Sparse Polynomial Interpolation With Arbitrary Orthogonal
Polynomial Bases
In memory of Bobby F. Caviness (3/24/1940-1/11/2018)

Erdal Imamoglu
Dept. of Math., NCSU
Raleigh, NC, USA

ABSTRACT

An algorithm for interpolating a polynomial f from evaluation
points whose running time depends on the sparsity ¢ of the polyno-
mial when it is represented as a sum of ¢t Chebyshev Polynomials
of the First Kind with non-zero scalar coeflicients is given by Lak-
shman Y. N. and Saunders [SIAM J. Comput., vol. 24, nr. 2 (1995)];
Kaltofen and Lee [JSC, vol. 36, nr. 3-4 (2003)] analyze a randomized
early termination version which computes the sparsity t. Those
algorithms mirror Prony’s algorithm for the standard power basis
to the Chebyshev Basis of the First Kind. An alternate algorithm
by Arnold’s and Kaltofen’s [Proc. ISSAC 2015, Sec. 4] uses Prony’s
original algorithm for standard power terms.

Here we give sparse interpolation algorithms for generalized
Chebyshev polynomials, which include the Chebyshev Bases of
the Second, Third and Fourth Kind. Our algorithms also reduce
to Prony’s algorithm. If given on input a bound B > t for the
sparsity, our new algorithms deterministically recover the sparse
representation in the First, Second, Third and Fourth Kind Cheby-
shev representation from exactly ¢ + B evaluations.

Finally, we generalize our algorithms to bases whose Chebyshev
recurrences have parametric scalars. We also show how to compute
those parameter values which optimize the sparsity of the represen-
tation in the corresponding basis, similar to computing a sparsest
shift.

ACM Reference Format:

Erdal Imamoglu, Erich L. Kaltofen, and Zhengfeng Yang. 2018. Sparse Polyno-
mial Interpolation With Arbitrary Orthogonal Polynomial Bases: In memory
of Bobby F. Caviness (3/24/1940-1/11/2018). In ISSAC’18: 2018 ACM Int’l Sym-
posium on Symbolic & Algebraic Computation, July 16-19, 2018, NY, NY, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3208999

1. INTRODUCTION

We consider the problem of reconstructing the term degrees and
non-zero coefficients of a univariate polynomial f whose evaluation
we can obtain at arbitrary values for the variable for a black box
for the polynomial. Here f is represented in an orthogonal term
basis Py(x), P1(x), P2(x), ...

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC’18, July 16-19, 2018, New York, NY, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5550-6/18/07...$15.00
https://doi.org/10.1145/3208976.3208999

Erich L. Kaltofen
Dept. of Math., NCSU
Raleigh, NC, USA

Zhengfeng Yang
Key Lab Trustworthy Comput.
ECNU, Shanghai, China

t

fx) = chpgj(x),cj €Ki #0,0<8 <8< <8 (1)

j=1

where Pg z;re Chebyshev Polynomials of the first, second, or third
kind and where K is an arbitrary field of characteristic # 2. Our algo-
rithms compute the term degrees ; and term coefficients c;, hence
perform a sparse polynomial interpolation with one of the Cheby-
shev bases. The main idea is to reduce the sparse interpolation
problem in Chebyshev basis to a sparse interpolation problem in
the power basis and apply Prony’s algorithm [5, 22] (the 1959 Bose-
Chaudhuri-Hocquenghem error correction decoding algorithm) to
the latter problem.

As with Prony’s algorithm, the sparsity of t need not be given
on input. We consider two early termination strategies that deter-
mine t: if a bound B > t is given on input, we compute t and f
deterministically from ¢ + B evaluations. A difficulty is that the
constructed Prony problem has sparsity 2t and we have to exploit
its special structure to reduce the number of evaluations. Our de-
terministic algorithm can be implemented in (¢ + B)*to() field
operations, degree-t polynomial root finding, and computing ¢ in-
teger logarithms in K. The quadratic exponent is a consequence
of the lack of fast main-diagonal Toeplitz solvers with arbitrary
look-ahead (cf. [4, 6, 23]). For finite coefficient fields K with a fast
discrete logarithm algorithm [20] our algorithm is of bit complexity
((t + B) log(deg))°M). We can also compute ¢ and f by Kaltofen’s
and Lee’s randomized early termination strategy from 2t + 2 eval-
uations (see [1, Sec. 4.2]). In order to use soft-linear randomized
Toeplitz/Hankel solvers with ¢1*°(1) arithmetic operations [14] one
needs to oversample to 2B or 2 og,(2t+2)1 evaluations, respectively.

We now recall the properties of the Chebyshev Polynomials of
the First, Second, Third and Fourth Kind. Traditionally, those are
n-degree polynomials in x over the field of real numbers denoted
by Ty (x) (First Kind), Uy (x) (Second Kind), V;,(x) (Third Kind) and
Wy (x) (Fourth Kind). If P, (x) denotes any of those four polynomials,
we have

Po(x) =1, Pu(x)=2xPy_1(x)—Pp_2(x)forn>2, (2)
P, =Ty, Uy, Vy, Wy, and the distinct initializations at n = 1,

Ti(x)=x, Ui(x)=2x, Vi(x)=2x-1, Wi(x)=2x+1. (3)
An alternative to (2) is
Pax) | _Jo 1]"[1
[Pn+1(x) - [—1 3 I) I

Note that (4) extends the subscript range n to negative integers
and by computing the power of 2 X 2 coefficient matrix gives an
algorithm for evaluating all P, in O(log(n)) scalar operations. All
four kinds yield a vector space basis for the ring of polynomials over
any field K of characteristic # 2. From now on, we shall speak of

Chebyshev-1, Chebyshev-2, Chebyshev-3 and Chebyshev-4 poly-
nomials and bases in reference to first, second, third and fourth
kind.

The third and fourth kind polynomials are not as common, be-
cause we have W,,(x) = (-1)"V,(-x) and V,(x) = Ton+1(z)/z and
Wi (x) = Upn(z) for z = 4/(x + 1)/2, that is, the two identities are
stated in the algebraic function field K(x)[z]/(z% = (x + 1)/2).

There are some well known properties that are the basis of sparse
interpolation in Chebyshev-1 Basis.

Fact 1.1. Let m,n € Zx¢. Then the following hold:

i Tn(Tm(x)) = Tmn(x) = Tin(Tn(x)).
ii. Tn(x) = = foralln > 0.

