

Engineering scalable manufacturing of high quality stem cell-derived cardiomyocytes for cardiac tissue repair

1
2 Kaitlin K. Dunn¹, Sean P. Palecek^{1*}

3 ¹University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, Wisconsin, USA

4
5 * Correspondence:

6 Sean P. Palecek
7 sppalecek@wisc.edu

8
9 **Keywords: cardiomyocyte, maturation, cell manufacturing, human pluripotent stem cells,**
10 **coculture, cardiac repair, differentiation, regenerative medicine**

11
12 Number of words: 9137

13 Number of figures: 4

14 Number of tables: 4

15
16 **Abstract**

17 Recent advances in the differentiation and production of human pluripotent stem cell (hPSC)-
18 derived cardiomyocytes (CMs) have stimulated development of strategies to use these cells in
19 human cardiac regenerative therapies. A prerequisite for clinical trials and translational
20 implementation of hPSC-derived CMs is the ability to manufacture safe and potent cells on the
21 scale needed to replace cells lost during heart disease. Current differentiation protocols generate
22 fetal-like CMs that exhibit proarrhythmic potential. Sufficient maturation of these hPSC-
23 derived CMs has yet to be achieved to allow these cells to be used as a regenerative medicine
24 therapy. Insights into the native cardiac environment during heart development may enable
25 engineering of strategies that guide hPSC-derived CMs to mature. Specifically, considerations
26 must be made in regards to developing methods to incorporate the native intercellular
27 interactions and biomechanical cues into hPSC-derived CM production that are conducive to
28 scale-up.

29
30 **1 Structural and functional considerations for cardiac tissue regeneration**

31 The heart is a complex organ composed of three layers: the epicardium, myocardium, and
32 endocardium. Within these layers reside many different cell types including cardiomyocytes,
33 endothelial cells, smooth muscle cells, epicardial cells, fibroblasts, neurons, and immune cells
34 (1). Cardiomyocytes (CMs) are the cardiac muscle cells, which provide the mechanical
35 contractile function in the heart and reside specifically in the myocardium. They make up only
36 25-35% of the cells found in the heart (2). There are distinct CM subtypes, including nodal,
37 ventricular, and atrial CMs, which differentially express over 6,274 genes (3). These CM
38 subtypes originate from different mesodermal subtype populations and reside in different
39 locations -- ventricular CMs in the ventricles, nodal CMs in the sinoatrial node, and atrial CMs in
40 the atria (4). Additionally, the left ventricle pumps blood throughout the body whereas the right
41 ventricle to the lungs. Thus, the left ventricular CMs must produce higher forces of contraction
42 and require greater oxygen and nutrient uptake. Conversely, atrial CMs require less force
43 generation to pump blood from the atria into the ventricles. The contraction of the heart is
44 controlled by the cardiac pacemaker, which is comprised of sinoatrial-node CMs. These nodal

45 CMs exhibit distinct electrophysiological and Ca^{2+} handling properties relating to their primarily
46 stimulatory role (5). Thus, the unique functions of these CM subtypes are not interchangeable.
47

48 Throughout development and for normal function, CMs interact with other cell types in
49 the heart. The epicardial cells, cells that comprise the outer layer of the heart, undergo epithelial-
50 to-mesenchymal transition both during heart development and repair to produce smooth muscle
51 cells (SMCs), fibroblasts, and possibly endothelial cells (ECs) (6, 7). These SMCs, fibroblasts,
52 and ECs interact with CMs in the myocardium to influence their survival and function. The
53 fibroblasts comprise approximately 20% of the nonmyocytes found in the heart and are
54 primarily responsible for the extracellular matrix (ECM) deposition in the heart (2, 8). SMCs aid
55 in the regulation of blood flow in the heart. ECs are the most abundant nonmyocyte cell in the
56 heart, comprising 60% of the nonmyocytes (2). They line the vasculature and aid in the delivery
57 of nutrients and removal of waste. Endocardial ECs specifically line the heart chambers and
58 myocardial ECs comprise the capillaries that directly interact with CMs. Interactions between
59 these cardiac cell types are necessary to support the contractile function of the heart.
60

