Enabling Query Processing across Heterogeneous Data Models: A Survey

Ran Tan, Rada Chirkova
Department of Computer Science
North Carolina State University

Raleigh, North Carolina

Email: rtan2 @ncsu.edu, rychirko@ncsu.edu

Abstract—Modern applications often need to manage and
analyze widely diverse datasets that span multiple data models
[1], [2], [3], [4], [S]. Warehousing the data through Extract-
Transform-Load (ETL) processes can be expensive in such
scenarios. Transforming disparate data into a single data
model may degrade performance. Further, curating diverse
datasets and maintaining the pipeline can prove to be labor
intensive. As a result, an emerging trend is to shift the
focus to federating specialized data stores and enabling query
processing across heterogeneous data models [6]. This shift can
bring many advantages: First, systems can natively leverage
multiple data models, which can translate to maximizing the
semantic expressiveness of underlying interfaces and leveraging
the internal processing capabilities of component data stores.
Second, federated architectures support query-specific data
integration with just-in-time transformation and migration,
which has the potential to significantly reduce the operational
complexity and overhead. Projects that focus on developing
systems in this research area stem from various backgrounds
and address diverse concerns, which could make it difficult to
form a consistent view of the work in this area. In this survey,
we introduce a taxonomy for describing the state of the art and
propose a systematic evaluation framework conducive to un-
derstanding of query-processing characteristics in the relevant
systems. We use the framework to assess four representative
implementations: BigDAWG [7], [8], CloudMdsQL [9], [10],
Myria [11], [12], and Apache Drill [13].

Keywords-Cross-model query processing; Query-specific data
integration; Taxonomy; Evaluation framework

I. INTRODUCTION

Modern applications often need to manage and analyze
widely diverse datasets that span multiple data models.
In medical informatics [1], [2], health professionals serve
patients admitted to intensive-care units using data expressed
as structured demographics, semi-structured laboratory and
microbiology test results, discharge summaries, radiology,
cardiology reports in text formats, and vital signs and other
data in time-series format. In oceanographic metagenomics
[3], biologists detect relationships between cyanobacteria
communities and environmental parameters via integrating
genome sequences, structured sensor and sample metadata,
cruise reports in text formats, and streaming data gener-
ated by flow-cytometer systems. In intelligent transportation
management [4], administrators analyze open traffic data
presented in RDF (Resource Description Framework), city

Vijay Gadepally
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts
Email: vijayg @Il.mit.edu

Timothy G. Mattson
Intel Corporation
Portland, Oregon
Email: timothy.g.mattson@intel.com

events expressed as JSON (JavaScript Object Notation)
documents, social-media data recorded via key-value pairs,
and weather feeds stored in relational tuples to predict traffic
flows. Finally, in data journalism [5], journalists work with
Tweet texts, relational databases provided by governments
and institutions, and RDF-formatted Linked Open Data to
support content management for writing political articles.

In these and other scenarios, warehousing the data using
Extract-Transform-Load (ETL) processes can be very expen-
sive. First, transforming disparate data into a single chosen
data model may degrade performance. Indeed, there appears
to be no “one size fits all” solution for all markets [14],
[15], as specialized models and architectures enjoy over-
whelming advantages in data warehousing, text searching,
stream processing, and scientific databases. Second, curating
diverse datasets and maintaining the pipeline could turn out
to be labor intensive [16]. One major reason is that rules
and functions in ETL scripts do not adapt to changes in
data and analytical requirements, and changes in application
logic often result in the modification of ETL scripts.

For these and other reasons, a number of projects are
shifting the focus to federating specialized data stores and
enabling query processing across heterogeneous data mod-
els [6]. This shift can bring many advantages. First, the
systems can build natively on multiple data models, which
can translate to maximizing the semantic expressiveness of
underlying interfaces and to leveraging the internal process-
ing capabilities of each data store. Typical tasks can be
expressed natively in a variety of algebras, such as relational,
linear, and graph algebra, and be executed economically on
a variety of specialized data stores optimized for different
workloads. Second, federated architectures support query-
specific data integration with just-in-time transformation and
migration, which has the potential to significantly reduce the
operational complexity and overhead. Data transformations
across data models and data migration between data stores
can be explicitly expressed via queries and automatically
handled by the system, bridging the gap between data
preparation and data analysis.

Projects that focus on developing systems in this re-
search area stem from various backgrounds and address
diverse concerns, which can make it difficult to form a

consistent view of the work in the area. Some of the
projects concentrate on the issues of semantic mapping
and record linkage; some define operators over multiple
data models and focus on multi-model query planning and
optimization; others emphasize data-flow optimization and
multi-platform scheduling. Such diverse perspectives and
viewpoints add to the complexity of understanding the
field, and might even cause unnecessary miscommunication
between research groups. Therefore, it would be beneficial to
have a taxonomy of the field that would contribute to clear
definitions of the key terms. We could then build on the
taxonomy by specifying an evaluation framework focused
on the query-processing characteristics of each design.

This paper makes the following specific contributions:

o We introduce a taxonomy that categorizes state-of-the-
art solutions in federated database systems, polyglot
systems, multistore systems, and polystore systems;

o To understand the query-processing characteristics of
each design, we propose an evaluation framework in-
corporating the axes of heterogeneity, autonomy, trans-
parency, flexibility, and optimality;

« We survey current efforts in the integration of disparate
data, and provide an analysis of query-processing char-
acteristics for four representative systems; and, finally,

o We discuss major challenges and future directions in
query processing across heterogeneous data models.

