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Ocean convection linked to the recent ice edge
retreat along east Greenland
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Warm subtropical-origin Atlantic water flows northward across the Greenland-Scotland

Ridge into the Nordic Seas, where it relinquishes heat to the atmosphere and gradually

transforms into dense Atlantic-origin water. Returning southward along east Greenland, this

water mass is situated beneath a layer of cold, fresh surface water and sea ice. Here we show,

using measurements from autonomous ocean gliders, that the Atlantic-origin water was re-

ventilated while transiting the western Iceland Sea during winter. This re-ventilation is a

recent phenomenon made possible by the retreat of the ice edge toward Greenland. The fresh

surface layer that characterises this region in summer is diverted onto the Greenland shelf by

enhanced onshore Ekman transport induced by stronger northerly winds in fall and winter.

Severe heat loss from the ocean offshore of the ice edge subsequently triggers convection,

which further transforms the Atlantic-origin water. This re-ventilation is a counterintuitive

occurrence in a warming climate, and highlights the difficulties inherent in predicting the

behaviour of the complex coupled climate system.
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W
ithout redistribution of heat by the atmospheric cir-
culation and ocean currents, only a small portion of
the Earth’s surface would be habitable. In the Atlantic

Ocean the poleward transport of heat is largely accomplished by
the Atlantic meridional overturning circulation (AMOC), in
which warm waters are transported northward near the surface
and cold waters are returned to the south at depth1. Most of the
North Atlantic deep waters originate from the Nordic Seas2, as
result of a warm-to-cold transformation that takes place primarily
in the eastern part of that region3–5. The resulting product,
referred to as Atlantic-origin water6, is returned southward by the
East Greenland Current7 (Fig. 1). This is a main source of dense
water to the overflow plume that passes between Iceland and
Greenland through Denmark Strait8 and provides the largest and
densest contribution to the lower limb of the AMOC9.

The other major contribution to the Denmark Strait overflow is
Arctic-origin water formed in the interior Iceland and Greenland
Seas10. Proximity to the ice edge, where the highest ocean to
atmosphere fluxes of heat occur due to frequent intense cold air

outbreaks in which frigid, dry air masses are advected over com-
paratively warm surface water, is an important factor11–14.
Diminished heat loss from this region owing to a retreat of the ice
edge and different rates of warming of the ocean and the atmo-
sphere will likely reduce the formation of Arctic-origin water15. In
the Iceland Sea this water mass is primarily produced on the north-
western outskirts of the cyclonic gyre, where the atmospheric
forcing is more intense13,16. Farther to the west (within the region
outlined in black in Fig. 1), the influence of fresh, low-density
surface water becomes dominant17,18. The presence of this water
mass is known to inhibit convection19,20, but thus far a lack of
wintertime measurements from the westernmost part of the Ice-
land Sea has prevented verification13. Here we show that this fresh,
low-density surface layer is not present in the western Iceland Sea
in winter, which permits the formation of deep mixed layers off-
shore of the ice edge. As the ice edge retreats toward Greenland,
water masses including the Atlantic-origin water transported by
the East Greenland Current that were previously insulated from the
atmosphere underneath sea ice are now being ventilated.
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Fig. 1 Schematic diagram of the currents that supply dense water to Denmark Strait. The colours indicate warm (red) to cold (green) transformation. Fresh,

low-density water also flows along the Greenland continental slope (not shown). Hydrographic profiles from the western Iceland Sea region, outlined in

black, document the seasonal cycle of the fresh surface layer (Fig. 4). The red line represents a hydrographic section obtained from a research ship in