61 Cardiovascular disease is the leading cause of death globally. In 2015, it contributed to
62 the death of about 17.7 million people, which accounts for 31% of the total deaths that year (9).
63 This high mortality rate is caused by the death of millions of CMs, a cell type that has a very low
64 ability to regenerate to replace damaged areas with healthy cells (10). Valvular heart disease and
65 cardiac hypertension slowly kill CMs over time (11). In comparison, myocardial infarctions can
66 cause 25% of the CMs in the left ventricle to undergo cell death in just a few hours (11). During
67 an acute myocardial infarction, a blockage occurs in the blood flow of a coronary artery
68 preventing the delivery of oxygen and nutrients to the cardiac tissue. The CMs in the left
69 ventricle are most impacted by heart attacks due to their high demand of oxygen and nutrients.
70 During the heart's chronic response to a myocardial infarction, fibroblasts proliferate and form
71 scar tissue, stiffening the heart wall and disrupting the native conduction system, thereby
72 contributing to the likelihood of cardiac failure.
73

74 Currently, the only method to completely restore cardiac function for extended duration
75 in patients with advanced cardiac disease is a heart transplant. Alternatively, left ventricular
76 assist devices can temporarily aid the ability of the heart to function but these devices pose
77 significant risks for infection and thrombosis (12). Many efforts are being investigated to repair
78 the damaged cardiac tissue, including creating new heart tissue from stem or progenitor cells or
79 from reprogrammed somatic cells. Some of the most promising stem cell sources for cardiac
80 tissue include both human embryonic stem cells (hESCs) and induced pluripotent stem cells
81 (iPSCs). Other potential cell types that could be used to repair cardiac tissue include the
82 proliferation of a very rare population of adult cardiac progenitor cells (CPCs) or epicardial cells
83 (10). The potential of epicardial cells to form CMs *in vitro* or *in vivo* remains controversial, but
84 they contribute to nonmyocyte cell populations in the heart. Also further investigation will be
85 required into methods to stimulate differentiation of adult CPCs, which have very low rates of
86 CM formation, to realize their cardiac regenerative potential (10). The main advantage of using
87 stem cells is that they can be expanded prior to differentiation. Estimates of one billion CMs are
88 required for repair of the ventricle after a myocardial infarction (13). Unfortunately, human
89 pluripotent stem cell (hPSC)-derived CMs are immature, exhibiting the structure and function of
90 developing CMs found in a fetus instead of those in an adult heart (14). On the other hand,

91 reprogramming fibroblasts is a relatively new and still inefficient method, requiring further
92 characterization of the resulting CMs to determine their subtype and maturity (15). For these
93 reasons, most research has focused on using hPSC-derived CMs to replace native CMs cells lost
94 in cardiac diseases.

95 **2 Differentiation of hPSCs to CMs**

96 **2.1 Generation of immature hPSC-derived CMs**

97 Methods have greatly improved to manufacture sufficient quantities of essentially pure
98 CMs from hPSCs under defined conditions to enable development of cardiac translational
99 therapies. The original differentiation methods relied on isolating small populations of CMs,
100 typically 1-5% of cells, which spontaneously formed in embryoid bodies (16, 17). While these
101 initial demonstrations of CM differentiation generated cells for research purposes, advances in
102 yield and purity were necessary to generate enough CMs for investigation of their therapeutic
103 potential. Over the past decade, CM differentiation processes have evolved and become more
104 efficient. Major advances to this method have allowed the differentiation to be optimized,
105 including the determination of pathways that are modulated during CM formation in the embryo,
106 the timing at which to induce these pathway changes, and the ability to activate these pathways
107 in the cells with growth factors and small molecules as seen in **Figure 1**. In 2007, Laflamme *et*
108 *al.* cultured hESCs in a tissue culture plate coated with Matrigel (18). They obtained purities of
109 ~30% CMs through modulation of TGF β superfamily signaling using Activin A and BMP4 to
110 induce cardiac mesoderm formation (18). In a suspension culture, addition of BMP4, bFGF,
111 Activin A, Dkk1, and VEGF at different stages of differentiation yielded >50% CMs (19). This
112 method was further improved by the inclusion of dorsomorphin and SC43152 (20). In another
113 2D differentiation approach, Lian *et al.* generated 80-98% pure populations of CMs solely by
114 modulating the Wnt pathway with the small molecules CHIR99021 and IWP2 (21, 22).
115 Combinations of these strategies incorporated activation of the BMP pathway along with the
116 Wnt pathway modulation to yield ~90% CMs (23). Xeno-free differentiation platforms have
117 been developed by adding ascorbic acid and replacing the B27 supplement with human
118 recombinant albumin or removing the B27 supplement altogether (24, 25). These fully-defined,
119 xeno-free methods reduce the variability in media components and eliminate possible patient
120 immune reactions to animal components in the CM product. These protocols can serve as
121 templates to enable the production of CMs at a scale required for regenerative medicines.