II. TAXONOMY

Systems federating specialized data stores and enabling
query processing across heterogeneous data models can be
characterized by the data stores and query interfaces that
they support. We introduce a taxonomy that builds on this
observation and groups state-of-the-art solutions into four
categories, defined as follows:

o A federated database system comprises a collection of
homogeneous data stores and features a single standard
query interface.

o A polyglot system hosts data using a collection of
homogeneous data stores and exposes multiple query
interfaces to the users.

o A multistore system is able to manage data across
heterogeneous data stores, while supporting a single
query interface.

o A polystore system enables query processing across
heterogeneous data stores and supports multiple query
interfaces.

A. Federated Database Systems

Federated database systems have been extensively studied
by the data-research community since the 1980s. Such
systems often feature a mediator-wrapper architecture, and
employ schema-mapping and entity-merging techniques for
integration of relational data. A representative system called
Multibase [17] defines a global schema, a mapping language,

and a mechanized local-to-host translator. Users pose queries
against the global schema, which are then mapped to the
local schemata and an integration schema; the translator
translates the decomposed queries into native queries. Over
the years, semantic heterogeneity has remained a challenge
for federated database systems, as well as for other systems
employing the federated architecture.

B. Polyglot Systems

Polyglot systems are designed to take advantage of the
semantic expressiveness of multiple interfaces. It is largely
driven by the need to manage complex data flows in dis-
tributed file systems, where data pipes need to be expressed
in both declarative queries and procedural algorithms. As
an example, Spark SQL [18] provides a DataFrame API,
which allows users to access data in the relational and
procedural modes. Spark SQL supports SQL statements, and
passes operations to a relational optimizer named Catalyst
to achieve high performance. This integration of relational
and procedural APIs makes Spark SQL an excellent tool
for complex analytics. An advantage of polyglot systems is
that different query interfaces might provide compensating
expressiveness and could greatly simplify query formulation.

C. Multistore Systems

Multistore systems have been proposed to address the
challenge of querying large-scale collections of heteroge-
neous data stores. Such systems are designed to address
various concerns, and can thus be categorized into sev-
eral groups. One of the directions, with systems including
HadoopDB [19], Polybase [20], and JEN [21], focuses on
integrating distributed file systems with relational database
systems. HadoopDB extends HIVE [22] to push-down oper-
ations into multiple single-node DBMS instances connected
through a MapReduce layer. Polybase comprises a data
warehouse and HDFS with a common parser, and translates
SQL operators into MapReduce jobs for data in HDFS. JEN
leverages a sophisticated execution engine to do most data
processing on the HDFS side. Another group of solutions
integrates a variety of NoSQL databases with relational
databases, as exemplified by Biglntegator [23], Forward
[24], and D4M [25]. In this collection, Biglntegrator al-
lows querying data stored both in relational databases and
in various cloud-based data stores, by using a subset of
SQL named GQL. Forward employs a JSON-based data
model, while D4M employs the associative-array data model
to enable querying NoSQL data stores. Systems focusing
on dealing with data placement in the multistore setting,
including ESTOCADA [4], Odyssey [26], and MISO [27],
use materialized views to optimize data placement across
data stores for query performance. Systems that adopt the
semantic approach and use ontologies to mediate relational
and non-relational data sources, including TATOOINE [5]
and OPTIQUE [28], provide a unified querying layer over

multiple data stores, by adopting ontologies and applying
schema-mapping and entity-resolution techniques.

D. Polystore Systems

A polystore system combines the advantages of the poly-
glot and multistore sytems: Users can choose from a variety
of query interfaces to seamlessly query data residing in
multiple data stores. Among polystore systems, BigDAWG
[7], CloudMdsQL [10], Myria [11], and Apache Drill [13]
focus primarily on query answering, while QoX [29], Mus-
keteer [30], and Rheem [31] concentrate on multi-platform
data-flow scheduling and analytics. AWESOME [32] takes
a different perspective, by focusing on challenges in data
ingestion and derivation with heterogeneous data stores.

The above taxonomy can serve as a high-level tool for
identifying and classifying systems based on the descriptive
feature of heterogeneity in data stores and query interfaces.
In practice, different systems are designed with differ-
ent emphases on the choice of computational models and
languages, execution engines, and data-store technologies.
To provide a better understanding of the query-processing
characteristics of each individual system, we have developed
a finer-grained evaluation framework, which we present in
the next section.

III. THE EVALUATION FRAMEWORK

While several attempts have been made to address data-
store federation and query processing across heterogeneous
data models, to the best of our knowledge, there is no
consensus on an evaluation framework that would provide
context and serve as a reference. We propose to fill the
gap with a framework that could help researchers navigate
the design choices in information-integration systems. The
proposed framework, inspired by the work [33] on federated
database-management systems, consists of five dimensions
— heterogeneity, autonomy, transparency, flexibility, and op-
timality, as detailed below.

A. Heterogeneity

In data-integration systems, the design intent is threefold:
Seamless access to and management of the data in the
underlying data stores, leverage of the internal process-
ing capabilities of the component processing engines, and
minimal loss of expressiveness of the underlying query
interfaces. Accordingly, heterogeneity can be measured in
three directions:

1) Data-Store Heterogeneity: Data stores with different
modeling techniques and physical architectures are good
fits for different workloads: In data-warehousing workloads,
well-tuned column stores hold an order-of-magnitude ad-
vantage compared to traditional row stores, while in text
searching and retrieval, key-value stores can perform many
times better than RDBMS.

2) Processing-Engine Heterogeneity: Processing-engine
heterogeneity reflects the processing capabilities of inte-
gration systems. Processing engines modeled around ar-
rays, graphs, and dictionaries often complement relational
database engines in the specialized functionalities. A pro-
cessing engine modeled on relations, arrays, and graphs
can handle complex linear-algebra operations and pattern-
matching tasks better than traditional relational database
engines.