August 2012. The grey lines are glider trajectories and the orange and yellow lines indicate transects from the two gliders that were operating in the

western Iceland Sea in February and April 2016, respectively. The dashed lines along the Greenland shelf represent the mean 50% sea ice concentration38

contours from winter (Jan–Mar) 2016 (white) and decadal means from 1980–1989 (red), 1990–1999 (orange), and 2000–2009 (yellow). The acronyms

are: EGC = East Greenland Current; NIJ = North Icelandic Jet; NIIC = North Icelandic Irminger Current; NAC = Norwegian Atlantic Current. The inset

shows the winter mean sea ice concentration within the western Iceland Sea region outlined in black. The red lines are decadal means, and the dashed red

line represents the mean from 2010 to 2016
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Results
Re-ventilation of Atlantic-origin water along east Greenland.
In the summer and fall of 2015 three autonomous gliders (see the
Methods section for details of the processing and calibration of
the glider data) were deployed with the purpose of mapping the
extent of convection in the Iceland Sea during the subsequent
winter. Here we focus on measurements obtained near the ice
edge in the western Iceland Sea. Vertical sections of potential
temperature and salinity from a cruise in summer 2012 and the
two glider transects that approached the ice edge in winter
2015–2016 are shown in Figs. 2 and 3. The summer section has a
pronounced 50–100 m thick fresh, low-density layer at the surface
and a well-defined Atlantic-origin water mass beneath char-
acterised by intermediate maxima in temperature and salinity
(Figs. 2a and 3a). By late winter the surface layer had vanished
and only a trace of the intermediate temperature maximum is

visible (θ ≥ 0 °C). Instead, the western end of the February 2016
glider transect has an approximately 400 m deep mixed layer with
a density of σθ= 28.01–28.02 kg/m3, more than sufficient to
supply the dense Denmark Strait overflow plume (Figs. 2b and
3b). As this was still relatively early in the convective season, most
likely the depth and density of the mixed layer increased further
into winter due to continued heat loss to the atmosphere13. The
second glider encountered a re-stratifying water column farther to
the south in late April, at the end of the convective season, that
also shows similarly modified Atlantic-origin water (Figs. 2c and
3c). Both gliders were turned around due to the proximity of sea
ice prior to reaching the core of the East Greenland Current.
Hence, the extent to which the bulk of the Atlantic-origin water
mass was further transformed by convection and how readily the
modified waters were transported toward Denmark Strait remain
uncertain. However, the glider transects clearly demonstrate that
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Fig. 2 Potential temperature transects off east Greenland. Vertical sections (a–c) from the shipboard and glider measurements indicated in Fig. 1. The

gliders moved westward toward the ice edge, turned around at the longitude indicated by the white lines that are aligned with the shipboard transect, and

then returned eastward along the same trajectory. The white crosses mark the depth of the mixed layer in the February 2016 glider transect (b)
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the fresh surface layer characteristic of the western Iceland Sea in
summer does not prevent wintertime convection off the ice edge
and indicate that the Atlantic-origin water transported by the
East Greenland Current is re-ventilated by direct contact with the
atmosphere while transiting this region in winter.

The western Iceland Sea is a sparsely sampled region, in
particular in winter. Nonetheless, using newly available data from
instrumented seals21 in combination with historical measure-
ments13, the monthly mean hydrographic properties averaged
over the upper 50 m of the water column demonstrated a pattern
that is consistent with the shipboard and glider measurements
(Fig. 4). The fresh surface layer starts developing in May or June
and is most pronounced between July and August with a salinity
well below 34. In October the surface layer becomes substantially
more saline, and by November a well-defined surface layer is no
longer present. At that time the water column has an ~80 m
deep mixed layer and is well preconditioned for convection.

Local formation of deep mixed layers. In order to investigate
whether the deep mixed layers observed at the western turn-
around point of the February glider transect may have formed
locally, a one-dimensional model (see the Methods section and
ref. 22 for details of the model) was employed. The August 2012
profile closest to the turnaround point was used as initial con-
ditions and a constant heat loss of 120W/m2, typical for winter
2015–2016 (Fig. 5b), was applied from November to mid-
February. As expected from previous work in this region19,20, the
fresh surface layer prevented convection, resulting in effect
instead in the formation of sea ice as soon as the cooling com-
menced. This demonstrates that the disappearance of the fresh
water is not the result of vertical mixing caused by heat loss to the
atmosphere. Another mechanism is instead required to remove
the freshwater prior to the onset of convection.

