
Online Set Selection with Fairness and Diversity Constraints

Julia Stoyanovich∗

Drexel University

Philadelphia, PA

stoyanovich@drexel.edu

Ke Yang
Drexel University

Philadelphia, PA

ky323@drexel.edu

HV Jagadish2

University of Michigan

Ann Arbor, MI

jag@umich.edu

ABSTRACT

Selection algorithms usually score individual items in isolation,

and then select the top scoring items. However, often there is an

additional diversity objective. Since diversity is a group property,

it does not easily jibe with individual item scoring. In this paper,

we study set selection queries subject to diversity and group

fairness constraints. We develop algorithms for several problem

settings with streaming data, where an online decision must be

made on each item as it is presented. We show through exper-

iments with real and synthetic data that fairness and diversity

can be achieved, usually with modest costs in terms of quality.

Our experimental evaluation leads to several important in-

sights in online set selection. We demonstrate that theoretical

guarantees on solution quality are conservative in real datasets,

and that tuning the length of the score estimation phase leads

to an interesting accuracy-efficiency trade-off. Further, we show

that if a difference in scores is expected between groups, then

these groups must be treated separately during processing. Other-

wise, a solution may be derived that meets diversity constraints,

but that selects lower-scoring members of disadvantaged groups.

1 INTRODUCTION

Diversity is desired in many contexts, ranging from results of

a Web search to admissions at a university. As algorithms are

increasingly used to make decisions, there is growing interest in

algorithms that can produce diverse results. Indeed, fairness and

diversity are central to responsible data science practice [7, 17].

Diversity is a set concept: it makes no sense to talk about

an individual item as being diverse. Fairness is less clearly a

set concept; nevertheless, fairness is often stated with respect

to some comparison standard, usually a group [5, 12, 19]. For

example, in the context of racial discrimination, we frequently

refer to under-represented minorities, which is a set construct,

with fairness requiring proportional representation.

Most algorithmic decision-making is based on the individual:

typically, a score is assigned to an individual item based on its

attributes. However, since fairness and diversity are set concepts,

they can only be guaranteed as part of a set selection procedure.

In this paper, we show how we can guarantee fairness and

diversity in set selection.We begin by developing a simple general

problem statement in Section 2, to maximize utility subject to a

set of diversity constraints. We show that our problem formulation

covers a wide range of fairness and diversity requirements. We

then solve this problem in two settings. In Section 3, we present

a baseline algorithm that make the assumption that all items are

available before any selections have to bemade. Then, in Section 4

∗This work was supported in part by NSF Grants No. 1741047 and 1464327.
2This work was supported in part by NSF Grants No. 1250880 and 1741022.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

we develop algorithms that decide whether to accept, reject or

defer an item in an online manner, as the items are presented. We

refer to this variant as the Diverse K-choice Secretary Problem.

Algorithms of Section 4 constitute the main technical contri-

bution of this paper. These algorithms build upon a rich body of

work on the Secretary Problem [8, 11, 14] Ð selecting the max-

imum element in a randomly-ordered sequence of N elements,

and on its K-choice variant Ð selecting K elements out of N [4].

In Section 5, we show experimentally that the online algo-

rithms of Section 4 produce solutions that both meet the diversity

requirements and are very close to the baseline algorithm of Sec-

tion 3 in terms of utility. Further, we demonstrate that theoretical

guarantees on solution quality of online algorithms are conser-

vative on real datasets. These algorithms start by observing the

scores of the items in the stream without accepting any items, to

develop a quality estimate; this is known as the warm-up period.

We show that an interesting quality-efficiency trade-off can be

achieved by tuning the length of the warm-up period. Finally, we

show that if a difference in scores is expected between groups,

then these groups must be treated separately during processing.

Otherwise, a solution may be derived that meets diversity con-

straints, but that results in selecting lower-scoring members of

historically disadvantaged groups.

We discuss related work in Section 6 and conclude in Section 7.

2 PROBLEM DEFINITION

The basic problem setting is that we have a set of items, each with

associated attributes. From this set, we wish to select K items to

maximize a utility score (to be defined below) subject to diversity

constraints (also to be defined below). The items in the set may

be presented to us together or one at a time.

We obtain the utility score for a set of K selected items as the

sum of scores of each individual selected item. The score of an

item may be pre-computed and stored as a physical attribute, or

it may be computed on the fly, and possibly even be obtained

as the result of an expensive scoring algorithm. In all cases, all

we require is that we eventually have a single scalar score value

for each item. The score is sometimes called the utility score or

utility value in the literature.