Based on Fact 1.1.i, which is that Chebyshev-1 Polynomials com-
mute with respect to composition, Lakshman and Saunders [19]
have mirrored Prony’s algorithm in order to reconstruct the list of
non-zero coefficients ¢; and the list of corresponding degrees 6;
from evaluations of

fx)=c1Ts, ()+ -+ - +c; T, (x), ¢j#0, 0561 <Fp <+ <S¢ (5)
atx = To(f), T1(p), . . . for a scalar f (see also [1, 9, 18, Sec. 3]). Their
reconstruction algorithm is thus a sparse interpolation algorithm
in Chebyshev-1 Basis. For sparsity in Chebyshev-2 Polynomials U,
one obstruction is the lack of the commuting property of term sub-
stitution. However, performing the substitution given in Fact 1.1.1i,
Arnold and Kaltofen [1, Sec. 4] directly reduced the sparse polyno-
mial (5) to a sparse Laurent polynomial in power (standard) basis.
More precisely, for f in (5) we have

9 E F((y + D=5, GG +y) (6)
and Prony’s algorithm can reconstruct the sparse Laurent polyno-
mial g. Here we use the corresponding properties to Fact 1.1.ii for
Un, Vi, Wy, namely,

(=4 Unllw+§)/2) =™ = o, @
W+) Vol +2)/2) =y + g, ©
(Y= 3) Wal(W?+ 52)/2) = 4" = ©)

Note that the multiplicative preconditioner y + 1/y is introduced
before interpolating the substituted f((y + %)/2) or f((y? + #)/2),
thus overcoming the long-known obstruction for sparse interpola-
tion with a Chebyshev-2 Basis. Potts and Tasche [21, Equation 4.2]
have introduced a corresponding trigonometric multiplier: sin(e) x
Un(cos(a)) = sin((n + 1)a), which with y = e!? is (7). Our substitu-
tion does not require the evaluation of a transcendental function and
can be realized as an exact algorithm even over a finite field, while
the algorithm in [21] uses floating point arithmetic. We think of the
polynomial f(x) as a black box polynomial that can be arbitrarily
probed. For Kaltofen and Lee [18] randomized sparse interpolation
from 2t +2 values with early termination, an upper bound of deg(f)
is required on input for achieving success probability > 1/2, for
otherwise the polynomials [];(x — ;) and 0 are indistinguishable,
where fj ranges over all possible random choices of evaluation
points. For our bases, see Theorem 5.2.

The Lakshman-Saunders [19] method and the Arnold-Kaltofen [1,
Sec. 4] substitution (6), which is the approach also here, are related
by the substitution f = (@ + 1/w)/2 for the base points f and
o of the evaluations. That substitution has 2 effects: 1. the aris-
ing Toeplitz-plus-Hankel system in Lakshman-Saunders becomes a

Toeplitz system; 2. the degrees of the terms are computed as loga-
rithms with integral output values. The Toeplitz matrix allows for
the use of the Berlekamp-Massey algorithm. The substitution (6)
and (7-9) double the sparsity in the arising Laurent polynomial (an
exception is for Chebyshev-1 Basis with §; = 0 when the sparsity
is 2t — 1). Luckily, every evaluation g({) at { € K, { # £1, yields a
second evaluation ¢g(1/) = g({) at 1/ for (6,8) and a second evalu-
ation g(1/{) = —¢g({) at 1/ for (7,9). An exception is { = +1, which
is a Prony point, and the algorithm in [1, Sec. 4.1] for Chebyshev-1
Basis used one additional evaluation. Here we show that the extra
evaluation can be avoided by exploiting additional structure in the
arising Prony problem for g(y), thus achieving the optimal number
of evaluations for the new substitution method in all cases; see
Section 4. The conversion to w also allows for a discrete logarithm-
based computation of all §;, even from values of Ts, () as in the
original Lakshman-Saunders algorithm; see [11].
Finally, we consider bases given by the recurrence

V()[u’v’w] (x)=1, Vl[u’v’W] (x)=ux+w,

V,Eu’v’wl(x)zvarEE’f ’W](x)—Vrglf; ’W](x) forn>2, (10)
where u, v, weK, u#0, v#0 and K is a field. Our algorithm here
for the Chebyshev-2 basis generalizes and computes the sparse
representation with terms from (10); see Section 5. One may also
seek for a given polynomial f € K[x] those parameters u, v, w
which yield the maximum sparsity for the corresponding basis. We
show how to compute in polynomial time in deg(f) the optimal
pairs u, v, w; see Section 6. The problem is analogous to computing
the sparsest shift [8] in the standard powers of variables basis.

2. CHEBYSHEV-1 BASIS WITH SPARSITY
KNOWN ON INPUT

Let K be a field of char(K) # 2. A black box polynomial f(x) € K[x]
can be written as a t-sparse linear combination of Chebyshev-1
Polynomials c1 T, (x)+:++c; Ts, (x), see (5). We seek to determine
the coefficients ¢; € K'\ {0} and the term degrees §; € Z>¢ from
evaluations a; = f((0' + w™")/2),(i=0,1,...,2t—1) of the black
box for f(x), where w € K, @ # 0. The term values % of the base
point w are required to be sufficiently distinct, and the §; to be
recoverable from them. We first assume that we know the sparsity
t on input. We also assume that we have a factorization algorithm
over K and can compute integral § from ®.
We define
-1 .

g T FEE) = S G +y) eyl ()
The function g(y) is a Laurent polynomial. Let v € K\ {0} such
that fori € {0,1,...,2t — 1},

def : def
a; S gloh) = f(2H7) = f(Ty().p = 5=, (12)
and for 1<ij<ip<t, T5i1 (ﬁ)iT(giZ (B) if 6;, #6i,. Note that a_j=aj.
< t, then W 2

LEMMA 2.1. IfT(;i1 pB) # Ts,, (B) for1 < iy < iy

5, 5; -5;

w2 orw" #F w "2,

Proor. If T§i1 p) + T§i2 (), then 0% + w0 # i 4 Oz,

Hence (w‘sil w2 — 1)(w5i1 - w‘siZ) # 0 and so w1 # w %% or
0% # %%, m|
LEmMMA 2.2. Let1 < iy < ig < t. If the set {wail,w‘sihw 0" 12}

has at least three elements, then T5i1 B) + T5i2 B).

S S

Proor. If the set {a)5i1 L2 0 %, w % } has at least three el-
ements, then “w%1 # 0% and w% # w0~ % and “w% # w % or
w%2 # %2 Then 2Ts,, B = (0% + 0 %) # (002 + 0 %) =
2Ts,, (P)- o

CoROLLARY 2.3. If the set {w_5f,w_ Lo % %1,

%} has at least 2t—1 elements, then T5i1 (,B);tT(gi2 (B) for1<ij<ig<t.

We can interpolate the Laurent polynomial (11) with Prony’s
algorithm [22] from its 2t evaluations ay, . . ., az2;—1. We query the
black box polynomial f(x) to get these evaluations. Since a—; = a;,
we actually have 4t—1 evaluations of g(y): a—2¢+1, - . ., 40, - - ., A2¢—1-

Let a be a symbol for ay;. If §; = 0, then a value for « is not
needed for computing the term locator polynomial A(z) for g(y).
The corresponding 2t X 2t matrix H = [ai+j—(2t—1)]itj;10 will then
have been identified by the Berlekamp/Massey algorithm as singu-
lar. If 2t = deg(A(z)), then the matrix is identified as non-singular,
and A(z) is computed as a linear form Ay (z) = A2 + aAll(z)
from the system

811 &
5 oe 9 eney

A-2t+1 A-2t42---A—t+1--. A—1 40 1 aj
a-2t+2 A-2¢+3...0-¢+2... 4o 41 M az
: : : S SolEm o3
a-1 ag ... Gp-2 .43 az—2| |A2t—2 az¢—1
ap a1 ... ar-1..G2t-2 A2r-1| [A2r-1 a

