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Abstract: Modern structural analysis necessitates numerical formulations with advanced nonlinear attributes. To that end, numerous finite
elements have been proposed, spanning from classical to hybrid standpoints. In addition to their individual features, all formulations origi-
nally stem from an underlying variational principle, which can be deemed as a unified energy metric of the system. The corresponding
equations of structural equilibrium define a stationary point of the assumed principle. Following this logic in this work, the total potential
energy is directly treated as an objective function, subject to some kinematic compatibility constraints, within the conceptions of nonlinear
programming. The only approximated internal field is curvature, whereas displacements occur solely as nodal entities and Lagrange multi-
pliers serve compatibility. Thereby, a new nonlinear programming hybrid element formulation is derived, which uses exact kinematic fields,
can incorporate nonlinear assumptions of any extent, and is amenable to various applicable nonlinear programming algorithms. The sug-
gested nonlinear program is presented in detail herein, together with its consistent second-order iterative solution procedure. The results
obtained in benchmark nonlinear structural problems are validated and compared with OpenSees flexibility-based elements, showcasing
notable performance in terms of accuracy, mesh density discretization, computational speed, and robustness. DOI: 10.1061/(ASCE)
EM.1943-7889.0001483. © 2018 American Society of Civil Engineers.

Introduction

Structural systems subject to multiple natural or anthropogenic haz-
ards are often required to endure extreme event loads that can drive
them to highly nonlinear regimes. Accordingly, structural element
models have to support highly nonlinear simulations that capture
materially and geometrically nonlinear responses effectively in
order to enable realistic structural assessments. To accomplish
this, structural element models and relevant numerical procedures
should aim at concurrently satisfying the notions of (i) accuracy,
(ii) coarse mesh discretization, (iii) computational speed, and
(iv) robust algorithmic performance. All these attributes are of great
importance in any type of structural analysis and, to the extent they
are combined, form the key for high-performance nonlinear and
collapse simulations.

Current structural analysis trends are shifting from determin-
istic to probabilistic approaches in order to embrace the notions
of uncertainty, risk, and reliability (Au and Beck 2001; Baker 2015;
Andriotis and Papakonstantinou 2018). Additionally, in recent
efforts toward viable optimum decision planning, the engineer-
ing community uses large scale optimization formulations with
multiple objectives and constraints, as well as advanced life-cycle
analyses. All these challenging analysis tasks demand multiple

computational runs and robust algorithms; hence, the underlying
numerical models are required to provide computational speed
and remedy premature algorithmic stops without sacrificing accu-
racy. The need for capturing nonlinearities realistically and reliably
is also of paramount importance in distinct extreme-scenario analy-
ses. In progressive collapse analysis, for example, where scenarios
such as sudden loss of columns are investigated, the system has to
reach an alternative equilibrium point leveraging catenary mecha-
nisms triggered by large displacements and rotations (Izzuddin
et al. 2008; Gerasimidis et al. 2015). In response to these challenges,
research efforts from displacement-based to hybrid standpoints have
managed to significantly advance the efficacy of nonlinear analyses,
proposing various structural element formulations and improved
algorithms. Nonetheless, in general, the various formulations and
computational tools still have certain limitations, which are particu-
larly prominent in problems with highly nonlinear characteristics,
either through problematic convergence, premature analysis stops,
or inaccurate equilibrium branches.

In displacement-based approaches of beam-column elements,
strains are generally derived by Hermitian polynomial shape func-
tions that interpolate the displacement field (Argyris et al. 1964;
Bathe and Bolourchi 1979). This concept satisfies compatibility
but trades off equilibrium in inelastic and large displacement prob-
lems. Polynomial interpolation introduces field inconsistencies
in this formulation, locking phenomena emerge, and even dense
meshes are often practically insufficient to obtain accurate re-
sponses, or the solutions may converge very slowly (Alemdar and
White 2005). Techniques of underintegration or selective integra-
tion, implemented to prevent locking, can cause spurious modes
that lead to numerical instabilities (De Borst et al. 2012). Overall,
displacement-based formulations for inelastic problems with large
displacements are computationally intensive and are susceptible
to premature analysis termination and deteriorated algorithmic
performance.

1Ph.D. Candidate, Dept. of Civil and Environmental Engineering,
Pennsylvania State Univ., University Park, PA 16802 (corresponding
author). Email: cxa5246@psu.edu; charandriotis@gmail.com

2Assistant Professor, Dept. of Civil and Environmental Engineering,
Pennsylvania State Univ., University Park, PA 16802.

