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ABSTRACT

Selection algorithms usually score individual items in isolation,
and then select the top scoring items. However, often there is an
additional diversity objective. Since diversity is a group property,
it does not easily jibe with individual item scoring. In this paper,
we study set selection queries subject to diversity and group
fairness constraints. We develop algorithms for several problem
settings with streaming data, where an online decision must be
made on each item as it is presented. We show through exper-
iments with real and synthetic data that fairness and diversity
can be achieved, usually with modest costs in terms of quality.
Our experimental evaluation leads to several important in-
sights in online set selection. We demonstrate that theoretical
guarantees on solution quality are conservative in real datasets,
and that tuning the length of the score estimation phase leads
to an interesting accuracy-efficiency trade-off. Further, we show
that if a difference in scores is expected between groups, then
these groups must be treated separately during processing. Other-
wise, a solution may be derived that meets diversity constraints,
but that selects lower-scoring members of disadvantaged groups.

1 INTRODUCTION

Diversity is desired in many contexts, ranging from results of
a Web search to admissions at a university. As algorithms are
increasingly used to make decisions, there is growing interest in
algorithms that can produce diverse results. Indeed, fairness and
diversity are central to responsible data science practice [7, 17].

Diversity is a set concept: it makes no sense to talk about
an individual item as being diverse. Fairness is less clearly a
set concept; nevertheless, fairness is often stated with respect
to some comparison standard, usually a group [5, 12, 19]. For
example, in the context of racial discrimination, we frequently
refer to under-represented minorities, which is a set construct,
with fairness requiring proportional representation.

Most algorithmic decision-making is based on the individual:
typically, a score is assigned to an individual item based on its
attributes. However, since fairness and diversity are set concepts,
they can only be guaranteed as part of a set selection procedure.

In this paper, we show how we can guarantee fairness and
diversity in set selection. We begin by developing a simple general
problem statement in Section 2, to maximize utility subject to a
set of diversity constraints. We show that our problem formulation
covers a wide range of fairness and diversity requirements. We
then solve this problem in two settings. In Section 3, we present
a baseline algorithm that make the assumption that all items are
available before any selections have to be made. Then, in Section 4
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we develop algorithms that decide whether to accept, reject or
defer an item in an online manner, as the items are presented. We
refer to this variant as the Diverse K-choice Secretary Problem.

Algorithms of Section 4 constitute the main technical contri-
bution of this paper. These algorithms build upon a rich body of
work on the Secretary Problem [8, 11, 14] — selecting the max-
imum element in a randomly-ordered sequence of N elements,
and on its K-choice variant — selecting K elements out of N [4].

In Section 5, we show experimentally that the online algo-
rithms of Section 4 produce solutions that both meet the diversity
requirements and are very close to the baseline algorithm of Sec-
tion 3 in terms of utility. Further, we demonstrate that theoretical
guarantees on solution quality of online algorithms are conser-
vative on real datasets. These algorithms start by observing the
scores of the items in the stream without accepting any items, to
develop a quality estimate; this is known as the warm-up period.
We show that an interesting quality-efficiency trade-off can be
achieved by tuning the length of the warm-up period. Finally, we
show that if a difference in scores is expected between groups,
then these groups must be treated separately during processing.
Otherwise, a solution may be derived that meets diversity con-
straints, but that results in selecting lower-scoring members of
historically disadvantaged groups.

We discuss related work in Section 6 and conclude in Section 7.

2 PROBLEM DEFINITION

The basic problem setting is that we have a set of items, each with
associated attributes. From this set, we wish to select K items to
maximize a utility score (to be defined below) subject to diversity
constraints (also to be defined below). The items in the set may
be presented to us together or one at a time.

We obtain the utility score for a set of K selected items as the
sum of scores of each individual selected item. The score of an
item may be pre-computed and stored as a physical attribute, or
it may be computed on the fly, and possibly even be obtained
as the result of an expensive scoring algorithm. In all cases, all
we require is that we eventually have a single scalar score value
for each item. The score is sometimes called the utility score or
utility value in the literature.

The basic top-k problem is to choose K items with the highest
score. That is, for any item j in the top-k, and any other item
g not in the top-k, we have s; > Sq > where sq is the score of
item g. This is equivalent to saying we choose K > 0 items such
that Vk € [0, K][argmin;c|o, k(sj)] is maximized. This is further
equivalent to saying 3 c[o, k) Sj is maximized. We will use this
last definition, since with added diversity constraints these three
definitions are no longer equivalent, and the first two may not
be appropriate.

Having described the utility maximization problem above, let
us now turn to fairness and diversity constraints. Among the
attributes associated with items, we assume that one discrete-
valued attribute is of particular concern. We call this the sensitive
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attribute. Our notions of fairness and diversity are defined with
respect to the value of this sensitive attribute.

In practice, there may be multiple sensitive attributes, rather
than just one. In this case, we could consider each independently,
by making minor appropriate modifications to all statements
below. If combinations of multiple attributes are of concern, or
if dependencies between the sensitive attributes need to be cap-
tured explicitly, we could represent such combinations as a single
(Cartesian product) attribute of concern. For example, if both
race € {W,B,H} and gender € {M, F} are sensitive attributes,
we could combine these into a single attribute of cardinality 6.

If a sensitive attribute is not discrete-valued, or takes on too
many discrete values, then we can bucketize the attribute value
into a finite number of discrete buckets. Attributes such as age
and salary are often treated this way in practice for many ap-
plications. In fact, sensitive attributes may also have associated
privacy concerns, and so may need to be converted to noisy
histograms, e.g., to enforce differential privacy.

We further assume that the dataset is partitioned on the value
of the sensitive attribute. That is, each item is associated with
exactly one value of the sensitive attribute. For example, a person
of mixed race should not be listed as having both White and
Black as values for the race attribute: rather this value should be
set to an appropriate single value, such as "White-Black-Mixed".

Let there be d distinct values of the sensitive attribute. Our
requirement is to choose k; elements for each distinct value
i € [1...d], with each k; € [0,K], and }; k; = K. Of course,
this begs the question of what the k; values should be. We next
consider several notions of fairness and diversity and show how
to capture these within this framework.

Fairness by proportional representation (of values of the sensitive
attribute). Suppose that the number of items N is known, as is
the number of items n; in each sensitive category i € [1...d].
Then, proportional representation requires that the desired size
K of the selected set be prorated among the d categories. That
is ki = K = n;/N. We call the right hand side of this equation
proportion;, for convenience.