In this case, the term locator polynomial of (11) is

t
A(z) = l_l((z - w‘sf)(z —w0) =2 Qg 1Pk iz 1
j=1
and it ié a reciprocal polynomial, i.e., A2;—j = Aj, (A2r = Ao = 1).
We show that (in Theorem 2.5 below), if the set {a)_‘st, o %1
a)_51, a)‘sl, e, w‘SH, w5’} has 2t elements, then « is uniquely
determined by the symmetry conditions of the coefficients of A(z).
Hence, to determine the §;, we do not need to evaluate the black
box polynomial f(x) at To;(f) to get az;.
From the symmetry conditions of the coefficients of A(z) the
system (13) collapses to the following system:
H- [/15/2 /It_l.../h]Tr = - [a1 +as—1 az + a2t_2...2at]Tr (14)
where H is a “fold” of the coefficient matrix of (13):

2ap-1 -+ art+az-3 ao+ax-2
-~ 2a;— ceoag +ax— ay + ax—
H= t 2 0 ¢ 2t—4 1 ¢ 2t-3 . (15)
Zt.lo oo 2(1;_2 2(1;_1

We have that H is non-singular:
LEMMA 2.4. The matrix H in (15) is non-singular.

PrOOF. H = J; - A where A is the non-singular matrix in Lemma
3.2in [1] (forr = 0 and s = 1) and J; € K™ is the exchange matrix
(row-reversed identity matrix). Note that by our assumptions on w
the T, () are distinct.]

Therefore, we can determine the coefficients A1=A2;_1, ..., A;—1=
At+1, and Ay of the term locator polynomial A(z) by solving the
folded system (14).

THEOREM 2.5. If the set {w_éf, @ % 0% w‘st} has 2t ele-
ments, then « is uniquely determined by the symmetry conditions of
the coefficients of the term locator polynomial A(z) of (11).

Proor. If there were two values for «, then the folded system
(14) of the system (13) would have two different solutions. Since H
is non-singular, this is impossible. Hence « is unique. O

Therefore, to compute the term locator polynomial A(z) of (11)
we need 2t evaluations: ay, . . ., a2t—1. A root p of the term locator
polynomial is of the form p = w*% . We can compute the §; in
(5) from the (possibly discrete) logarithms of the roots of the term
locator polynomial as it is commonly done in [2, 7, 10, 16, 18]. After
determining the §;, (j = 1,...,t), we compute the coefficients c; in
(5) by solving the non-singular transposed Vandermonde system

[p---pt P 'pl_l]OSiSZt—l
. [01 . CECE .. cl]Tr = [Zao 2a1 ... 2a2;_1]Tr. (16)
Here the pj and pjTl, (j=1,...,t), are the roots of the term locator
polynomial A(z). An 1o time algorithm is in [17, Sec. 5].
REMARK 2.1. If the set {co‘5f, 0 %1 w0 w0 O, w5’}
has 2t — 1 elements, then we can determine the coefficients of the
term locator polynomial by solving the system
Tr Tr

[ai+j72t]1si’j§2t_1 (1 A1 Aze]| T == [a1 az..az-1]
(cf. (13)). In this case, for only one d;, we have 0% = w9 After de-
termining the roots of the term locator polynomial, we can identify

that specific §; . O
To summarize, we collect the steps of our algorithm as follows:

2.1. Algorithm Sparse Chebyshev-1 Interpolation

Input: > A black box polynomial f(x) € K[x] where K is a field
with char(K) # 2.

> The sparsity ¢ of f(x).
> w € K \ {0} such that the set of term values
{w_5’, w_‘SH, o, w_5‘, wal, . ,w‘s”l, w‘sf}

has at least 2t elements or 2t — 1 elements with §; = 0.
> A factorization algorithm over K.
> A integer-valued-logarithm-base-w algorithm in K.
Output: » The coefficients c; and the term degrees §; such that
f) = Eiy ¢jTs,(x) € K[x].

1. For0 < i < 2t — 1, get the evaluations a; = g(w'), as in (12), of
the Laurent polynomial (11).

2. Solve (13) by the Berlekamp/Massey Algorithm to get the coeffi-
cients of the term locator polynomial A(z). Use the symmetry of
the term locator polynomial to find the unique a.

3. Find all roots of the term locator polynomial. The roots are of
the form w*% . Compute the j from integer logarithms (discrete
logarithms if K is a finite field) of the roots of the term locator
polynomial.

4. Solve the system (16) to get the coefficients c;.

5. Return the §; and the c;.

3. CHEBYSHEV-2 BASIS WITH SPARSITY
KNOWN ON INPUT

Let K be a field of char(K) # 2. We now consider the representa-
tion of a black box polynomial f(x) € K[x] as a t-sparse linear
combination of Chebyshev-2 Polynomials, i.e.,

f(x) =c1Us, (x) + -+ + ¢ Us, (x) € K[x] (17)
where ¢j € K\ {0} and §; € Z5¢ such that 61 < --- < §;. Again, we
seek to compute the coefficients ¢; € K'\ {0} and the term degrees
dj € Zxo from evaluations f((w' +w™")/2), (i =0,1,...,2t = 1)
of the black box for f(x), where w € K, w # 0. The term values 0%
of the base point w are required to be sufficiently distinct, and the
dj to be recoverable from them. Again, we assume that we know

the sparsity ¢.
Our algorithm proceeds as the Chebyshev-1 Algorithm in Sec-
tion 2 with the following changes: we define

def _ -1
9= -y) f(F)
= 2, @ -y Oy ey, (18)
(see (7)). The function g(y) is a Laurent polynomial. We Prony
interpolate for a base point w € K\ {0} the values

a=0.a=-a; T go) = (- F(EHT), (19)

i € {1,...,2t}, and assume that the set of shifted term values
{w—(§t+1)’w—(5,,1+1)’ o ’w—(51+1)’ w51+1, o ’w5t,1+1’w§t+1}

has 2t or 2t — 1 elements. The difficulties which arose in the Cheby-
shev-1 case due to i = 0 yielding a single evaluation do not occur:
ap = 0 needs no evaluation, and we compute the term locator
polynomial from 2¢ black box probes. Algorithm 5.1 below is a
generalized variant, which uses randomization to compute ¢.

4. DETERMINISTIC EARLY TERMINATION
WITH A SPARSITY BOUND

We now relax the assumption that on input one has the exact
sparsity ¢, but assume that on input one has an upper bound B > t
for the sparsity. Our objective is to interpolate with exactly t + B
evaluations. Here we assume that the black box for f can be queried
as our algorithm proceeds.
Let a; = g(w'), as in (12), where g(y) is given in (11), and

H = Aj+j—(2t+2B+1) 1<i,j<2t+2B" (20)
where B > t. We will consider non-singular square submatrices of
H in the right upper corner.
REMARK 4.1. The 0 X 0 matrix is called the empty matrix. The empty
matrix is considered to be non-singular. In Algorithm 4.1 Step 2b
below, ifr = 0, then Hpg in Step 3 is the empty matrix. In this case
Az)=2"=1.