The basic top-k problem is to choose K items with the highest

score. That is, for any item j in the top-k , and any other item

q not in the top-k , we have sj ≥ sq , where sq is the score of

item q. This is equivalent to saying we choose K ≥ 0 items such

that ∀k ∈ [0,K][arдminj ∈[0,K](sj)] is maximized. This is further

equivalent to saying
∑
j ∈[0,K] sj is maximized. We will use this

last definition, since with added diversity constraints these three

definitions are no longer equivalent, and the first two may not

be appropriate.

Having described the utility maximization problem above, let

us now turn to fairness and diversity constraints. Among the

attributes associated with items, we assume that one discrete-

valued attribute is of particular concern. We call this the sensitive

Series ISSN: 2367-2005 241 10.5441/002/edbt.2018.22

attribute. Our notions of fairness and diversity are defined with

respect to the value of this sensitive attribute.

In practice, there may be multiple sensitive attributes, rather

than just one. In this case, we could consider each independently,

by making minor appropriate modifications to all statements

below. If combinations of multiple attributes are of concern, or

if dependencies between the sensitive attributes need to be cap-

tured explicitly, we could represent such combinations as a single

(Cartesian product) attribute of concern. For example, if both

race ∈ {W ,B,H } and gender ∈ {M, F } are sensitive attributes,

we could combine these into a single attribute of cardinality 6.

If a sensitive attribute is not discrete-valued, or takes on too

many discrete values, then we can bucketize the attribute value

into a finite number of discrete buckets. Attributes such as age

and salary are often treated this way in practice for many ap-

plications. In fact, sensitive attributes may also have associated

privacy concerns, and so may need to be converted to noisy

histograms, e.g., to enforce differential privacy.

We further assume that the dataset is partitioned on the value

of the sensitive attribute. That is, each item is associated with

exactly one value of the sensitive attribute. For example, a person

of mixed race should not be listed as having both White and

Black as values for the race attribute: rather this value should be

set to an appropriate single value, such as "White-Black-Mixed".

Let there be d distinct values of the sensitive attribute. Our

requirement is to choose ki elements for each distinct value

i ∈ [1...d], with each ki ∈ [0,K], and
∑
i ki = K . Of course,

this begs the question of what the ki values should be. We next

consider several notions of fairness and diversity and show how

to capture these within this framework.

Fairness by proportional representation (of values of the sensitive

attribute). Suppose that the number of items N is known, as is

the number of items ni in each sensitive category i ∈ [1...d].

Then, proportional representation requires that the desired size

K of the selected set be prorated among the d categories. That

is ki = K ∗ ni/N . We call the right hand side of this equation

proportioni , for convenience.

A difficulty we run into is that ki must be an integer: an item

in some category is either selected or it is not. Thus, fractional

values do not make sense, yetproportioni is not always an integer.

We can round proportioni to the nearest integer to determine

eachki , hoping to returnK items in total. But wemay end upwith

rounding errors resulting in violation of
∑
i ki = K . To avoid this,

it is reasonable to provide some flexibility in choosing the value of

each ki , using the formula ⌊proportioni ⌋ ≤ ki ≤ ⌈proportioni ⌉,

where ⌊.⌋ is the floor function and ⌈.⌉ is the ceiling function.

Even weaker constraints are often acceptable in practice. For

example, in a class of 821 students, and with a binary assignment

of the gender attribute, we may desire to see 410 students of one

gender and 411 of the other. However, it is unlikely that an insti-

tution would be accused of discrimination if they admitted 407

women and 414 men. Generally, it is acceptable to set thresholds

on the relative representation of different categories. This idea is

a generalization of the 80% rule of disparate impact [10].

Another potentially appropriate fairness metric is the normal-

ized difference: the mean difference normalized by the rate of pos-

itive outcomes, which in our case corresponds to being selected

among the top-k . Another is the elift ratio: the ratio of positive

outcomes for the historically disadvantaged demographic group

over the general group. A ratio of 1 indicates no discrimination,

while a ratio below 0.8 has been construed as discrimination by

US courts. These and other proportional representation metrics

can be found in a recent survey by Zliobaite [19].

Coverage-based diversity. A popular measure of diversity is

coverage [7]: is there representation for every category in the

selected set? Whether this is possible depends on how K , the

number of items selected in total, compares to d , the number

of categories of items. If d ≥ K , then each ki ≤ 1. We cannot

get full coverage, but by not choosing 2 from any category, we

make sure to include a representative from as many categories as

possible. If d ≤ K , then each ki ≥ 1. Since K is large enough in

this case, we can have multiple items from each category as long

as we make sure that we have at least one from each category.

