
Sparse Polynomial Interpolation With Arbitrary Orthogonal
Polynomial Bases

In memory of Bobby F. Caviness (3/24/1940–1/11/2018)

Erdal Imamoglu
Dept. of Math., NCSU
Raleigh, NC, USA

Erich L. Kaltofen
Dept. of Math., NCSU
Raleigh, NC, USA

Zhengfeng Yang
Key Lab Trustworthy Comput.

ECNU, Shanghai, China

ABSTRACT

An algorithm for interpolating a polynomial f from evaluation
points whose running time depends on the sparsity t of the polyno-
mial when it is represented as a sum of t Chebyshev Polynomials
of the First Kind with non-zero scalar coeicients is given by Lak-
shman Y. N. and Saunders [SIAM J. Comput., vol. 24, nr. 2 (1995)];
Kaltofen and Lee [JSC, vol. 36, nr. 3ś4 (2003)] analyze a randomized
early termination version which computes the sparsity t . Those
algorithms mirror Prony’s algorithm for the standard power basis
to the Chebyshev Basis of the First Kind. An alternate algorithm
by Arnold’s and Kaltofen’s [Proc. ISSAC 2015, Sec. 4] uses Prony’s
original algorithm for standard power terms.

Here we give sparse interpolation algorithms for generalized
Chebyshev polynomials, which include the Chebyshev Bases of
the Second, Third and Fourth Kind. Our algorithms also reduce
to Prony’s algorithm. If given on input a bound B ≥ t for the
sparsity, our new algorithms deterministically recover the sparse
representation in the First, Second, Third and Fourth Kind Cheby-
shev representation from exactly t + B evaluations.

Finally, we generalize our algorithms to bases whose Chebyshev
recurrences have parametric scalars. We also show how to compute
those parameter values which optimize the sparsity of the represen-
tation in the corresponding basis, similar to computing a sparsest
shift.

ACM Reference Format:

Erdal Imamoglu, Erich L. Kaltofen, and Zhengfeng Yang. 2018. Sparse Polyno-
mial InterpolationWith Arbitrary Orthogonal Polynomial Bases: In memory
of Bobby F. Caviness (3/24/1940ś1/11/2018). In ISSAC’18: 2018 ACM Int’l Sym-
posium on Symbolic & Algebraic Computation, July 16ś19, 2018, NY, NY, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3208999

1. INTRODUCTION

We consider the problem of reconstructing the term degrees and
non-zero coeicients of a univariate polynomial f whose evaluation
we can obtain at arbitrary values for the variable for a black box
for the polynomial. Here f is represented in an orthogonal term
basis P0(x), P1(x), P2(x), . . .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC’18, July 16ś19, 2018, New York, NY, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5550-6/18/07. . . $15.00
https://doi.org/10.1145/3208976.3208999

f (x) =

t∑

j=1

c jPδj (x), c j ∈ K, c j , 0, 0 ≤ δ1 < δ2 < · · · < δt (1)

where Pδ are Chebyshev Polynomials of the irst, second, or third
kind and where K is an arbitrary ield of characteristic , 2. Our algo-
rithms compute the term degrees δj and term coeicients c j , hence
perform a sparse polynomial interpolation with one of the Cheby-
shev bases. The main idea is to reduce the sparse interpolation
problem in Chebyshev basis to a sparse interpolation problem in
the power basis and apply Prony’s algorithm [5, 22] (the 1959 Bose-
Chaudhuri-Hocquenghem error correction decoding algorithm) to
the latter problem.

As with Prony’s algorithm, the sparsity of t need not be given
on input. We consider two early termination strategies that deter-
mine t : if a bound B ≥ t is given on input, we compute t and f

deterministically from t + B evaluations. A diiculty is that the
constructed Prony problem has sparsity 2t and we have to exploit
its special structure to reduce the number of evaluations. Our de-
terministic algorithm can be implemented in (t + B)2+o(1) ield
operations, degree-t polynomial root inding, and computing t in-
teger logarithms in K. The quadratic exponent is a consequence
of the lack of fast main-diagonal Toeplitz solvers with arbitrary
look-ahead (cf. [4, 6, 23]). For inite coeicient ields K with a fast
discrete logarithm algorithm [20] our algorithm is of bit complexity
((t +B) log(deg f))O (1). We can also compute t and f by Kaltofen’s
and Lee’s randomized early termination strategy from 2t + 2 eval-
uations (see [1, Sec. 4.2]). In order to use soft-linear randomized
Toeplitz/Hankel solvers with t1+o(1) arithmetic operations [14] one
needs to oversample to 2B or 2 ⌈log2(2t+2)⌉ evaluations, respectively.

We now recall the properties of the Chebyshev Polynomials of
the First, Second, Third and Fourth Kind. Traditionally, those are
n-degree polynomials in x over the ield of real numbers denoted
by Tn (x) (First Kind), Un (x) (Second Kind), Vn (x) (Third Kind) and
Wn (x) (Fourth Kind). If Pn (x) denotes any of those four polynomials,
we have

P0(x) = 1, Pn (x) = 2x Pn−1(x) − Pn−2(x) for n ≥ 2, (2)
Pn = Tn ,Un ,Vn ,Wn , and the distinct initializations at n = 1,
T1(x) = x , U1(x) = 2x , V1(x) = 2x − 1, W1(x) = 2x + 1. (3)
An alternative to (2) is[

Pn (x)

Pn+1(x)

]
=

[
0 1
−1 2x

]n [
1

P1(x)

]
for n ∈ Z. (4)

Note that (4) extends the subscript range n to negative integers
and by computing the power of 2 × 2 coeicient matrix gives an
algorithm for evaluating all Pn in O(log(n)) scalar operations. All
four kinds yield a vector space basis for the ring of polynomials over
any ield K of characteristic , 2. From now on, we shall speak of

Chebyshev-1, Chebyshev-2, Chebyshev-3 and Chebyshev-4 poly-
nomials and bases in reference to irst, second, third and fourth
kind.

The third and fourth kind polynomials are not as common, be-
cause we haveWn (x) = (−1)nVn (−x) and Vn (x) = T2n+1(z)/z and
Wn (x) = U2n (z) for z =

√
(x + 1)/2, that is, the two identities are

stated in the algebraic function ield K(x)[z]/(z2 − (x + 1)/2).
There are some well known properties that are the basis of sparse

interpolation in Chebyshev-1 Basis.
Fact 1.1. Letm,n ∈ Z≥0. Then the following hold:

i. Tn (Tm (x)) = Tmn (x) = Tm (Tn (x)).

ii. Tn (
x+ 1

x
2) =

xn+ 1
xn

2 for all n ≥ 0.

Based on Fact 1.1.i, which is that Chebyshev-1 Polynomials com-
mute with respect to composition, Lakshman and Saunders [19]
have mirrored Prony’s algorithm in order to reconstruct the list of
non-zero coeicients c j and the list of corresponding degrees δj
from evaluations of

f (x)=c1Tδ1 (x)+ · · ·+ctTδt (x), c j,0, 0≤δ1<δ2<···<δt (5)
at x = T0(β),T1(β), . . . for a scalar β (see also [1, 9, 18, Sec. 3]). Their
reconstruction algorithm is thus a sparse interpolation algorithm
in Chebyshev-1 Basis. For sparsity in Chebyshev-2 PolynomialsUn
one obstruction is the lack of the commuting property of term sub-
stitution. However, performing the substitution given in Fact 1.1.ii,
Arnold and Kaltofen [1, Sec. 4] directly reduced the sparse polyno-
mial (5) to a sparse Laurent polynomial in power (standard) basis.
More precisely, for f in (5) we have

д(y)
def
= f ((y + 1

y)/2) =
∑t
j=1

c j
2 (y

δj + y−δj) (6)
and Prony’s algorithm can reconstruct the sparse Laurent polyno-
mial д. Here we use the corresponding properties to Fact 1.1.ii for
Un ,Vn ,Wn , namely,

(y − 1
y) Un

(
(y + 1

y)/2
)
= yn+1 − 1

yn+1
, (7)