3Professor, Dept. of Civil and Environmental Engineering, National
Technical Univ. of Athens, Athens 15780, Greece.

Note. This manuscript was submitted on September 27, 2017; approved
on January 23, 2018; published online on August 2, 2018. Discussion per-
iod open until January 2, 2019; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Engineering Me-
chanics, © ASCE, ISSN 0733-9399.

© ASCE 04018096-1 J. Eng. Mech.

J. Eng. Mech., 2018, 144(10): 04018096

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001483
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001483
mailto:cxa5246@psu.edu
mailto:charandriotis@gmail.com


Force-based approaches suggest a complementary formulation
instead. Rather than interpolating the displacement field, force
shape functions are introduced in the expression for the principle
of virtual forces (Zeris and Mahin 1988). Inherently satisfying
equilibrium, force-based elements derive accurate results in elasto-
plastic analysis of beam-column structures without geometrical
nonlinearities (Taucer et al. 1991). Fine discretization is avoided
in this class of applications and the computational cost drops dras-
tically in comparison to displacement-based analysis. However, in
large displacement problems, the accuracy of flexibility-based
analysis depends on discretization, despite the fact that noticeable
expansions have managed to reduce the mesh density (Neuenhofer
and Filippou 1998; De Souza 2000). Discretization is required in
order for field inconsistencies due to bending and membrane modes
coupling to be moderated, which increases the computational cost
significantly in highly geometrically nonlinear problems. Addi-
tionally, the adopted corotational transformation, implemented to
exclude rigid body modes, can introduce important rotational lim-
itations that can potentially lead to early analysis termination or
prevent realistic results (Neuenhofer and Filippou 1998; Felippa
and Haugen 2005).

Mixed beam-column elements combine characteristics of both
stiffness-based and flexibility-based approaches. Shape functions
are introduced in both displacement and force fields in the standard
mixed approach (Spacone et al. 1996). These elements are also
called multifield elements and their state determination technically
stems from the Hellinger-Reissner and Hu-Washizu variational
principles (Felippa 1994). The main reason behind the development
of mixed elements is the remedy of various shortcomings emerging
in single-field formulations, such as dense mesh requirements in
highly nonlinear problems and locking effects caused by field in-
consistencies (Stolarski and Belytschko 1983; Taylor et al. 2003;
Alemdar and White 2005; Saritas and Filippou 2009; Soydas and
Saritas 2013). However, variations in multiple internal fields imply
that the structural degrees of freedom (DOFs) may increase, some-
thing that can outweigh the benefits in conjunction with the dense
mesh discretization that is still required in highly nonlinear prob-
lems. Overall, it has been observed that for a given level of accu-
racy, superiority of mixed elements is not always apparent and a
similar computational effort as for other elements is often required
(Hjelmstad and Taciroglu 2003).

Hybrid element approaches are similar to mixed approaches,
including, however, additional variables that do not necessarily
correspond to internal fields, for example, Lagrange multipliers.
Lagrange multipliers can be used for plasticity, stress continuity,
or kinematic considerations (Sivaselvan and Reinhorn 2006;
Santos and Moitinho de Almeida 2010; Saje et al. 1997). In gen-
eral, hybrid elements have shown noticeable performance in curing
locking problems (Stolarski and Belytschko 1983), yet in some
cases the various formulations rather increase the DOFs compared
to flexibility-based elements, while also maintaining the need for
fine discretization.

Some kinematic approaches are also referred to as “geometri-
cally exact” or “strain-based” in the literature. These formulations
can essentially be classified as either hybrid or mixed because they
fall into the generic category of multifield methods. Exact formu-
lations, however, do not adopt corotational transformations or any
kinematic simplifications, having the capability to model arbitrarily
large displacements and rotations for highly nonlinear problems
(Saje et al. 1997; Santos et al. 2011). Recent and past research ef-
forts investigate similar methodologies further, also within the
framework of quadrature weak forms (Zhang and Zhong 2013).