To avoid łtokenismž Ð selecting a single representative of

each category, we may want to specify coverage diversity in

terms of a larger minimum number per category. For example,

we may require that there be at least 5 members of each race in

the selected set. Such a choice would typically be made only if

5d ≤ K , and our requirement becomes that each ki ≥ 5.

Summarizing the scenarios considered above, we can state

the specific diversity or proportionality constraint of interest

as f loori ≤ ki ≤ ceili , where f loori and ceili are integers that

are determined, for each i , based on the particular constraint

of interest. This formulation allows us to treat combinations of

sensitive attributes (represented by a single Cartesian product

attribute) in a way that captures attribute dependencies. For

example, we can derive the constraint for the number of female

candidates of a minority race to be higher or a lower than what

would result from proportionf emale × proportionminor ity .

The general statement of our problem is as follows:

Diverse Set Selection Problem Statement: Given N items,

each with an associated utility score and an identified sensitive

attribute, for each value i of the sensitive attribute, choose ki
items such that the summation utility of the selected set is max-

imized, subject to f loori ≤ ki ≤ ceili and subject to Σiki = K .

The f loori and ceili values depend on the specific constraint to

be applied. These values are computed prior to the optimization

problem, and are assumed to be given.

All N items may be given together; we call this the static case

and study it in Section 3. Alternatively, the items may arrive one

at a time; we call this the online case and study it in Section 4.

The standard cost-metric in the top-k problem is the number

of items examined: ideally, this should be much less than N . We

carry over this metric to our problem domain as well. This metric,

which we call walking distance (it is sometimes called depth in

the top-k literature), is a simple surrogate for the incurred CPU

cost, and has the advantage of being independent of the imple-

mentation and of the execution environment. We will discuss in

Section 4 that walking distance relates to solution utility in the

online case, and so is more informative than wall-clock time.

Another standard top-k costmetric is buffer size: the in-memory

storage cost for running the algorithm. We do not present ex-

perimental results on buffer size, but note that all algorithms

proposed here use buffers of constant size, under the assumption

that K and
∑
i ceili are constants.

Finally, as we shall see when we get to the online algorithms,

we cannot always get the best answer if we are required to decide

for each item on the spot. An accuracy metric we develop will

reflect how close the online solution comes to the true optimum.

We note that this optimum is the best we can do subject to the

242

Algorithm 2 Diverse K-choice Secretary Algorithm

Require: Stream of items I , total number of items to select K ,

input size N , number of categories d , constraints f loori ≤

ki ≤ ceili and number of items per category ni for i ∈

[1 . . .d].

{Initialize the output list L.}

1: L = ∅

{Initialize the array of counts of per-category selected items

C .}

2: C = [k1 = 0, . . . ,kd = 0]

{Initialize counts of per-category seen itemsM .}

3: M = [m1 = 0,,md = 0]

{Compute the length of per-category warm-up.}

4: R = [r1 = ⌊
n1
e ⌋, . . . , rd = ⌊

nd
e ⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}

5: for i=1. . . d do

6: Ti = MinHeap(f loori)

7: end for

8: slack = K −
∑d
i=1 f loori

{Compute the length of category-independent warm-up.}

9: r = ⌊ Ne ⌋

{Initialize a category-independent heap T .}

10: T = MinHeap(slack)

11: while |L| < K do

12: x = дetNextItem(I)

13: i = cateдory(x)

14: if
∑
imi < r then

15: T
offer
←−−−− x

16: end if

17: if mi < ri then

18: Ti
offer
←−−−− x

19: else if ((ki < f loori)∧(score(x) > дetMinElement(Ti))∨

(ni −mi == f loori − ki) then

20: deleteMinElement(Ti)

21: L← x

22: ki = ki + 1

23: else if (
∑
imi ≥ r) ∧ (score(x) > дetMinElement(T) ∧

(ki < ceili) ∧ (slack > 0)) then

24: deleteMinElement(T)

25: L← x

26: ki = ki + 1

27: slack = slack − 1

28: else if (ki < ceili) ∧ (numFeasibleItems() == K − |L|)

then

29: L← x

30: ki = ki + 1

31: slack = slack − 1

32: end if

33: mi =mi + 1

34: end while

35: return L

In Example 4.1, we happen to satisfy both floor constraints (at

steps 4 and 9) before accepting a category-independent item at

the end of the stream. Note, however, that this may not be the

case in general. For example, we could have accepted a blue item

with a score higher than 8, had one been encountered at steps 5,

6, 7, or 8 Ð any time after f loorblue is met.

