi-dimensional parameter spaces, up to dimension
M = 51, and analyzed which optimization parameters (e.g.,
total sensing time, m-pulse positions, signal phase, signal trig-
ger time) do provide the largest improvement without requir-
ing excessive computational resources, as we will detail in the
following. The constraints of the parameter space are chosen
to describe realistic experimental condition. The search of
the optimal control field is performed by means of a Simplex
(Nelder Mead) minimization numerical algorithm that allows
for reaching global convergence in the parameter space, as il-
lustrated in Fig. 1b. The method requires a precise knowledge
of the temporal coherence function of the electronic spin sen-
sor, which depends on the noise spectrum induced by its spin
bath, as detailed in the Method section V B.

"
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III. RESULTS

The experiment is sketched in Fig. la (see also Method
Sec. V A). The electronic spin of a single NV centre is op-
tically initialized and read out by means of a confocal micro-
scope. The spin qubit is coherently controlled with a resonant
field, and radiated with the off-resonance time-varying target
magnetic field to be measured. We obtain sensitivity of the
spin qubit to the target field by sweeping the amplitude of the
magnetic field and measuring the slope of the signal s(7") =
(14 e=x»(T) cos(¢, b)) /2 at the points of maximum slope
(where s = 0.5), as shown in Fig. 2a. From this quantity
we extract the experimental observable & = max{dys}/v/T.
Following Eq. 8, this experimental observable is simply re-
lated to sensitivity through the relation £ = C'/n, where C'is
the only calibration constant, independent of the target field
strength and of the control sequence (see Method Sec. V D).

A. Optimized sensing of an oscillating field

We first focus on the simple case of monochromatic sinu-
soidal signals b(t) = bcos(2mvt + «), in a rather wide fre-
quency range, v = 20 — 125 kHz (see Supplemental Mate-
rial). We start from a common pulsed dynamical decoupling
sequence, the Carr-Purcell (CP) multi-pulse sequence, origi-
nally devised in nuclear magnetic resonance [40, 41], which
has been demonstrated to extend the qubit’s coherence [42]
and has been successfully employed in sensing to measure
monochromatic AC magnetic fields (see, e.g., [43—48]). CP
is composed by n m-pulses, equally spaced by 7 = T'/n,
which periodically flip the spin qubit. This kind of sequence
is highly selective in frequency: its filter function Y;, r(w) is
indeed peaked at v = 1/(27) [65]. In the case of interest, the
qubit is subject to colored noise due to a nuclear spin bath in
diamond, where the main component is due to Carbon-13. If
the target signal has frequency close to the center of the noise
spectrum, CP control may be not the best choice, since the se-
quence achieving noise cancellation also leads to a significant
attenuation of the signal to be measured.