3) Query-Interface Heterogeneity: Adoption of different
data models in query engines indicates applicability of
various formal algebras, each promising different expressive
capabilities, with each interface providing its own seman-
tic context. A system providing both the relational and
array interfaces would enable the users to express simple
linear-algebra operations on relational data. Query-interface
heterogeneity reflects the semantic expressiveness of such
integration systems.

B. Autonomy

In practice, data sharing often takes place under regu-
lations and constraints. In many cases, disparate databases
are integrated in the form of a conceptualized federation,
where a certain level of autonomy applies to each component
database-management system.

1) Association Autonomy: A database-management sys-
tem may decide when to associate and disassociate itself
from the federation. The integration system should be able to
adjust to the dynamic environment, with individual databases
joining and leaving the federation over time.

2) Execution Autonomy: Component database-
management systems may continue supporting native
applications while participating in a federation. Thus, native
queries can be executed without interference from the
integration system. When native and integration queries
compete for resources, the component database-management
systems decide on the relative execution priorities.

3) Evolution Autonomy: Each component database may
continue to evolve in its own business models and schemata.
The integration system is required to adapt to the changes
and to stay operational during the evolution.

C. Transparency

Systems can achieve query-specific integration with just-
in-time transformation and migration, by providing a consis-
tent programming model and user-friendly query interface.
Integration across heterogeneous data models would be a
labor-intensive activity in case one has to work around
the details of storage and data layout, instead of having
transparent access to data.

1) Location Transparency: Distributed and parallel
databases often partition and replicate data sets among
multiple nodes. A data set might also span multiple storage
engines with different data models. Providing transparent

access to distributed data sets is a nontrivial problem. Proper
abstractions, such as treating data sets as variables and
referencing them with variable names, help hide location
details.

2) Transformation Transparency: Data transformations
between data models and migration between heterogeneous
database engines are unavoidable in integration. During a
transformation, a transparent system would actively infer and
map data types, and also adjust data structures, by, e.g., flat-
tening a nested data structure to fit a table. This way, users
can focus on logical-level transformations without having to
worry about the details of data types and structures.

D. Flexibility

The popularity of Hadoop-style ecosystems largely relies
on their flexibility in handling various analytical tasks [34].
Instead of providing a single data model and programming
model, Hadoop develops a stack of systems that helps man-
age data in arbitrary formats and supports flexible workflows
and user-defined functions.

1) Schema Flexibility: Traditional database-management
systems require pre-processing and cleansing of raw data
before ingestion. This process can be automated with user-
defined schemata and dynamic schema discovery. Minor
changes in formats and semantics can be automatically
detected and transformed.

2) Interface Flexibility: Query interfaces are often de-
signed around fixed algebras. Such designs naturally limit
the expressiveness of the query interface. Allowing user-
defined functions and extensibility via embedded queries
and constrained imperative programmability results in more
flexibility in expressing complex tasks.

3) Architectural Flexibility: Modularized architectures
with extensibility to external query interfaces, query opti-
mizers, back-end engines, and other functionalities would
make the systems customizable to a wide range of scenarios.

E. Optimality

Query processing across heterogeneous data models of-
fers rich opportunities for optimization. The participating
database engines each suit best different workloads. Opti-
mizing data placement and generating federated query plans
could result in significant performance improvements.

1) Federated Plan Optimization: Federated query plans
can be executed by pushing subqueries down to specialized
data stores. With cross-model query equivalence and con-
tainment, the optimizer could transform data and migrate
them across data stores to achieve better performance. When
the complexity of the analytical task outweighs the transfer
cost, notable performance improvements are possible.

2) Data-Placement Optimization: Proper placement of
data across a collection of heterogeneous data stores could
take advantage of each processing engine while saving on
transfer time. Various rule-based and cost-based methods can
be applied to data-placement optimization.

query BigDAWG Query Engine result

. 1 :
compile Relational Stream Text A
ey lsland AT Island g Island ! integrate
1
scop_ed shim shim shim shim shim shim scoped
queries data
evaluate $ transform
ad | - - |
optimize Y ‘ — ‘_.- ' migrate
execution - cas cast cast - original
lan data
P RDBMS Array Stream Key-value
DBMS DBMS store
Figure 1. The BigDAWG architecture, adapted from [7].

RELATIONAL (SELECT «
FROM R, CAST (A, relation)
WHERE R.v = A.V);

Figure 2. BigDAWG example queries [7].

IV. IMPLEMENTATIONS

Due to the page limit, we focus here only on those poly-
store systems whose design and development emphasize ad-
dressing query-processing and query-answering challenges,
toward fulfilling the promise of enabling effective query
processing across heterogeneous data models. The selection
of system is representative to the best of our ability.

A. BigDAWG

1) Overview: BigDAWG [7], [8] introduces information
islands as an abstraction layer. Each island specifies a data
model and its logical structure, a query language or algebra
for that data model, and one or more back-end engines for
data storage and query execution.

Users pose queries in the scope of a specified information
island. The query will then be decomposed and mapped
into native subqueries that can be executed by database
engines connected to the island. When an analytical task
cannot be easily expressed in a single island’s semantics, the
users need to specify multiple island languages with SCOPE
operators. Often, a CAST operator is used to change the
semantic context in a cross-island query. Heterogeneous
database engines are supported by connecting to one or more
information island via wrappers called shims.