(y + 1
y) Vn

(
(y2 + 1

y2)/2
)
= y2n+1 + 1

y2n+1 , (8)

(y − 1
y)Wn

(
(y2 + 1

y2)/2
)
= y2n+1 − 1

y2n+1 . (9)

Note that the multiplicative preconditioner y ± 1/y is introduced
before interpolating the substituted f ((y + 1

y)/2) or f ((y
2
+

1
y2)/2),

thus overcoming the long-known obstruction for sparse interpola-
tion with a Chebyshev-2 Basis. Potts and Tasche [21, Equation 4.2]
have introduced a corresponding trigonometric multiplier: sin(α) ×
Un (cos(α)) = sin((n + 1)α), which with y = eiα is (7). Our substitu-
tion does not require the evaluation of a transcendental function and
can be realized as an exact algorithm even over a inite ield, while
the algorithm in [21] uses loating point arithmetic. We think of the
polynomial f (x) as a black box polynomial that can be arbitrarily
probed. For Kaltofen and Lee [18] randomized sparse interpolation
from 2t +2 values with early termination, an upper bound of deg(f)
is required on input for achieving success probability ≥ 1/2, for
otherwise the polynomials

∏
j (x − βj) and 0 are indistinguishable,

where βj ranges over all possible random choices of evaluation
points. For our bases, see Theorem 5.2.

The Lakshman-Saunders [19]method and theArnold-Kaltofen [1,
Sec. 4] substitution (6), which is the approach also here, are related
by the substitution β = (ω + 1/ω)/2 for the base points β and
ω of the evaluations. That substitution has 2 efects: 1. the aris-
ing Toeplitz-plus-Hankel system in Lakshman-Saunders becomes a

Toeplitz system; 2. the degrees of the terms are computed as loga-
rithms with integral output values. The Toeplitz matrix allows for
the use of the Berlekamp-Massey algorithm. The substitution (6)
and (7ś9) double the sparsity in the arising Laurent polynomial (an
exception is for Chebyshev-1 Basis with δ1 = 0 when the sparsity
is 2t − 1). Luckily, every evaluation д(ζ) at ζ ∈ K, ζ , ±1, yields a
second evaluation д(1/ζ) = д(ζ) at 1/ζ for (6,8) and a second evalu-
ation д(1/ζ) = −д(ζ) at 1/ζ for (7,9). An exception is ζ = ±1, which
is a Prony point, and the algorithm in [1, Sec. 4.1] for Chebyshev-1
Basis used one additional evaluation. Here we show that the extra
evaluation can be avoided by exploiting additional structure in the
arising Prony problem for д(y), thus achieving the optimal number
of evaluations for the new substitution method in all cases; see
Section 4. The conversion to ω also allows for a discrete logarithm-
based computation of all δj , even from values of Tδj (β) as in the
original Lakshman-Saunders algorithm; see [11].

Finally, we consider bases given by the recurrence

V
[u,v,w]
0 (x)=1,V [u,v,w]1 (x)=ux+w,

V
[u,v,w]
n (x)=vxV

[u,v,w]
n−1 (x)−V

[u,v,w]
n−2 (x) for n ≥ 2, (10)

where u,v,w∈K, u,0, v,0 and K is a ield. Our algorithm here
for the Chebyshev-2 basis generalizes and computes the sparse
representation with terms from (10); see Section 5. One may also
seek for a given polynomial f ∈ K[x] those parameters u,v,w
which yield the maximum sparsity for the corresponding basis. We
show how to compute in polynomial time in deg(f) the optimal
pairs u,v,w ; see Section 6. The problem is analogous to computing
the sparsest shift [8] in the standard powers of variables basis.

2. CHEBYSHEV-1 BASIS WITH SPARSITY

KNOWN ON INPUT

Let K be a ield of char(K) , 2. A black box polynomial f (x) ∈ K[x]
can be written as a t-sparse linear combination of Chebyshev-1
Polynomials c1Tδ1 (x)+···+ctTδt (x), see (5). We seek to determine
the coeicients c j ∈ K \ {0} and the term degrees δj ∈ Z≥0 from
evaluations ai = f ((ωi + ω−i)/2), (i = 0, 1, . . . , 2t − 1) of the black
box for f (x), where ω ∈ K, ω , 0. The term values ωδj of the base
point ω are required to be suiciently distinct, and the δj to be
recoverable from them. We irst assume that we know the sparsity
t on input. We also assume that we have a factorization algorithm
over K and can compute integral δ from ωδ .

We deine

д(y)
def
= f (

y+y−1

2) =
∑t
j=1

c j
2 (y

δj + y−δj) ∈ K[y,y−1]. (11)
The function д(y) is a Laurent polynomial. Let ω ∈ K \ {0} such
that for i ∈ {0, 1, . . . , 2t − 1},

ai
def
= д(ωi) = f (ω

i
+ω−i

2) = f (Ti (β)), β
def
=

ω+ω−1

2 , (12)
and for 1≤i1<i2≤t , Tδi1 (β),Tδi2 (β) if δi1,δi2 . Note that a−i=ai .

Lemma 2.1. If Tδi1 (β) , Tδi2 (β) for 1 ≤ i1 < i2 ≤ t , then ωδi1 ,

ωδi2 or ωδi1 , ω−δi2 .

Proof. If Tδi1 (β) , Tδi2 (β), then ω
δi1 + ω−δi1 , ωδi2 + ω−δi2 .

Hence (ωδi1ωδi2 − 1)(ωδi1 − ωδi2) , 0 and so ωδi1 , ω−δi2 or
ωδi1 , ωδi2 . □

Lemma 2.2. Let 1 ≤ i1 < i2 ≤ t . If the set {ω
δi1 ,ωδi2 ,ω−δi1 ,ω−δi2 }

has at least three elements, then Tδi1 (β) , Tδi2 (β).

Proof. If the set {ωδi1 ,ωδi2 ,ω−δi1 ,ω−δi2 } has at least three el-
ements, then łωδi1 , ωδi2 and ωδi1 , ω−δi2 ž and łωδi1 , ω−δi1 or
ωδi2 , ω−δi2 ž. Then 2Tδi1

(β) = (ωδi1 + ω−δi1) , (ωδi2 + ω−δi2) =

2Tδi2
(β). □

Corollary 2.3. If the set {ω−δt ,ω−δt−1 , ...,ω−δ1 ,ωδ1 , ..., ωδt−1 ,
ωδt } has at least 2t−1 elements, thenTδi1 (β),Tδi2 (β) for 1≤i1<i2≤t .

We can interpolate the Laurent polynomial (11) with Prony’s
algorithm [22] from its 2t evaluations a0, . . . ,a2t−1. We query the
black box polynomial f (x) to get these evaluations. Since a−i = ai ,
we actually have 4t−1 evaluations ofд(y):a−2t+1, . . . ,a0, . . . ,a2t−1.

Let α be a symbol for a2t . If δ1 = 0, then a value for α is not
needed for computing the term locator polynomial Λ(z) for д(y).
The corresponding 2t × 2t matrix H = [ai+j−(2t−1)]

2t−1
i, j=0

will then
have been identiied by the Berlekamp/Massey algorithm as singu-
lar. If 2t = deg(Λ(z)), then the matrix is identiied as non-singular,
and Λ(z) is computed as a linear form Λα (z) = Λ

[0](z) + αΛ[1](z)

from the system


a−2t+1 a−2t+2...a−t+1... a−1 a0
a−2t+2 a−2t+3...a−t+2... a0 a1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

a−1 a0 ... at−2 ...a2t−3 a2t−2
a0 a1 ... at−1 ...a2t−2 a2t−1





1
λ1
.
.
.

λ2t−2
λ2t−1



= −



a1
a2
.
.
.

a2t−1
α



. (13)

In this case, the term locator polynomial of (11) is

Λ(z) =

t∏

j=1

((z −ωδj)(z −ω−δj)) = z2t + λ2t−1z
2t−1
+ · · · + λ1z + 1

and it is a reciprocal polynomial, i.e., λ2t−j = λj , (λ2t = λ0 = 1).
We show that (in Theorem 2.5 below), if the set {ω−δt , ω−δt−1 , . . . ,
ω−δ1 , ωδ1 , . . . , ωδt−1 , ωδt } has 2t elements, then α is uniquely
determined by the symmetry conditions of the coeicients of Λ(z).
Hence, to determine the δj , we do not need to evaluate the black
box polynomial f (x) at T2t (β) to get a2t .