A difficulty we run into is that k; must be an integer: an item
in some category is either selected or it is not. Thus, fractional
values do not make sense, yet proportion; is not always an integer.
We can round proportion; to the nearest integer to determine
each k;, hoping to return K items in total. But we may end up with
rounding errors resulting in violation of }}; k; = K. To avoid this,
it is reasonable to provide some flexibility in choosing the value of
each k;, using the formula | proportion;] < k; < [proportion;],
where |.] is the floor function and [.] is the ceiling function.

Even weaker constraints are often acceptable in practice. For
example, in a class of 821 students, and with a binary assignment
of the gender attribute, we may desire to see 410 students of one
gender and 411 of the other. However, it is unlikely that an insti-
tution would be accused of discrimination if they admitted 407
women and 414 men. Generally, it is acceptable to set thresholds
on the relative representation of different categories. This idea is
a generalization of the 80% rule of disparate impact [10].

Another potentially appropriate fairness metric is the normal-
ized difference: the mean difference normalized by the rate of pos-
itive outcomes, which in our case corresponds to being selected
among the top-k. Another is the elift ratio: the ratio of positive
outcomes for the historically disadvantaged demographic group
over the general group. A ratio of 1 indicates no discrimination,
while a ratio below 0.8 has been construed as discrimination by
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US courts. These and other proportional representation metrics
can be found in a recent survey by Zliobaite [19].

Coverage-based diversity. A popular measure of diversity is
coverage [7]: is there representation for every category in the
selected set? Whether this is possible depends on how K, the
number of items selected in total, compares to d, the number
of categories of items. If d > K, then each k; < 1. We cannot
get full coverage, but by not choosing 2 from any category, we
make sure to include a representative from as many categories as
possible. If d < K, then each k; > 1. Since K is large enough in
this case, we can have multiple items from each category as long
as we make sure that we have at least one from each category.

To avoid “tokenism” — selecting a single representative of
each category, we may want to specify coverage diversity in
terms of a larger minimum number per category. For example,
we may require that there be at least 5 members of each race in
the selected set. Such a choice would typically be made only if
5d < K, and our requirement becomes that each k; > 5.

Summarizing the scenarios considered above, we can state
the specific diversity or proportionality constraint of interest
as floor; < k; < ceil;, where floor; and ceil; are integers that
are determined, for each i, based on the particular constraint
of interest. This formulation allows us to treat combinations of
sensitive attributes (represented by a single Cartesian product
attribute) in a way that captures attribute dependencies. For
example, we can derive the constraint for the number of female
candidates of a minority race to be higher or a lower than what
would result from proportionfemage X proportionminority-

The general statement of our problem is as follows:

Diverse Set Selection Problem Statement: Given N items,
each with an associated utility score and an identified sensitive
attribute, for each value i of the sensitive attribute, choose k;
items such that the summation utility of the selected set is max-
imized, subject to floor; < k; < ceil; and subject to 2;k; = K.
The floor; and ceil; values depend on the specific constraint to
be applied. These values are computed prior to the optimization
problem, and are assumed to be given.

All N items may be given together; we call this the static case
and study it in Section 3. Alternatively, the items may arrive one
at a time; we call this the online case and study it in Section 4.

The standard cost-metric in the top-k problem is the number
of items examined: ideally, this should be much less than N. We
carry over this metric to our problem domain as well. This metric,
which we call walking distance (it is sometimes called depth in
the top-k literature), is a simple surrogate for the incurred CPU
cost, and has the advantage of being independent of the imple-
mentation and of the execution environment. We will discuss in
Section 4 that walking distance relates to solution utility in the
online case, and so is more informative than wall-clock time.

Another standard top-k cost metric is buffer size: the in-memory
storage cost for running the algorithm. We do not present ex-
perimental results on buffer size, but note that all algorithms
proposed here use buffers of constant size, under the assumption
that K and };; ceil; are constants.

Finally, as we shall see when we get to the online algorithms,
we cannot always get the best answer if we are required to decide
for each item on the spot. An accuracy metric we develop will
reflect how close the online solution comes to the true optimum.
We note that this optimum is the best we can do subject to the
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Figure 1: An illustration of the static scenario. N = 12
items, labeled a through |, belong to one of two classes,
blue and red. The goal is to select K = 3 items subject to
1 <kpjye <2and1 < k,.q < 2.Items arrive in score-sorted
order, with scores ranging from 9 down to 1.

diversity or fairness constraints: a higher score may be possible
without these constraints. We describe all metrics in Section 5.3.

3 THE STATIC PROBLEM

In this section, we solve the problem for the case when we have
access to all items. We call this the static case. In the next section,
we will turn to the online (streaming) case.

In the traditional set up for the top-k problem with multi-
attribute criteria, the problem setting assumes that we have items
sorted by attributes of interest, with our ranking criterion being
some monotone aggregation function of these attribute values
(e.g., weighted sum). We proceed down the sorted list(s), stopping
when we can predict that an unseen item cannot possibly be
included in the selected set [9].

In our problem setting, item scores are precomputed, and so
we consume a single list of items, sorted by decreasing score. But
we have a more complex selection criterion: Diversity constrains
each k;, the number of items with a value i for the sensitive
attribute, to floor; < k; < ceil;.

Recall that d is the number of distinct values of the sensitive at-
tribute. Let us define required = Zle floor;. For our set of floor
and ceiling constraints to be feasible, we must have required < K.
The difference K — required = slack, represents the total slack
that we have to choose items after all floor constraints are satis-
fied. To return a set of items with the highest utility (total score),
we are best off filling the slack with items of highest utility, un-
constrained by sensitive attribute value, as long as the number
of items per category does not exceed the respective ceiling con-
straint. We use this observation in Algorithm 1. We illustrate the
algorithm with an example.

Example 3.1. Consider the score-sorted list of items in Figure 1.
N = 12 items are partitioned into d = 2 categories (blue and
red), with 6 items per category. The goal is to select K = 3 items,
with between 1 and 2 items per category. That is, floor,.q =
floorp,e = 1and ceil, .4 = ceilpjye = 2.

We process items in order, left-to-right. At step 1, blue item a
is accepted to meet the floory, . constraint. Among the remain-
ing 2 items that will be accepted, one must be red, to meet the
floor,.q constraint, and the other can be of either color. At step
2, blue item b is encountered and accepted. At this point, only one
item remains to be accepted, and it must be red. At step 3, blue
item c is skipped. Finally, at step 4, red item d is accepted, meeting
the floor,.4 constraint, and selecting the required K = 3 items.
The algorithm terminates after consuming 4 items.