2) BigDAWG Query Processing: The BigDAWG middle-
ware consists of four modules [8]: the query-planning mod-
ule (planner/optimizer) [35], the performance-monitoring
module (monitor) [36], the data-migration module (migra-
tor) [37], and the query-execution module (executor) [38].
These four modules collaborate to support cross-data-model
queries. When BigDAWG receives an incoming query, the
planner parses the query to generate an ordered list of viable
query-plan trees, with possible engines for each collection of
data objects. The monitor then applies existing performance
information to each query-plan tree, to determine the best
engine for each query-execution tree. The query-plan tree

Complete plan
Optimizer Executor
Original | | Perf. Experim. Data Transfer
Query Info Request
Monitor Migrator
Perf. Info
Figure 3. BigDAWG query processing [8].
query Distributed CloudMdsQL Query Engine ¢ result
rewrite : e A ettt st Sttt ! $ return
and Java , and
assign V¥ JDEC drivers Wrapper Wrapper 1 integrate
) AREEENS T T T s table
sub-queries python Spark rlepresentation
1 . '
finalize i s : > : : transform
i ' !
native \ - ; native
e o -
RDBMS MongoDB Sparksee HDFS results
graph DB

Figure 4. The CloudMdsQL architecture, adopted from [9].

is then passed to the executor for best join policies. The
migrator moves data across database engines as needed.

B. CloudMdsQL

1) Overview: CloudMdsQL is a scalable SQL query
engine with extended capabilities for seamless querying of
heterogeneous non-relational database engines. The query
language is SQL based, with embedded functional sub-
queries written in the native query languages of the underly-
ing database engines. The query engine is fully distributed
and collocated at the node for each database engine in a
cloud environment; this enables direct communication across
compute nodes in the exchange of query plans and data.
CloudMdsQL also employs transparent wrappers on the
query interface of each database engine, as well as a table-
based common data model for storing intermediate results
and exchanging data.

2) CloudMdsQL Query Processing: Each query is first
processed by the compiler to generate an Abstract Syntax
Tree (AST), which corresponds to the syntax clauses in the
query. CloudMdsQL then identifies a collection of subtrees

Tl(x int, y int)@rdb =
(SELECT x, y FROM A)
T2 (x int, z array)(@mongo = *

db.B.find ([{$1t: [{x, 10}}],
)

SELECT T1.x,
FROM T1, T2
WHERE T1l.x =

x:l, Z:l)

T2.z

T2.x AND Tl.y <= 3

Figure 5. CloudMdsQL example queries [9].

: Query planner

1
1

Query) i Capability |!
I Compiler [—| Optimizer I
manage]‘ 1

I 1

1 l !

i |

1 QEP builder Global 1

! catalog !

' .

Execution engine

| 1
| 1
1

1 | Execution Operator —— :
I | Controller Engine Table Storage .
: _______ __-_-t__-_-__-_-__dl
| Wrapper

Capabilities

Cardinalities

Cost functions
e ;LI: o

Data store

[}
1
1
I Indexes
1
1
1

N~

Figure 6. CloudMdsQL query processing [9].

from AST, each associated with a data store and labeled by
a named table. Subtrees for non-SQL subqueries are passed
to the corresponding wrappers and translated into the native
language of each data store. The native queries are then
pushed down to the respective query engines for execution.
The rest of AST is handled by a SQL query engine.

After the lexical and syntactic analyses, the query planner
resolves the names of tables and columns with signatures,
checks for data-type compatibility between the operands,
and infers the data types to be returned. It also attempts to
rewrite query plans and to perform cross-reference analysis,
to make sure there are no cycles in the dependency graph.

The optimizer gets cost functions from the global catalog
and implements a simple exhaustive-search strategy to select
the best query plan. The capability manager validates each
rewritten sub-query against its data-store capability spec-
ification in the global catalog. Then the query-execution
plan (QEP) builder generates query-execution plans from
the best query plans, and serializes the plans to JSON. The
query-execution controller parses QEP, identifies the sub-
plans associated with named table expressions, and executes
CREATE FUNCTION statements to invoke the wrapper.
The operator engine caches into the table storage those
intermediate results that are needed more than once. A
specific query plan is produced in byte code. Wrappers store
local catalog information and provide it to the query planner
periodically or on demand. A finalizer for the database
engine translates the subquery plans into native queries that
can be executed by the engine.

C. Myria

query RACO Middleware result
: A optimize
compile MyriaX SciDB Radish SPARQL 1 and
\ I 1 integrate
query plans)
for multiple e;ﬂ?\/tlsr?:;s
backlends Y EEETETEEY ELTELELEYS EELLLETTRY P N
rule based 1 Data Migration with PipeGen . A transfer

optimizationy, := ! data
1 1
translate) L/ ' native
L -
.. N ¥ query

into API
calls Relational Array HDFS RDF results
Figure 7. The Myria architecture, adopted from [11].

Tl = scan(A);
T2 scan (B) ;
def foo(a, b): a - b;
joined = SELECT x*
FROM T1, T2
WHERE foo(Tl.a,
store (joined, C);

T2.b) = 0;

Figure 8. Myria example queries, adopted from [11].

1) Overview: Atits core, Myria is designed as a federated
data-analytics system, with an imperative-declarative hybrid
language, MyriaL, to facilitate expressing complex data an-
alytics. Each declarative Myrial. statement can be wrapped
with imperative constructs, such as variable assignments and
iterations. To cope with large collections of domain-specific
scripts written in Python and various scientific computation
workflows, Myria supports user-defined functions (UDF)
and aggregates (UDA) via an exposed Python API. The
built-in query-execution engine, MyriaX, adopts the tradi-
tional shared-nothing parallel database-system architecture,
which inherits the benefits of the associated optimization
techniques. The engine is enhanced with crucial features
in modern big-data analytics, including iterative processing,
elasticity to horizontal scalein and scaleout to many servers,
data ingestion from HDFS and cloud storage, and deploy-
ment on top of resource managers such as YARN [39].