From the symmetry conditions of the coeicients of Λ(z) the
system (13) collapses to the following system:

H̄ ·
[
λt /2 λt−1...λ1

]Tr
= −

[
a1 + a2t−1 a2 + a2t−2...2at

]Tr
(14)

where H̄ is a łfoldž of the coeicient matrix of (13):

H̄ =



2at−1 · · · a1 + a2t−3 a0 + a2t−2
2at−2 · · · a0 + a2t−4 a1 + a2t−3
.
.
.

.

.

.
.
.
.

2a0 · · · 2at−2 2at−1



. (15)

We have that H̄ is non-singular:
Lemma 2.4. The matrix H̄ in (15) is non-singular.

Proof. H̄ = Jt ·AwhereA is the non-singular matrix in Lemma
3.2 in [1] (for r = 0 and s = 1) and Jt ∈ Kt×t is the exchange matrix
(row-reversed identity matrix). Note that by our assumptions on ω
the Tδj (β) are distinct. □

Therefore, we can determine the coeicients λ1=λ2t−1, ..., λt−1=
λt+1, and λt of the term locator polynomial Λ(z) by solving the
folded system (14).
Theorem 2.5. If the set {ω−δt , ..., ω−δ1 , ωδ1 , ..., ωδt } has 2t ele-
ments, then α is uniquely determined by the symmetry conditions of
the coeicients of the term locator polynomial Λ(z) of (11).

Proof. If there were two values for α , then the folded system
(14) of the system (13) would have two diferent solutions. Since H̄
is non-singular, this is impossible. Hence α is unique. □

Therefore, to compute the term locator polynomial Λ(z) of (11)
we need 2t evaluations: a0, . . . ,a2t−1. A root ρ of the term locator
polynomial is of the form ρ = ω±δj . We can compute the δj in
(5) from the (possibly discrete) logarithms of the roots of the term
locator polynomial as it is commonly done in [2, 7, 10, 16, 18]. After
determining the δj , (j = 1, . . . , t), we compute the coeicients c j in
(5) by solving the non-singular transposed Vandermonde system

[
ρi1 . . . ρ

i
t ρ
−i
t . . . ρ

−i
1

]
0≤i≤2t−1

·
[
c1 . . . ct ct . . . c1

]Tr
=

[
2a0 2a1 . . . 2a2t−1

]Tr
. (16)

Here the ρ j and ρ−1j , (j = 1, . . . , t), are the roots of the term locator

polynomial Λ(z). An t1+o(1)-time algorithm is in [17, Sec. 5].
Remark 2.1. If the set {ω−δt ,ω−δt−1 , ...,ω−δ1 ,ωδ1 , ...,ωδt−1 ,ωδt }
has 2t − 1 elements, then we can determine the coeicients of the
term locator polynomial by solving the system[

ai+j−2t
]
1≤i, j≤2t−1 ·

[
1 λ1...λ2t−2

]Tr
= −

[
a1 a2...a2t−1

]Tr

(cf. (13)). In this case, for only one δj , we haveωδj = ω−δj . After de-
termining the roots of the term locator polynomial, we can identify
that speciic δj . □

To summarize, we collect the steps of our algorithm as follows:

2.1. Algorithm Sparse Chebyshev-1 Interpolation

Input: ▶A black box polynomial f (x) ∈ K[x] where K is a ield
with char(K) , 2.

▶The sparsity t of f (x).
▶ω ∈ K \ {0} such that the set of term values
{ω−δt ,ω−δt−1 , . . . ,ω−δ1 ,ωδ1 , . . . ,ωδt−1 ,ωδt }

has at least 2t elements or 2t − 1 elements with δ1 = 0.
▶A factorization algorithm over K.
▶A integer-valued-logarithm-base-ω algorithm in K.

Output: ▶The coeicients c j and the term degrees δj such that
f (x) =

∑t
j=1 c jTδj (x) ∈ K[x].

1. For 0 ≤ i ≤ 2t − 1, get the evaluations ai = д(ωi), as in (12), of
the Laurent polynomial (11).

2. Solve (13) by the Berlekamp/Massey Algorithm to get the coei-
cients of the term locator polynomial Λ(z). Use the symmetry of
the term locator polynomial to ind the unique α .

3. Find all roots of the term locator polynomial. The roots are of
the form ω±δj . Compute the δj from integer logarithms (discrete
logarithms if K is a inite ield) of the roots of the term locator
polynomial.

4. Solve the system (16) to get the coeicients c j .
5. Return the δj and the c j .

3. CHEBYSHEV-2 BASIS WITH SPARSITY

KNOWN ON INPUT

Let K be a ield of char(K) , 2. We now consider the representa-
tion of a black box polynomial f (x) ∈ K[x] as a t-sparse linear
combination of Chebyshev-2 Polynomials, i.e.,

f (x) = c1Uδ1 (x) + · · · + ctUδt (x) ∈ K[x] (17)
where c j ∈ K \ {0} and δj ∈ Z≥0 such that δ1 < · · · < δt . Again, we
seek to compute the coeicients c j ∈ K \ {0} and the term degrees
δj ∈ Z≥0 from evaluations f ((ωi + ω−i)/2), (i = 0, 1, . . . , 2t − 1)
of the black box for f (x), where ω ∈ K, ω , 0. The term values ωδj

of the base point ω are required to be suiciently distinct, and the
δj to be recoverable from them. Again, we assume that we know

the sparsity t .
Our algorithm proceeds as the Chebyshev-1 Algorithm in Sec-

tion 2 with the following changes: we deine

д(y)
def
= (y − y−1) f (

y+y−1

2)

=

∑t
j=1

c j
2 (y

δj+1 − y−(δj+1)) ∈ K[y,y−1] (18)
(see (7)). The function д(y) is a Laurent polynomial. We Prony
interpolate for a base point ω ∈ K \ {0} the values

a0 = 0,ai = −a−i
def
= д(ωi) = (ω − ω−1) f (ω

i
+ω−i

2), (19)
i ∈ {1, . . . , 2t}, and assume that the set of shifted term values
{ω−(δt+1),ω−(δt−1+1), . . . ,ω−(δ1+1),ωδ1+1, . . . ,ωδt−1+1,ωδt+1}

has 2t or 2t − 1 elements. The diiculties which arose in the Cheby-
shev-1 case due to i = 0 yielding a single evaluation do not occur:
a0 = 0 needs no evaluation, and we compute the term locator
polynomial from 2t black box probes. Algorithm 5.1 below is a
generalized variant, which uses randomization to compute t .

4. DETERMINISTIC EARLY TERMINATION

WITH A SPARSITY BOUND

We now relax the assumption that on input one has the exact
sparsity t , but assume that on input one has an upper bound B ≥ t
for the sparsity. Our objective is to interpolate with exactly t + B
evaluations. Here we assume that the black box for f can be queried
as our algorithm proceeds.

Let ai = д(ωi), as in (12), where д(y) is given in (11), and
H =

[
ai+j−(2t+2B+1)

]
1≤i, j≤2t+2B

, (20)
where B ≥ t . We will consider non-singular square submatrices of
H in the right upper corner.
Remark 4.1. The 0× 0 matrix is called the empty matrix. The empty
matrix is considered to be non-singular. In Algorithm 4.1 Step 2b
below, if r = 0, then HR in Step 3 is the empty matrix. In this case
Λ(z) = z0 = 1.

4.1. Algorithm Chebyshev-1 Term Locator

Polynomial

Input: ▶A black box polynomial f (x) ∈ K[x] where K is a ield
with char(K) , 2.

▶An upper bound B ≥ t for the sparsity t of f (x).
▶ω ∈ K \ {0} such that the set of term values
{ω−δt ,ω−δt−1 , . . . ,ω−δ1 ,ωδ1 , . . . ,ωδt−1 ,ωδt } (21)
has 2t elements or 2t − 1 elements with δ1 = 0.