Let us now consider the pseudocode of Algorithm 1. As il-
lustrated in Example 3.1, the algorithm accepts an item if the
floor constraint of its category has not been met (line 7), or if
the ceiling constraint of its category has not been met and some
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Algorithm 1 Diverse top-k selection from a sorted list.

Require: List of items I sorted by score,

number of items to select K, number of categories d,
constraints floor; < k;j < ceil; foreachi e [1...d].
{Initialize the output list L.}

:L=0
{Initialize the counts of per-category selected items C.}

2 C=[k; =0,...,kg =0]
{Compute the slack value s.}

3: slack = K — Z?=1 floor;

4 while |L| < K do

5. x = getNextItem(I)

6: i = category(x)

7 if k; < floor; then

8: Le—x

9: ki=ki+1

10:  elseif (k; < ceil;) A (slack > 0) then
11: L«—x

12: ki=ki+1

13: slack = slack — 1

14:  endif

15: end while
16: return L

slack remains (line 10). Algorithm 1 terminates once K items are
selected.

In general, we only have inequality constraints on each of the
k; values. However, note that in the special case that for each i,
floor; = ceil;, we have the value of each k; determined exactly. In
this case, once the floor constraints are met for each category, we
will have selected K items in total, since K = }}; ki = X3; floor;.

Algorithm 1 never examines any item with score lower than
the smallest score included in the selected set. In this sense, the
number of items examined is optimal — there is no way to ex-
amine fewer items if we proceed strictly in score order. This
optimality result holds even though the worst case number of
items examined is still N.

Besides the computational cost, we have one additional im-
portant notion of goodness to consider: that of the utility score.
It is straightforward to establish the following Theorem.

THEOREM 3.2. Algorithm 1 produces a solution that has the
highest possible utility score, subject to the given constraints.

Even though Algorithm 1 is optimal, subject to the diversity
constraints, in general it will return K items with the combined
utility score that is lower than would be possible in the absence
of these constraints. This cost of diversity was illustrated in
Example 3.1: we skipped item c although accepting it would
maximize utility, but would result in selecting all items from
the same category, blue. We will quantify the cost of diversity
experimentally in Section 5 (Figure 7).

4 THE ONLINE PROBLEM

In practice, even though a set has to be selected, not all items in
the set may be available for evaluation at once. Rather, they may
appear one at a time, with a decision to be made on the specific
item instantaneously. For example, we may wish to hire a diverse
set of employees. However, each hiring decision may have to be
made individually on each job applicant when the job application
arrives. The order of arrival of applications is not, in general,
determined by the quality of the applicants. More generally, we



have to classify each individual item, as presented, into one of
two buckets: “selected” or “not selected,” subject to the utility
and diversity criteria in our problem statement, for the selected
set. Such situations motivate us to consider an online scenario,
which is sometimes referred to as streaming.

Returning to the hiring example, we note that, while the qual-
ity of an applicant may be unknown ahead of the job interview,
it is reasonable to assume that the number of applicants, both
over-all and in each demographic category (e.g., by race, gender
or some other sensitive attribute) can be known ahead of time,
because these properties are declared by the applicants. The clas-
sic Secretary Problem and its variants, described next, and our
proposed solution presented in the remainder of this section, rely
on this information.

4.1 Background and Problem Statement

The problem of designing an online algorithm to optimize the
probability of selecting the maximum element in a randomly-
ordered sequence has been studied extensively [8, 11, 14], and is
traditionally known as the Secretary Problem. In this problem,
the goal is to hire one secretary from a pool of N candidates,
where N is known, and candidates arrive in random order. When
a candidate is interviewed, the decision must be made to hire
or reject the candidate, and this decision is irreversible. It was
shown by Lindley [14] and by Dynkin [8] that the optimal hiring
strategy is to interview m = L%J candidates without making
any offers (this is called the warm-up period), and make an offer
to the first candidate who is better than the best of the first m
candidates (or accept the last candidate if no better candidate is
seen). This strategy yields the best candidate with probability %,
and is said to have competitive ratio e. Further, this is the best
such strategy for the Secretary Problem, i.e., with the highest
competitive ratio [11].

A generalization of the Secretary Problem called the K-choice
Secretary Problem is stated as follows: design an online algo-
rithm for picking K out of N non-negative numbers presented in
random order, to maximize their expected sum. While a straight-
forward extension of the Secretary Problem is natural here (with
the same length of warm-up, L%J, remembering the scores of
the K highest-scoring candidates), the exact optimal competitive
ratio for this problem is not known for K > 1. This quantity
is known to lie between 1 + ¢Vk and 1 + CVk for some pair of
constants ¢ < C [3].

Another interesting variant is the Poset Secretary Problem: If
the elements of the permutation (candidates) are only partially
ordered, how to maximize the probability of returning a maximal
element in the poset? The incomparable elements present the
main challenge: many simple modifications of the total order
algorithm to handle incomparable elements were shown to have
vanishing success probabilities [13].

In this section, we state, and then present a solution to, the
online variant of the Diverse Set Selection Problem of Section 2:

Diverse K-choice Secretary Problem Statement: Design
an online algorithm for picking K out of N items, each with an
associated non-negative utility score and an identified sensitive
attribute, presented in random order. Select items to maximize
their expected sum, subject to diversity constraints of the form
floor; < k; < ceil; for each value i of the sensitive attribute, and
subject to 2;k; = K.
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Figure 2: An illustration of the online scenario. N = 12
items belong to one of two classes: blue and red, with
Nplue = Nred = 6. The goal is to select K = 3 items subject
to1 < kpye <2and 1 < kpeg < 2.

4.2 Online Algorithm

We now present Algorithm 2 that solves the Diverse K-choice
Secretary Problem. The basic idea of this algorithm is to solve d
K-choice Secretary Problems [4] in parallel, one for each category,
to satisfy the per-category floor constraints. But that in itself is
not enough: we also have to run a category-insensitive K-choice
Secretary algorithm to select the remaining items, subject to
ceiling constraints.

Algorithm 2 relies on the estimates of the number of items
per category in the stream (n; represents the estimate of the
number of items from category i), and guarantees that diver-
sity constraints are met if these estimates are accurate. We now
illustrate Algorithm 2 with an example.

Example 4.1. Consider the stream of items in Figure 2. N = 12
items are partitioned into d = 2 categories, with 6 items per
category: n,.q = nprye = 6. Like in Example 3.1, the goal is to
select K = 3 items subject to 1 < kpjye < 2and 1 < kg <2.In
contrast to Example 3.1, items arrive in random order.