122 **2.2 Immature phenotypes of hPSC-derived CMs**

123 The lack of mature, adult-like phenotypes in hPSC-derived CMs is a crucial limitation in
124 advancing these cells toward clinical therapies. Their fetal-like state has been linked to
125 arrhythmias after transplantation in large animal models (13). Chong *et al.* implanted hESC-
126 derived CMs into infarcted macaque hearts through an intramyocardial injection. The immune-
127 suppressed macaques that received the injection experienced irregular heart rates, with premature
128 beating and tachycardia in the ventricle, with one monkey experiencing as many as a thousand
129 non-sustained ventricular tachycardia episodes in a day. Shiba *et al.* injected CMs differentiated
130 from MHC-matched, allogeneic, monkey induced pluripotent stem cells into infarcted hearts of
131 Filipino cynomolgus monkeys (26). Though the grafts were not rejected and the CMs were able
132 to integrate into the myocardial tissue partially restoring the heart, all the monkeys receiving
133 CMs also experienced ventricular tachycardia episodes for up to 24 hours per day. In both
134 CMs also experienced ventricular tachycardia episodes for up to 24 hours per day. In both
135 CMs also experienced ventricular tachycardia episodes for up to 24 hours per day. In both
136 CMs also experienced ventricular tachycardia episodes for up to 24 hours per day. In both

137 studies, the arrhythmias decreased in frequency over time, perhaps due to a degree of *in vivo*
138 maturation. For cell safety and efficacy, these hPSC-derived CMs must be matured enough to
139 significantly reduce the potential to induce arrhythmias upon transplantation.

140

141 The hPSC-derived CM immature phenotype is characterized by a difference in marker
142 expression, electrical and mechanical functionality, metabolism, calcium handling, and
143 morphology in comparison to adult CMs, as summarized in **Table 1**. Structurally, hPSC-derived
144 CMs are smaller, rounded cells, which more closely resemble embryonic CMs (27). In
145 comparison, adult CMs have a much more elongated, rod-like shape as seen in **Figure 2** (28).
146 Around 30% of adult CMs are multinucleated (29). Additionally, major changes affecting CM
147 contractility occur in the organization of the CM sarcomeres and myofibrils during maturation
148 (30). The anisotropic alignment of adult CMs is important to allow efficient propagation of
149 electrical signals (31, 32). These are aided by the formation of connexin-43 (Cx43)-containing
150 gap junctions between the cells (33).

151

152 Many CM genes are more highly expressed in adult CMs than in hPSC-derived CMs.
153 These genes encode ion channels, calcium regulators, sarcoplasmic reticulum transporters, and
154 sarcomeric proteins including, but not limited to: *CACNA1C*, *HCN4*, *SCN5A*, *ATP2A2*, *MYL2*,
155 *TNNI3*, *ACTN2*, *MYH7*, *MYL3*, *TNNC1*, *TNNT2*, *KCND3*, and *KCNH2* (34). Expression of
156 different isoforms of sarcomeric proteins switch during CM maturation. Immature CMs express
157 the slow skeletal isoform of troponin I (*TNNI1*) while more mature cells express the cardiac
158 isoform (*TNNI3*) (35). Ventricular CMs primarily express MLC-2a and α -MHC early in
159 development but upregulate MLC-2v and β -MHC as they mature (36). hPSC-derived CMs
160 spontaneously beat while adult ventricular CMs are quiescent, requiring pacing by the nodal
161 CMs (37). Also, the primary mode of carbon metabolism of CMs changes from glucose
162 oxidation to fatty acid β -oxidation during development (38). The force of the adult CM
163 contraction is on the order of μ N, much larger than the reported hPSC-derived CM force of \sim 30
164 nN (39, 40).

165

166 hPSC-derived CMs have very immature, irregular electrophysiological responses. Their
167 upstroke velocity ranges from 2 to greater than 200 V/s in comparison to 300 V/s in adult CMs
168 (41). The immature CMs have reduced excitation-contraction coupling and a higher resting
169 membrane potential of -58 mV, compared to the adult CM resting membrane potential of -80 mV
170 (37). hPSC-derived CMs lack T-tubules, which aid in rapid signal transmission between cells
171 through the sarcoplasmic reticulum (28). Instead, hPSC-derived CMs rely on trans-sarcolemmal
172 calcium influx (28), which results in a reduced conduction velocity of 2.1-20 cm/s compared to
173 41-84 cm/s in adult CMs (42-44).