Output: ▶Sparsity t and the term locator polynomial Λ(z).

1. Get the evaluations a0, . . . ,aB−1. If a0 = · · · = aB−1 = 0, then
return t = 0 and Λ(z) = 1. Otherwise, proceed to the next step.
Here ai = д(wi), as in (12), where д(y) is given in (11). Note that
a−i = ai . In Lemma 4.1 below, we prove that a0 = · · · = aB−1 = 0
implies f (x) is identically zero, so t = 0 and Λ(z) = z0 = 1.

2. Locate a non-singular leading principal submatrixH2r−1 orH2r
of (20) as follows:

2a. rold ← 0.
2b. For r from rold + 1 to B do the following:

2(b)i. Construct the Hankel matrixH2r−1 =

[
a−2r+2 ... a0
.
.
.

.

.

.a0 ... a2r−2

]
.

IfH2r−1 is non-singular, then rold ← r and break the loop. Other-
wise, proceed to the next step.

2(b)ii. Construct the Hankel matrixH2r =

[
a−2r+1 ... a0
.
.
.

.

.

.a0 ... a2r−1

]
.

IfH2r is non-singular, then rold ← r and break the loop. Otherwise,
proceed to the next step.
If there is no such non-singular leading principal submatrix,
H2r−1 orH2r , then the given bound B is not correct. Note that, if
the term values (21) collapse, this algorithm can return a wrong
sparsity and a wrong term locator polynomial.

3. LetHR denote the non-singular matrix constructed at the previous
step.

3a. If the rank ofHR is odd (the case R = 2r−1), then do the following:

3(a)i. SolveHR ·
[
λ0 . . . λ2r−2

]Tr
= −

[
a1 . . . a2r−1

]Tr
to compute the

linear generator z2r−1 + λ2r−2z2r−2 + · · · + λ0.
3(a)ii. For i from 1 to B − r do the following:
śIf

∑2r−2
k=0 λkak−1+i , −a2r−2+i then go to Step 2b to locate the next

non-singular leading principal submatrix. Otherwise, proceed to
the next step.

3(a)iii. For i from 1 to B − r + 1 do the following:
śIf

∑2r−2
k=0 λkak−2r+3−i , −a2−i then go to Step 2b to locate the next

non-singular leading principal submatrixHR . Otherwise, proceed
to the next step.
At this point, we have found no discrepancies. We prove in The-
orem 4.2 below that, in this situation, t = r .

3(a)iv. Return t = r and Λ(z) = z2r−1 + λ2r−2z2r−2 + · · · + λ0.
3b. If the rank ofHR is even (the case R=2r), then do the following:
3(b)i. Compute the linear generator z2r + λ2r−1z2r−1 + · · · + λ0 of
a−2r+1, . . . , a0, . . . ,a2r−1 as explained in Section 2.

3(b)ii. If λ2r−1 = λ1, . . . , λr+1 = λr−1, then proceed to the next step.
Otherwise, go to Step 2b to locate the next non-singular leading
principal submatrixHR .

3(b)iii. For i from 1 to B − r do the following:
ś(Figure 1) If

∑2r−1
k=0 λkak−1+i , −a2r−1+i then go to Step 2b to

locate the next non-singular leading principal submatrixHR . Oth-
erwise, proceed to the next step.
At this point, we have found no discrepancies. We prove in The-
orem 4.2 below that, in this situation, t = r .

3(b)iv. Return t = r and Λ(z) = z2r + λ2r−1z2r−1 + · · · + λ0.

Figure 1: Intermediate step in Algorithm 4.1

ar+B−1

a−2r

a−2r+1 a0
.
.
.

.

.

.
.
.
.

a−r−1 a−r ar−2
2r + 1

a−r+1a−r
.
.
.

.

.

.

a2r−2a0a−1

a0 a1 . . . a2r−1
.
.
.

.

.

.
.
.
.B − r

r

r − 1

a−2r+2 . . .
.
.
.

. . .

. . . ar−1
.
.
.

.

.

.

. . .

.

.

.

a2r

ar

a1

a0

. . .a−r+B−1 . . .

Lemma 4.1. In Algorithm 4.1 Step 1, if a0 = · · · = aB−1 = 0, then
f (x) =

∑t
j=1 c jTδj (x) ∈ K[x] is identically zero.

Proof. Let a0 = · · · = aB−1 = 0. Assume that f (x) is a t-sparse
non-zero polynomial in the Chebyshev Basis of the irst kind. Since

ai = a−i (from (11)), we have a−(B−1) = · · · = a0 = · · · = aB−1 = 0.
Let Λ(z) be the term locator polynomial of the Laurent polynomial
д(y) (11). The roots ρ1, . . . , ρ2t of Λ(z) are of the form ω±δj , (1 ≤
j ≤ t). Let ρ1 = ω−δt , . . . , ρt = ω−δ1 , ρt+1 = ωδ1 , . . . , ρ2t = ωδt .

From (11) we know д(y) = f (
y+y−1

2) =
∑t
j=1

c j
2 (y

δj + y−δj). We
can ind the coeicients c1, . . . , ct of the Laurent polynomial д(y)
by solving the following system (cf. (16)):
[ρij]−(B−1)≤i≤B−1,1≤j≤2t · [ct ...c1c1...ct]

Tr
=[2ai]−(B−1)≤i≤B−1=0.

From the symmetry conditions of the coeicients of д(y) the above
system folds to R · [c1 . . . ct]Tr = [0 . . . 0]Tr where

R = [ρ−ij + ρ
i
j]i=0,1, ...B−1, j=t,t−1, ...,1.

When B = t , the determinant of R factors as

det(R) = 2/(ρt−11 · · · ρt−1t) ·
∏

1≤j<ℓ≤t

(
(ρ j − ρℓ) · (ρ jρℓ − 1)

)
,

which is , 0 because ρ j , ρℓ and ρ j , ρ−1
ℓ

for 1 ≤ j < ℓ ≤ t .
Therefore, c1 = · · · = ct = 0, contradicting to our assumption.
Hence, f (x) is identically zero. □

Theorem 4.2. For the largest non-singular matrixHR (where R = 2r
or R = 2r − 1) in Algorithm 4.1, t = r .

Proof. • Case R = 2r : LetHR be the largest non-singular matrix
in Algorithm 4.1. So,HR satisies the condition in Step 3(b)iii.

ś Case δ1 > 0: If r < t , thenHR would not be the last non-singular
matrix in Algorithm 4.1 because H2t is non-singular. If r > t ,
then the folded matrix H̄R (which is very similar to (15)) ofHR ,
which is needed to compute the linear generator in Step 3(b)i in
Section 2, would not be non-singular. So r = t .

ś Case δ1 = 0: In this caseHR would be identiied as singular. In
this situationH2r−1 might be non-singular. This is the next item
in the proof.

• Case R = 2r − 1: Let HR be the largest non-singular matrix in
Algorithm 4.1. So, HR satisies the conditions in Steps 3(a)ii and
Step 3(a)iii. If r < t , then HR would not be the last non-singular
matrix in Algorithm 4.1 becauseH2t−1 is non-singular. If r > t , then
the conditions Step 3(a)ii and Step 3(a)iii would push the sparsity t
beyond the known bound B. So r = t . □

Theorem 4.3. Algorithm 4.1 requires t + B evaluations.