In an effort to address these issues in a unified context
and motivated by the conceptions of hybrid methodologies and

geometrically exact formulations, the present work primarily aims
at posing the problem in an alternative statement. Structural analy-
sis is straightforwardly cast in the framework of optimization and
can be eventually carried out as a pure nonlinear programming
(NLP) problem. The total potential energy (TPE) is minimized on
the basis of primal and dual optimization considerations, whereas
compatibility constraints are appended via Lagrange multipliers
to the discretized TPE functional, which serves as the objective
function of the problem. With this TPE hybridization nonlinear kin-
ematic relations are fully incorporated without any sort of simpli-
fications in the deformation variables. Material nonlinearities are
introduced along the premises of fiber discretization, which allows
for distributed plasticity along the element and over the cross-
sections to be accounted for. Displacements and rotations, along
with strains within the element, define the set of primal variables,
and technically the solution procedure seeks their optimal values in
terms of energy. The formulation eventually renders displacements
as pure nodal variables; therefore, in contrast to curvature, they are
not internal fields and thus not interpolated. The derived NLP hy-
brid element controls to a great extent the global structural response
at the element level and, as such, the number of DOFs is signifi-
cantly reduced in comparison to flexibility-based approaches, as
also shown in detail in the demonstration and discussion of the
numerical results.

Nonlinear Programming Problem Statement

In this section, the suggested NLP problem statement is presented.
In an effort to alleviate the notational complexities, all derivations
are developed for a single element. The extension to multiple
elements is straightforward, following standard finite-element
assembly methods. As per the NLP form considered, the element
formulation follows the general problem statement (Bazaraa et al.
2006):

min
z
fðzÞ s:t: z ∈ Z ¼ fz∶ hðzÞ ¼ 0;gðzÞ ≤ 0g ð1Þ

where f = TPE objective function; z = vector of all sought variables;
h = set of equality constraints, pertaining, for example, to kinematic
relations or master-slave node sets; and g = set of inequality con-
straints, accounting, for example, for structural pounding or contact
considerations. Herein, we are restricted to the essential equality con-
straints that guarantee the kinematic compatibility but the generic
form of Eq. (1) implies the capability of augmenting the nature
of the constraints with respect to any potential problem-dependent
requirements.

Kinematic Equality Constraints

The axial deformation ε in the deformed configuration of the beam
can be derived by the rotated engineering strain (Crisfield 1997),
which is defined as follows:

ε ¼ ds − dx
dx

ð2Þ

where the infinitesimal lengths ds, dx refer to the current and
initial configuration, respectively. Consistent with the geometry
of the deformed shape, the following kinematic relations can be
derived:

sin θ ¼ dv
ðεþ 1Þdx ð3Þ
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cos θ ¼ duþ dx
ðεþ 1Þdx ð4Þ

where u, v, and θ designate the horizontal and vertical displace-
ments and rotation fields along the element length, respectively,
in a standard Cartesian system. In addition, along the lines of
Euler-Bernoulli beam theory assumptions, curvature κ can be de-
fined as:

κ ¼ dθ
dx

ð5Þ

Integrating Eqs. (3)–(5) along the length L of the element, we
derive the expressions of the Reissner beam theory (Reissner 1972),
without taking into account shear deformations:

q4 − q1 ¼
Z

L

0

½ðεþ 1Þ cos θ − 1�dx ð6Þ

q5 − q2 ¼
Z

L

0

ðεþ 1Þ sin θdx ð7Þ

q6 − q3 ¼
Z

L

0

κdx ð8Þ

where q ¼ ½ q1 q2 q3 q4 q5 q6 �, ½ q1 q2 q3 � ¼ uð0Þ,
and ½ q4 q5 q6 � ¼ uðLÞ for u ¼ ½ u v θ �, in accordance with
Fig. 1. The integrals of Eqs. (6)–(8) can be numerically evaluated
by any Gaussian-type quadrature. The type of quadrature suggests
the number and location of the colocation points, that is, colocation
points are chosen so that they coincide with the quadrature points.
Thereby, the zero equality constraints are obtained:

hA ¼

2
64
q4 − q1 −P

n
i¼1 ciðεi þ 1Þ cos θi þ L

q5 − q2 −P
n
i¼1 ciðεi þ 1Þ sin θi

q6 − q3 −P
n
i¼1 ciκi

3
75 ð9Þ

where ci = weights of the numerical integration; and n = number of
quadrature points. Rotation θi ¼ θðxiÞ at each colocation point is
connected to curvature as a result of integrating Eq. (5). Introducing
Lagrangian polynomials to interpolate curvature of the quadrature
points, the respective integral from x ¼ 0 to x ¼ xi gives:

θi ¼ q3 þ
Xn
j¼1

Θijκj ð10Þ

Θ ¼ L

2
6666664
ξ1

ξ21
2

· · ·
ξn1
n

..

. ..
. . .

. ..
.

ξn
ξ2n
2

· · ·
ξnn
n

3
7777775G

−1; G ¼

2
664
1 ξ1

..

. ..
.

1 ξn

ξ21 : : : ξn−11

..

. . .
. ..

.