174

175 One strategy to induce maturation of hPSC-derived cells involves implanting immature
176 cells *in vivo*. This method has proved effective in maturing other hPSC-derived cell types
177 including neural stem cells and pancreatic beta cell progenitors. For example, hESC-derived
178 neural stem cells were implanted into C5 spinal cord lesion sites and increasing numbers of cells
179 producing NeuN, a mature neural marker, were found throughout the following year (45). In
180 addition, hESC-derived pancreatic progenitors differentiated into mature insulin-producing β -
181 cells that expressed prohormone convertase enzymes upon implantation below the left kidney of
182 immune-deficient mice (46, 47). Indeed, there is evidence that hPSC-CMs undergo a degree of

183 maturation after implantation to the heart. For example, Kadota *et al.* demonstrated that
184 implantation of CPCs and CMs into adult rat hearts exhibited maturation over time, as assessed
185 by CM cell size, sarcomere length, and cTnI expression (48). However, after three months these
186 cells had not yet reached the size of the rat CMs, suggesting they were still relatively immature.
187 Some maturation was also seen over time in hESC-derived CMs grafts that were implanted in the
188 macaques after they underwent an induced myocardial infarction, though many of the cells in the
189 center of the grafts remained immature (13). The transplanted CMs in the graft core were not
190 fully aligned, displayed low α -actinin expression and were much smaller than the hESC-derived
191 CMs at the edge of the graft. Even if it were effective, implantation of hESC-CMs in an animal
192 does not represent a realistic approach to scaling manufacturing of cells for human therapeutics.
193 Therefore other methods must be pursued to mature hPSC-derived CMs in order to improve their
194 safety and efficacy.
195

196 **2.3 Design considerations to induce hPSC-derived CM maturation**

197 A tradeoff between functional maturity and engraftment efficiency complicates selection
198 of an ideal maturation state for transplanting hPSC-CMs. Funakoshi *et al.* reported that immature
199 day 20 iPSC-derived CMs injected intramyocardially into mouse hearts engrafted to a greater
200 extent than more mature day 30 CMs, based on the number of human CMs found throughout the
201 heart two months after transplantation (49). Testing on large animal models with a more similar
202 physiology to human hearts will need to be done to determine the level of maturation that would
203 be optimal for both integration and functional improvements in developing human cell-based
204 therapies. Towards the goal of developing transplantable human iPSC-derived organs, Wu *et al.*
205 are developing human-pig chimeras by incorporating human iPSCs into the inner cell mass of a
206 pig blastocyst (50). Additionally, standardized maturity metrics are needed to compare how
207 different signals and environments affect hPSC-CM maturation. Bedada *et al.* profiled the switch
208 in expression of ssTnI to the cardiac isoform cTnI through cardiac development (35). Mouse
209 stem cell-derived and rodent neonatal CMs exhibit significant levels of cTnI but human iPSC-
210 derived CMs predominantly expressed ssTnI even after 9.5 months in culture. They suggested
211 that the ratio of cTnI:ssTnI may serve as a useful marker for later stages of hPSC-derived CM
212 maturation (35). However, the relationship between cardiac gene isoform switching and
213 electromechanical and metabolic phenotypes has not yet been established. While determining the
214 extent of maturation that leads to optimal regenerative performance and setting benchmarks to
215 define when this level has been reached will be important steps toward creating cardiac cell-
216 based therapies, a significant number of studies have been performed to attempt to accelerate
217 maturation of hPSC-derived CMs through both biochemical and biophysical methods.
218

219 Several strategies to enhance maturation of hPSC-derived CMs have been described in
220 recent years, with limited success in terms of rate and extent of maturation achieved. Both
221 Ivashchenko *et al.* and Lundy *et al.* characterized the temporal changes in iPSC-derived CM
222 maturation throughout time in culture, up to 80 days and 120 days respectively (51, 37). Though
223 the cells increased in size, organization, sarcomere length, expression of key cardiac genes,
224 responsiveness to ion channel activators and inhibitors, and electrophysiology, they were still
225 immature compared to adult CMs. Even though extended culture can be an effective strategy to
226 mature hPSC-derived CMs, the amount of time required is generally not compatible with
227 manufacturing timelines. Strategies to accelerate the rate of maturation include mechanical
228 stimulation, electrical stimulation, altering ECM composition and substrate stiffness, directing

229 cellular alignment, and coculture of the CMs with the other cell types prominent in the heart.
230 These strategies provide differentiating CMs with cues found in the developing heart
231 environment and their ability to induce maturation will be discussed in detail in Section 6.
232