To start, we compute the lengths of the per-category warm-up
periods: rppye = |72 | = 2 and rypq = [ 2] = 2. There-
fore, we will consider, and discard, 2 items in each category
before accepting any items in that category. As we consider the
warm-up items, we record floorp;,. = 1 highest blue item score,
and floor,,q = 1 highest red item score in the respective per-
category threshold heaps T;..4 and Tp -

Similarly, we compute the length of the category-independent
warm-up period r L%J = 4. The number of items we will
accept irrespective of their category membership corresponds to
the difference between K and the sum of the floor constraints, and
is 1 in our example. (We called this quantity slack in Algorithm 1.)
Therefore, we will record the score of the highest-scoring item
(of any category) among the first r = 4 items in the threshold
heap T, setting T = {8} (the score of item d).

The warm-up period for the blue category will terminate at
step 3, after items a and c are considered, with Ty, = {6}. At
step 4, a blue item d is encountered, with score 8, higher than
getMinElement(Tp;,.) = 6, and this item is accepted.

The warm-up period for the red category will terminate at
step 5, after items b and e are considered, with T, .4 = {4} (score
of b). We will reject the next red item, g, because its score is
lower than getMinElement(T,,4), and will accept the following
red item i at step 9 to satisfy floor,.q.

We are also looking to accept an item with a score higher than
getMinElement(T) = 8 from any category, as long as its ceiling
constraint is not exceeded. However, because i (score 9) was
used to satisfy floor,.4, which takes precedence, no such item
is encountered. To return K items, we must accept the last item
in the stream, | with score 5.

We terminate with the output {d, i, I}, with utility 8+9+5 = 22.
This is only slightly lower than the best possible utility of 24.



Algorithm 2 Diverse K-choice Secretary Algorithm

Require: Stream of items I, total number of items to select K,
input size N, number of categories d, constraints floor; <
ki < ceil; and number of items per category n; for i €

[1...d]
{Initialize the output list L.}
:L=0

{Initialize the array of counts of per-category selected items
C}
2C=1lk1=0,...,kg =0]
{Initialize counts of per-category seen items M.}
3 M=[m;=0,....,myg =0]
{Compute the length of per-category warm-up.}
4« R=[r=[2],....,rg=1%]]
{Initialize d MinHeaps, one per category, T; ... T .}
5: fori=1...d do
6.  T; = MinHeap(floor;)
7. end for
8: slack = K — Zflzl floor;
{Compute the length of category-independent warm-up.}
o r =Y
{Initialize a category-independent heap T.}
10: T = MinHeap(slack)
: while |L| < K do

122 x = getNextItem(I)

132 i = category(x)

14 if 3 ; m; < r then

offer

15: T ——x

6. endif

17: if m; < r; then

offer

18: T; «— x

19:  elseif ((k; < floor;)A(score(x) > getMinElement(T;))V
(nj —m; == floor; — k;) then

20: deleteMinElement(T;)

21: Lex

22: ki=ki+1

23 else if (3; m; > r) A (score(x) > getMinElement(T) A
(k; < ceil;) A (slack > 0)) then

24: deleteMinElement(T)

25: Le—x

26: ki=ki+1

27: slack = slack — 1

28:  else if (k; < ceil;) A (numFeasibleltems() == K — |L|)
then

29: Le—x

30: ki=ki+1

31 slack = slack — 1

322 endif

33: m;i=m; +1

34: end while
35: return L

In Example 4.1, we happen to satisfy both floor constraints (at
steps 4 and 9) before accepting a category-independent item at
the end of the stream. Note, however, that this may not be the
case in general. For example, we could have accepted a blue item
with a score higher than 8, had one been encountered at steps 5,
6,7, or 8 — any time after floory;,. is met.

Processing of item d in Example 4.1 illustrates that different
streams (per-category and category-independent) are consumed
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in parallel: d is part of the category independent warm-up (where
it is discarded but its score is recorded in T), and it is also part
of the post-warm-up stream for the blue category, where it is
accepted, since its score exceeds getMinElement(Tp;y,e)-

Let us now consider the pseudocode for Algorithm 2. The
algorithm uses a MinHeap data structure to keep track of the
top-K elements seen thus far. We need one for each category
(denoted T; and initialized on line 6 with capacity floor;), and an
additional one for the extra elements after the floor constraints
have been met (denoted T and initialized on line 10 with capacity
slack). Each per-category heap T; stores the best floor; scores
seen among the first r; items of category i. If floor; > r;, then
T; will store the first floor; elements observed, together with
floor; — r; elements of value —1. Heap T is initialized similarly,
storing the best slack scores seen among the first r = L%J items,
irrespective of category.

During the warm-up period, an item x is not accepted (not
added to L) irrespective of its score, but rather is offered to
the relevant per-category heap (on line 18) or to the category-
independent heap (on line 15). Note that the same item x may be
offered to its per-category heap and to the category-independent
heap during warm-up.

An item of category i is added to the output after the warm-up
period if floor; is not yet satisfied and either (a) the item has a
sufficiently high score or (b) we are at the end of the stream for
category i (line 19). The latter condition is evaluated by compar-
ing the number of items remaining in the stream (n; — m;) to the
number of items still required for i (floor; — k;).

An item is also added to the output if its score is sufficiently
high according to the category-independent estimate and there
is sufficient slack to meet all outstanding floor constraints (line
24). Note that Algorithm 2 uses the slack mechanism in a similar
way as Algorithm 1.

Finally, an item is added to the output if it is feasible: accepting
it would not violate the ceiling constraint for its category, and if
exactly K — |L| feasible items remain in the input. We compute
the number of feasible items (line 28) as a sum of n; — m; (the
number of items that remain on the stream in category j) over
all feasible categories (those in which ceil; — k;j > 0).

This final set of conditions (line 28) is required to ensure that
exactly K items are returned by Algorithm 2. Asserting that
exactly K — |L| feasible items remain in I relies on the estimates
of the number of items in each category.

Optimality. Algorithm 2 specifies per-category lengths of the
warm-up period on line 4. What is the competitive ratio of this
algorithm? To reason about this, let us first consider the K-choice
Secretary Problem, a generalization of the Secretary Problem
where K > 1 rather than 1 item is to be chosen in an online
manner. Recall from Section 4.1 that, when K = 1, the optimal
competitive ratio is e, and it is achieved with a warm-up period of
length L%J [8, 14]. For K > 1, it is known that competitive ratio
is no worse than e under the same warm-up period length [4],
but the optimal competitive ratio is not known [3].