4.1. Algorithm Chebyshev-1 Term Locator
Polynomial

Input: ™ A black box polynomial f(x) € K[x] where K is a field
with char(K) # 2.
> An upper bound B > t for the sparsity ¢ of f(x).
> w € K \ {0} such that the set of term values
{w_‘sf,a)—&’*l, o ,w_51,w51, o a)‘s'*l,w‘st} (21)
has 2t elements or 2t — 1 elements with §; = 0.
Output: ™ Sparsity t and the term locator polynomial A(z).

1. Get the evaluations ay, . ..,ap—1. Ifag = --- = ap_1 = 0, then
returnt = 0 and A(z) = 1. Otherwise, proceed to the next step.
Here a; = g(w'), as in (12), where g(y) is given in (11). Note that
a—; = a;.InLemma 4.1 below, we prove thatay = --- =ap_1 =0
implies f(x) is identically zero, so t = 0 and A(z) = 2° = 1.

2. Locate a non-singular leading principal submatrix Hor_1 or Hoy
of (20) as follows:

2a. ryg < 0.

2b. Forr from r,j3 + 1 to B do the following:

a-2r+2 ... Qo

2(b)i. Construct the Hankel matrix Hzr—1 = : :
[20) e Q272

If Hyr—1 is non-singular, then roy < r and break the loop. Other-

wise, proceed to the next step.

a-2r+1 --- Qo
2(b)ii. Construct the Hankel matrix Ha, = :

@) ... az—

IfHo, is non-singular, thenr,; < r and brealoc the loozzo. (l)therwise,

proceed to the next step.
If there is no such non-singular leading principal submatrix,
Hoyr—1 or Hyy, then the given bound B is not correct. Note that, if
the term values (21) collapse, this algorithm can return a wrong
sparsity and a wrong term locator polynomial.

3. Let Hy denote the non-singular matrix constructed at the previous
step.

3a. If the rank of Hp is odd (the case R = 2r—1), then do the following:

3(a)i. Solve Hg - [/10 .. .AZr,Z]Tr = - [a1 - aZr,l]Trto compute the
linear generator 22" ~1 + Agr_22®" "2 + .-+ + .

3(a)ii. For i from 1 to B — r do the following:

—IfZir:_Oz AkQk_14; # —a2r—2+i then go to Step 2b to locate the next
non-singular leading principal submatrix. Otherwise, proceed to
the next step.

3(a)iii. Fori from 1 to B—r + 1 do the following:

—IfZir:_Oz Ak Qk—opi3—i # —az—i then go to Step 2b to locate the next
non-singular leading principal submatrix Hg. Otherwise, proceed
to the next step.

At this point, we have found no discrepancies. We prove in The-
orem 4.2 below that, in this situation, t = r.

3(a)iv. Returnt = r and A(z) = 2271+ dop 202%™ 2 + - + .

3b. If the rank of Hp is even (the case R=2r), then do the following:

3(b)i. Compute the linear generator z>" + Agr—12*" "1 + -+ + Ao of
A—2r+41,- -+, a0, - - ., Azr—1 as explained in Section 2.

3(b)ii. If Aap—1 = A1, ..., Ar41 = Ap—1, then proceed to the next step.
Otherwise, go to Step 2b to locate the next non-singular leading
principal submatrix Hp.

3(b)iii. Fori from 1 to B — r do the following:

—(Figure 1) IfZirz_Ol AkQy_14+; # —a2r—1+i then go to Step 2b to
locate the next non-singular leading principal submatrix Hg. Oth-
erwise, proceed to the next step.

At this point, we have found no discrepancies. We prove in The-
orem 4.2 below that, in this situation, t = r.
3(b)iv. Return t = r and A(z) = 2% + Agr_122 L + - + Ap.

Figure 1: Intermediate step in Algorithm 4.1

a—ar e e ao
A-2r+1 G-2r+2 ... 4o ai
r—1
A—r—1 Q—p ... 0Qr-2
2r+1
a—r a-r+1 ... 04r-1 | ar
r
a—1 aop el A2r—2
ap ai ... Qor—1]| a2
B—r| 1: : : o
|
L G-r+B-1 Ar4B-1

LEMMA 4.1. In Algorithm 4.1 Step 1, ifag = - - -
flx) = th'=1 ¢iTs; (x) € K[x] is identically zero.

=ag_1 = 0, then

PRrROOF. Letag = -+ = ag—1 = 0. Assume that f(x) is a ¢t-sparse
non-zero polynomial in the Chebyshev Basis of the first kind. Since

a; = a_; (from (11)), we have a_g_1) = - - - =ag_1 =0.
Let A(z) be the term locator polynomial of the Laurent polynomial
g(y) (11). The roots p1, . .., p2; of A(z) are of the form w0, (1<
j<t)Letp = w_‘sf,...,pt =w L pry1 = a)‘sl,...,pgt = %,
From (11) we know g(y) = f(%yl) =3, %(y‘sf' +y~%). We
can find the coefficients ¢y, . . ., ¢; of the Laurent polynomial g(y)
by solving the following system (cf. (16))

=qay=---

[pjl-(B-1)<i<B-1.15j<2¢ [cr...c1c1.. ct]™=[2a;]_ (B-1)<i<B-1=0.
From the symmetry conditions of the coefﬁaents of g(y) the above
system folds to R - [c1 c;]Tr =[0...0]™ where
R =1p;" +pjli=o,1,...B-1, j=t,t-1,..,1-
When B = t, the determinant of R factors as
det(R) = 2/(pt ™+ pi™) Tligjer=e (01 = p0) - (pipe = 1),

which is # 0 because p; # py and p; # p;l for1 <j< <t
Therefore, ¢y = .-+ = ¢; = 0, contradicting to our assumption.
Hence, f(x) is identically zero.]

THEOREM 4.2. For the largest non-singular matrix Hg (where R = 2r
orR =2r—1)in Algorithm 4.1, t = r.

Proor. e Case R = 2r: Let Hp, be the largest non-singular matrix
in Algorithm 4.1. So, Hp satisfies the condition in Step 3(b)iii.

- Case 81 > 0:If r < t, then Hg would not be the last non-singular
matrix in Algorithm 4.1 because Ha; is non-singular. If r > ¢,
then the folded matrix Hg (which is very similar to (15)) of Hg,
which is needed to compute the linear generator in Step 3(b)i in
Section 2, would not be non-singular. So r = ¢.

- Case 61 = 0: In this case Hg would be identified as singular. In
this situation 3,1 might be non-singular. This is the next item
in the proof.

o Case R = 2r — 1: Let Hg be the largest non-singular matrix in
Algorithm 4.1. So, Hp satisfies the conditions in Steps 3(a)ii and
Step 3(a)iii. If r < ¢, then Hg would not be the last non-singular
matrix in Algorithm 4.1 because Ha;—1 is non-singular. If r > ¢, then
the conditions Step 3(a)ii and Step 3(a)iii would push the sparsity ¢
beyond the known bound B. So r = t. O

THEOREM 4.3. Algorithm 4.1 requires t + B evaluations.