ξ2n : : : ξn−1n

3
775

ð11Þ

where ξ ¼ x
L; and G = Vandermonde matrix. This is a convenient

way to write θi as a function of the curvature values at the integra-
tion points, as similarly implemented in De Souza (2000) for a
curvature-based displacement interpolation. From Eq. (10), the sec-
ond set of equality constraints is derived:

hB ¼

2
6664
θ1 − q3 −P

n
j¼1 Θ1jκj

..

.

θn − q3 −P
n
j¼1 Θnjκj

3
7775 ð12Þ

Combining Eqs. (9) and (12), we have:

hðzÞ ¼
�
hA

hB

�
¼ 0 ð13Þ

where z ¼
� fyigni¼1

q

�
, yTi ¼ ½ εi κi θi �. The equality con-

straints defined in Eq. (9) are nonlinear, except the last one,
whereas all the constraints in Eq. (12) are linear. This is an impor-
tant note because linear constraints can be leveraged in order to
restrict iterates of the numerical procedure in the corresponding fea-
sible hyperplane, as shown in more detail in the next section.

Objective Function and Lagrangian

Variational principles are the cornerstones of finite element analysis
because they mathematically relate physical properties of structural
systems to a scalar. The TPE functional of an individual element,
assuming only nodal loads, can be written as:

Π ¼
Z

L

0

Wðε;κÞdx − PTq ð14Þ

where P designates the vector of external nodal forces for each
element, as in Fig. 1; andWðε;κÞ = strain energy per unit reference
length such that:

∂Wðε; κÞ
∂ε ¼ N;

∂Wðε;κÞ
∂κ ¼ M ð15Þ

where N, M = axial force and bending moment, respectively. A
discrete representation of Eq. (14) can be given by numerically
computing the involved integral:

fðzÞ ¼
Xn
i¼1

ciWðεi; κiÞ − PTq ð16Þ

Eqs. (16) and (13) constitute the primal constrained NLP prob-
lem, as presented in Eq. (1). We can now hybridize the energy func-
tional of Eq. (16), attaching the equality constraints to the objective,

by introducing the Lagrange multipliers λ ¼
h λA
λB

i
. Thereby, the

Lagrangian of the problem is obtained:

fhðz; λÞ ¼
Xn
i¼1

ciWðεi; κiÞ − PTqþ λThðzÞ ð17Þ

Eq. (17) involves displacements and rotations, strains, and
Lagrange multipliers as unknown variables, thus sharing common
features with the three-field Hu-Washizu principle. However, in

Fig. 1. Element variables and internal fields.
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contrast to standard mixed approaches that are based on this and
similar principles, in this formulation displacements are not internal
fields and Lagrange multipliers cannot be directly associated with
certain stress resultants in order to be interpolated through shape
functions.

Standardized NLP Hybrid Element Formulation

The compactly described problem in Eq. (17) can be solved by
a variety of nonlinear programming solvers. However, deriving a
solution procedure compatible with Newton-type schemes that
are favorably implemented in standard structural software packages
is the particular focus of this work. Structural analysis software
packages mainly use the direct stiffness concept to assemble global
structural matrices. Therefore, determining the element state at each
step is required. Before the element state determination, processing
at the cross-section level has to be conducted so that the tangential
properties of the element are quantified. This task is performed here
by means of fiber discretization, which facilitates distributed plas-
ticity considerations along the element and over the cross-sections.

Cross-Section Fiber Discretization

Following the Euler-Bernoulli beam theory assumptions for plane
cross-sections, the strain at each individual fiber can be deter-
mined as:

εf ¼ ε − yf κ ð18Þ

where yf = distance of the centroid of the beam to each individual
fiber. In relation to Eq. (15), the stress resultants N, M can be cal-
culated. As a result, the gradients of strain energy, which are later
used in the iterative process, can be readily obtained. Due to the
fiber discretization of the cross-sections, the corresponding sec-
tional integrals that provide the stress resultants are computed by
the midpoint rule as:�

N

M

�
¼

hPnf
i¼1 Aiσfi

Pnf
i¼1 Aiyfiσfi

i
T ð19Þ

where nf = number of fibers; σfi = stress of fiber i; and Ai =
corresponding area. The tangent stiffness of the cross-section,
which is later used for determining the second-order gradients of
Wðε;κÞ, is computed by:

ksec ¼
"Pnf

i¼1 E
t
iAi −Pnf

i¼1 E
t
iAiyfi

−Pnf
i¼1 E

t
iAiyfi

Pnf
i¼1 E

t
iAiy2fi

#
ð20Þ

Section fibers may follow any one-dimensional constitutive law,
which complies with their individual material properties and cap-
tures nonlinearities prompted by elastic-plastic deformations and
potential damage effects, as for example in Andriotis et al. (2015).