Processing of item d in Example 4.1 illustrates that different

streams (per-category and category-independent) are consumed

in parallel: d is part of the category independent warm-up (where

it is discarded but its score is recorded in T), and it is also part

of the post-warm-up stream for the blue category, where it is

accepted, since its score exceeds дetMinElement(Tblue).

Let us now consider the pseudocode for Algorithm 2. The

algorithm uses a MinHeap data structure to keep track of the

top-K elements seen thus far. We need one for each category

(denotedTi and initialized on line 6 with capacity f loori), and an

additional one for the extra elements after the floor constraints

have been met (denotedT and initialized on line 10 with capacity

slack). Each per-category heap Ti stores the best f loori scores

seen among the first ri items of category i . If f loori > ri , then

Ti will store the first f loori elements observed, together with

f loori − ri elements of value −1. Heap T is initialized similarly,

storing the best slack scores seen among the first r = ⌊ Ne ⌋ items,

irrespective of category.

During the warm-up period, an item x is not accepted (not

added to L) irrespective of its score, but rather is offered to

the relevant per-category heap (on line 18) or to the category-

independent heap (on line 15). Note that the same item x may be

offered to its per-category heap and to the category-independent

heap during warm-up.

An item of category i is added to the output after the warm-up

period if f loori is not yet satisfied and either (a) the item has a

sufficiently high score or (b) we are at the end of the stream for

category i (line 19). The latter condition is evaluated by compar-

ing the number of items remaining in the stream (ni −mi) to the

number of items still required for i (f loori − ki).

An item is also added to the output if its score is sufficiently

high according to the category-independent estimate and there

is sufficient slack to meet all outstanding floor constraints (line

24). Note that Algorithm 2 uses the slack mechanism in a similar

way as Algorithm 1.

Finally, an item is added to the output if it is feasible: accepting

it would not violate the ceiling constraint for its category, and if

exactly K − |L| feasible items remain in the input. We compute

the number of feasible items (line 28) as a sum of nj −mj (the

number of items that remain on the stream in category j) over

all feasible categories (those in which ceilj − kj > 0).

This final set of conditions (line 28) is required to ensure that

exactly K items are returned by Algorithm 2. Asserting that

exactly K − |L| feasible items remain in I relies on the estimates

of the number of items in each category.

Optimality. Algorithm 2 specifies per-category lengths of the

warm-up period on line 4. What is the competitive ratio of this

algorithm? To reason about this, let us first consider theK-choice

Secretary Problem, a generalization of the Secretary Problem

where K ≥ 1 rather than 1 item is to be chosen in an online

manner. Recall from Section 4.1 that, when K = 1, the optimal

competitive ratio is e , and it is achieved with a warm-up period of

length ⌊ Ne ⌋ [8, 14]. For K > 1, it is known that competitive ratio

is no worse than e under the same warm-up period length [4],

but the optimal competitive ratio is not known [3].

Our problem setting, and its solution presented in Algorithm 2,

differ from the generalized K-choice Secretary Problem in that

we are receiving items from multiple distinct categories. Algo-

rithm 2 treats items that belong to different categories as different

sub-streams of a common stream, and is guaranteed to have a

competitive ratio no less than e for selecting f loori items in each

category, by an immediate application of the result of Babaioff et

al. [4]. The remaining slack items are selected from the common

245

stream (subject to floor and ceiling constraints), and will have a

competitive ratio no less than e (subject to the same constraints).

We will empirically compare the quality of the result returned

by Algorithm 2 to that of the static algorithms of Section 3 in

Section 5.4. We will also consider the impact of warm-up period

length on accuracy in that section.

Impact of per-category warm-up on utility. An important point

to note is that, by estimating scores on a per-category basis

rather than for the entire set of items at once, Algorithm 2 ac-

commodates the case when score is not independent of category

membership. Consider an example in which there are two cat-

egories A and B, and where, for all pairs of items a ∈ A,b ∈

B, score(a) < score(b). Suppose further that a and b occur in

the input in approximately equal proportion. Then, if a com-

mon heap T of size K is maintained for both categories during

warm-up (with K < ⌊ N
e
⌋),T will contain scores of some K items

from B, and so it will be the case that, at any point in time,

∀a ∈ A,дetMinElement(T) > score(a). As a result, an online al-

gorithm will accept a subset of B with a high combined score, and

it will accept f loorA items from A that appear at the end of the

stream. This represents the worst case for category A in terms of

utility. We validate this claim experimentally in Section 5.4.