Proof. In Step 1, Algorithm 4.1 looks at B evaluations, namely
a0, . . . ,aB−1 (note that a−i = ai). Let HR (where R = 2r or R =
2r − 1) be the non-singular matrix constructed in Algorithm 4.1 in
Step 2. If R = 2r , the algorithm uses 2r evaluations in Step 3(b)i
(in Step 3(a)i when R = 2r − 1), namely a0, . . . ,a2r−1. In order to
check the linear dependency, it uses B − r evaluations more in Step
3(b)iii (in Step 3(a)iii when R = 2r −1), namely a2r , . . . ,a2r−1+(B−r)
(a−2r , . . . ,a2−(B−r+1) when R = 2r − 1). So, the total number of
evaluations is 2r + (B − r) = r + B. Since Algorithm 4.1 terminates
when r = t , it requires t + B evaluations. □

Adiiculty in implementing the algorithmwith structured Toeplitz
solvers poses Step 2b. By discovering a discrepancy in the column
dependency in Steps 3(a)ii, 3(a)iii or 3(b)iii the rank of the 2B×2B
Toeplitz matrix is certiied to be larger than the degree R of the
current candidate for the term locator polynomial. However, un-
like in the Berlekamp-Massey algorithm for Hankel matrices, the
dimensions of the new non-singular submatrix can lie beyond the

point of the discrepancy. One locates the new non-singular ma-
trix by incremental row elimination of the Schur complements
[6, 23], which introduces a running time that is cubic in the dis-
tance to the next non-singular Toeplitz submatrix. Alternatively,
one could in soft-linear Monte-Carlo time compute the rank of each
intermediate Schur complement [14], which yields the (t+B)2+o(1)

running time bound cited in the introduction. Note that our ma-
trices can be used to construct symmetric Toeplitz matrices with
rational entries that have arbitrary lookahead: for example, the
Toeplitz matrix whose irst row and irst column contain the entries
д2(2),д2(22), ...,д2(211) and whose leading principal submatrices
have ranks 1, 2, 2, 2, 2, 2, 4, 6, 8, 10, 11, 11, ... Here д2(x) is the sym-
metric Laurent polynomial д2(x)=

32768
5281339833 (

1
x 6+x

6)− 1024
2540327 (

1
x 5+

x5)+ 64
7227 (

1
x 4+x

4)− 744
8687 (

1
x 3+x

3)+ 62
153 (

1
x 2+x

2)+ 254
189 . To create that

symmetric Toeplitz matrix we started with д1(x)=x−1+x and then
constructedд2(x) (irst with unknown coeicients). Note thatд1(2i)=
д2(2i) for 0≤i≤5. A worst-case quadratic-time Toeplitz solver that
in analogy to the Berlekamp-Massey Hankel solver incrementally
steps from non-singular to non-singular leading principal submatrix
is not known to us.

Here we would like to mention about our work in progress [11].
In [11], we give an algorithm for computing the Chebyshev term
degrees in the original algorithm of Lakshman and Saunders [19] for
a very large inite coeicient ield Fp ; with a method similar to the
Silver-Pohlig-HellmanAlgorithm [20], one can directly compute the
Chebyshev term degree δ from given ζ = Tδ (β), β = (ω + 1/ω)/2 ∈
Fp , without precomputing the order of ω ∈ Fp ,ω , 0. In [11],
we also show that the same strategy applies to the Silver-Pohlig-
Hellman [20] discrete logarithm algorithm to compute δ from given
ζ = ωδ ; one does not need to precompute the order of ω.

The Chebyshev-2 Basis, Chebyshev-3 Basis, and Chebyshev-4
Basis cases can be done in the same way by making use of the
properties (7), (8), and (9). Note that in Chebyshev-2 Basis and
Chebyshev-4 Basis cases we have a free evaluation: a0 = 0.

5. SPARSE INTERPOLATION WITH

PARAMETERIZED RECURSIVE BASES

We now focus on sparse interpolation in more general polynomial
bases, which are deined by the recurrence relation (10), namely

V
[u,v,w]
0 (x) = 1, V

[u,v,w]
1 (x) = u x +w,

V
[u,v,w]
n (x) = v x V

[u,v,w]
n−1 (x) −V

[u,v,w]
n−2 (x) for n ≥ 2, (22)

whereu,v ∈ K\{0},w ∈ K and K is a ield. Obviously, Chebyshev-1
through Chebyshev-4 bases are special cases of the above poly-

nomial recurrence bases (22), e.g., Tn (x) = V
[1,2]
n (x)

def
= V
[1,2,0]
n (x),

Un (x) = V
[2,2]
n

def
= V
[2,2,0]
n (x). Note our notation: from now, we omit

to write aw = 0 in the bracketed superscript. Furthermore, Fact 1.1
can be generalized to the case of the above recurrence bases (22).
Fact 5.1. Let u,v ∈ K \ {0},w ∈ K, K is a ield, and let n ∈ Z. Then

the following hold:
(
x − 1

x

)
V
[u,v,w]
n

(x+ 1
x

v

)
=

u
v

(
xn+1 − 1

xn+1

)
+

w(xn − 1
xn) +

(u
v − 1

) (
xn−1 − 1

xn−1

)
for all n ∈ Z.

Remark 5.1. If u = v , 0 ∈ K,w = 0, Fact 5.1 implies
(
x − 1

x

)
V
[v,v]
n

(x+ 1
x

v

)
= xn+1 − 1

xn+1
for all n ≥ 1. (23)

From Un (x) = V
[2,2]
n we obtain (7). The binomial solutions (8,9)

generalize similarly for u = v and w = ±1. Furthermore, given a

recurrence basis V [u,v,w]n (x), then for each σ ∈ K \ {0} and n ∈ Z

we have V [u,v,w]n (x) = V
[uσ ,

v
σ ,w]

n (σx). □
A polynomial f (x) is represented as

f (x)=
∑t
j=1 c jV

[u,v,w]

δj
(x) ∈ K[x], 0≤δ1<···<δt ,∀j : c j,0. (24)

Here we say that f (x) is t-sparse in the recurrence basis (with
parameters u,v,w). Suppose a black box of f (x) is given to return
the evaluation f (ω) for any ω ∈ K. By performing the substitution
in Fact 5.1, we have

д(y)=
(
y− 1

y

)
f
(y+ 1

y

v

)
=

∑t
j=1 c j ×(

u
v

(
yδj+1− 1

yδj +1

)
+w

(
yδj− 1

yδj

)
+

(u
v −1

) (
yδj−1− 1

yδj −1

))

def
=

∑τ
j=1 дj

(
yγj − 1

yγj

)
∈ K[y, 1y], дj , 0 for all j, (25)

where 1≤γ1<γ2<···<γτ and 2τ is the sparsity of the Laurent poly-
nomial д in the power basis with τ≤3t . By (25) the degrees satisfy
γτ=δt+1. Note that f (x)=д(z)/(z−

1
z) for z=(vx±(v

2x2−4)1/2)/2.
Now we present an algorithm to interpolate f (x) from the eval-

uations of the form
ai=−a−i=

(
ωi− 1

ω i

)
f
(ω i
+ω−i

v

)
∈K,ω∈K,ω,0, i=0, 1, 2, ... (26)

Let ρ j=ωγj , j=1, ...,τ , and deine the term locator polynomial Λ as
Λ(z)=

∏τ
j=1(z−ρ j) (z−

1
ρ j
)=z2τ+λ2τ−1 z

2τ−1
+···+λ0∈K[z]. (27)

Note that (27) is a reciprocal polynomial, that is λ0 = 1 and λj =
λ2τ−j . Similar to the fact stated before Lemma 4.1 in [1], we have
that the sequence of values (26) is linearly generated by the poly-
nomial Λ(z), but Λ is the minimal generator only if Λ is squarefree,
that is, if the term values are distinct. We can determine τ by early
termination as in [1, Section 4.2]. Let

αi = −α−i = д(y
i) =

(
yi − 1

yi

)
f
(yi+ 1

yi

v

)
∈ K

[
y, 1y

]
, i ∈ Z,

be the evaluations at powers of the variable y for the ωi . For the
evaluations αi , −2τ −1 ≤ i ≤ 2τ +1, we consider the square Hankel
matrix

H=



α−2τ−1 α−2τ . . . α−1 α0
α−2τ α−2τ+1 . . . α0 α1
.
.
.

.

.

.
...

.

.

.
.
.
.

α−1 α0 . . . α2τ−1 α2τ
α0 α1 · · · α2τ α2τ+1



(28)

∈ K
[
y,y−1

] (2τ+2)×(2τ+2)
. As in [1, Theorem 4.3.i], the square sub-

matrices in the right upper corner have the following guaranteed
non-singularities.
Theorem 5.2. Let Hi be the submatrix of H formed by the irst i
rows and the last i columns. Then det(Hi) , 0 for i = 2, 4, . . . , 2τ ,
and det(H2τ+1) = det(H2τ+2) = 0, whereH2τ+2 = H in (28).