Our problem setting, and its solution presented in Algorithm 2,
differ from the generalized K-choice Secretary Problem in that
we are receiving items from multiple distinct categories. Algo-
rithm 2 treats items that belong to different categories as different
sub-streams of a common stream, and is guaranteed to have a
competitive ratio no less than e for selecting floor; items in each
category, by an immediate application of the result of Babaioff et
al. [4]. The remaining slack items are selected from the common



stream (subject to floor and ceiling constraints), and will have a
competitive ratio no less than e (subject to the same constraints).

We will empirically compare the quality of the result returned
by Algorithm 2 to that of the static algorithms of Section 3 in
Section 5.4. We will also consider the impact of warm-up period
length on accuracy in that section.

Impact of per-category warm-up on utility. An important point
to note is that, by estimating scores on a per-category basis
rather than for the entire set of items at once, Algorithm 2 ac-
commodates the case when score is not independent of category
membership. Consider an example in which there are two cat-
egories A and B, and where, for all pairs of items a € A, b €
B, score(a) < score(b). Suppose further that a and b occur in
the input in approximately equal proportion. Then, if a com-
mon heap T of size K is maintained for both categories during
warm-up (with K < L%J), T will contain scores of some K items
from B, and so it will be the case that, at any point in time,
Va € A, getMinElement(T) > score(a). As a result, an online al-
gorithm will accept a subset of B with a high combined score, and
it will accept floor,4 items from A that appear at the end of the
stream. This represents the worst case for category A in terms of
utility. We validate this claim experimentally in Section 5.4.

4.3 Online Algorithm with a Deferred List

In a true on-line setting, a decision must be made whether to
accept or to reject an item once it is seen. In practice, it may be
acceptable to keep a waiting list of modest size. For example,
college admissions work this way.

We now introduce Algorithm 3, an optimized version of Algo-
rithm 2 that will often return a set of K items of higher utility,
subject to diversity constraints. This is accomplished by intro-
ducing per-category deferred lists D; of bounded size. We now
give an intuition behind this algorithm using an example.

Example 4.2. Consider again the stream of items in Figure 2.
N = 12 items are partitioned into d = 2 categories, with 6 items
per category: n,.q = Nhpjye = 6, and arrive in random order.
The goal is to select K = 3 items subject to 1 < kpj,. < 2 and
1 < kyeq < 2. We now highlight the differences in the processing
of this input when a deferred list is allowed, as compared to that
of Example 4.1 (Algorithm 2).

We conduct a warm-up period of length 2 for each category,
storing floory;,e = floor,.q = 1 highest score in each Ty, =
{6} and T,.4 = {4}. In contrast to Example 4.1, we do not conduct
a category-independent warm-up period (there is no T).

Also in contrast to Example 4.1, items encountered during the
warm-up period are not immediately discarded, but rather are
placed into per-category deferred lists Dy, and D,..4, which
maintain up to ceilpj,, = 2 and ceil,.q4 = 2 items, respectively.
Even beyond the warm-up period, we consider the scores of all
encountered items, and always keep 2 best items of the appro-
priate category seen so far in each Dy, and D,.4. Note that
Dp1ye and D,..4 are MinHeaps, which we denote by sorting the
elements in the order of increasing score.

In our example, Dyj,. = {c,a} at step 3 (end of warm-up
for blue), Dy, = {a,d} at step 4 (d has a higher score than ¢
and replaces c), and D,.; = {e, b} at step 5 (end of warm-up
for red). We continue processing until a sufficient number of
items post the warm-up period is seen (1 post-warm up item
in each category in our example) and once there are at least K
items in the union of deferred lists. We continuously update the
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Algorithm 3 Diverse K-choice Secretary Algorithm with a de-
ferred list
Require: Stream of items I, total number of items to select K,
input size N, number of categories d, constraints floor; <
ki < ceil; and number of items per category n; for i €
[1...d]
{Initialize the output list L.}
:L=0
{Initialize i deferred lists D; of capacity ceil; for each cate-
gory)
2: fori=1...d do
3. D; = MinHeap(ceil;)
4: end for
{Initialize the list of counts of per-category selected items C.}
5: C = [k1 =0,...,kd =0]
{Initialize the list of counts of per-category seen items M.}
6 M=[m;=0,....,mg =0]
{Compute the length of per-category warm-up.}
7 R=[rn=%]. . rg = 172]]
{Initialize d MinHeaps, one per category, T; ... T4.}
8: fori=1...d do
9:  T; = MinHeap(floor;)
10: end for
{Initialize the number of unsatisfied categories u.}
u=d-3% 1[floor; == 0]
{Initialize the total number of deferred items w (for “wait-
ing’).
w=0
while (u > 0) V (w < K) do
x = getNextItem(I)
i = category(x)
if m; < r; then

offer
T; «—— x

elseif (k; < ceil;)A(score(x) > getMinElement(T;) then
ki=ki+1
deleteMinElement(T;)
if (floor; > 0) A (k; == floor;) then
u=u-1
end if
end if

offer

D —x
m;i=m; +1
w =2 |Dil
end while
W = MaxHeap(w)
W —U; Di
Invoke Algorithm 1 on W (sorted by score), compute L.
return L

11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:
31:
32:

per-category deferred lists as we process, evicting lower-scoring
items and keeping 2 highest-scoring items in each category.

In our example, the algorithm terminates after step 9 (item
i), with Dyj,,. = {a,d} and D, .4 = {b,i}. The union of these
lists is then passed to Algorithm 1, which returns {a, d, i}, with
combined utility 23. Per Example 4.1, this utility is 1 point higher
than of executing Algorithm 2 on this input.

We will illustrate experimentally in Section 5.4 that Algo-
rithm 3 usually returns a set of K items of higher utility than
Algorithm 2. Note, however, that Algorithm 3 may sometimes



return items of lower combined utility, because it may terminate
sooner than Algorithm 2.

We now describe Algorithm 3 in detail. To start, set u (unsat-
isfied) to the number of categories with floor; > 0. Add the first
ceil; items to D; irrespective of their score, then maintain no
more than ceil; items in Dj, replacing the lowest-scoring item
y € D; with item x if score(y) < score(x).

A category becomes satisfied once floor; items in D; have a
sufficiently high score (post warm-up). If a sufficient number of
high-scoring items cannot be found, we satisfy floor; by adding
the required number of items of category i from the end of its
stream.