Strong northerly winds are prevalent along the east coast of
Greenland in fall and winter23. We estimate the onshore Ekman
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Fig. 3 Salinity transects off east Greenland. Vertical sections (a–c) from the shipboard and glider measurements indicated in Fig. 1. The gliders moved

westward toward the ice edge, turned around at the longitude indicated by the white lines that are aligned with the shipboard transect, and then returned

eastward along the same trajectory. The white crosses mark the depth of the mixed layer in the February 2016 glider transect (b)
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transport induced by these northerly winds by assuming an
Ekman layer depth of 50 m, and find a pronounced seasonal cycle
(Fig. 5a). While there is no substantial Ekman transport in
summer, it increases considerably through fall. We estimate that
the Ekman transport is sufficient to flush the fresh, low-density
layer onto the Greenland shelf, thereby preconditioning the
western Iceland Sea region for convection before the atmospheric
forcing peaks between December and March (Fig. 5b). The
integrated Ekman transport distance through the strong forcing
season of order 300 km sets the horizontal scale of the band that
is preconditioned for convection. We note that such northerly
barrier winds, which often occur along the entire east coast of
Greenland in winter24,25, inhibit the offshore diversion of
freshwater and hence limit its impact on convection in the
interior Nordic and Irminger Seas. In 2015–2016 the non-linear
combination of unusually strong northerly winds and high heat
fluxes at the beginning of winter, along with nearly ice-free
conditions, were particularly conducive for convection (Fig. 5).
Melting of sea ice in summer, when onshore Ekman transport is
negligible, helps replenish this fresh surface layer26.

A new simulation with the one-dimensional model was
initialised in which the fresh surface layer was replaced by a
mixed layer extending from 80m depth to the surface, in
agreement with the mean November profile from the combined
seal and historical hydrographic data set. The resulting simulated
profile (red trace in Fig. 6) corresponds very closely to the profile
recorded by the glider at the turnaround point in February 2016
(blue trace in Fig. 6), even though the initial conditions were
obtained from summertime measurements 4 years prior to the
glider transect. This implies that the deep and dense mixed layer
recorded by the glider in February 2016 is consistent with local
formation as the result of convection offshore of the ice edge.

Discussion
A consequence of the re-ventilation of Atlantic-origin water east
of Greenland may have been detected farther downstream. At the
Denmark Strait sill there is no discernible seasonal variability in
the overflow transport, but a significant seasonal signal in tem-
perature. In particular, the temperature of the Denmark Strait
overflow is minimum in September27, which, assuming an
advective speed of 4–5 cm/s, is consistent with the transport of
colder Atlantic-origin water that was re-ventilated the previous
winter in the Iceland Sea. Taking into account that the re-
ventilation may also have taken place farther north along the ice
edge east of Greenland, this is in reasonable agreement with
observed velocities of the Atlantic-origin water in the East
Greenland Current7,8.

The sea ice concentration in the western Iceland Sea has
diminished substantially over the last few decades15. There was,
in particular, very little sea ice in winter 2015–2016 relative to
climatological values (Fig. 5c). As a consequence, increasing areas
along the Greenland continental slope, and hence also of the East
Greenland Current, are no longer insulated by sea ice from
interaction with the atmosphere in winter. If the ice edge con-
tinues to retreat toward Greenland, we may expect to see more re-
ventilation of Atlantic-origin water and higher heat fluxes into the
atmosphere along the pathway of the East Greenland Current
from Fram Strait to Denmark Strait. If such re-ventilation
becomes more pronounced, this could further modify the prop-
erties of the Denmark Strait overflow and thereby impact the
lower limb of the AMOC. While large-scale sea ice loss may lead
to a weakening of the AMOC28, the ice edge retreat toward
Greenland causing increased ventilation of Atlantic water in the
Nordic Seas during a warming climate is unexpected and contrary
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to the tendency of reduced convection generally predicted by
climate models29.