ProoOF. In Step 1, Algorithm 4.1 looks at B evaluations, namely
ag, . ..,ap—1 (note that a_; = a;). Let Hg (where R = 2r or R =
2r — 1) be the non-singular matrix constructed in Algorithm 4.1 in
Step 2. If R = 2r, the algorithm uses 2r evaluations in Step 3(b)i
(in Step 3(a)i when R = 2r — 1), namely ay, . . ., az2,—1. In order to
check the linear dependency, it uses B — r evaluations more in Step
3(b)ii (in Step 3(a)iii when R = 2r — 1), namely azy, . . ., a2r_14(B—r)
(a-2r,.-.>a3_(B—r+1) When R = 2r — 1). So, the total number of
evaluations is 2r + (B —r) = r + B. Since Algorithm 4.1 terminates
when r = t, it requires t + B evaluations. O

A difficulty in implementing the algorithm with structured Toeplitz
solvers poses Step 2b. By discovering a discrepancy in the column
dependency in Steps 3(a)ii, 3(a)iii or 3(b)iii the rank of the 2Bx2B
Toeplitz matrix is certified to be larger than the degree R of the
current candidate for the term locator polynomial. However, un-
like in the Berlekamp-Massey algorithm for Hankel matrices, the
dimensions of the new non-singular submatrix can lie beyond the

point of the discrepancy. One locates the new non-singular ma-
trix by incremental row elimination of the Schur complements
[6, 23], which introduces a running time that is cubic in the dis-
tance to the next non-singular Toeplitz submatrix. Alternatively,
one could in soft-linear Monte-Carlo time compute the rank of each
intermediate Schur complement [14], which yields the (t+B)2+°(1)
running time bound cited in the introduction. Note that our ma-
trices can be used to construct symmetric Toeplitz matrices with
rational entries that have arbitrary lookahead: for example, the
Toeplitz matrix whose first row and first column contain the entries
92(2), g2(2%), ..., g2(211) and whose leading principal submatrices
haveranks 1,2,2,2,2,2,4,6,8,10, 11,11, ... Here g2(x) is the sym-

. . 52768 (1, 6y 1024 1
metric Laurent polynom1a1 go(x)= m)~ 20337 (o5 +
5 K4y T44 3 2 254
)+-52 7227)—3es7 Lxd)+ 82 =5 Loax)+ 59~ To create that

symmetric Toephtz matrlx we started Wlth g1(x)=x"!4x and then
constructed go(x) (first with unknown coefficients). Note that g (2°)=
g2(2%) for 0<i<5. A worst-case quadratic-time Toeplitz solver that
in analogy to the Berlekamp-Massey Hankel solver incrementally
steps from non-singular to non-singular leading principal submatrix
is not known to us.

Here we would like to mention about our work in progress [11].
In [11], we give an algorithm for computing the Chebyshev term
degrees in the original algorithm of Lakshman and Saunders [19] for
a very large finite coefficient field Fj; with a method similar to the
Silver-Pohlig-Hellman Algorithm [20], one can directly compute the
Chebyshev term degree § from given { = T5(f), f = (w+1/w)/2 €
Fp, without precomputing the order of w € Fp,0 # 0. In [11],
we also show that the same strategy applies to the Silver-Pohlig-
Hellman [20] discrete logarithm algorithm to compute § from given
(= @%; one does not need to precompute the order of w.

The Chebyshev-2 Basis, Chebyshev-3 Basis, and Chebyshev-4
Basis cases can be done in the same way by making use of the
properties (7), (8), and (9). Note that in Chebyshev-2 Basis and
Chebyshev-4 Basis cases we have a free evaluation: ap = 0.

5. SPARSE INTERPOLATION WITH
PARAMETERIZED RECURSIVE BASES

We now focus on sparse interpolation in more general polynomial
bases, which are defined by the recurrence relation (10), namely

uvw()=1, Vl[u’”~w](x):ux+w
V) = o VI - VIS) for n 2 2, (22)

where u,v € K\ {0}, w € Kand K is a field. Obviously, Chebyshev-1
through Chebyshev-4 bases are special cases of the above poly-

nomial recurrence bases (22), e.g., Ty(x) = [1 2l ()def [1,2,0] (),

def
Un(x) = V[2 2 V[2 % 0](x) Note our notation: from now, we omit

to write a w = 0 in the bracketed superscript. Furthermore, Fact 1.1
can be generalized to the case of the above recurrence bases (22).
Fact 5.1. Letu,v € K\ {0}, w € K, K is a field, and let n € Z. Then
; 1 ow] Xty 1
the following hold: (x — +) V,Euvw](T) = L (et -) +
w(x™ — xl,,) +(%—1) (x" - x'}’l) foralln € Z.
REMARK 5.1. Ifu = v # 0 € K,w = 0, Fact 5.1 implies
1

(x—%)V,EU’U](HT") =x" - g foralln> 1. (23)
From Uy, (x) = V,EZ’ 2l we obtain (7). The binomial solutions (8,9)
generalize similarly for u = v and w = +1. Furthermore, given a

recurrence basis V,Eu’v’wj(x), then for each 0 € K\ {0} andn € Z
we have V,&u’v’wj(x) = V,Eg’;’w](ax), O

A polynomial f(x) is represented as

fe)=%7, CjV(E]'_"”’W](x) € K[x],0<81<-<8¢, Vj: ¢j#0. (24)
Here we say that f(x) is t-sparse in the recurrence basis (with
parameters u, v, w). Suppose a black box of f(x) is given to return
the evaluation f(w) for any w € K. By performing the substitution
in Fact 5.1, we have

9@)=(y-2)F(552) = SiL, ¢

(871)+l =)+ (5-1) 077)

J J yJ

def Z}zl gj (yYf - y+1) € K[y, i], gj # 0 forall j, (25)
where 1<y;<y2<--<y; and 27 is the sparsity of the Laurent poly-
nomial g in the power basis with 7<3t. By (25) the degrees satisfy
yr=06:+1. Note that f(x):g(z)/(z—%) for z:(vxi(vzxz—4)1/2)/2.
Now we present an algorithm to interpolate f(x) from the eval-
uations of the form o
ai=—a_i=(0'-2;) f (242)eK, weK, 0#0,i=0,1,2, ... (26)
Let pj=wY/, j=1, ..., 7, and define the term locator polynomial A as
A(z)= H}'zl(z—pj) (z—%)=z2T+121_1 227 L doeK]z]. (27)
Note that (27) is a reciprocal polynomial, that is Ao = 1 and A; =
A2z—j. Similar to the fact stated before Lemma 4.1 in [1], we have
that the sequence of values (26) is linearly generated by the poly-
nomial A(z), but A is the minimal generator only if A is squarefree,
that is, if the term values are distinct. We can determine 7 by early

termination as in [1, Section 4.2]. Let
i 1

; ; yror .
ai=—a;=g(") = (v' - 55) (") €Ky 3], i€z
be the evaluations at powers of the variable y for the . For the
evaluations a;, =27 —1 < i < 27 + 1, we consider the square Hankel

matrix

X-27-1 a-2¢ ce a-1 @0
a-2r¢ AQ-27+1 +.. [24)] a1
H=| R (28)
o—1 [e4)) e Aor—1 A1
ap ai e ar a27+1

€ K[y, y_l](ZHZ)X(ZHZ). As in [1, Theorem 4.3.i], the square sub-
matrices in the right upper corner have the following guaranteed
non-singularities.

THEOREM 5.2. Let H; be the submatrix of H formed by the first i
rows and the last i columns. Then det(H;) + 0 fori = 2,4,...,271,
and det(Hor+1) = det(Har42) = 0, where Har 1o = H in (28).