The algorithm stops consuming its input once all unsatisfied
categories become satisfied (i.e., once u == 0) and the total size
of all D; is at least K. Note that, even after a category i is satisfied,
we can still add item x to D; (while waiting for the remaining
categories to be satisfied), if x happens to have a higher score
than the lowest-scoring item currently in D;.

Having filled the deferred lists, the algorithm will first add
floor; items from each D; to the output list L, and will then fill
the remaining slack positions with the highest-scoring items
from the remaining deferred lists, irrespective of their scores.
Algorithm 1 can be invoked for this purpose, with I = | J; D;.

Note that when Algorithm 1 is invoked on line 31, it is invoked
on input W, a sorted list whose size is bounded by }; ceil;. We
assume that ceil; << |I|. In fact, setting any ceil; higher than
K is not meaningful. Further, since K is commonly treated as a
constant, then }; ceil; can also be treated as such.

5 EXPERIMENTAL EVALUATION

In this paper, we have introduced diversity and fairness con-
straints into set selection queries under several different settings.
Most importantly, we have introduced two streaming algorithms.
For all our agorithms we are interested in evaluating the cost
of introducing a diversity or fairness constraint in terms of the
lower utility achieved. For streaming algorithms, we are further
interested in how well we manage to satisfy a group constraint
and make a group selection, while being forced to make decisions
regarding individual items as they are presented.

5.1 Experimental Datasets

Our experimental evaluation is conducted on both real and syn-
thetic datasets. The real data gives us a sense for what would
happen in a real scenario, while the synthetic data let us vary
parameters to dive deeper into understanding "what if" questions.

Forbes Richest. We selected two Forbes Richest People lists
from 2016: US Richest with 400 individuals (https://www.forbes.
com/forbes-400/list/) and World’s Richest with 526 individuals
(https://www.forbes.com/billionaires/list/). Both lists are natu-
rally ranked by net worth. We used gender as the sensitive at-
tribute in the US list, with a break-down of 27 female vs. 373
male individuals (d = 2 categories). We used country as the sen-
sitive attribute in the World list, creating separate categories for
US (197 individuals), Germany (44), China (43), Russia (25), and
assigning the remaining 217 individuals to the category “other”,
resulting in d = 5 categories.

NASA Astronauts. This dataset is available at https://www.
kaggle.com/nasa/astronaut-yearbook/data and consists of 357
astronauts, with their demographic information. We ranked this
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dataset by the number of space flight hours, and assigned indi-
viduals to categories based on their undergraduate major. A total
of 83 majors are represented in the dataset, we assigned 9 most
frequent - Physics (35), Aerospace Engineering (33), Mechanical
Engineering (30) etc, to their individual categories, and combined
the remaining 141 individuals into the category “other”, resulting
in d = 10 categories.

Pantheon. This dataset is a ranking of 11,341 individuals based
on the popularity of their biographical page in Wikipedia, and is
available at http://pantheon.media.mit.edu/rankings/people/all/
all/-4000/2010/H15. Individuals in the dataset include historical
and present-day figures, and are described with name, gender,
birth year, place of birth, and occupation. Occupation is aggre-
gated into a set of d = 8 cultural domains (http://pantheon.media.
mit.edu/methods), which we use as the sensitive attribute to state
diversity constraints.

Synthetic data. We also used synthetic data in our experiments,
in cases where it was important to control dataset composition
and assignments of scores to items in particular categories. Syn-
thetic datasets consisted of three attributes: identifier of a tuple,
value of the sensitive attribute and score. Additional details about
specific datasets will be given as appropriate.

In our discussion, we will find it convenient to use the term
balanced to describe datasets in which different categories are
represented in the same proportion. For example, a dataset in
which diversity is stated with respect to gender is balanced if
about 50% of the individuals in the input are male and about 50%
are female.

5.2 Diversity Constraints

Recall that our algorithms are designed for diversity constraints
stated in terms of size limits on each category. The specific con-
straints chosen can implement different notions of diversity or
fairness as discussed in Section 2. We explore several families
of constraints, generated using the procedure described below,
after a brief discussion of requirements on the constraints.

A single per-category constraint of the form floor; < k; <
ceil; is satisfiable if floor; < n;, where n; is the number of items
in category i in the input. While it is not incorrect to set ceil; > n;,
this will not lead to sensible subset selection in practice, and will
make satisfiability of a set of constraints more cumbersome to
state. For these reasons, we also require that ceil; < n;.

A set of per-category constraints is satisfiable if two conditions
hold: X%, floor; < K and 3¢ ceil; > K.

We use several measures of diversity, listed below, to generate
a set of per-category constraints of the form floor; < k; < ceil;
for a given selected set size K and number of categories d. We
generate constraints that are satisfiable individually and as a
set, as discussed above. In what follows, we assume that each
category i is represented in the input dataset, that is, that n; > 1.
Minimum: (Cover as many categories as possible.)

If K > d, set floor; = ceil; = 1 for all d categories. Next,
compute r = k —d. If r > 0, assign the remaining r positions
in the top-K to a random category j by setting ceil; = ceil; +r.
Select category j from among categories in which n; > ceil; +r.

If K < d, assign floor; = ceil; = 1 to a random set of K out
of d categories, and floor; = ceil; = 0 to the remaining d — K
categories.
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Average: (Select equal numbers from each category.)

Note that in balanced datasets, average and proportion con-

IfK > d,set floor; = MIN(|K/d],n;)and ceil; = MIN([K/d],n;) straints are equivalent, as are relaxed average and relaxed pro-

for all d categories. Next, compute r = Z?zl ceil;. If r < K, assign
the remaining r positions in the top-K to a random category j by
setting ceil; = ceil; + r. Select category j from among categories
in which nj > ceilj +r.

If K < d, set constraints as in minimum above.

Proportion: (Select equal proportions from each category.)
Recall that N denotes the size of the input.
IfK > d, set floor; = |K *nj/N] and ceil; = [K * n;/NT.
If K < d, set constraints as in minimum above.

Relaxed average: Let integer ¢ denote the tightness threshold.
IfK > d, set constraints as in average above. Next, set floor;
MAX(floor; —t,0) and ceil; = MIN(ceil; + t,n;).
If K < d, set constraints as in minimum above.

Relaxed proportion: Let integer ¢ denote the tightness thresh-
old.

If K > d, set constraints as in proportion above. Next, set
floor; = MAX(floor; — t,0) and ceil; = MIN(ceil; + t,n;).

If K < d, set constraints as in minimum above.
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portion (for the same tightness threshold t).