As a warmup for the full optimization, we optimize the
control over a restricted space of two parameters, the sens-
ing time 7', and the initial phase shift o, with a fixed number
of pulses, n = 8. First, fixing « = 0 we find the optimal
sensing time as a function of the AC frequency, as reported in
Fig. 2b. Taking into account decoherence effects appreciably
modifies the optimal sensing time (purple curve), compared
to the results obtained in the absence of noise sources (black
curve), where the optimization routine recovers the expected
analytic solutions 7,,,; = n/(2v). Then, we optimize both T
and a. To evaluate the global convergence of the optimiza-
tion, we have also mapped 1/7 in the two-dimensional (2D)
parameter space (1, ). Figure 1b shows this map for an AC
field of frequency vy = 20.5 kHz. This allows the results of
the optimization to be compared with the brute-force approach
of an extensive search in the parameters space. The full op-
timization of the two parameters, including noise effects, is
able to find the global minimum of sensitivity (the optimized
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FIG. 2: Optimized sensing of monochromatic fields. (a) Experimental signal measured in the presence of a monochromatic target AC
magnetic field, b(¢) = bcos(2nvt + ), with v = 9.24 kHz and o« = 0, as a function of the target magnetic field amplitude b. Here, the spin
sensor is controlled with a Carr-Purcell sequence of n = 4 equidistant 7-pulses. Dots are the experimental data, the curve is a cosinusoidal
fit. Error bars are the statistical errors over 2 x 10° repeated measurements. (b) Theoretical prediction of the optimal sensing time of a
Carr-Purcell sequence of n = 8 equidistant w-pulses (CP-8), calculated for a target AC magnetic field b(¢t) = bcos(2wvt + ), as a function
of the AC frequency v. The black empty squares are the optimized solutions of the sensing problem when neglecting the presence of the noisy
environment, and the black curve represents the expected optimal time, T,,; = n/(2v), with no fitting parameters. Purple dots are optimized
solutions including the noise-induced decoherence of the spin qubit (the line is a guide to the eye). (c) Inverse sensitivity, experimentally
measured, £ (left side vertical axis, see text) and theoretical, 1/ (right side vertical axis) in the presence of a cosinusoidal field b(¢) of
frequency vo = 20.5 kHz under CP control, with & = 0 (red dots, experiment; red line, theory), and with o = 102° (that is, an initial delay
time ¢o = 0.28/1p) resulting from optimization (blue dots, experiment; blue line, theory). The experimental error bars come from the slope

uncertainty of the experimental signal s.

parameters are 7' = 216 us and o = 102°, corresponding to
an initial delay time t; = 0.28/1 of the control sequence).
Figure 2c shows some cuts of the previous 2D-map as a func-
tion of T', with o« = 0 (red solid line), and with o = 102°
(the optimal value resulting from the numerical search, blue
line). Using Eq. 8, we also calculate the experimental observ-
able £ = C/n (left side vertical axis in Fig. 2¢), which can
be directly compared with the experimental findings at fixed
a = 0 (red dots), and with o« = 102° (blue dots). We find
good agreement of the experiments with the results of the op-
timization. We also remark that even in the simple case of
one parameter optimization, including the noise effects yields
a different optimal sensing time than what calculated in the
absence of noise (I' = n/(2vy), gray vertical dashed line),
and this is also reflected in the observed experimental peak of
E-vs-T.

B. Optimized sensing of multitone AC signals.

We then tackle the more complex task of measuring arbi-
trary time-dependent signals. We consider multitone magnetic
fields, in the form b(t) = b ;" w; cos(2mv;t + «;), where m
is the number of Fourier components, b; = bw; their ampli-
tudes (with , wi = 1), v; their frequencies, and «; the initial
phases. We employ our optimization tool to engineer optimal
control sequences of non-equidistant w-pulses that may ex-
tract information from multitone target signals, while refocus-
ing spin dephasing better than common dynamical decoupling
solutions.

As said, common multipulse control sequences like CP are
in general highly selective in frequency. For this reason, these

sequences may exhibit sub-optimal performances when prob-
ing a multitone target field, due to attenuation of some fre-
quency components. In addition, increasing the interrogation
time to enable a larger phase accumulation, thus improving
measurement sensitivity, also further narrows the width of the
filter function Y,, 1 as ~ 1/(T) [65]. If the magnetometry
task consists in measuring the signal amplitude of a spectrally
characterized source as we are considering here, CP collects
information about mostly one frequency component at a given
sensing time. When fixing the number of pulses n and sweep-
ing the total time 7" = nr, the phase accumulated by the spin
qubit sensor under CP control reflects the spectral composi-
tion of the signal, showing peaks at times 7; = 1/(2v;). This
is exemplified in Fig. 3b, where we consider a field made of
m = 3 Fourier components under a CP train of n = 50 pulses
(green solid line). However, the sensor’s decoherence influ-
ences the final sensitivity by suppressing the response of one
of the three frequency components, as shown both in theory
and in experiment (green solid line and yellow dots in Fig. 3c).