4.3 Online Algorithm with a Deferred List

In a true on-line setting, a decision must be made whether to

accept or to reject an item once it is seen. In practice, it may be

acceptable to keep a waiting list of modest size. For example,

college admissions work this way.

We now introduce Algorithm 3, an optimized version of Algo-

rithm 2 that will often return a set of K items of higher utility,

subject to diversity constraints. This is accomplished by intro-

ducing per-category deferred lists Di of bounded size. We now

give an intuition behind this algorithm using an example.

Example 4.2. Consider again the stream of items in Figure 2.

N = 12 items are partitioned into d = 2 categories, with 6 items

per category: nr ed = nblue = 6, and arrive in random order.

The goal is to select K = 3 items subject to 1 ≤ kblue ≤ 2 and

1 ≤ kr ed ≤ 2. We now highlight the differences in the processing

of this input when a deferred list is allowed, as compared to that

of Example 4.1 (Algorithm 2).

We conduct a warm-up period of length 2 for each category,

storing f loorblue = f loorr ed = 1 highest score in each Tblue =

{6} andTr ed = {4}. In contrast to Example 4.1, we do not conduct

a category-independent warm-up period (there is no T).

Also in contrast to Example 4.1, items encountered during the

warm-up period are not immediately discarded, but rather are

placed into per-category deferred lists Dblue and Dr ed , which

maintain up to ceilblue = 2 and ceilr ed = 2 items, respectively.

Even beyond the warm-up period, we consider the scores of all

encountered items, and always keep 2 best items of the appro-

priate category seen so far in each Dblue and Dr ed . Note that

Dblue and Dr ed are MinHeaps, which we denote by sorting the

elements in the order of increasing score.

In our example, Dblue = {c, a} at step 3 (end of warm-up

for blue), Dblue = {a, d} at step 4 (d has a higher score than c

and replaces c), and Dr ed = {e, b} at step 5 (end of warm-up

for red). We continue processing until a sufficient number of

items post the warm-up period is seen (1 post-warm up item

in each category in our example) and once there are at least K

items in the union of deferred lists. We continuously update the

Algorithm 3 Diverse K-choice Secretary Algorithm with a de-

ferred list

Require: Stream of items I , total number of items to select K ,

input size N , number of categories d , constraints f loori ≤

ki ≤ ceili and number of items per category ni for i ∈

[1 . . .d].

{Initialize the output list L.}

1: L = ∅

{Initialize i deferred lists Di of capacity ceili for each cate-

gory.}

2: for i=1. . . d do

3: Di = MinHeap(ceili)

4: end for

{Initialize the list of counts of per-category selected items C .}

5: C = [k1 = 0, . . . ,kd = 0]

{Initialize the list of counts of per-category seen itemsM .}

6: M = [m1 = 0,,md = 0]

{Compute the length of per-category warm-up.}

7: R = [r1 = ⌊
n1
e
⌋, . . . , rd = ⌊

nd
e
⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}

8: for i=1. . . d do

9: Ti = MinHeap(f loori)

10: end for

{Initialize the number of unsatisfied categories u.}

11: u = d −
∑
d

i=1 1[f loori == 0]

{Initialize the total number of deferred items w (for łwait-

ingž).}

12: w = 0

13: while (u > 0) ∨ (w < K) do

14: x = дetNextItem(I)

15: i = cateдory(x)

16: if mi < ri then

17: Ti
offer
←−−−− x

18: else if (ki < ceili)∧(score(x) > дetMinElement(Ti) then

19: ki = ki + 1

20: deleteMinElement(Ti)

21: if (f loori > 0) ∧ (ki == f loori) then

22: u = u − 1

23: end if

24: end if

25: Di

offer
←−−−− x

26: mi =mi + 1

27: w =
∑
i |Di |

28: end while

29: W = MaxHeap(w)

30: W ←
⋃
i Di

31: Invoke Algorithm 1 onW (sorted by score), compute L.

32: return L

per-category deferred lists as we process, evicting lower-scoring

items and keeping 2 highest-scoring items in each category.

In our example, the algorithm terminates after step 9 (item

i), with Dblue = {a,d} and Dr ed = {b, i}. The union of these

lists is then passed to Algorithm 1, which returns {a,d, i}, with

combined utility 23. Per Example 4.1, this utility is 1 point higher

than of executing Algorithm 2 on this input.