Element State Determination

The Lagrangian in Eq. (17) can be considered the new uncon-
strained objective of the NLP problem, containing both primal
and dual components. The Karush-Kuhn-Tucker necessary opti-
mality conditions describe a stationary point of the hybridized
potential, given by:

∇fTh ¼

2
664
f∇yi fhgni¼1

∇qfh

∇λfh

3
775 ¼ 0 ð21Þ

Using Eqs. (13) and (15) the equations of the stationary point of
Eq. (21) can be written in more detail as:8>>>><

>>>>:

Ni ¼ λA1 cos θi þ λA2 sin θi

Mi ¼ λA
3 þ 1

ci

Xn
j¼1

ΘjiλBj

λB
i ¼ ciðεi þ 1ÞðλA2 cos θi − λA1 sin θiÞ

9>>>>=
>>>>;

n

i¼1

ð22Þ

∇qhλ ¼ P ð23Þ

h ¼ 0 ð24Þ
where, as Eq. (23) implies, matrix ∇qh is the constant transforma-
tion matrix from Lagrange multipliers to nodal forces, given by:

∇qh¼ ½∇qhA ∇qhB �; ∇qhA ¼

2
64
−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

3
75
T

;

∇qhB ¼

2
664
0 0 −1 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 −1 0 0 0

3
775
T

ð25Þ

Moreover, ∇λfh is essentially a restatement of the compatibility
constraints established in Eq. (13). Eqs. (22)–(24) show that the
mathematical form of equilibrium is a set of nonlinear algebraic
equations, which can be linearized between two successive steps
k and kþ 1, so that the Newton’s direction of descent dz is
computed:2

64
∇2

yyfkh 0 ∇yhk

0 ∇qhk

symm: 0

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hk

2
64
dy

k

dq
k

dλ
k

3
75

|fflfflfflffl{zfflfflfflffl}
dzk

þ

2
64
∇yfkh
∇qfkh
hk

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
∇fkh

¼ 0 ð26Þ

where Hk = tangential Hessian matrix of the element, whereas
the other matrices read ∇2

yyfh ¼ diagðf∇2
yiyifhgni¼1

Þ and ∇yh ¼
f½∇yih

A ∇yih
B �gni¼1

, where:

∇2
yiyi fh ¼ cikðiÞ ¼ ci

2
64kðiÞ

sec
λ1

A sin θi − λ2
A cos θi

0

λ1
A sin θi − λ2

A cos θi 0 ðεi þ 1Þðλ1A cos θi þ λ2A sin θiÞ

3
75 ð27Þ

∇yih
A ¼ ci

2
64

− cos θi − sin θi 0

0 0 −1
ðεi þ 1Þ sin θi −ðεi þ 1Þ cos θi 0

3
75; ∇yih

B ¼

2
64

0 0 · · · 0 · · · 0

Θ1i Θ2i · · · Θii · · · Θni

0 0 · · · 1 · · · 0

3
75 ð28Þ
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Matrix kðiÞ can be viewed as an augmented cross-section stiff-

ness matrix, also including rotational variables, whereas kðiÞ
sec is given

in Eq. (20). Due to its structure, the system of equations in Eq. (26)
can be rewritten equivalently as (Luenberger and Ye 2008):2

64
∇2

yyfkh 0 ∇yhk

0 ∇qhk

symm: 0

3
75
2
64

dy
k

dq
k

λkþ1

3
75þ

2
64
∇yfk

∇qfk

hres
k

3
75 ¼ 0 ð29Þ

Taking into account that constraints hB and the last of constraints
hA are linear, the respective residuals can be set equal to zero.
Moreover, the remainders of the residuals, ∇yfk and ∇qfk, corre-
spond to the stress resultants and the external forces respectively,
that is:

hres ¼

2
6664
q4 − q1 −P

n
i¼1 ciðεi þ 1Þ cos θi þ L

q5 − q2 −P
n
i¼1 ciðεi þ 1Þ sin θi
0|{z}

ðnþ1Þ×1

3
7775 ð30Þ

∇yif ¼ ciDðiÞ ¼ ci

2
64
Ni

Mi

0

3
75 ð31Þ

∇qf ¼ P ð32Þ
The Hessian in Eq. (29) is a large sparse matrix that contains the

second-order information of the element. We can leverage its spar-
sity in order to avoid a direct inversion, which would encumber the
computational procedure. Thereby, we can derive the tangential
stiffness matrix K of the element:

K ¼ ∇qhF−1∇qhT ð33Þ
where F = flexibility matrix pertaining to the Lagrange multipliers,
which can be determined as follows:

F ¼
Xn
i¼1

1

ci
∇yih

TðkðiÞÞ−1∇yih ð34Þ

As soon as the matrices in Eqs. (33) and (34) have been evalu-
ated, the global stiffness matrix can be easily assembled, as usual,
and the nodal displacements and rotation increments dq can be
computed. The remaining dual and primal unknowns can be
then updated for the kþ 1 step, element-wise and section-wise,
respectively:

λkþ1 ¼ λink þ ðFkÞ−1∇qhTdq
k ð35Þ

dyi
k ¼ −ðkðiÞkÞ−1

�
1

ci
∇yih

kλkþ1 þ DðiÞk
�

ð36Þ

For the internal Lagrange multipliers λin emerging in Eq. (35), the
following relations hold:

λin ¼ F−1
�
hres −

Xn
i¼1

∇yih
TðkðiÞÞ−1DðiÞ

�
ð37Þ

∇qhλin ¼ Pin ð38Þ
where Pin = internal nodal forces of each member. Technically, the
internal nodal forces of the members can assemble the residuals of
the entire structure in every iteration, thus being essential in con-
vergence checking and defining the new increment direction of

structural displacements and rotations. The whole iteration process
can be concisely seen in Algorithm 1 in the form of a procedural
pseudocode, where the subscript “str” denotes the corresponding
structural vectors and matrices.

Algorithm 1. Hybrid element second order iterative
procedure
Initialize qstr, ε, κ, λ
For all load steps j

Set k ¼ 0
Repeat until convergence

For all members
For all integration points i
Compute ∇yih

k using Eq. (28)
Compute tangential stiffness kðiÞk using Eq. (27)
Compute stress resultants DðiÞk using Eq. (31)

Compute constraint residuals hres
k using Eq. (30)

Compute Fk using Eq. (34)
Compute Kk using Eq. (33)
Compute internal member forces Pin

k using Eq. (38)
Assemble tangential structural stiffness Kstr

k

Assemble structural internal forces Pin;str
k

Set dP
k ¼ Pstr

j − Pin;str
k

Set dqstr
k ¼ ðKstr

kÞ−1dP
k

For all members
Update Lagrange multipliers λkþ1 using Eq. (35)
For all integration points i
Compute sectional variables increment dyi

k using
Eq. (36)
Update sectional variables yikþ1 ¼ yki þ dyi

k

Update structural displacements/rotations qstr
kþ1 ¼

qstr
k þ dqstr

k

Set k ¼ kþ 1
Check convergence

Model Performance Evaluation

Numerical Examples

The proposed model is implemented in four examples based
on well-documented benchmark problems in the literature, featur-
ing highly nonlinear responses. The details of each problem can
be seen in Fig. 2. Both geometrically nonlinear elastic analyses
(GNEAs) and geometrically and materially nonlinear inelastic
analyses (GMNIAs) are conducted. The OpenSees software,
version 2.5.0, has been selected for validation and comparison
purposes because it is open source and incorporates a series of
state-of-the-art nonlinear beam-column element concepts in addi-
tion to allowing for fiber discretization (Taucer et al. 1991; Spacone
et al. 1996; Neuenhofer and Filippou 1997, 1998), as also used
herein.

OpenSees analyses were conducted using force-based elements
with corotational transformation, 30 fibers, and 5 Gauss-Lobatto
integration points in general, whereas 3 integration points were
chosen for the densest meshes because, as thoroughly checked,
more points do not improve the accuracy in those cases. OpenSees
corotational force-based elements allow for geometrically and
materially nonlinear analysis assuming moderate rotations and
small strains, thus providing a proper baseline for validating the
proposed formulation. For the proposed NLP hybrid element,
30 fibers and 5 Gauss-Legendre integration points were chosen,
whereas analyses were conducted using the generic arc-length
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scheme (Crisfield 1981) when snapping behaviors appeared. All
analyses were executed in 100 pseudotime steps. Results for all
problem cases of Fig. 2 are demonstrated in Figs. 3–5. The vertical
displacements in the figures correspond to the loaded node, as
illustrated in Fig. 2.