For this kind of scenario, optimal control strategies offer
a key advantage. Optimal control can indeed be exploited to
find optimal distributions of the m-pulse positions. Sequences
of non-equally distributed pulse spacings, devised by means
of analytical models, have been indeed demonstrated to cor-
rect for selectivity of CP in certain cases [49-51]. In the case
of multitone AC signals to be measured, such sequences en-
able to simultaneously collect signal from all the various fre-
quency components thus achieving a faster phase accumula-
tion. The results of optimization for the multitone field con-
sidered above are shown in Fig. 3 [66]. For the optimization,
we keep the number of pulses fixed to n = 50, and optimize
all the m-pulse positions and the initial phase (o; = «), in all
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FIG. 3: Optimized sensing of multitone AC fields. (a) Upper panel: Sample multitone target field, b(t) = b>"° w; cos(2mvit + a;), with
a; = 0, frequencies v; = (77;96; 141) kHz and amplitudes w; = (0.45;0.43;0.12) G, respectively. Bottom panel: in green, position of the
first 19 w-pulses of a Carr-Purcell sequence of 50 equidistant m-pulses (CP-50) with optimized sensing time (1" = 260 us); in blue, position
of the first 27 m-pulses of an optimal control sequence of 50 7-pulses with optimized time intervals and optimized initial phase (T" = 187 us,
a; = 0.3). (b) Phase ¢ (T") = ¢, (T)/b accumulated by the spin qubit sensor during the sensing time 7 in the presence of the field b(t),
under a control field of n = 50 7-pulses, in the cases of CP-50 (solid line), and optimized control (blue squares). (c) Experimentally measured
&€ = C/n in the presence of the field b(¢) under CP (dots) and optimized control (diamonds). The curves represent the theoretical prediction
for &, for CP (solid green line) and optimized control (blue line) respectively, obtained by rescaling 1/7 (right-hand side vertical scale) with

the unique factor C'. The shaded area takes into account the experimental uncertainty due to C' (see Method section V D).

51 free parameters. We impose the time intervals around to
each m-pulse to be symmetric with respect to the pulse posi-
tion in order to ensure cancellation of static noise and better
refocusing of low-frequency noise (see Method Sec. V D). As
shown in Fig. 3b, the optimization method leads to a remark-
able improvement in the accumulated phase per unit field am-
plitude ¢,, (blue squares) compared to CP (green line), over an
extremely wide range of sensing times. The overall-optimal
control sequence (obtained with sensing time 7' = 187 us,
and phase shift « = 0.3) realizes a sensitivity ngf,it =12
nT/v/Hz. Since each of our sensing experiments is typically
obtained by averaging over N = 2 x 10° measurement shots,
the optimized control sequence enables the measurement of
a local field of 2 nT. The improvement in sensitivity is al-
most two orders of magnitude compared to sensitivity of CP
(ncp = 82.6 mT/\/IE) at the same sensing time. We remark
that the best sensitivity obtained with CP control is still a fac-
tor of 1.75 worse than the best sensitivity achieved with the
optimized control (nbcef;.t = 21 nT/v/Hz), and with an acqui-
sition time (1" = 260 us) that is 40% longer than the optimal
sequence. In addition, optimized control is able to achieve the
same ns! three times faster then CP (T = 75 us, compared
to T' = 260 us, see black arrow in Fig. 3c). Thus, optimal
control tools have allowed to obtain both a remarkable en-
hancement of sensitivity and a speed-up of the measurement
of multitone AC fields.

C. Optimized sensing of trains of magnetic impulses.

We have applied optimal control to the different scenario
where the target magnetic field is a train of impulses. This
is in general the case of the temporal shape of electric and
magnetic fields associated to cardiac, neural, and nervous ac-
tivities of human and animal organs [33-36]. For this kind
of application, the NV sensors may offer the remarkable ad-
vantages of subcellular spatial resolution, in addition to high
sensitivity, and biocompatibility [52].