The Relational Algebra Compiler (RACO) serves as
Myria’s query optimizer and federated query executor; it
uses relational algebra extended with imperative constructs
capturing the semantics of array, graph, and key-value data
models. RACO accepts queries in Myrial. and generates
query plans for both MyriaX and the selected array, graph,
and key-value engines, including Spark, SciDB, and Post-
gresQL. This allows Myria to generate federated query
plans that take advantage of individual specialized database
engines. It also employs PipeGen [40] to automatically
enable efficient data migration between arbitrary storage
engines, in support of query plans across engine boundaries.

2) Myria Query Processing: Queries to Myria can be ex-
pressed either in the MyrialL language or through the Python
API. MyrialL is extended with imperative constructs, such
as assignment statements and iterations, to support user-

SELECT tbll.id, tbll.type
FROM mongodb.doc AS tbll
JOIN dfs. .../file.json’
ON tbll.id = tbl2.id;

AS tbl2

Figure 9. Apache Drill example queries, adopted from [41].

defined functions and user-defined aggregates. In addition,
Python UDFs and UDAs can be registered and called in
MyrialL to directly operate on the blob data type in the
MyriaX query-execution engine. The integrated Python API
enables query composition through successive invocations
of functions on relational objects. All types of queries are
parsed into the Myria algebra and then transformed into the
specific API calls, operators, or query primitives supported
by the selected database engines in RACO. This often in-
volves defining semantic equivalences and adding translation
rules. RACO then uses rule-based optimization to generate
federated query plans that take advantage of the performance
characteristics of the supported database engines. By default,
the optimizer assigns each leaf of the plan to the platform
on which the dataset resides, and then iterates from the
bottom up, inserting the data-movement operator whenever
the child nodes reside on different platforms. Optimized data
transfers between arbitrary database engines are supported
by PipeGen [40].

D. Apache Drill

1) Overview: Apache Drill is a fully distributed, mas-
sively parallel query engine that supports low-latency inter-
active ad-hoc analysis at scale. It is designed for extensibil-
ity, with well-defined APIs for pluggable query languages,
query planners, query optimizers, and storage plugins. The
query engine accepts ANSI SQL and MongoDB QL, as well
as user-defined functions and custom operators, and supports
HBase, Hive, MongoDB, relational databases, and various
file systems.

The success of Apache Drill relies on two factors: (i) the
in-memory columnar hierarchical data representation, based
on Parquet and JSON, that achieves both the efficiency of
the columnar-stripped data model and the flexibility of the
schema-free nested data model, and (ii) the fully distributed
query engine, powered by Apache Calcite, that compiles and
recompiles queries dynamically based on real-time data to
maximize data locality and parallel processing, and enables
on-the-fly schema discovery and in-situ data querying.

2) Apache Drill Query Processing: Apache Drill consists
of a daemon service called Drillbit running on any or
all nodes of a Hadoop cluster. Each Drillbit retains the
full services and capabilities of Drill. The Zookeeper [42]
managing the cluster serves as a broker between the client
and Drillbits, as well as among Drillbits. When a user issues
a query to Drill, the client first contacts Zookeeper for an
available Drillbit, to which the query is then submitted. The

MPP Query Engine with Zookeeper

auery Drillbit ~ Drillbit ~ Drillbit Drillbit Drillbit rei”"
dgg;miil(iy : DFS HBase Hive MongoDB RDBMS : integrate
P! \ 4 plugin plugin plugin plugin plugin hi Ih' |
) ierarchical
logical +
S R e i) o
1
optimize 1 ! discover
v HBase | Hive = : schema
physical | HDFS/S3 - source
plan data

MongoDB RDBMS

Figure 10. Apache Drill architecture, adopted from [13].

Drillbit that accepts the query becomes the Foreman that
parses the query to generate a language-agnostic, computer-
friendly, tree-structured logical plan that optimizes the ab-
stract dataflow for data locality and parallel processing. The
Drill optimizer then determines the best execution plan and
translates the logical plan into a physical plan that describes
the physical operations carried out by the execution engine.
The physical plan is then rendered into a number of frag-
ments organized into a multli-level execution tree. Each leaf
execution engine processes the data and assembles them
into an in-memory columnar hierarchy representation. The
parent execution engines integrate the intermediate results to
produce the answer. It is noteworthy that the storage plugin
for Hive takes advantage of the metadata abstraction layer
and operates on the files without invoking Hive’s execution
engine, to avoid unnecessary latency. Other storage plugins
may take advantage of the query engine of the connected
data-management system, to leverage the internal processing
capabilities.

E. Summary

We have qualitatively evaluated each system against each
aspect of the proposed framework; the results are summa-
rized in Table 1. To visualize the results, we have shaded each
evaluation result in Table I by red, yellow, or green. Here,
red stands for “little support,” yellow stands for “partial
support,” and green stands for “excellent support.” Further,
we have rendered the query-processing characteristics of
the four systems in a radar chart, to compare and contrast
their features along the five dimensions, as shown in Figure
11. We assign a score of 1 to features with little support,
2 to partially supported features, and 3 to features with
excellent support. The scores along each dimension are
then combined and normalized to a scale from 0 to 18.
Connecting the points on the radar chart results in a pentagon
area that represents the query-processing characteristics of
each system.