ProorF. The proof of Theorem 4.3.i in [1] is for a Laurent poly-
nomial
Y91y +y) eKlyyl], g %o, (29)
which is [1, Eq. (16)] with 7 = t and g; = ¢j/2. Part i of that
Theorem includes det(Hz;) # 0 for 6; > 1, which is a property of
the degrees y; of our terms in (25). The coefficients of our terms in
g(y) in (25) are negated for negative term degrees, which is the only
difference to (29). Since the proof of Theorem 4.3.i does not use any
relation between the coefficients other than they being non-zero
(the denominator 2 plays the role of v and could be divided into
the coefficient), Part i also holds for the polynomial (25) here.

The singularities of Ha7+1 and H follow from the fact that the
polynomial]_[;:1(2 —yYi)(z — y7V) is a linear generator for the

infinite sequence «; and its coefficients yield a column relation for
27 + 1 consecutive columns in H. O

Before recovering f(x) in sparse representation in the recurrence
basis, we present an early termination algorithm to interpolate the
Laurent polynomial g(y) = (y — 1/y) f((y + 1/y)/v) in (25) from
the univariate black box polynomial f(x). Suppose w is selected
randomly and uniformly from a sufficiently large finite set of field
elements S C K\ {0}. For k = 1,2,3,... we compute the two new
values a; = (0’ — 0™ f((0' + w™H)/v), i = 2k — 2,2k — 1, and the
determinants of the (2k) x (2k) Hankel matrices

—agk_1 —Qgk_y ... —ai ap
—A2k-2 —A2k-3 .- ao ai
Hy = : : o : S, (0)
—ai ao cee O2k-3 A2k—2
ao ai Tt Ogk—2 A2k-1
which with a_; = —a; are the determinants of Hy in Theorem 5.2

for the evaluation y = w.

We terminate the loop when det(Hy) = 0, which implies that
the number of terms in g(y) is 2k — 2 with high probability, i.e.,
7 = k — 1. Suppose now that k — 1 = 7. Then we get the minimal
linear generator A(z) in (27) by solving the following non-singular
linear system:

Hyr - [/1()).1..‘).27_1]’& :—[a1 az.‘.azr]’rr. (31)
Note that because det(Hz;) # 0 implies A(z) in (27) must be square-
free (cf. Lemma 4.2 in [1]), and with 11 = A2;—1, A3 = A27—2,...
the system (31) is overdetermined.

Next, we compute all 27 distinct roots of A(z), which are w¥/ and
w7V forj=1,...,r. Finally, we compute all the coefficients gj in
(25) by solving a (27) X (27) non-singular transposed Vandermonde
system (32) below. Again, the system (32) is overdetermined. For

[P5-- P Pt P i o
. [g1 .o 9r —9r - ..—gl]Tr: [ao .. .agr,l]Tr. (32)
the given u, v, the coefficients c; of f(x) can be obtained by solving
a linear system obtained from (25). Given the recurrence basis
V,Eu’v’wj (x), for given u, v, w, Algorithm 5.1 below recovers f(x) =

Jt‘:l c jVé['_l’v’W](x) from the black box.
j

5.1. Algorithm Sparse Interpolation in a Given
Recurrence Basis With Early Termination

Input: ™ f(x) € K[x] input as a black box.
> u, v, w: the recursive basis parameters for V,Eu’v’w](x).
Output: » f(x) = ;zl CjVéllf’v’WJ(x), where ¢; # 0.
J

1. Pick a random element « from a finite set S C K.
2. Determine the number of terms of g(y).
Fori=1,2,3,...do))
2a. Get the evaluations a; = (v — %)f(%) from the black
box of f(x), and then construct the Hankel matrix Hy from
ai,...,Aas%_1.
2b. Check whether Hyy is singular. If det(Hyy) = 0, and then break
out of the loop.
3. Find the minimal linear generator A(z) by solving the system (31).
4. Compute the roots pj of A(z), and recover the exponents y; of g(y).

5. Obtain the coefficients g; of g(y) by solving the transposed Vander-
monde system (32).

6. Compute the coefficients cj of f(x) from (25).

6. COMPUTING SPARSEST REPRESENTATION

Given a recursive basis V,Eu’v’wj (x) (22), the representation of f(x)

in this given basis V,Eu’v’w](x) is unique. However, different recur-
sive bases, i.e., different u, v, w might change the sparsities of the
correspondrng representations. For instance,
1,2 1,2] 1 2 1,2
Fe0=3Ves vl e evf e v vy e 63)

def
(note that we write V,Eu’v] = V,Eu’v’o)- Therefore, the sparsity of

the representation of f(x) depends on the selected u, v, w of the
recursive basis.

In this section, we focus on the choice of the recursive basis
such that the representation of f(x) is sparsest, namely, on how
to compute u, v, w such that the number of non-zero terms t is
minimized in (24). Given a black box of f(x), we first discuss how
to recover the Laurent polynomial g(y) in (25) such that the sparsity
is optimized over the control variable v # 0; since the sparsity of
(25) is only dependent on the ratio u/v, one may set u = 1. Let
91l y) = (y - 1/9)f(y + 1/y)/v). The sparsity of gl¥l(y) is clearly
dependent on the choice of v. For example, if we construct the
Laurent polynomials gl%!(y) from f(x) = %Vg[gl’z](x) by selecting
two different v = 1, 2, that is,

M) =@ - l)f(y +)= L0 W =y, gu 20,

g[z](y) — (y)f(Zy) _ 1 100 1y—100'

It is easy to see that g 1](y) has 100 non-zero terms, whereas gm(y)
has 2 non-zero terms.

In this paper, we also strive to minimize the number of evalu-
ations to interpolate f(x). To that end, we determine v such that
the number of the non-zero terms in g[”’ wl (y) is minimized. Gies-
brecht, Kaltofen and Lee [8] introduces the fraction-free Berlekamp/
Massey algorithm for computing the sparsest shifts of a given poly-
nomial. This method can be easily adapted for tackling the problem
of computing v such that gl?l(y) is sparsest. We now describe a
probabilistic algorithm, given in [8], for recovering the sparsest
Laurent polynomial g[”](y) by the combination of the fraction-free
Berlekamp/Massey algorithm with a GCD procedure. Let v be an
indeterminate, and choose distinct random values p,q € S € K. At
first two sequences «; and f; are constructed as following:

o = gwlph) = (- T)f(wp' + %) € Klol,

Bi=glg) = 4" - 2)fwq' + %) e Kol

Fori = 1,2,..., the discrepancies A;(p) € K[v] and A;(q) € K[v]
are obtained by performing the fraction-free Berlekamp/Massey
algorithm on the sequences: @; and f;. We terminate the loop when

= gcd(A;(p), Ai(q)) has a non-zero root { in K, the algebraic
closure of K. In addition, the fraction-free Berlekamp/Massey al-
gorithm yields the corresponding minimal generators of (¢;);>0
and (f)i>o. In the end, we obtain a sparsest Laurent polynomial
g?"I(y), with v* = 1/ by performing Steps 4 and 5 in Algo-
rithm 5.1. The probabilistic analysis can be found in [8].