As illustrative models for these biological applications, we
consider a train of gaussian-shaped impulses. The target field
is thus of the general form, shown in Fig. 4a,

WA (t—ian?
b(t)=b> e 22 )
=0

where 1/At is the repetition rate, and m,. is the number of rep-
etitions, with m,. At > T. In this case, standard dynamical
decoupling may be underperforming, since the target signal
b(t) is positive-defined in the whole temporal domain, thus
the product y, (t)b(t) may be alternately positive and nega-
tive, reducing the accumulation of useful phase (see Eq. 2). In
other words, each time a m-pulse reverses the spin dynamics,
it can partially cancel not only the effect of unwanted noise,
but also the phase associated to the field to be measured.
Figure 4b-i compares the results of CP control (green-
colored curves) and optimal control (in blue), when varying
the width o of the target gaussian pulse train and its repetition
rate 1/At. In this case as well, we evaluate the effect of con-
trol sequences made of n = 50 7-pulses. In the optimization,
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FIG. 4: Optimal sensing of gaussian impulses. (a) Upper panel: Target signal made of a train of gaussian impulses of width ¢ and repetition
rate 1/At. Bottom panel: position of the first 10 7-pulses of a CP control sequence of 50 7r-pulses (CP-50), with total sensing time 7" = 280 us
optimized to sense a train of gaussian impulses with o = 2 pus, At = 11.2 us (in green), and optimal position of the first 10 m-pulses of a
control sequence of 50 m-pulses (in blue), optimized to sense the same target field (50 optimization parameters). (b)-(i) Modulus of the phase
accumulated by the spin qubit sensor in the presence of the target field (left panels), and the inverse of sensitivity 1/n (right panels), as a
function of the sensing time 7', under CP-50 control (green solid curves), and under optimized control (blue lines with squares) with bounds
7 € (0.6 — 10) ps (see Method Sec. V). In (c), measurement of the experimental observable £ as resulting from CP experiments (yellow
dots), and from optimized control (blue diamonds), scaling as indicated on the right-hand side vertical axis. The target field parameters of
panels (b-i) are: (b-c), 0 = 1.0 us, At = 10 us; (d-e), 0 = 0.5 us, At = 11.2 us; (f-g), 0 = 1.0 pus, At = 11.2 us; (h-i), 0 = 2.0 us,

At =11.2 ps.

all the time intervals between the control pulses, symmetrized
around the m-pulse positions, are free parameters. Left panels
represent the modulus of the phase accumulated by the spin
qubit sensor per unit of the target magnetic field amplitude
||, whereas right panels represent the inverse of sensitivity
1/n, as a function of the sensing time 7.

Optimal control outperforms CP in accumulating useful
phase due to b(¢) over a large sensing time range. Both CP
and optimal control do lead to their largest phase accumula-
tion when T ~ nAt/2, where they give similar results in
¢n. This condition corresponds of having couples of w-pulses
located in each “empty” time window between two gaussian
pulses of the target field, albeit optimal control corrects in a
non-trivial way the distribution of 7w-pulse positions to mini-
mize 7, as represented in Fig. 4a (CP, green vertical bars; op-
timal control, blue vertical bars). This way, the 7 pulses par-
tially reverse the spin qubit dynamics due to undesired noise,
but do not cancel the phase due to the target field b(t).

We note that, even when the phase accumulated with CP

and with optimal control is comparable, optimal control com-
pensates better than CP for decoherence, leading to better
overall sensitivity. While here we did not explore this result
further, this seems to indicate that numerically optimized se-
quences might be useful also for other quantum information
tasks, such as building a robust memory. Fig. 4e, g, and i show
that optimal control of the spin qubit improves its sensitivity
to gaussian multipulse signals up to a factor of two, enabling
the measurement of multipulse magnetic fields down to 3 nT.
As shown in Fig. 4c, the measurement of the experimental
observable & = C'/n confirms the theoretical prediction of
sensitivity both for the CP control (yellow dots) and optimal
control (blue diamonds).