While not meant to be comprehensive, the proposed
evaluation framework attempts to capture some of the cru-
cial query-processing characteristics of integration system.
Though the evaluation process can be termed subjective,

BigDAWG
heterogeneity CloudMdsQL
18.00 Myria
200 Apache Drill
autonomy transparency

flexibility optimality

Figure 11. Visualizing the evaluation results; see Sec. IV-E for the details.

the framework enables an intuitive glimpse into the query-
processing characteristics that could otherwise be hard to
perceive. For example, the framework could assist users in
choosing proper data-management tools for their applica-
tions, via mapping their application needs onto a require-
ment pentagon, to enable selection of those systems whose
capability pentagons contain the requirement pentagon.

The four systems feature different internal data represen-
tations and platforms for data operations. BigDAWG follows
the thin-middleware principle and employs no internal data
model or intermediate algebra for query translation and data
transformation. In contrast, CloudMdsQL and Myria each
have built-in relational data representation with a relational-
algebra compiler. Further, the approach of Apache Drill is to
adopt a JSON-based data model, to achieve more flexibility
in processing raw data.

Evaluating systems with such diverse emphases and archi-
tectures is challenging in practice. BigDAWG aims at data
integration with a fully federated architecture over collec-
tions of vertically integrated database engines. CloudMdsQL
targets full expressiveness in the native queries for each
database engine, while Myria focuses on an extended re-
lational algebra for semantic equivalences between different
data models. Apache Drill is designed for interactive data
analysis over large-scale unstructured and weakly structured
data. These different emphases determine the choices for the
respective architectures, as it is perhaps overly optimistic
to expect a single integration system to fit all possible
workloads for a wide range of new and existing markets.

V. RELATED WORK

As it became clear that a variety of data-processing
architectures may be required for specialized markets, sev-
eral directions were proposed for future data-management

[Evaluation Framework BigDAWG [CloudMdsQL [Myria [Apache Drill
Data-Store PostgreSQL, Apache | Sparksee, Derby, | MyriaX, Radish, SciDB, HDFS, HIVE, HBase,
Heterogeneity || Heterogeneity Accumulo, and SciDB; | MongoDB, HDFS; | HDFS, SPARQL; other | S3, MongoDB, Swift,
potentially any data | potentially any data | data stores that can be | and relational databases;
store store handled by the RACO | limited support for
compiler graph, array, or stream
data stores
Processing-Engine | relation, array, graph, | component data store’s | component data store’s | parallel SQL processing
Heterogeneity stream, text, and other | processing engines; a re- | processing engines; ex- | engine
processing engines | lational engine and an | tended relational and re-
wrapped in information | Apache Spark engine for | stricted Python engine
islands processing intermediate
results
Query-Interface semantics in each | standard SQL with | Myrial, an extended re- | SQL, DrQL, MongoDB
Heterogeneity information island’s data | embedded functional | lational query interface | Query Language,
model; one or more | subqueries; subqueries | and Python API and domain-specific
query interfaces with | passed to the native languages that can
each information island query interfaces of the be parsed to generate
component data stores logical plans
Association associations via shims; | association via wrappers; | need to register each data | easy association with
Autonomy Autonomy catalog information up- | global catalog updated | store in RACO, such as | storage plugins
dated automatically or | automatically or main- | adding rewrite rules
maintained by adminis- | tained by administrators
trators
Execution Auton- | translation to native API | translation to native API | translation to native API | mostly scanning
omy calls, execution with no | calls, execution with no | calls, execution with no | data into tables and
interference from the in- | interference from the in- | interference from the in- | executing queries by
tegration system tegration system tegration system the Drill query engine;
no interference into
component data stores
Evolution Auton- | monitor updating cata- | changes handled by ex- | immutable data types; | recompiling from scratch
omy log information to reflect | plicit queries updating rewrite rules to | with schema discovery
evolutionary changes accommodate evolution-
ary changes
Transparency Location transparency within .is— need to 'specify data datasqts stor.ed as vari- | need to 'specify data
Transparency lands, need to specify | stores hosting the data ables in MyriaX, need to | stores hosting the data
information islands with specify the data store for
SCOPE operators ingestion
Transformation hiding transformation | need to specify | transformation managed | transparent with
Transparency details with CAST | mappings between | by RACO and transpar- | dynamic schema
operators data types; automatic | ent to users discovery
transformation to table
representation
Schema Flexibility | schemata are expressed | defining schemata in | defining schemata via | dynamic schema discov-
Flexibility in the semantic context | queries; no support | customizable scan func- | ery
of information islands; | for dynamic schema | tions
no support for dynamic | discovery
schema discovery
Interface Flexibil- | query interfaces of the | allowing embedded | allowing user- | allowing user-defined
ity fixed islands functional subqueries | defined functions and | functions
and user-defined MFR | aggregates, constrained
functions imperative constructs,
and customized
operators
Architectural modularization into opti- | modularization into | extensibility to new data | supporting pluggable
Flexibility mizer, monitor, executor, | planner, executor, and | stores and optimizers by | query language
and migrator; not readily | wrapper; not readily | adding rewrite rules to | interfaces, query
extensible extensible RACO optimizers, and storage
plugins
Optimality Fedf:ravtedv Plan query rewri.ting via se- pushing down subqufftry pushing dowr} subquery pushing down subqu?ry
Optimization mantic equivalence and | execution; no active | execution; actively trans- | execution; no active
active data transforma- | transformation or | forming and migrating | transformation or

Data-Placement
Optimization

tion and migration
allowing data migration
and replication

migration
staging and caching fre-
quent data sets in the ta-
ble store

data across data stores
allowing data migration
and replication

migration
little support

Table 1

SUMMARY OF REFERENCE SYSTEMS WITH THE PROPOSED EVALUATION FRAMEWORK.

systems [15], including multiple systems united by a com-
mon parser, multiple systems using abstract data types,
data federation, and from-scratch rewrites. The proposed
evaluation framework is largely inspired by early efforts on
federated database systems [33], as heterogeneity, autonomy,
and distributed processing are still concerns for modern
integration systems. Meanwhile, semantic heterogeneity re-
mains one of the biggest challenges in query processing
over heterogeneous data, calling for better protocols and
algorithms alongside new system designs. Most of the work
discussed in this survey can be viewed as a generalization of
the concept of “data federation.” A framework that is similar
to ours in spirit has been recently proposed in [43] for query
processing in cloud multi-store systems.