We will illustrate experimentally in Section 5.4 that Algo-

rithm 3 usually returns a set of K items of higher utility than

Algorithm 2. Note, however, that Algorithm 3 may sometimes

246

return items of lower combined utility, because it may terminate

sooner than Algorithm 2.

We now describe Algorithm 3 in detail. To start, set u (unsat-

isfied) to the number of categories with f loori > 0. Add the first

ceili items to Di irrespective of their score, then maintain no

more than ceili items in Di , replacing the lowest-scoring item

y ∈ Di with item x if score(y) < score(x).

A category becomes satisfied once f loori items in Di have a

sufficiently high score (post warm-up). If a sufficient number of

high-scoring items cannot be found, we satisfy f loori by adding

the required number of items of category i from the end of its

stream.

The algorithm stops consuming its input once all unsatisfied

categories become satisfied (i.e., once u == 0) and the total size

of allDi is at leastK . Note that, even after a category i is satisfied,

we can still add item x to Di (while waiting for the remaining

categories to be satisfied), if x happens to have a higher score

than the lowest-scoring item currently in Di .

Having filled the deferred lists, the algorithm will first add

f loori items from each Di to the output list L, and will then fill

the remaining slack positions with the highest-scoring items

from the remaining deferred lists, irrespective of their scores.

Algorithm 1 can be invoked for this purpose, with I =
⋃
i Di .

Note that when Algorithm 1 is invoked on line 31, it is invoked

on inputW , a sorted list whose size is bounded by
∑
i ceili . We

assume that ceili << |I |. In fact, setting any ceili higher than

K is not meaningful. Further, since K is commonly treated as a

constant, then
∑
i ceili can also be treated as such.

5 EXPERIMENTAL EVALUATION

In this paper, we have introduced diversity and fairness con-

straints into set selection queries under several different settings.

Most importantly, we have introduced two streaming algorithms.

For all our agorithms we are interested in evaluating the cost

of introducing a diversity or fairness constraint in terms of the

lower utility achieved. For streaming algorithms, we are further

interested in how well we manage to satisfy a group constraint

and make a group selection, while being forced to make decisions

regarding individual items as they are presented.

5.1 Experimental Datasets

Our experimental evaluation is conducted on both real and syn-

thetic datasets. The real data gives us a sense for what would

happen in a real scenario, while the synthetic data let us vary

parameters to dive deeper into understanding "what if" questions.

Forbes Richest. We selected two Forbes Richest People lists

from 2016: US Richest with 400 individuals (https://www.forbes.

com/forbes-400/list/) and World’s Richest with 526 individuals

(https://www.forbes.com/billionaires/list/). Both lists are natu-

rally ranked by net worth. We used gender as the sensitive at-

tribute in the US list, with a break-down of 27 female vs. 373

male individuals (d = 2 categories). We used country as the sen-

sitive attribute in the World list, creating separate categories for

US (197 individuals), Germany (44), China (43), Russia (25), and

assigning the remaining 217 individuals to the category łotherž,

resulting in d = 5 categories.

NASA Astronauts. This dataset is available at https://www.

kaggle.com/nasa/astronaut-yearbook/data and consists of 357

astronauts, with their demographic information. We ranked this

dataset by the number of space flight hours, and assigned indi-

viduals to categories based on their undergraduate major. A total

of 83 majors are represented in the dataset, we assigned 9 most

frequent - Physics (35), Aerospace Engineering (33), Mechanical

Engineering (30) etc, to their individual categories, and combined

the remaining 141 individuals into the category łotherž, resulting

in d = 10 categories.

Pantheon. This dataset is a ranking of 11,341 individuals based

on the popularity of their biographical page in Wikipedia, and is

available at http://pantheon.media.mit.edu/rankings/people/all/

all/-4000/2010/H15. Individuals in the dataset include historical

and present-day figures, and are described with name, gender,

birth year, place of birth, and occupation. Occupation is aggre-

gated into a set of d = 8 cultural domains (http://pantheon.media.

mit.edu/methods), which we use as the sensitive attribute to state

diversity constraints.

Synthetic data. We also used synthetic data in our experiments,

in cases where it was important to control dataset composition

and assignments of scores to items in particular categories. Syn-

thetic datasets consisted of three attributes: identifier of a tuple,

value of the sensitive attribute and score. Additional details about

specific datasets will be given as appropriate.