IV. DISCUSSION

Summarizing, we have devised a versatile and robust
method of optimal control for quantum metrology with one
qubit, and we have applied this optimal control method to the
measurement of weak time-varying magnetic fields with a NV
spin sensor.

In practice, we have introduced an unconventional opti-
mization metric, the qubit sensor’s sensitivity. The minimiza-
tion of sensitivity is made by searching the optimal control
field that realizes the optimal compromise between useful ac-
cumulation of spin phase due to the external field to be mea-
sured, and noise refocusing. The developed optimization al-
gorithm offers the advantage of fast convergence and simplic-
ity.

We have further investigated the robustness of this method
for different kinds of real target fields. Optimal control out-
performs standard dynamical decoupling in different scenar-
ios, ranging from multicomponent AC target fields in a wide
frequency range of the radiofrequency domain, to trains of im-
pulses, which are illustrative examples of the typical shape of
electromagnetic field of interest in biology and physiology.

In the cases investigated, optimal control enables larger
phase accumulation over wide sensing-time windows, as well
as better cancellation of the effect of external noise on the
spin dynamics. Sensitivity of the qubit sensor under optimized
control shows an improvement up to a factor of 2, enabling the
measurement of pulsed magnetic field down to amplitudes of
3 nT. The comparison of 1/ with the experimental observable
& demonstrates the reliability of this optimal control method
applied to the NV spin sensor.

Beyond the results obtained in exemplary situations, our
novel method is one of the first extensions of optimal control
methods to quantum sensing. This rises novel challenges and
opportunities, in particular related to the need for new met-
rics for optimization as well as the challenge to include non-
unitary evolution in the numerical optimization. We underline
that our optimization method can be extended to larger mul-
tidimensional space of parameters, e.g., one can optimize the
number of m-pulses that flip the spin qubit during the sensing
time, according to the target signal to be measured. More-
over, while we always considered control sequences given by
series of 7 pulses, our scheme can be also generalized to other
control strategies of the NV spin qubit.

Our strategy can be useful for metrology in the face of
more and more demanding requirements for the NV spin
qubit for applications to sensing of weak time-varying elec-
tric and magnetic fields originating, e.g., from individual bi-
ological molecules, neuronal networks, nanostructured anti-
ferromagnetic or multiferroic materials, and can be also ap-
plied to other physical platforms, such as ultracold atoms or
trapped ions. Furthermore, the demonstrated enhanced pro-
tection of the spin qubit against noise-induced decoherence,
makes optimal control a strategic tool also for building mem-
ories in solid-state systems.

V. APPENDIX: METHODS
A. Experimental setup

The host diamond crystal used in this study is a mono-
crystalline electronic-grade sample (Element Six), grown via
chemical vapor deposition, with natural 1.1% abundance of
13C impurities and 14N concentration < 5 ppb. All the exper-
iments have been performed on a single negatively charged
NV center, located at ~ 13.5 um below the diamond surface.

We exploit a confocal microscope to focus a 532 nm laser
beam on the defect and collect the red fluorescence light com-
ing from the diamond. The laser excitation initializes the NV
spin in the mg = O state and we perform state readout af-
ter spin manipulation by measuring the fluorescence intensity
with a single photon detector.

A permanent NdFeB magnet produces an external static
magnetic field, B = 39.4 mT, aligned along the symmetry
axis of the NV center (2-axis). The field lifts the degeneracy
of ms = +1 and ms = —1 energy levels.

Control of the NV spin dynamics is obtained by irradiating
the defect with microwave (MW) pulses. We routinely use
MW 7 pulses that repeatedly flip the spin, in order to peri-
odically reverse its temporal evolution and refocus the noise
effect. The MW pulses trains are applied through a 60 um
thin copper wire that works as an antenna. We exploit the
same wire to deliver time-varying magnetic fields in the radio
frequency (RF) range generated by an Arbitrary Waveform
Generator (AWG). These RF signals are the target magnetic
fields to be measured by the NV. Using two different termi-
nals of the wire we can simultaneously apply both MW and
RF fields.