5.3 Metrics

Recall that Algorithms 2 and 3 both consume the input one item
at a time, and decide whether to accept or reject an item when
it is encountered. Algorithm 3 differs from Algorithm 2 in that
it can place an item on the deferred list, and decide after it has
considered all feasible items which of these to accept. For a given
input (a fixed set of items received in some fixed order), Algo-
rithms 2 and 3 will stop consuming the input at some point. We
refer to this point — the number of items considered from the
input stream, as the walking distance, and use it as our primary
measure of efficiency. This measure is sometimes called depth in
the top-k literature.

In several experiments with online algorithms, we quantify
the relationship between algorithm efficiency and accuracy. To
quantify accuracy, we use an intuitive normalized measure that
compares the scores of the K retrieved items with the best pos-
sible K scores, subject to diversity constraints. Based on our
statement of optimality in Theorem 3.2, we use scores returned
by Algorithm 1 as the gold standard.

To make accuracy insensitive to shifts in the score distribution,
we subtract the minimum observed score from each value. For
example, suppose that the lowest net worth of any individual
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Figure 5: Per-category accuracy of Algorithm 2 as a function of K, on a balanced synthetic dataset of size N = 10,000 with
average constraints. Category A items in the input have strictly lower scores than category B items. A common warm-up
period leads to lower accuracy for both categories compared to per-category warm-up periods, and places items in category

A at a particular disadvantage.

was 100, that K = 2 individuals were selected, with scores 225
and 200, and that the two highest-scoring individuals in the

dataset, subject to diversity constraints, have scores 300 and 250,
(225—100)+(200—100)

respectively. Then accuracy is computed as {300-100)+(250-100)

5.4 Experimental Results: Online Algorithms

The most important question we are interested in is how well
our streaming algorithms do despite being forced to meet set-
oriented constraints while making decisions on individual items
one at a time. The way the streaming algorithms are stated, they
guarantee that the diversity constraints will be met, but do not
guarantee optimality of utility score. We measure this in terms
of accuracy, as described above.

The one parameter we can control in the streaming algorithms
is the length of the warm-up period. Therefore, we start by pre-
senting the relationship between warm-up period length and
accuracy of the online algorithms of Section 4. To show this
relationship, we will consider Figures 3 and 4, where 400 US
Richest individuals (see Section 5.1 for dataset description) were
randomly permuted, and where a diversity constraint was spec-
ified over the binary gender attribute, with 2 < kr < 2 and
2 < kpy < 2 (a tight average constraint) and with K = 4. Each
point in these figures corresponds to an execution of the relevant
algorithm on a random permutation, with 100 executions per
experiment (note that points may coincide). Other datasets in
our experiments exhibited a similar trend.

We see that Algorithm 3 gets very high accuracy, often equal-
ing the gold standard, if given enough warm up. Algorithm 2 also
does not do too badly in terms of accuracy, though Algorithm 3
does substantially better.

Walking distance takes on values between K (output size) and
N (input size). Walking distance is made up of two parts: length of
the warm-up period during which an on-line algorithm is estimat-
ing item scores, and post-warm-up, during which an algorithm is
able to accept items. In both Algorithms 2 and 3, the per-category
warm-up period has length | % | for category i, while the total
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warm-up period length is the sum of per-category warm-up pe-
riod lengths, and of L%J for the category-independent warm-up.

Consider Figures 3a and 4a, which show the overall accuracy
as a function of walking distance for Algorithms 2 and 3, respec-
tively. Note that accuracy of Algorithm 2 varies significantly at
walking distance 400 — the case when all N items were consumed
from the stream. This effect is so pronounced that in Figure 3a
the over-all trend in accuracy is decreasing, due exclusively to
this end-of-stream effect. In contrast, Algorithm 3 is not forced
to accept items from the end of the stream, and so its accuracy
strictly increases as a function of walking distance.

We do not have explicit control of the post-warm-up walking
distance (because we must return a valid set of results — K results
that meet the diversity constraints). However, we can impact
walking distance by changing the length of the per-category
warm-up periods, set to | %£ | by default. These settings provide a
strong theoretical guarantee, but can be conservative in practice,
particularly for Algorithm 3 (the deferred list variant). Figures 3b
and 3c show accuracy when warm-up is abbreviated to a quarter
and a sixteenth of the optimal for Algorithm 2, and Figures 4b
and 4c correspond to Algorithm 3. Observe that reducing warm-
up period length introduces a trade-off between walking distance
(efficiency) and accuracy, and that accuracy is often comparable
to that which results from the full warm-up period, but at a lower
efficiency cost.

In the next experiment we demonstrate the importance of
having per-category warm-up periods. Recall that Algorithm 2
considers, and rejects, I_%J items in each category before ac-
cepting any items. This warm-up period allows the algorithm
to form an expectation on the score of an item. Suppose now
that K = 2, that there are two categories A and B in the input,
and that diversity constraints are such that exactly one item
per category is to be selected. Further, suppose that scores of
A-items are strictly lower than scores of B-items. If a common
(rather than a per-category) warm-up period were used by the
algorithm, with a common MinHeap of score thresholds T, then
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T would contain the highes-scoring B-items that were encoun-
tered during warm-up. Since A-item scores are lower than B-item
scores, no post-warm-up A-item will have a score that exceeds
getMinElement(T). This would force the algorithm to walk down
the end of the stream in all cases (impacting performance), and to
accept the very last A-item from the stream (impacting accuracy
for category A).

To illustrate this point, we generate a synthetic dataset of N =
10, 000 items in two categories, A and B, with a balanced break-
down — 5,000 A-items and 5,000 B-items, and with category-
dependent scores. Scores of A-items are drawn uniformly at
random from the [0, 0.5) range, while scores of B-items are drawn
uniformly at random from [0.5, 1). We vary K between 2 and
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100, and impose a (tight) average diversity constraint, setting
&) <kp < K and K] < ky < LK.

Figure 5 shows box-and-whiskers plots in which accuracy is
presented as a function of K (see Section 5.3 for a description
of how accuracy is computed). Observe that that accuracy for
category A is lower than accuracy for category B in all cases
when a common threshold is used (see Figure 5a). This is in
contrast to the per-category threshold case in Figure 5b, where
accuracy is comparable across the two categories.

Let us now compare performance of Algorithm 3 under differ-
ent diversity constraints. Figure 6 presents accuracy as a function
of walking distance, with warm-up period of length % of the the-
oretically optimal (so, | g% | per category), for two real datasets:
NASA Astronauts (N = 327, d = 10 and K = 30) and the World’s
Richest (N = 526, d = 5, K = 20). We also experimented with
other real datasets, and with different values of K and warm-up
period lengths, and present here results that are representative.