In problem P-I, the response of a cantilever imposed to an in-
cremental vertical load at the free edge is investigated for both
the GNEA and GMNIA cases. A special feature of this problem
is that as the external force increases, the nonlinear solution devi-
ates considerably from the linear branch because extreme rotations
of the cross-sections gradually activate increased axial resistance.
This membrane function of the member can considerably enhance
the bending stiffness, which is the only one taken into account
by geometrically linear assumptions, and the capability of a model

capturing such mechanisms is particularly desirable in progressive
collapse problems, as discussed previously.

In P-II, the same cantilever as in the previous example is
loaded with a concentrated bending moment at the free edge.
This structure is also known as the curling beam because this
tip moment deforms the structure in a curling fashion. The prob-
lem is examined within the elastic regime because it exhibits
extremely large rotations and displacements. Equilibrium at every
position enforces that the moment is constant within the element
and thus curvature should be constant too. This means that the
deformed shape is a circular arc with radius equal to the inverse
curvature. Due to its unusual response, this problem reveals
some limitations and inconsistencies emanating from corotational
formulations.
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Example P-III studies the toggle frame structure which is a well
known nonlinear problem. This structure is usually modeled with
truss elements, however, in this investigation, the developed beam
elements are used. The nonlinear feature of interest in this case is
that the obtained equilibrium path often exhibits a snap-through
behavior, which indicates a forceful buckling of the two intersect-
ing members. The inelastic snapping behavior of the frame is also
studied, as seen in Fig. 5.

Problem P-IV investigates the nonlinear response of Lee’s
frame. This is an inverse L-shaped frame, pinned at the edges,
eccentrically loaded near the intersection of the two members, as
shown in Fig. 2. Due to its structural geometry and eccentricity of
the external loading, this structure exhibits a highly nonlinear
behavior, which has rich implications in relation to the efficacy of
the proposed element formulation and exhibits peculiar snapping
responses both in the elastic and inelastic cases.

As shown in Figs. 3 and 5, problem P-I is accurately solved with
one proposed element in both GNEA and GMNIA. In GNEA,
OpenSees eventually requires four force-based elements to attain
comparable accuracy, whereas in GMNIA the required discretiza-
tion in OpenSees rises to six elements, as illustrated in Fig. 5. The
solution of P-III, presented in Figs. 4 and 5, requires a noteworthy

increase in the total number of force-based elements, whereas
the proposed formulation is accurate with only one element per
member in both cases.

Problem P-IValso requires fine discretization in OpenSees, both
in GNEA and GMNIA, as can be seen in Figs. 4 and 5. OpenSees
results using three force-based elements, that is, one element per
member, as used in our developed approach, bear no resemblance
to the actual solution and have been discarded. Even in the case of
4 elements, results are largely inaccurate in strongly nonlinear
regimes and correct path is eventually reached only when the struc-
ture is discretized with 11 elements. For GMNIA, OpenSees nota-
bly stops before reaching the final 100th step, when six elements
are used. Premature analysis termination is an important and alarm-
ing issue, especially for large, computationally intensive problems.

This phenomenon also occurs, even more severely, in the analy-
sis results of example P-II, shown in Fig. 3. In this problem, Open-
Sees stops prematurely in all cases, even when it is on the right
solution path (with four elements), and fails to provide any solution
in highly nonlinear regions. The issue of nonconvergence is not
circumvented here in OpenSees, even in the presence of a denser
mesh discretization, with more than four elements, and analysis
results do not provide information about extreme loading levels.
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In nonlinear analysis, nonconvergence of the algorithm is usually
regarded as failure of the structural system, but, as seen in this ex-
aggerated example, this assumption can be inaccurate, implying
failure indicator definitions that are metrics of algorithmic insuffi-
ciencies rather than response demands.

Competitive performance has been also showcased in a number
of prior works in the literature that suggested different finite
element formulations, with the most indicative ones being listed
in Fig. 2 as well. The flexibility-based element developed in De
Souza (2000) reaches comparable performance to our proposed
element, requiring coarse discretization of one element per member
in the majority of problems, whereas geometrically exact formula-
tions in Santos and Moitinho de Almeida (2010) and Saje et al.
(1997) also succeed in capturing accurate responses with low num-
ber of elements. Other approaches (Schulz and Filippou 2001) and
earlier ones (Wood and Zienkiewicz 1977; Cichon 1984; Chan
1988; Crisfield 1990), although not avoiding denser meshes,
exhibit accurate responses in problems with highly nonlinear equi-
librium paths. All benchmark problems examined in this work fea-
ture at most three members, however, as indicated by the generic
form of Algorithm 1, the suggested formulation can be straightfor-
wardly applied to more complex 2D structural problems, such as
the ones presented in Santos (2011).