Given a black box of f(x), the above method can be applied to
obtain v* and the sparsest Laurent polynomial g[v*](y) = (y-1/y) x
f((y + 1/y)/v*). The sparseness ofg[”*](y) is by Fact 5.1 no more
than 6 times the sparsity for the optimal u, v, w values. Note that

by (23) the representation of f in the recurrence basis with with
u = v* and w = 0 basis has sparsity twice the sparsity ofg[v*](y)
in standard power basis.

EXAMPLE 6.1. Consider the polynomial f(x) = 16 x> — 16 x> + 3 x,
and two representations of f (x) in two different orthogonal bases:

_1
F(x) = Ri(x) = 102 vy sa vl 2y,
£ = Ro(e) = 35 V1) LIS 4 2R,
1
For the bases V=211 (x) and yl42] (x), we can get the corresponding
Laurent polynomials:

gM@W)=(y=5) fy+)=16(y°~55) +48(y*~

o1

9P w=(s-2) F(F5)=3 (v°-) (34)
One can see that the representation Ry (x) is sparser than the repre-
sentation Rz(x), even though gm(y) has more terms by comparison
with g[z](y), Of course, by (34) we must have f(x) = Us(x)/2. O

We do not know an example of a polynomial f where the spar-
sities in recurrence bases with parameters u, v*, w, where v* # 0
minimizes the sparsity of gl?I(y) (25), are larger for all u # 0 and
w than the minimal sparsity that is achieved by a recurrence basis
with parameters u’,v’,w’, u’ # 0, v’ # 0 and v* # v’. One may
compute optimal u’,v’, w’ € K, where K is the algebraic closure
of the field K, in time that is polynomial in deg(f). The algebraic
elements u’, v’, w’ are represented in terms of the roots of a polyno-

mial. One computes the coefficients c;(u, v, w) in (24) for symbolic
([wow] 5-1

L)451(2)

u, v, w. Because the leading coefficient of V. is equal uv
the denominator of the rational function ¢;(u, v, w) is a power-term

in u,v. We now seek a point (u’,v’,w’) € K that is a zero of a
maximum number of the numerator polynomials of ¢;(u, v, w). The
arising polynomial root finding problem is solvable in polynomial-
time in deg(f). For example, the 0- and 2-dimensional components
that zero a maximal number of coefficients are computed via a GCD-
free basis computation [3, 13] of the numerator polynomials. Those
common factors that occur most often constitute those components.
We will analyze the actual complexity of zeroing a maximum num-
ber of polynomials in an inconsistent polynomial system elsewhere.
The defining equations for the algebraic extensions can be factored
lazily by GCDs rather than polynomial factorization (cf. [12]).
Some special cases can be treated by linear algebra. We now
present a theorem to show the feasibility of how to select for a
given v and w = 0 a suitable u in the recurrence basis (22) such
that f(x) has the sparsest representation, i.e., how to determine
ueK,u+0forafixedv e K, v # 0 such that the representation of
f(x) in the basis V,E”’”](x) = V,Eu’ ©.0] (x) is the sparsest.
THEOREM 6.1. Let f(x) = ZJ”.I:O fix) € K[x] withd = deg(f) > 2,
where K isaﬁeld andletv € K,v # 0. Fori with0 < i < d—2 define
S wek | fx) = s yeV, VI“®l) with ¢; =0}, (35)
i.Ifd —i > 2 is even, then |S;| < (d i)/2.
ii. Ifd —i > 3 isodd and 3k,1 < k < [(d —i)/2]: fitor # O, then
ISil < L(d - i)/2].
y+e
Proor. We first prove Part i. Let g(y) = (y — 7)€ K(y).
By (25) and we can see that g(y) is of the form
g(y) S gy -y, (36)
where g; € Kforj=1,...,d+1,and gz, # 0. Let u,co, ..., cq be

parameters, and suppose p(x, u, cg, . . .,Ccq) = Zd 0 € J[u’vj(x) We
have from Fact 5.1 that (37) below holds. Accordmg to the definition

ceq) =cq L (ydtt —ymdh 4

cam1 4 =y + (DI (o %+ ejea (4= D) -y)

+ot-Dy-y H+ay-y . (37
(35) of S;, we need find u, cg, . ..,cy € K that satisfy ¢; = 0, and the
following equation

y+y
(y- %)P(Ty,u, o, - - -

I -~y Lou,co,. .. cq) = 0. (38)
Sincec; = 0Oandd—iis even here we can get the following equations
by selecting the coefficients of (38) corresponding to y'*1, yi*3,
d-1 _d+1
Syt ytth
(£ = Dciva = giv1 =0, (5 = DCiva + 5Civ2 = Gix3 =0, .,
(5 —Dea+5cd-2=9d-1=0 5 ¢d—gas1 =0,
whose matrix form is (39) below. The entries of Zli] in (39) are:
gl | [gi+1 gi+3---9a—1 9d+1]Tr~ (39)

v=u/vif g = v+1and 0 else. The dimension

Tr
Ci+2 Ci+4.--Cd—2 Cd] =
fﬂ V—u/v lifp=v, [l]
of 2 []m(?‘))ls(d i +1)><—

In the following, two cases will be discussed: g;+1 = 0 and g;+1#0.
We first consider the first case: gj+1 = 0. We shall investigate the
structure of (39). It is easy to check that the above overdetermined
linear system is consistent if u = v, that implies v € S;. Now
let us consider u#v. The above linear system (39), removing the
last equation consists of a square bidiagonal linear system, whose
unique solution is expressed as cj+2 = 0, Cj+4 = g,q.g/(% —1),and
so on. Finally, c; must be of the form ¢ = q1(u)/(%5 — 1)!, where
l= % — 1 with g1 (u) € K[u] and deg(q1) < I — 1. Furthermore ¢y
must satisfy the last equation in (39), that is,

@)= g (4 - 1) - i) = 0. (40)
Since gg441#0, 1(0)#0 and therefore y; (u) is a nonzero polynomial
in K[u], and deg(y1(u)) < I. Therefore, for S; we have the subset
relation

Si C{ovtu{a|y1(@) =0,y € K[u], Y10,

with deg(y1(u)) < (d-1i)/2 -1}, (41)
which implies that |S;| < i

Next, we consider the other case: g;+1#0. A necessary condition
that the linear system (39) is consistent is u#v, by the first row. Simi-
larly, one can obtain c;42=gi+1/(%—1), ci+4=((gi+3-9i-1) £—gi13)/
——1)2 and so on. Finally, ¢y is of the form cg=q2(u)/(% —1)l*1,
where g2(u)eK[u] with deg(g2(u))<I. By substituting the solution

of ¢ into the last equation of (39), we have 2 (u) d:efngrl(%—l)lJrl -
2 g2(u)=0. Likewise, for S; we have the subset relation

Si c{a| @) =0, W1th¢g(u) # 0,deg(y2(u)) < d- ’} (42)
which implies that |S; |<

Because of space constramts we omit the proof of Part ii. O

Given a polynomial f(x)= 3¢ =0 fi*/, and i chosen from Part i
or Part ii of Theorem 6.1, one is able to compute all u € K such
that f(x)= 2;1:0 CjVj[u’UJ(x) with ¢;=0. The second-highest term
coefficient cy_;/constant coefficient cg is zero/non-zero if and only
if g4/g1 in (36) is zero/non-zero, independently of the choice of
u, v (see (37)). The minimal polynomials for the candidate algebraic
number @ from (41, 42) need not be factored and lazy factorization

can be applied (cf. [12]). For each u one can count the number of
zero coefficients in (24) and select those with smallest sparsity.