Proof. The proof of Theorem 4.3.i in [1] is for a Laurent poly-
nomial ∑τ

j=1 дj
(
yδj + y−δj

)
∈ K

[
y,y−1

]
, дj , 0, (29)

which is [1, Eq. (16)] with τ = t and дj = c j/2. Part i of that
Theorem includes det(H2τ) , 0 for δ1 ≥ 1, which is a property of
the degrees γj of our terms in (25). The coeicients of our terms in
д(y) in (25) are negated for negative term degrees, which is the only
diference to (29). Since the proof of Theorem 4.3.i does not use any
relation between the coeicients other than they being non-zero
(the denominator 2 plays the role of v and could be divided into
the coeicient), Part i also holds for the polynomial (25) here.

The singularities ofH2τ+1 andH follow from the fact that the
polynomial

∏τ
j=1(z − y

γj)(z − y−γj) is a linear generator for the

ininite sequence αi and its coeicients yield a column relation for
2τ + 1 consecutive columns inH . □

Before recovering f (x) in sparse representation in the recurrence
basis, we present an early termination algorithm to interpolate the
Laurent polynomial д(y) = (y − 1/y) f ((y + 1/y)/v) in (25) from
the univariate black box polynomial f (x). Suppose ω is selected
randomly and uniformly from a suiciently large inite set of ield
elements S ⊆ K \ {0}. For k = 1, 2, 3, . . . we compute the two new
values ai = (ωi − ω−i) f ((ωi + ω−i)/v), i = 2k − 2, 2k − 1, and the
determinants of the (2k) × (2k) Hankel matrices

H2k =



−a2k−1 −a2k−2 . . . −a1 a0
−a2k−2 −a2k−3 . . . a0 a1
.
.
.

.

.

.
...

.

.

.
.
.
.

−a1 a0 . . . a2k−3 a2k−2
a0 a1 · · · a2k−2 a2k−1



, (30)

which with a−i = −ai are the determinants ofH2k in Theorem 5.2
for the evaluation y = ω.

We terminate the loop when det(H2k) = 0, which implies that
the number of terms in д(y) is 2k − 2 with high probability, i.e.,
τ = k − 1. Suppose now that k − 1 = τ . Then we get the minimal
linear generator Λ(z) in (27) by solving the following non-singular
linear system:

H2τ ·
[
λ0 λ1 . . . λ2τ−1

]Tr
= −

[
a1 a2 . . . a2τ

]Tr
. (31)

Note that because det(H2τ) , 0 implies Λ(z) in (27) must be square-
free (cf. Lemma 4.2 in [1]), and with λ1 = λ2τ−1, λ2 = λ2τ−2, . . .

the system (31) is overdetermined.
Next, we compute all 2τ distinct roots of Λ(z), which areωγj and

ω−γj for j = 1, . . . ,τ . Finally, we compute all the coeicients дj in
(25) by solving a (2τ) × (2τ) non-singular transposed Vandermonde
system (32) below. Again, the system (32) is overdetermined. For

[
ρi1 . . . ρ

i
τ ρ
−i
τ . . . ρ

−i
1

]
0≤i≤2τ−1

·
[
д1 . . .дτ −дτ . . .−д1

]Tr
=

[
a0 . . . a2τ−1

]Tr
. (32)

the given u,v , the coeicients c j of f (x) can be obtained by solving
a linear system obtained from (25). Given the recurrence basis

V
[u,v,w]
n (x), for given u,v,w , Algorithm 5.1 below recovers f (x) =
∑t
j=1 c jV

[u,v,w]

δj
(x) from the black box.

5.1. Algorithm Sparse Interpolation in a Given

Recurrence Basis With Early Termination

Input: ▶ f (x) ∈ K[x] input as a black box.
▶u,v,w : the recursive basis parameters for V [u,v,w]n (x).

Output: ▶ f (x) =
∑t
j=1 c jV

[u,v,w]

δj
(x), where c j , 0.

1. Pick a random element ω from a inite set S ⊆ K.
2. Determine the number of terms of д(y).
For i = 1, 2, 3, . . . do
2a. Get the evaluations ai = (ω −

1
ω)f (

ω i
+ω−i

v) from the black
box of f (x), and then construct the Hankel matrix H2k from
a1, . . . ,a2k−1.

2b. Check whether H2k is singular. If det(H2k) = 0, and then break
out of the loop.

3. Find the minimal linear generator Λ(z) by solving the system (31).
4. Compute the roots ρ j of Λ(z), and recover the exponents γj of д(y).

5. Obtain the coeicients дj of д(y) by solving the transposed Vander-
monde system (32).

6. Compute the coeicients c j of f (x) from (25).

6. COMPUTING SPARSEST REPRESENTATION

Given a recursive basis V [u,v,w]n (x) (22), the representation of f (x)

in this given basis V [u,v,w]n (x) is unique. However, diferent recur-
sive bases, i.e., diferent u,v,w might change the sparsities of the
corresponding representations. For instance,

f (x)= 1
2V
[2,2]
99
=V
[1,2]
1
(x)+V

[1,2]
3
(x)+···+V

[1,2]
97
(x)+V

[1,2]
99
(x). (33)

(note that we write V [u,v]n
def
= V
[u,v,0]
n). Therefore, the sparsity of

the representation of f (x) depends on the selected u,v,w of the
recursive basis.

In this section, we focus on the choice of the recursive basis
such that the representation of f (x) is sparsest, namely, on how
to compute u,v,w such that the number of non-zero terms t is
minimized in (24). Given a black box of f (x), we irst discuss how
to recover the Laurent polynomial д(y) in (25) such that the sparsity
is optimized over the control variable v , 0; since the sparsity of
(25) is only dependent on the ratio u/v , one may set u = 1. Let
д[v](y) = (y − 1/y)f ((y + 1/y)/v). The sparsity of д[v](y) is clearly
dependent on the choice of v . For example, if we construct the

Laurent polynomials д[v](y) from f (x) = 1
2V
[1,2]
99
(x) by selecting

two diferent v = 1, 2, that is,
д[1](y) = (y − 1

y)f (y +
1
y) =

∑50
j=1д2i (y

2i − y−2i), д2i , 0,

д[2](y) = (y − 1
y)f (

y+ 1
y

2) =
1
2y

100 − 1
2y
−100.

It is easy to see that д[1](y) has 100 non-zero terms, whereas д[2](y)
has 2 non-zero terms.

In this paper, we also strive to minimize the number of evalu-
ations to interpolate f (x). To that end, we determine v such that
the number of the non-zero terms in д[v,w](y) is minimized. Gies-
brecht, Kaltofen and Lee [8] introduces the fraction-free Berlekamp/
Massey algorithm for computing the sparsest shifts of a given poly-
nomial. This method can be easily adapted for tackling the problem
of computing v such that д[v](y) is sparsest. We now describe a
probabilistic algorithm, given in [8], for recovering the sparsest
Laurent polynomial д[v](y) by the combination of the fraction-free
Berlekamp/Massey algorithm with a GCD procedure. Let v be an
indeterminate, and choose distinct random values p,q ∈ S ⊆ K. At
irst two sequences αi and βi are constructed as following:

αi = д
[1v](pi) = (pi − 1

pi
)f (v pi + v

pi
) ∈ K[v],

βi = д
[1v](qi) = (qi − 1

qi
)f (v qi + v

qi
) ∈ K[v].

For i = 1, 2, . . ., the discrepancies ∆i (p) ∈ K[v] and ∆i (q) ∈ K[v]

are obtained by performing the fraction-free Berlekamp/Massey
algorithm on the sequences: αi and βi . We terminate the loop when
Γ = gcd(∆i (p),∆i (q)) has a non-zero root ζ in K, the algebraic
closure of K. In addition, the fraction-free Berlekamp/Massey al-
gorithm yields the corresponding minimal generators of (αi)i≥0
and (βi)i≥0. In the end, we obtain a sparsest Laurent polynomial
д[v

∗](y), with v∗ = 1/ζ by performing Steps 4 and 5 in Algo-
rithm 5.1. The probabilistic analysis can be found in [8].