In our discussion, we will find it convenient to use the term

balanced to describe datasets in which different categories are

represented in the same proportion. For example, a dataset in

which diversity is stated with respect to gender is balanced if

about 50% of the individuals in the input are male and about 50%

are female.

5.2 Diversity Constraints

Recall that our algorithms are designed for diversity constraints

stated in terms of size limits on each category. The specific con-

straints chosen can implement different notions of diversity or

fairness as discussed in Section 2. We explore several families

of constraints, generated using the procedure described below,

after a brief discussion of requirements on the constraints.

A single per-category constraint of the form f loori ≤ ki ≤

ceili is satisfiable if f loori ≤ ni , where ni is the number of items

in category i in the input.While it is not incorrect to set ceili > ni ,

this will not lead to sensible subset selection in practice, and will

make satisfiability of a set of constraints more cumbersome to

state. For these reasons, we also require that ceili ≤ ni .

A set of per-category constraints is satisfiable if two conditions

hold:
∑d
i=1 f loori ≤ K and

∑d
i=1 ceili ≥ K .

We use several measures of diversity, listed below, to generate

a set of per-category constraints of the form f loori ≤ ki ≤ ceili
for a given selected set size K and number of categories d . We

generate constraints that are satisfiable individually and as a

set, as discussed above. In what follows, we assume that each

category i is represented in the input dataset, that is, that ni ≥ 1.

Minimum: (Cover as many categories as possible.)

If K ≥ d , set f loori = ceili = 1 for all d categories. Next,

compute r = k − d . If r > 0, assign the remaining r positions

in the top-K to a random category j by setting ceilj = ceilj + r .

Select category j from among categories in which nj ≥ ceilj + r .

If K < d , assign f loori = ceili = 1 to a random set of K out

of d categories, and f loori = ceili = 0 to the remaining d − K

categories.

247

several fairness metrics Ð those based on proportional represen-

tation. To the best of our knowledge, diversity in combination

with utility has not been considered in a fully online setting.

In [16] a generic method is proposed to extend top-k algo-

rithms with a diversity criterion that is based on pair-wise simi-

larity. The problem is formulated as: given a user-defined pair-

wise similarity function sim(si , sj), and a user-defined similarity

threshold τ , return the highest-scoring set of k items such that

sim(si , sj) ≤ τ . When describing top-k methods, they refer to

incremental methods (generate results in decreasing order of

scores, stop once k results were generated) vs. bounding methods

(generate results in some order, stop once the top-k are among

the results, Fagin’s TA is in this category).

More recently, diversity-aware top-k for pub/sub queries over

text streams was considered in [6]. There, diversity is a pair-wise

measure based on document similarity in the top-k (max-sum),

quality is measured as the relevance of a document to a user’s

query, and there is additionally a per-document recency score

that is appropriate for a stream of Twitter messages or Facebook

status updates, and is based on an exponential decay function.

Another related line of work is [1], where max-sum diversity is

maximized subject to a constraint on a variant of coverage-based

diversity. The problem is posed as a partition matroid, a local

search algorithm is proposed, and it is shown that it achieves a

0.5 approximation of the optimal solution.

Selection of diverse set results in an online setting is studied

in [15]. The authors consider selection of subsets of items that

are simultaneously diverse along multiple dimensions. For exam-

ple, for program committee selection it is desirable to achieve

coverage of topics, geographic diversity and gender diversity.

The paper proposes and analyzes several diversity objectives

and proposes heuristic and dynamic programming methods. The

most important difference between our method and that of [15]

is that they do not explicitly handle utility.

In [16] a set of diverse top-k items is determined that maxi-

mizes the total score of theK selected items, subject to a pair-wise

diversity constraint. The problem is modeled by representing the

items as vertices in a graph, and by including an edge between

vertices si and sj if their similarity is above a user-specified

threshold τ . A diverse set K is the independent set of a graph Ð

a set of vertices in which no two vertices are adjacent. This for-

mulation can accommodate the coverage diversity version of our

problem: Include an edge between two vertices if they belong to

the same category, then identify an independent subset of size d

that maximizes the total score. If d < k , we add k −d vertices that

maximize the total score. The algorithmic contributions of [16]

are in (1) determining when the set of k ′ > k items is sufficient to

compute the true diverse top-k , and (2) efficiently identifying the

independent set of a graph for a fixed k (finding an independent

set of a graph is NP-hard).