Overall, in all the examined examples, the proposed approach
manifests notable algorithmic strengths because it (i) maintains
coarse meshing demands even in arduous nonlinear problems;
(ii) captures accurately the nonlinear behavior of the modeled struc-
tural systems; (iii) reduces the total DOF even for small structures,
boosting computational speed; and (iv) exhibits robust algorithmic
performance in poorly convergent regions.

Discussion on Complexity

The proposed NLP hybrid element formulation introduces addi-
tional variables in comparison to standard formulations through
the use of Lagrange multipliers and rotational components at the
integration points. The latter are numerically treated as an extension
over the standard sectional variables, and the new sectional vector
of unknowns lies now in R3 instead of the typical R2. This exten-
sion adds a negligible computational cost because cross-section
derivations are processed independently of each other. Additionally,
in the overall structural level, the time for updating the sectional
variables remains linear with the number of elements and integration
points per element.

The Lagrange multipliers essentially define an augmented space
of dual forces, which can be mapped back to the external nodal
elemental forces, as shown in Eq. (23). These additional dual var-
iables are processed element-wise, which technically means that
they correspond to solely elemental entities. They are analogous
to the corotational nodal forces in the flexibility-based formula-
tions, which are meaningful only on an elemental level, evaluated
independently. Within the flexibility-based formulations for plane
structures, this vector of forces lies in R3, whereas in the present
formulation it is in R3þn. As such, the inversion of the correspond-
ing flexibility matrix presented in Eq. (34) is apparently more cum-
bersome than the inversion of a ð3 × 3Þmatrix. However, under the
reasonable assumption that integration points per element are more
or less constant, say, 3–8 in the vast majority of applications,
we end up again with a linear processing time related to the number
of elements.

Most importantly, as clearly supported by the numerical exam-
ple results, these additional variables relate to a minor element-wise
computational overhead, which eventually reduces the overall re-
quired structural DOFs drastically. For an assumed level of accu-
racy, an important reduction in the number of elements and, as a
consequence, in the dimensions of the global structural stiffness
matrix is achieved. This is a significant result because the inversion
of the global stiffness matrix is the dominant computational hurdle
of the iterative procedure, especially as the problem size gets big-
ger, because its computational time is cubic to the number of DOFs,
with standard approaches. In a more schematic description, the pre-
sented formulation decentralizes an important part of the computa-
tional effort, to be carried out locally and independently by each
element. Therefore, the required computational demands for updat-
ing the global information related to the entire structural system are
significantly reduced.

In Fig. 6, the total number of variables for the solved problems
P-I through P-IV are presented per level of processing, namely
sectional, elemental, and structural, and are compared with the
OpenSees flexibility-based elements. Comparison corresponds only
to those analyses that provided related equilibrium paths in the
previously examined problems (continuous and converged dashed
lines in Figs. 3–5), thus considering three integration points for the
flexibility-based elements and five for the proposed one, as already
explained. It is obvious that in all cases, due to the reduced discre-
tization, the total number of variables to be updated in every iter-
ation is significantly reduced, despite the presence of the newly
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introduced variables at the sectional and elemental levels by the pro-
posed formulation. Especially at the structural level, a significant
reduction of variables is accomplished, indicating reduced structural
stiffness matrix dimensions and thus required computational effort
at each iteration.

Conclusions

A new hybrid beam-column element based on a nonlinear program-
ming formulation is presented in this work, able to circumvent vari-
ous issues emerging in highly nonlinear structural simulations. The
suggested methodology allows for accuracy, coarse discretization,
computational speed, and algorithmic robustness. Exact kinematic
fields are used, kinematic compatibility constraints are attached to
the total potential energy functional through Lagrange multipliers,
and structural analysis is originally treated as a NLP problem, seek-
ing optima in terms of the resulting hybridized energy functional.
This formulation integrates the philosophy of nonlinear structural
analysis with NLP concepts, thus allowing structural analysis to take
advantage of the abundance of sophisticated methods in the NLP
field. The model is validated through benchmark problems featuring
extreme geometrical and material nonlinearities, and it showcases
superior results compared to standard force-based elements. The ro-
bust algorithmic performance of the proposed element, even in large
inelastic displacement problems, and its abilities for coarse discre-
tization without reducing accuracy or exploding DOF dimensions
are essential properties that enable high-performance nonlinear
structural simulations without any need for the usually applied co-
rotational approaches. Overall, the proposed NLP hybrid element
offers a versatile computational model that can facilitate improved
and realistic failure limit state definitions that are not abstract prox-
ies of failure indicators or, even worse, metrics of numerical analysis
limitations.
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