Given a black box of f (x), the above method can be applied to
obtainv∗ and the sparsest Laurent polynomialд[v

∗](y) = (y−1/y) ×
f ((y + 1/y)/v∗). The sparseness of д[v

∗](y) is by Fact 5.1 no more
than 6 times the sparsity for the optimal u,v,w values. Note that

by (23) the representation of f in the recurrence basis with with
u = v∗ and w = 0 basis has sparsity twice the sparsity of д[v

∗](y)

in standard power basis.
Example 6.1. Consider the polynomial f (x) = 16x5 − 16x3 + 3x ,
and two representations of f (x) in two diferent orthogonal bases:

f (x) = R1(x) = −102V
[− 1

2 ,1]
1 (x) − 32V

[− 1
2 ,1]

5 (x),

f (x) = R2(x) =
1
16 V

[4,2]
1 (x) − 1

8 V
[4,2]
3 (x) + 1

4 V
[4,2]
5 (x).

For the basesV [−
1
2 ,1](x) andV [4,2](x), we can get the corresponding

Laurent polynomials:
д[1](y)=

(
y− 1

y

)
f
(
y+ 1

y

)
=16

(
y6− 1

y6

)
+48

(
y4− 1

y4

)
+51

(
y2− 1

y2

)
,

д[2](y)=
(
y− 1

y

)
f
(y+ 1

y

2

)
=
1
2

(
y6− 1

y6

)
. (34)

One can see that the representation R1(x) is sparser than the repre-
sentation R2(x), even though д[1](y) has more terms by comparison
with д[2](y). Of course, by (34) we must have f (x) = U5(x)/2. □

We do not know an example of a polynomial f where the spar-
sities in recurrence bases with parameters u,v∗,w , where v∗ , 0
minimizes the sparsity of д[v

∗](y) (25), are larger for all u , 0 and
w than the minimal sparsity that is achieved by a recurrence basis
with parameters u ′,v ′,w ′, u ′ , 0, v ′ , 0 and v∗ , v ′. One may
compute optimal u ′,v ′,w ′ ∈ K, where K is the algebraic closure
of the ield K, in time that is polynomial in deg(f). The algebraic
elementsu ′,v ′,w ′ are represented in terms of the roots of a polyno-
mial. One computes the coeicients c j (u,v,w) in (24) for symbolic

u,v,w . Because the leading coeicient of V [u,v,w]
δ

is equal uvδ−1,
the denominator of the rational function c j (u,v,w) is a power-term

in u,v . We now seek a point (u ′,v ′,w ′) ∈ K
3
that is a zero of a

maximum number of the numerator polynomials of c j (u,v,w). The
arising polynomial root inding problem is solvable in polynomial-
time in deg(f). For example, the 0- and 2-dimensional components
that zero a maximal number of coeicients are computed via a GCD-
free basis computation [3, 13] of the numerator polynomials. Those
common factors that occur most often constitute those components.
We will analyze the actual complexity of zeroing a maximum num-
ber of polynomials in an inconsistent polynomial system elsewhere.
The deining equations for the algebraic extensions can be factored
lazily by GCDs rather than polynomial factorization (cf. [12]).

Some special cases can be treated by linear algebra. We now
present a theorem to show the feasibility of how to select for a
given v and w = 0 a suitable u in the recurrence basis (22) such
that f (x) has the sparsest representation, i.e., how to determine
u ∈ K,u , 0 for a ixed v ∈ K,v , 0 such that the representation of

f (x) in the basis V [u,v]n (x) = V
[u,v,0]
n (x) is the sparsest.

Theorem 6.1. Let f (x) =
∑d
j=0 fjx

j ∈ K[x] with d = deg(f) ≥ 2,
where K is a ield, and letv ∈ K,v , 0. For i with 0 ≤ i ≤ d −2 deine

Si
def
= {u ∈ K | f (x) =

∑d
j=0 c jV

[u,v]
j (x) with ci = 0}. (35)

i. If d − i ≥ 2 is even, then |Si | ≤ (d − i)/2.

ii. If d − i ≥ 3 is odd and ∃k, 1 ≤ k ≤ ⌊(d − i)/2⌋ : fi+2k , 0, then
|Si | ≤ ⌊(d − i)/2⌋.

Proof. We irst prove Part i. Let д(y) = (y − 1
y)f (

y+ 1
y

v) ∈ K(y).
By (25) and we can see that д(y) is of the form

д(y) =
∑d+1
j=1 дj (y

j − y−j), (36)
where дj ∈ K for j = 1, . . . ,d + 1, and дd+1 , 0. Let u, c0, . . . , cd be

parameters, and suppose p(x ,u, c0, . . . , cd) =
∑d
j=0 c jV

[u,v]
j (x). We

have from Fact 5.1 that (37) below holds. According to the deinition

(y − 1
y)p(

y+ 1
y

v ,u, c0, . . . , cd) = cd
u
v (y

d+1 − y−d−1) +

cd−1
u
v (y

d − y−d) +
(∑d−2

j=1

(
c j

u
v + c j+2 (

u
v − 1)

)
(y j+1 − y−j−1)

)

+ c2(
u
v − 1) (y − y

−1) + c0(y − y
−1). (37)

(35) of Si , we need ind u, c0, . . . , cu ∈ K that satisfy ci = 0, and the
following equation

д(y) − (y − 1
y) p(

y+ 1
y

v ,u, c0, . . . , cd) = 0. (38)
Since ci = 0 andd−i is even, herewe can get the following equations
by selecting the coeicients of (38) corresponding to yi+1, yi+3,
. . . , yd−1, yd+1:
(uv − 1)ci+2 − дi+1 = 0, (uv − 1)ci+4 +

u
v ci+2 − дi+3 = 0, . . . ,

(uv − 1) cd +
u
v cd−2 − дd−1 = 0, uv cd − дd+1 = 0,

whose matrix form is (39) below. The entries of Ξ[i] in (39) are:

Ξ
[i] ·

[
ci+2 ci+4...cd−2 cd

]Tr
=

[
дi+1 дi+3...дd−1 дd+1

]Tr
. (39)

ξ
[i]
µ,ν=u/v−1 if µ = ν , ξ

[i]
µ,ν=u/v if µ = ν+1 and 0 else. The dimension

of Ξ[i] in (39) is (d−i2 + 1) ×
d−i
2 .

In the following, two cases will be discussed:дi+1 = 0 andдi+1,0.
We irst consider the irst case: дi+1 = 0. We shall investigate the
structure of (39). It is easy to check that the above overdetermined
linear system is consistent if u = v , that implies v ∈ Si . Now
let us consider u,v . The above linear system (39), removing the
last equation consists of a square bidiagonal linear system, whose
unique solution is expressed as ci+2 = 0, ci+4 = дi+3/(

u
v − 1), and

so on. Finally, cd must be of the form cd = q1(u)/(
u
v − 1)

l , where

l = d−i
2 − 1 with q1(u) ∈ K[u] and deg(q1) ≤ l − 1. Furthermore cd

must satisfy the last equation in (39), that is,

ψ1(u)
def
= дd+1

(u
v − 1

)l
− u

v q1(u) = 0. (40)
Since дd+1,0,ψ1(0),0 and thereforeψ1(u) is a nonzero polynomial
in K[u], and deg(ψ1(u)) ≤ l . Therefore, for Si we have the subset
relation

Si ⊆ {v} ∪ {ū | ψ1(ū) = 0,ψ1 ∈ K[u],ψ1,0,

with deg(ψ1(u)) ≤ (d − i)/2 − 1}, (41)

which implies that |Si | ≤
d−i
2 .