B. Measuring the sensor noise spectrum

Our optimal control strategy depends on the the knowledge
of the coherence function x,,(7"). As shown in the main text in
Eq. 4, x»(T) depends on both the noise spectrum and the fre-
quency filter Y,, r-(w) given by the specific sensing sequence.
In order to compute the sensitivity 1 (Eq. 8), the optimization
algorithm calculates the value of x,,(T") for different trial se-
quences, thus it needs the noise spectral density S(w) as an
input. Various methods to measure the noise spectrum have
been suggested in the literature [53-59]. We followed here
the procedure described in [53].

The filter function Y,, 7(w) = |yn(w, T)|?, where y,, (w, T
represents the Fourier transform of the modulation function
yn(t), has a simple form for periodic sequences. In the limit of
large pulse numbers, it can be approximated by a delta func-
tion at the angular frequency 7 /7, where 7 is the pulse spac-
ing. Then, the coherence signal decays as s(t) ~ e~t/T2"(7),
where T5*(7) is a coherence time directly related to the noise
spectral density via [53]

1 4
Té:P(T) ?S(W/T) (10)
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For each pulse spacing time 7 (which sets the noise frequency
that we are considering) we measured the signal decay as a
function of the number of pulses, obtaining 75"(7). By vary-
ing the time 7 between MW m-pulses, we can extract the
main frequency components of the noise spectral density us-
ing Eq. 10. The spectrum was finally obtained by fitting the
raw data with a sum of gaussian functions.

The experimental spectrum S(w) obtained for sequences
with different number of pulses showed some variation. Thus,
we further refine the S(w) by fitting the decoherence function
xn(T) for the CP sequence as in [60] (e.g. Fig. 5). This pro-
cedure is aimed at correcting S(w) for sequence-dependent
noise and control imperfection, e.g., due to the finite w-pulses
duration [61], which are not taken into account in our model.
We finally find a noise spectrum that, for a fixed number of
pulses n is completely independent from the timing at which
each m-pulse occurs, and thus it can be used for sequences
very different from CP in the optimization procedure.

We emphasize that good agreement between predicted and
measured sensitivity is a further proof of the robustness of our
model against imperfection in the empirical function x,,(T).

C. Optimization algorithm

The core of our optimal control technique for sensing is
an optimization algorithm that minimizes the sensitivity as a
function of the parameters of the control function, e.g. total
sensing time, phase of the AC field, and time intervals be-
tween m-pulses.

We use a MATLAB(®) routine based on the Simplex mini-
mization algorithm to achieve global optimization of the con-
trol figure-of-merit, the sensitivity 7. The two main ingre-
dients of this quantity are the electron spin phase, ,(T)
and the coherence function x,, (7). We consider pulsed con-

100

40

population probability of ms =-1 (%)

0 100 200 300 400
single-shot sensing time T (us)

FIG. 5: NV spin coherence under CP sequence. Probability of the
spin projection m; = —1 as a function of the single-shot sensing
time, under a CP sequence of n = 50 pulses, varying the time 7
between m-pulses.

trol sequences described by the w-pulse times {¢;}. For any

time-varying external magnetic field b(¢) = bf(¢) to be mea-
sured, we can define F(t) = %f; f(t')dt', the integral of
the magnetic field (known) temporal profile f(¢). The phase
¢n = by acquired by the NV qubit can then be calculated

for any given control sequence as

n+1

bn = (1" F(T)T —2) (-1)/F(t;)t; (11)

=0

The coherence x,(T') is instead obtained from the experimen-
tally measured spectrum via Eq. 4. From x,(T") and ¢,(T)
we can calculate n for each trial sequence according to Eq. 8.