The average relaxed constraint (purple line in Figure 6) uses
t = 0.3 % k] as the threshold (see Section 5.3 for a description of
this and other constraints) and is easier to satisfy than the tight
constraints, leading to somewhat lower walking distance. This
difference was somewhat less pronounced in Figure 6a than in
Figure 6b, and is sensitive to the variation in dataset composition
(how balanced the categories are) and to the value of K.

In our final experiment with online algorithms, we quantified
the impact of warm-up period length on the variance in accuracy.
We generated a synthetic dataset with N = 10, 000 items and with
d = 2 categories. We requested that K = 10 items be returned by
Algorithms 2 and 3, subject to proportion constraints.

Scores of A-items were drawn uniformly at random from
[0, 0.5), while scores of B-items were drawn from [0.5, 1). (Note
that we executed per-category warm-up in both algorithms, and
so differences in scores between A and B do not impact accu-
racy, as we saw in Figure 5.) We generated three such datasets,
with A constituting 10%, 25% and 50% of the over-all dataset. For
Algorithm 2, we observed, as expected, that higher variance in ac-
curacy occurs when A appears in the dataset in lower proportion:
variance was 0.080 for 10% proportion, 0.075 for 25% proportion
and 0.019 for 50% proportion. Variance did not differ significantly
for Algorithm 3.
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Figure 8: Walking distance of Algorithm 1 in proportion to N, as a function of K, for different diversity constraints.

5.5 Experimental Results: Static Algorithm

In this experiment we quantify the cost of imposing diversity
constraints, in terms of a normalized measure we call quality: the
sum of score of the diverse top-K divided by the sum of scores
of the “vanilla” (category-agnostic) top-K. Figure 7 presents
box-and-whiskers plots that quantify this cost of diversity as
a function of K for two synthetic datasets, each of size N, with
d = 2 categories represented in equal proportion, and with aver-
age diversity constraint. In the both datasets, item scores were
drawn from per-category Gaussian distributions, with different
means but the same standard deviations. The dataset presented in
green had means of A-scores and of B-scores close to each other
(ua — up = 0.1), while in the dataset presented in blue, these
distributions were further apart (ug — up = 0.5). As expected,
the cost of diversity is higher in the latter case, since items of
lower scores (in absolute terms) must be included into the result
to satisfy diversity constraints.
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In our final experiment we use real datasets to support the
claim that, while Algorithm 1 may walk to the end of the input in
the worst case, this rarely happens in practice. Figure 8 presents
walking distance of Algorithm 1 as a function of K for different
diversity constraints, for the NASA Astronauts, Pantheon, Forbes
World’s Richest, and Forbes US Richest datasets. A value of 1 on
the y-axis denotes that the algorithm walked to the end of the list
(that is, walking distance equals N). We observe that this does
not occur often, particularly for lower values of K.

6 RELATED WORK

There is considerable work on diverse top-k, starting with [2, 16],
see also [18] (Sections 5.1, 5.6 and 6) for a survey. The work pro-
posed here differs from prior work in that we consider a family of
diversity constraints that can express coverage-based (rather than
distance-based) diversity [7], and can also be used to compute



several fairness metrics — those based on proportional represen-
tation. To the best of our knowledge, diversity in combination
with utility has not been considered in a fully online setting.

In [16] a generic method is proposed to extend top-k algo-
rithms with a diversity criterion that is based on pair-wise simi-
larity. The problem is formulated as: given a user-defined pair-
wise similarity function sim(s;, s;), and a user-defined similarity
threshold 7, return the highest-scoring set of k items such that
sim(si,sj) < 7. When describing top-k methods, they refer to
incremental methods (generate results in decreasing order of
scores, stop once k results were generated) vs. bounding methods
(generate results in some order, stop once the top-k are among
the results, Fagin’s TA is in this category).

More recently, diversity-aware top-k for pub/sub queries over
text streams was considered in [6]. There, diversity is a pair-wise
measure based on document similarity in the top-k (max-sum),
quality is measured as the relevance of a document to a user’s
query, and there is additionally a per-document recency score
that is appropriate for a stream of Twitter messages or Facebook
status updates, and is based on an exponential decay function.

Another related line of work is [1], where max-sum diversity is
maximized subject to a constraint on a variant of coverage-based
diversity. The problem is posed as a partition matroid, a local
search algorithm is proposed, and it is shown that it achieves a
0.5 approximation of the optimal solution.

Selection of diverse set results in an online setting is studied

n [15]. The authors consider selection of subsets of items that
are simultaneously diverse along multiple dimensions. For exam-
ple, for program committee selection it is desirable to achieve
coverage of topics, geographic diversity and gender diversity.
The paper proposes and analyzes several diversity objectives
and proposes heuristic and dynamic programming methods. The
most important difference between our method and that of [15]
is that they do not explicitly handle utility.

In [16] a set of diverse top-k items is determined that maxi-
mizes the total score of the K selected items, subject to a pair-wise
diversity constraint. The problem is modeled by representing the
items as vertices in a graph, and by including an edge between
vertices s; and s; if their similarity is above a user-specified
threshold 7. A diverse set K is the independent set of a graph —
a set of vertices in which no two vertices are adjacent. This for-
mulation can accommodate the coverage diversity version of our
problem: Include an edge between two vertices if they belong to
the same category, then identify an independent subset of size d
that maximizes the total score. If d < k, we add k — d vertices that
maximize the total score. The algorithmic contributions of [16]
are in (1) determining when the set of k” > k items is sufficient to
compute the true diverse top-k, and (2) efficiently identifying the
independent set of a graph for a fixed k (finding an independent
set of a graph is NP-hard).

7 CONCLUSIONS

Diversity and group fairness are important objectives in algo-
rithmic decision-making. Since most algorithms are designed to
score or classify items individually, it is not easy to support these
objectives. In this paper, we showed how we can continue to
select items individually and meet desired diversity and group
fairness constraints, while paying a very small utility cost.
We demonstrated experimentally that the theoretically-motivated

setting for warm-up period length can be conservative in practice.
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In our future work, we will investigate the interaction between ex-
pected (or observed) score variance and warm-up period length.
Further, we demonstrated that different categories must be
treated separately in score estimation, to achieve comparable
accuracy irrespective of expected score, and ultimately afford
comparable opportunity to members of different groups.
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