7 CONCLUSIONS

Diversity and group fairness are important objectives in algo-

rithmic decision-making. Since most algorithms are designed to

score or classify items individually, it is not easy to support these

objectives. In this paper, we showed how we can continue to

select items individually and meet desired diversity and group

fairness constraints, while paying a very small utility cost.

We demonstrated experimentally that the theoretically-motivated

setting for warm-up period length can be conservative in practice.

In our future work, wewill investigate the interaction between ex-

pected (or observed) score variance and warm-up period length.

Further, we demonstrated that different categories must be

treated separately in score estimation, to achieve comparable

accuracy irrespective of expected score, and ultimately afford

comparable opportunity to members of different groups.

REFERENCES

[1] Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. 2013. Diversity maxi-
mization under matroid constraints. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013. 32ś40. DOI:http://dx.doi.org/10.1145/2487575.
2487636

[2] Albert Angel and Nick Koudas. 2011. Efficient diversity-aware search. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011. 781ś792. DOI:http:
//dx.doi.org/10.1145/1989323.1989405

[3] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. 2008.
Online auctions and generalized secretary problems. SIGecom Exchanges 7, 2
(2008). DOI:http://dx.doi.org/10.1145/1399589.1399596

[4] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. 2007. Matroids,
secretary problems, and online mechanisms. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Or-
leans, Louisiana, USA, January 7-9, 2007. 434ś443. http://dl.acm.org/citation.
cfm?id=1283383.1283429

[5] Solon Barocas and Andrew D. Selbst. 2016. Big data’s disparate impact. Cali-
fornia Law Review 104 (2016).

[6] Lisi Chen and Gao Cong. 2015. Diversity-Aware Top-k Publish/Subscribe for
Text Stream. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015.
347ś362. DOI:http://dx.doi.org/10.1145/2723372.2749451

[7] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in Big Data: A Review. Big Data 5, 2 (2017).

[8] E.B. Dynkin. 1963. The optimum choice of the instant for stopping a Markov
process. Sov. Math. Dokl. 4 (1963).

[9] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation
Algorithms for Middleware. In Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USA. DOI:http://dx.doi.org/10.1145/375551.
375567

[10] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. 259ś
268. DOI:http://dx.doi.org/10.1145/2783258.2783311

[11] Thomas S. Ferguson. 1989. Who Solved the Secretary Problem? Statist. Sci. 4,
3 (08 1989), 282ś289. DOI:http://dx.doi.org/10.1214/ss/1177012493

[12] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016.
On the (im)possibility of fairness. CoRR abs/1609.07236 (2016). http://arxiv.
org/abs/1609.07236

[13] Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. 2011.
Hiring a secretary from a poset. In Proceedings 12th ACM Conference on Elec-
tronic Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011. 39ś48. DOI:

http://dx.doi.org/10.1145/1993574.1993582
[14] D. V. Lindley. 1961. Dynamic Programming and Decision Theory. Journal of

the Royal Statistical Society 10, 1 (March 1961), 39ś51.
[15] Debmalya Panigrahi, Atish Das Sarma, GaganAggarwal, andAndrewTomkins.

2012. Online selection of diverse results. In Proceedings of the Fifth International
Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA,
February 8-12, 2012. 263ś272. DOI:http://dx.doi.org/10.1145/2124295.2124329

[16] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-K Results.
PVLDB 5, 11 (2012), 1124ś1135. http://vldb.org/pvldb/vol5/p1124_luqin_
vldb2012.pdf

[17] Julia Stoyanovich, Bill Howe, Serge Abiteboul, Gerome Miklau, Arnaud
Sahuguet, and Gerhard Weikum. 2017. Fides: Towards a Platform for Re-
sponsible Data Science. In Proceedings of the 29th International Conference on
Scientific and Statistical Database Management, Chicago, IL, USA, June 27-29,
2017. 26:1ś26:6. DOI:http://dx.doi.org/10.1145/3085504.3085530

[18] Kaiping Zheng, Hongzhi Wang, Zhixin Qi, Jianzhong Li, and Hong Gao. 2017.
A survey of query result diversification. Knowl. Inf. Syst. 51, 1 (2017), 1ś36.
DOI:http://dx.doi.org/10.1007/s10115-016-0990-4

[19] Indre Zliobaite. 2017. Measuring discrimination in algorithmic decision mak-
ing. Data Min. Knowl. Discov. 31, 4 (2017), 1060ś1089. DOI:http://dx.doi.org/
10.1007/s10618-017-0506-1

252

	Online Set Selection with Fairness and Diversity ConstraintsJulia Stoyanovich, Ke Yang, H. Jagadish