VI. CONCLUSION

For all but the simplest problems, data are diverse. Forcing
diverse data to fit into a single data model could lead
to a host of problems ranging from greater integration
complexity to reduced performance. Systems that integrate
data but support multiple data stores have begun to emerge.
We believe that more integration systems developed over
time will become an important strand of Big Data Research.

To support this emerging research trend, it is important
to understand integration systems relative to a systematic
comparison framework. A major contribution of this paper
is in proposing such a framework. Our framework defines
a high-level taxonomy (federated, polyglot, multistore, and
polystore systems) and a collection of qualitative evaluation
criteria (heterogeneity, autonomy, transparency, flexibility
and optimality). We consider four different systems with
respect to our framework; BigDAWG, CloudMdsQL, Myria,
and Apache Drill. Our results do not show that any one
system is “better” than the others. Rather, the analysis brings
the features of the different systems into sharp relief and
helps clarify the design tradeoffs made in creating these
systems. Furthermore, our analysis suggests important direc-
tions for future work on integration systems, in particular,
establishing principles for cross-model query equivalence
and containment, efficient data transformation (including
migration between data stores), performance monitoring
and automatic load balancing, and distributed locking and
transaction management.

ACKNOWLEDGMENT

The authors would like to thank Paul Jones and Yuxu
Yang for their valuable suggestions.

REFERENCES

[1] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman,
M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi,
and R. G. Mark, “MIMIC-III, a freely accessible critical care
database,” Scientific Data, vol. 3, 2016.

[2] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,
U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner,
T. Kraska et al., “A demonstration of the bigdawg polystore
system,” Proceedings of the VLDB Endowment, vol. §, no. 12,
pp- 1908-1911, 2015.

[3] T. Mattson, V. Gadepally, Z. She, A. Dziedzic, and
J. Parkhurst, “Demonstrating the BigDAWG polystore system
for ocean metagenomic analysis,” in Proc. Conference on
Innovative Data Systems Research (CIDR’17), 2017, pp. 1-9.

[4] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, and
I. Manolescu, “Invisible glue: Scalable self-tuning multi-
stores,” in Proc. Conference on Innovative Data Systems
Research (CIDR’15), 2015.

[5] R. Bonaque, T. D. Cao, B. Cautis, F. Goasdoué, J. Letelier,
I. Manolescu, O. Mendoza, S. Ribeiro, and X. Tannier,
“Mixed-instance querying: a lightweight integration architec-
ture for data journalism,” Proceedings of the VLDB Endow-
ment, vol. 9, no. 13, pp. 1513-1516, 2016.

[6] M. Stonebraker, “The case for polystores,”
http://wp.sigmod.org/?p=1629, Jul 2015.

[7] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska,
B. Howe, J. Kepner, S. Madden, D. Maier, T. Mattson,
and S. Zdonik, “The BigDAWG polystore system,” ACM
SIGMOD Record, vol. 44, no. 2, pp. 11-16, 2015.

[8] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes,
J. Kepner, S. Madden, T. Mattson, and M. Stonebraker,
“The BigDAWG polystore system and architecture,” in Proc.
IEEE High Performance Extreme Computing Conference
(HPEC’16), 2016, pp. 1-6.

[9] B. Kolev, C. Bondiombouy, O. Levchenko, P. Valduriez,
R. Jimenez-Péris, R. Pau, and J. Pereira, “Design and imple-
mentation of the CloudMdsQL multistore system,” in Proc.
Cloud Computing and Services Science (CLOSER’16), vol. 1,
2016, pp. 352-359.

[10] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris,
R. Pau, and J. Pereira, “The CloudMdsQL multistore system,”
in Proc. ACM International Conference on Management of

Data (SIGMOD’16), 2016, pp. 2113-2116.

[11] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes,
B. Howe, D. Hutchison, S. Jain, R. Maas, P. Mehta et al.,
“The Myria big data management and analytics system and
cloud service,” 2017.

[12] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu,
P. Koutris, D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang,
A. Whitaker et al., “Demonstration of the Myria big data
management service,” in Proc. ACM International Conference
on Management of Data (SIGMOD’14), 2014, pp. 881-884.

[13] M. Hausenblas and J. Nadeau, “Apache Drill: Interactive ad-
hoc analysis at scale,” Big Data, vol. 1, no. 2, pp. 100-104,
2013.

[14] M. Stonebraker and U. Cetintemel, “One size fits all: an idea
whose time has come and gone,” in Proc. IEEE International
Conference on Data Engineering (ICDE’05), 2005, pp. 2—-11.

[15] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack,
T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and
S. Zdonik, “One size fits all? part 2: Benchmarking results,”
in Proc. Conference on Innovative Data Systems Research
(CIDR’07), 2007.

[16] J. Widom, “Research problems in data warehousing,” in

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

Proc. ACM International Conference on Information and
Knowledge Management (CIKM’95), 1995, pp. 25-30.