Next, we consider the other case: дi+1,0. A necessary condition
that the linear system (39) is consistent isu,v , by the irst row. Simi-
larly, one can obtain ci+2=дi+1/

(u
v −1

)
, ci+4=

(
(дi+3−дi−1)

u
v −дi+3

)
/

(uv −1)
2, and so on. Finally, cd is of the form cd=q2(u)/(

u
v −1)

l+1,
where q2(u)∈K[u] with deg(q2(u))≤l . By substituting the solution

of cd into the last equation of (39), we haveψ2(u)
def
= дd+1(

u
v −1)

l+1−
u
v q2(u)=0. Likewise, for Si we have the subset relation

Si ⊆ {ū | ψ2(ū) = 0, withψ2(u) , 0, deg(ψ2(u)) ≤
d−i
2 }, (42)

which implies that |Si |≤
d−i
2 .

Because of space constraints, we omit the proof of Part ii. □

Given a polynomial f (x)=
∑d
j=0 fjx

j , and i chosen from Part i

or Part ii of Theorem 6.1, one is able to compute all u ∈ K such

that f (x)=
∑d
j=0 c jV

[u,v]
j (x) with ci=0. The second-highest term

coeicient cd−1/constant coeicient c0 is zero/non-zero if and only
if дd /д1 in (36) is zero/non-zero, independently of the choice of
u,v (see (37)). The minimal polynomials for the candidate algebraic
number ū from (41, 42) need not be factored and lazy factorization

can be applied (cf. [12]). For each u one can count the number of
zero coeicients in (24) and select those with smallest sparsity.

ACKNOWLEDGMENTS

Supported in part byNSFGrants CCF-1421128 and 1717100 (Imamoglu
andKaltofen), and byChinaNational Nat. Sci. Found. Grant 61772203
and Shanghai Nat. Sci. Found. Grant 17ZR1408300 (Yang).

REFERENCES
[1] AndrewArnold and Erich L. Kaltofen. 2015. Error-Correcting Sparse Interpolation

in the Chebyshev Basis. In ISSAC’15 Proc. 2015 ACM Internat. Symp. Symbolic
Algebraic Comput. ACM, New York, N. Y., 21ś28. URL: EKbib/15/ArKa15.pdf.

[2] M. Ben-Or and P. Tiwari. 1988. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proc. Twentieth Annual ACM Symp. Theory Comput.
ACM Press, New York, N.Y., 301ś309.

[3] Daniel J. Bernstein. 2005. Factoring into coprimes in essentially linear time. J.
Algorithms 54, 1 (2005), 1ś30. https://doi.org/10.1016/j.jalgor.2004.04.009

[4] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. 1980. Fast solution of Toeplitz
systems of equations and computation of Padé approximants. J. Algorithms 1
(1980), 259ś295.

[5] C. Brezinski. 1991. History of Continued Fractions and Padé Approximants. Springer
Verlag, Heidelberg, Germany.

[6] T. F. Chan and P. C. Hansen. 1992. A look-ahead Levinson algorithm for general
Toeplitz systems. IEEE Transactions on Signal Processing 40, 5 (May 1992), 1079ś
1090. https://doi.org/10.1109/78.134471

[7] S. Garg and É. Schost. 2009. Interpolation of polynomials given by straight-line
programs. Theoretical Computer Science 410, 27-29 (2009), 2659ś2662.

[8] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee. 2003. Algorithms for Com-
puting Sparsest Shifts of Polynomials in Power, Chebychev, and Pochhammer
Bases. J. Symb. Comput. 36, 3ś4 (2003), 401ś424. URL: EKbib/03/GKL03.pdf.

[9] Mark Giesbrecht, George Labahn, and Wen-shin Lee. 2004. Symbolic-Numeric
Sparse Polynomial Interpolation in Chebyshev Basis and Trigonometric Interpo-
lation. In Proc. Workshop on Computer Algebra in Scientiic Computation (CASC).
195ś205. https://cs.uwaterloo.ca/~mwg/iles/triginterp.pdf.

[10] Mark Giesbrecht, George Labahn, and Wen-shin Lee. 2006. Symbolic-numeric
sparse interpolation of multivariate polynomials. In ISSAC MMVI Proc. 2006
Internat. Symp. Symbolic Algebraic Comput., Jean-Guillaume Dumas (Ed.). ACM
Press, New York, N. Y., 116ś123. https://doi.org/10.1145/1145768.1145792

[11] E. Imamoglu and E. L. Kaltofen. 2018. On Computing The Degree Of A Chebyshev
Polynomial From Its Value. Manuscript. (May 2018). 10 pages.

[12] E. Kaltofen. 1985. Fast parallel absolute irreducibility testing. J. Symb. Comput. 1,
1 (1985), 57ś67. Misprint corrections: J. Symbolic Comput. vol. 9, p. 320 (1989).
URL: EKbib/85/Ka85_jsc.pdf.

[13] E. Kaltofen. 1985. Sparse Hensel lifting. In EUROCAL 85 European Conf. Comput.
Algebra Proc. Vol. 2 (Lect. Notes Comput. Sci.), B. F. Caviness (Ed.). Springer Verlag,
Heidelberg, Germany, 4ś17.

[14] E. Kaltofen. 1994. Asymptotically fast solution of Toeplitz-like singular linear
systems. In Proc. 1994 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’94).
ACM Press, New York, N. Y., 297ś304. Journal version in [15]. URL: EKbib/94/
Ka94_issac.pdf.

[15] E. Kaltofen. 1995. Analysis of Coppersmith’s block Wiedemann algorithm for the
parallel solution of sparse linear systems. Math. Comput. 64, 210 (1995), 777ś806.
URL: EKbib/95/Ka95_mathcomp.pdf.

[16] Erich L. Kaltofen. 2010. Fifteen years after DSC and WLSS2 What parallel
computations I do today [Invited Lecture at PASCO 2010]. In PASCO’10 Proc. 2010
Internat. Workshop on Parallel Symbolic Comput., M. Moreno Maza and Jean-Louis
Roch (Eds.). ACM, New York, N. Y., 10ś17. URL: EKbib/10/Ka10_pasco.pdf.

[17] E. Kaltofen and Lakshman Yagati. 1988. Improved sparse multivariate polynomial
interpolation algorithms. In Symbolic Algebraic Comput. Internat. Symp. ISSAC
’88 Proc. (Lect. Notes Comput. Sci.), P. Gianni (Ed.), Vol. 358. Springer Verlag,
Heidelberg, Germany, 467ś474. URL: EKbib/88/KaLa88.pdf.

[18] Erich Kaltofen andWen-shin Lee. 2003. Early Termination in Sparse Interpolation
Algorithms. J. Symb. Comput. 36, 3ś4 (2003), 365ś400. URL: EKbib/03/KL03.pdf.

[19] Lakshman Y. N. and B. D. Saunders. 1995. Sparse polynomial interpolation in
non-standard bases. SIAM J. Comput. 24, 2 (1995), 387ś397.

[20] C. P. Pohlig and M. E. Hellman. 1978. An improved algorithm for computing
logarithms over GF(p) and its cryptographic signiicance. IEEE Trans. Inf. Theory
it-24 (1978), 106ś110.

[21] D. Potts and M. Tasche. 2014. Sparse polynomial interpolation in Chebyshev
bases. Linear Algebra and Applic. 441 (2014), 61ś87.

[22] R. Prony. III (1795). Essai expérimental et analytique sur les lois de la Dilatabilité
de luides élastiques et sur celles de la Force expansive de la vapeur de l’eau et
de la vapeur de l’alkool, à diférentes températures. J. de l’École Polytechnique 1
(Floréal et Prairial III (1795)), 24ś76.

[23] Ali H. Sayed and Thomas Kailath. 1995. A Look-Ahead Block Schur Algorithm
for Toeplitz-Like Matrices. SIAM J. Matrix Anal. Appl. 16, 2 (1995), 388ś414.

	Abstract
	1 Introduction
	2 Chebyshev-1 Basis With Sparsity Known on Input
	2.1 Algorithm Sparse Chebyshev-1 toInterpolation

	3 Chebyshev-2 Basis With Sparsity Known on Input
	4 Deterministic Early Termination With a Sparsity Bound
	4.1 Algorithm Chebyshev-1 Term Locator Polynomial

	5 Sparse Interpolation with Parameterized Recursive Bases
	5.1 Algorithm Sparse Interpolation in a Given Recurrence Basis With Early Termination

	6 Computing Sparsest toRepresentation
	Acknowledgments
	References