ACKNOWLEDGMENTS

Supported in part by NSF Grants CCF-1421128 and 1717100 (Imamoglu
and Kaltofen), and by China National Nat. Sci. Found. Grant 61772203
and Shanghai Nat. Sci. Found. Grant 17ZR1408300 (Yang).

REFERENCES

[1] Andrew Arnold and Erich L. Kaltofen. 2015. Error-Correcting Sparse Interpolation
in the Chebyshev Basis. In ISSAC’15 Proc. 2015 ACM Internat. Symp. Symbolic
Algebraic Comput. ACM, New York, N. Y., 21-28. URL: EKbib/15/ArKa15.pdf.

[2] M. Ben-Or and P. Tiwari. 1988. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proc. Twentieth Annual ACM Symp. Theory Comput.
ACM Press, New York, NY., 301-309.

[3] Daniel J. Bernstein. 2005. Factoring into coprimes in essentially linear time. J.
Algorithms 54, 1 (2005), 1-30. https://doi.org/10.1016/j.jalgor.2004.04.009

[4] R.P. Brent, F. G. Gustavson, and D. Y. Y. Yun. 1980. Fast solution of Toeplitz
systems of equations and computation of Padé approximants. . Algorithms 1
(1980), 259-295.

[5] C.Brezinski. 1991. History of Continued Fractions and Padé Approximants. Springer
Verlag, Heidelberg, Germany.

[6] T.F.Chan and P. C. Hansen. 1992. A look-ahead Levinson algorithm for general
Toeplitz systems. IEEE Transactions on Signal Processing 40, 5 (May 1992), 1079
1090. https://doi.org/10.1109/78.134471

[7] S. Garg and E. Schost. 2009. Interpolation of polynomials given by straight-line
programs. Theoretical Computer Science 410, 27-29 (2009), 2659-2662.

[8] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee. 2003. Algorithms for Com-
puting Sparsest Shifts of Polynomials in Power, Chebychev, and Pochhammer
Bases. J. Symb. Comput. 36, 3—4 (2003), 401-424. URL: EKbib/03/GKLO03.pdf.

[9] Mark Giesbrecht, George Labahn, and Wen-shin Lee. 2004. Symbolic-Numeric
Sparse Polynomial Interpolation in Chebyshev Basis and Trigonometric Interpo-
lation. In Proc. Workshop on Computer Algebra in Scientific Computation (CASC).
195-205. https://cs.uwaterloo.ca/~mwg/files/triginterp.pdf.

[10] Mark Giesbrecht, George Labahn, and Wen-shin Lee. 2006. Symbolic-numeric
sparse interpolation of multivariate polynomials. In ISSAC MMVI Proc. 2006
Internat. Symp. Symbolic Algebraic Comput., Jean-Guillaume Dumas (Ed.). ACM
Press, New York, N. Y., 116-123. https://doi.org/10.1145/1145768.1145792

E. Imamoglu and E. L. Kaltofen. 2018. On Computing The Degree Of A Chebyshev
Polynomial From Its Value. Manuscript. (May 2018). 10 pages.

E. Kaltofen. 1985. Fast parallel absolute irreducibility testing. J. Symb. Comput. 1,
1 (1985), 57-67. Misprint corrections: J. Symbolic Comput. vol. 9, p. 320 (1989).
URL: EKbib/85/Ka85_jsc.pdf.

E. Kaltofen. 1985. Sparse Hensel lifting. In EUROCAL 85 European Conf. Comput.
Algebra Proc. Vol. 2 (Lect. Notes Comput. Sci.), B. F. Caviness (Ed.). Springer Verlag,
Heidelberg, Germany, 4-17.

E. Kaltofen. 1994. Asymptotically fast solution of Toeplitz-like singular linear
systems. In Proc. 1994 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’94).
ACM Press, New York, N. Y., 297-304. Journal version in [15]. URL: EKbib/94/
Ka94_issac.pdf.

E. Kaltofen. 1995. Analysis of Coppersmith’s block Wiedemann algorithm for the
parallel solution of sparse linear systems. Math. Comput. 64, 210 (1995), 777-806.
URL: EKbib/95/Ka95_mathcomp.pdf.

Erich L. Kaltofen. 2010. Fifteen years after DSC and WLSS2 What parallel
computations I do today [Invited Lecture at PASCO 2010]. In PASCO’10 Proc. 2010
Internat. Workshop on Parallel Symbolic Comput., M. Moreno Maza and Jean-Louis
Roch (Eds.). ACM, New York, N. Y., 10-17. URL: EKbib/10/Ka10_pasco.pdf.

E. Kaltofen and Lakshman Yagati. 1988. Improved sparse multivariate polynomial
interpolation algorithms. In Symbolic Algebraic Comput. Internat. Symp. ISSAC
’88 Proc. (Lect. Notes Comput. Sci.), P. Gianni (Ed.), Vol. 358. Springer Verlag,
Heidelberg, Germany, 467-474. URL: EKbib/88/KaLa88.pdf.

Erich Kaltofen and Wen-shin Lee. 2003. Early Termination in Sparse Interpolation
Algorithms. J. Symb. Comput. 36, 3-4 (2003), 365-400. URL: EKbib/03/KL03.pdf.
Lakshman Y. N. and B. D. Saunders. 1995. Sparse polynomial interpolation in
non-standard bases. SIAM J. Comput. 24, 2 (1995), 387-397.

C. P. Pohlig and M. E. Hellman. 1978. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory
1T-24 (1978), 106-110.

D. Potts and M. Tasche. 2014. Sparse polynomial interpolation in Chebyshev
bases. Linear Algebra and Applic. 441 (2014), 61-87.

R. Prony. I (1795). Essai expérimental et analytique sur les lois de la Dilatabilité
de fluides élastiques et sur celles de la Force expansive de la vapeur de I'eau et
de la vapeur de I'alkool, a différentes températures. 7. de I’Ecole Polytechnique 1
(Floréal et Prairial III (1795)), 24-76.

Ali H. Sayed and Thomas Kailath. 1995. A Look-Ahead Block Schur Algorithm
for Toeplitz-Like Matrices. SIAM J. Matrix Anal. Appl. 16, 2 (1995), 388-414.

—_
jan

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

[23

	Abstract
	1 Introduction
	2 Chebyshev-1 Basis With Sparsity Known on Input
	2.1 Algorithm Sparse Chebyshev-1 toInterpolation

	3 Chebyshev-2 Basis With Sparsity Known on Input
	4 Deterministic Early Termination With a Sparsity Bound
	4.1 Algorithm Chebyshev-1 Term Locator Polynomial

	5 Sparse Interpolation with Parameterized Recursive Bases
	5.1 Algorithm Sparse Interpolation in a Given Recurrence Basis With Early Termination

	6 Computing Sparsest toRepresentation
	Acknowledgments
	References