In order to verify the global convergence of the optimiza-
tion algorithm, we tested different initial guesses and found
the same optimized parameters for a given AC target field. In
most cases, we used a constrained search, by setting bounds
for each parameter or constraining the overall result, for in-
stance to keep the total time 7" constant.

We note that our procedure is quite general and could be
applied to a broad range of sensing scenarios. To demonstrate
its reliability, in this work we considered a few exemplary tar-
get fields and related control models, varying, e.g., the num-
ber of parameters tackled by the optimization algorithm. We
first considered AC fields with a single or multiple frequen-
cies, and we started optimizing 7 as a function of total time T’
and the AC field phase «, while fixing the number of pulses
(n = 8) and setting 7 = T'/n for all time intervals between
the m-pulses. We then proceeded to allow more flexibility in
the optimization, by varying the duration of each time inter-
val between w-pulses, starting from an initial guess given by a
periodic (CP) sequence with n = 50. We optimized the time
intervals by keeping the time symmetric around each pulse,
as shown in Fig. 6. Including also the optimization of the
phase of the multitone field, or equivalently, the initial time
of the measurement sequence, this optimization manages 51
free parameters. We performed different optimization runs as
a function of the total measurement time, keeping 7" constant
in each of them. The only additional constraint that we im-
posed was to force the times 7; between different w-pulses to
be longer than about 10 times the 7 pulse duration, which in
our case means 7; > 600 ns. This restriction was to ensure
that no MW pulse would be very close to each other, as that
would have resulted in the 7 pulse to cancel each other giving
an effective sequence with a different n.

T

time intervalsto T T,
be optimized  +—— | b4 | ——1 1 =
time intervals ~za w2

between pulses — ; | ——ii

FIG. 6: Time intervals 7; engineering. Optimization scheme of
the n time intervals 7; of a measurement sequence with n 7 pulses.
Here, ; = (t; + t;+1)/2, where t; are the n + 1 time intervals
between the 7 pulses, with j = 0,...,n,and {p = tn41 = 0.



D. Comparison between optimal control theory and
experiment

To experimentally validate the optimal control, we com-
pared the optimized sensitivity 1 with the corresponding mea-
sured quantity. However, since we do not have an indepen-
dent measure of the local amplitude of the magnetic field at
the position of the NV center, in the experiment we measure
& = max{dys}/VT = C/n, where s is the normalized signal
and C represents a conversion factor between the generated
RF field amplitude and the unknown magnetic field at the de-
fect. As C' does not depend on the control sequence, it can
be evaluated once and then used for all the control scenarios
considered in the paper.

In particular, we estimated C' from the experimental results
for CP sequences. We evaluated experimentally £(T) as a
function of the sequence total time 7" and fitted the curve to
extract the maximum Ecp,,. Similarly, we evaluated the the-
oretical value of 7 and obtained its minimum n¢p,,. We then
defined C as the product C' = Ecp,, ncp,,. This procedure
allows us to define not only C but also to estimate its uncer-
tainty AC, from the fit error. We can then compare the (in-
verse) experimental sensitivity £; and the theoretical sensitiv-
ity n; for each control sequence by rescaling the theoretical

sensitivity by C.

Finally we investigated the effect of the finite MW pulse
duration. Considering the case of a gaussian-shaped train of
magnetic impulses under a CP control sequence, we calcu-
lated phase accumulated and sensitivity when excluding from
the spin evolution the time intervals where the 7-pulses oc-
curs, finding the same theoretical values of 7, for the all con-
sidered total sensing times 7. We underline that this proce-
dure does not correct the model for the contribution to x,,(7)
given by MW pulses imperfections or finite duration [61], but
confirms that the pulses can be considered instantaneous in
our picture for the accumulated spin phase ¢, (T); we veri-
fied that this approximation is valid up to mprp < 0.5 us for
n = b0 and T' ~ 250 us and was very effective for pulses
duration 7 = 56 ns and T > 50 us.
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