Methods
Hydrographic data. The wintertime transects were obtained by autonomous,
buoyancy-driven Seagliders that are capable of diving to 1000 m depth30. The
gliders profile in a sawtooth pattern with a typical vertical to horizontal glide ratio
of 1:3 that results in a speed through water of about 20 cm/s. Conductivity and
temperature were sampled at 20–80 s intervals, resulting in a vertical resolution of
1–5 m, enhanced within the surface mixed layer. Following a tuning of the flight
model parameters for each glider, the data were reprocessed and corrections were
applied to compensate for thermal-inertia and flushing speed issues arising from
usage of unpumped sensors31. Temperature and salinity measurements outside the
expected range of values in the Nordic Seas (−2–20 °C and 20–36, respectively)

were discarded. Each dive/climb cycle was subsequently inspected for density
inversions, and measurements causing inversions exceeding 0.05 kg/m3 were
excluded18,32,33. The sensors were laboratory calibrated prior to deployment. In
addition, the glider data were calibrated against shipboard measurements at the
times of deployment and recovery. A rendezvous partway through the deployment
was used for data intercomparison. Corrections were estimated in potential
conductivity–potential temperature space34. Offsets corresponding to 0.006 and
0.016 in salinity were applied to two of the gliders (sg559 and sg562, respectively),
while a drift over the entire deployment period corresponding to 0.0008 in salinity
was corrected for one glider (sg559). No corrections were applied to the con-
ductivity sensor of the third glider (sg564) or any of the temperature sensors.

Vertical sections of potential temperature and salinity were constructed using
Laplacian-spline interpolation7,35.

Details about the August 2012 shipboard transect can be found in ref. 7 and the
calibrated seal data set in ref.21.
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Reanalysis data. Wind stress, surface sensible and latent heat fluxes, as well as sea
ice concentration for the climatological analyses (Fig. 5) were taken from the
European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-
Interim) for the period 1979–2016. Estimates of wind stress and heat fluxes were
derived from short-range forecasts averaged over 6-hourly intervals (using forecast
steps for 9–21 h). Only ice-free grid cells, with a sea ice concentration of less than
0.5, were considered.

Ekman transport. The Ekman transport distance was estimated from

xðnÞ ¼

Z
dt

1

ρfh
τðtÞ � n? ; ð1Þ

where τ(t) is the 6-hourly average mean wind stress in the ice-free portion of the
western Iceland Sea region (Fig. 1), ρ= 1025 kg/m3 is the reference density of sea
water, f is the coriolis parameter, and n⊥ is the box mean unit vector perpendicular
to Greenland’s shelf. For the depth of the Ekman layer a constant value of h= 50 m
was assumed, which corresponds approximately to the typical depth of the sharp
pycnocline that is associated with the summertime fresh surface layer (Fig. 6). We
note that the precise depth of the Ekman layer cannot be determined based on the
available observations but the value of 50 m is in line with depth estimates based on
the similarity height (e.g., ref. 36). Since the Ekman transport distance is inversely
proportional to Ekman depth, a decrease of h by 50% would result in an increase of
the estimated distance by a factor of 2, whereas an equivalent increase of h would
result in a lower distance by one-third.

Mixed-layer model. To implement the one-dimensional PWP22 mixed-layer
model, turbulent heat fluxes, which provide the dominant contribution to mixed-
layer deepening37, were imposed at the surface at each time step. Initial conditions
were obtained from the August 2012 shipboard and February 2016 glider mea-
surements. The depth and properties of the mixed layer were then adjusted until
three stability criteria, chief among which is static stability, were satisfied.

Data availability. The glider data can be accessed at the Pangaea repository
(https://doi.org/10.1594/PANGAEA.884339). The shipboard data can be obtained
from http://kogur.whoi.edu. The seal data can be found in the MEOP database
(www.meop.net). The ERA-Interim reanalysis data were obtained from the Eur-
opean Centre for Medium-Range Weather Forecasts and the passive microwave sea
ice product38 was obtained from the National Snow and Ice Data Center.
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