J. M. Smith, P. A. Bernstein, U. Dayal, N. Goodman, T. Lan-
ders, K. W. Lin, and E. Wong, “Multibase: Integrating het-
erogeneous distributed database systems,” in Proc. National
Computer Conference (NCC’81). ACM, 1981, pp. 487-499.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi
et al., “Spark SQL: Relational data processing in Spark,” in
Proc. ACM International Conference on Management of Data
(SIGMOD’15), 2015, pp. 1383-1394.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin, “HadoopDB: an architectural hybrid
of MapReduce and DBMS technologies for analytical work-
loads,” Proceedings of the VLDB Endowment, vol. 2, no. 1,
pp. 922-933, 2009.

D.J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-
Saborit, A. Avanes, M. Flasza, and J. Gramling, “Split query
processing in Polybase,” in Proc. ACM International Con-
ference on Management of Data (SIGMOD’13), 2013, pp.
1255-1266.

Y. Tian, T. Zou, E. Ozcan, R. Goncalves, and H. Pirahesh,
“Joins for hybrid warehouses: Exploiting massive parallelism
in Hadoop and enterprise data warehouses.” in Proc. In-
ternational Conference on Extending Database Technology
(EDBT’15), 2015, pp. 373-384.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. An-
thony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehous-
ing solution over a Map-Reduce framework,” Proceedings of
the VLDB Endowment, vol. 2, no. 2, pp. 1626-1629, 2009.

M. Zhu and T. Risch, “Querying combined cloud-based and
relational databases,” in Proc. IEEE International Conference
on Cloud and Service Computing (CSC’11), 2011, pp. 330-
335.

K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The
SQL++ unifying semi-structured query language, and an
expressiveness benchmark of SQL-on-Hadoop, NoSQL and
NewSQL databases,” CoRR, abs/1405.3631, 2014.

J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond,
C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz
et al., “Dynamic distributed dimensional data model (D4M)
database and computation system,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP’12), 2012, pp. 5349-5352.

H. Hacigiimiis, J. Sankaranarayanan, J. Tatemura, J. LeFevre,
and N. Polyzotis, “Odyssey: a multistore system for evo-
lutionary analytics,” Proceedings of the VLDB Endowment,
vol. 6, no. 11, pp. 1180-1181, 2013.

J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura,
N. Polyzotis, and M. J. Carey, “MISO: Souping up big
data query processing with a multistore system,” in Proc.
ACM International Conference on Management of Data (SIG-
MOD’14), 2014, pp. 1591-1602.

E. Kharlamov, T. Mailis, K. Bereta, D. Bilidas, S. Brandt,
E. Jimenez-Ruiz, S. Lamparter, C. Neuenstadt, O. Ozgep,
A. Soylu et al., “A semantic approach to polystores,” in Proc.
IEEE International Conference on Big Data (ICBD’16), 2016,
pp. 2565-2573.

A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal,

(30]

(31]

[32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

“Optimizing analytic data flows for multiple execution en-
gines,” in Proc. ACM International Conference on Manage-
ment of Data (SIGMOD’12), 2012, pp. 829-840.

I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand, “Musketeer: all for one, one for
all in data processing systems,” in Proc. ACM European
Conference on Computer Systems (Eurosys’15), 2015, p. 2.

D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla, A. El-
magarmid, H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat,
S. Kruse et al., “Rheem: Enabling multi-platform task execu-
tion,” in Proc. ACM International Conference on Management
of Data (SIGMOD’16), 2016, pp. 2069-2072.

S. Dasgupta, K. Coakley, and A. Gupta, “Analytics-driven
data ingestion and derivation in the AWESOME polystore,” in
Proc. IEEE International Conference on Big Data (ICBD’16),
2016, pp. 2555-2564.

A. P. Sheth and J. A. Larson, “Federated database systems
for managing distributed, heterogeneous, and autonomous
databases,” ACM Computing Surveys (CSUR), vol. 22, no. 3,
pp. 183-236, 1990.

P. Bailis, J. M. Hellerstein, and M. Stonebraker, “Readings in
database systems,” http://www.redbook.io/, 2015.

Z. She, S. Ravishankar, and J. Duggan, “BigDAWG polystore
query optimization through semantic equivalences,” in Proc.
IEEE High Performance Extreme Computing Conference
(HPEC’16), 2016, pp. 1-6.

P. Chen, V. Gadepally, and M. Stonebraker, “The BigDAWG
monitoring framework,” in Proc. IEEE High Performance
Extreme Computing Conference (HPEC’16), 2016, pp. 1-6.

A. Dziedzic, A. J. Elmore, and M. Stonebraker, “Data trans-
formation and migration in polystores,” in Proc. IEEE High
Performance Extreme Computing Conference (HPEC’16),
2016, pp. 1-6.

A. M. Gupta, V. Gadepally, and M. Stonebraker, “Cross-
engine query execution in federated database systems,” in
Proc. IEEE High Performance Extreme Computing Confer-
ence (HPEC’16), 2016, pp. 1-6.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth
et al., “Apache Hadoop YARN: Yet another resource ne-
gotiator,” in Proc. ACM Symposium on Cloud Computing
(SoCC’13), 2013, p. 5.

B. Haynes, A. Cheung, and M. Balazinska, “PipeGen:
Data pipe generator for hybrid analytics,” arXiv preprint
arXiv:1605.01664, 2016.

R. Moftatt, “How to guide: Get-
ting started with Apache Drill,”
https://mapr.com/blog/how-guide-getting-
started-apache-drill/, Sept 2016.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems.” in Proc.
USENIX Annual Technical Conference (ATC’17), vol. 8,
2010, p. 9.

C. Bondiombouy and P. Valduriez, “Query processing in
multistore systems: an overview,” International Journal of
Cloud Computing, vol. 5, no. 4, pp. 309-346, 2016.