233 **2.4 The impact of nonmyocytes on hPSC-derived CM maturation**

234 In a developing heart the CMs are in direct contact with and receive soluble cues from a
235 variety of other cell types including fibroblasts, SMCs, ECs, and epicardial cells. In fact, when
236 these interactions are eliminated in mouse embryos, the heart is unable to form correctly. For
237 example, when Luxán *et al.* specifically inactivated Delta-Notch pathway components *Mib1* or
238 *Jag1* in mouse myocardium or *Notch1* in the endocardium, the resulting hearts demonstrated left
239 ventricular non-compaction cardiomyopathy (52). Similarly, Lavine *et al.* found *Fgf9*
240 upregulation in both mouse endocardium and epicardium (53). *Fgf9* knockout resulted in
241 decreased CM proliferation and dilated cardiomyopathy, a result that was also achieved by
242 knocking out myocardium-specific expression of the receptors *Fgfr1* and *Fgfr2*.
243

244 As *in vitro* CM differentiation processes have evolved to become more efficient, signals
245 from other cell types in a more heterogeneous population have been lost, perhaps altering the
246 ability of the CMs to achieve mature phenotypes. For example, Kim *et al.* purified hESC-derived
247 CMs from embryoid bodies (EBs) at different time points and further cultured the cells to 60
248 days (54). The CMs maintained in culture with non-cardiomyocytes for longer time displayed
249 enhanced maturation, including elevated expression of cardiac ion channels, electrophysiological
250 maturity, and responsiveness to HCN, Na⁺, and Ca²⁺ ion channel blockers, compared to CMs
251 purified earlier. It is not clear why CMs cultured with non-cardiomyocytes for longer time
252 achieved greater maturation than the CMs in monoculture. EBs are known to contain many cell
253 types in addition to CMs, including endodermal, ECs, neural crest, and epicardial cells (53).
254 With <7% of the EB composition being CMs, this study suggests that nonmyocytes may play an
255 important role in phenotypic maturation of hPSC-derived CMs.
256

257 In tissue development and maintenance, cells interact in a variety of manners including
258 autocrine and paracrine signaling, juxtacrine and biomechanical cues, and through remodeling of
259 ECM components as shown in **Figure 3**. Identifying how various cardiac cell types impact CM
260 phenotypes will be important for designing appropriate coculture systems that stimulate
261 maturation of hPSC-derived CMs in a manufacturing setting. Some cues, such as soluble factors,
262 are amenable to scale-up, while others like electrical and mechanical signals are more
263 complicated to integrate into a bioreactor. The remainder of this review will focus on our current
264 understanding of the role of both intercellular interactions and acellular methods to induce
265 maturation in hPSC-derived CMs and cardiac tissues and discuss the logistics of incorporating
266 these interactions into scalable CM manufacturing processes.
267

268 **3 Mimicking Intercellular Interactions via Soluble Factors and ECM**

269 The simplest method to incorporate intercellular signals into the production of CMs
270 would be through the addition of soluble factors into the differentiation platform. If the pathways
271 or molecules through which various cardiac cells interact with CMs to accelerate maturation
272 were identified, then these signals or other molecular modulators of these pathways could be
273 introduced into the culture at specific times by manipulating medium composition. Additionally
274 identification of the defined, cardiac-tissue inspired ECM for hPSC-derived CM maturation

275 could mitigate the need to integrate other cell types into the production hPSC-derived CMs. A
276 summary of the methods to induce maturation, shown in **Figure 4**, and their effects on specific
277 CM phenotypes can be seen in **Table 2**.

278

279 **3.1 Interactions with Fibroblasts**

280 Fibroblasts are a vital cell type for cardiac function and may be essential for cardiac
281 maturation. They are responsible for secretion of growth factors, ECM deposition and
282 remodeling, and even connect to CMs through connexins to aid in electrical signal propagation
283 (55). Several studies have employed different methods and platforms to simulate and incorporate
284 coculture of different fibroblast populations with either hPSC-derived or neonatal CMs.
285 Culturing rat neonatal CMs in rat neonatal cardiac fibroblast-conditioned medium induced
286 proarrhythmic changes (56). After 24 hours in the conditioned medium, the CMs had a
287 prolonged action potential duration and a slower conduction velocity, measured by single-cell
288 electrophysiology, compared to the unconditioned control, suggesting the fibroblast-conditioned
289 medium impeded electrophysiological maturation. This adverse effect was not seen when the
290 CMs were able to interact with the cardiac fibroblasts in a noncontact coculture (56). In contrast,
291 the noncontact coculture appeared to enhance structural maturation of the CMs, increasing CM
292 cell size and expression of β -MHC suggesting that intercellular crosstalk is important in
293 regulating the signals between the fibroblasts and CMs for CM maturation.

294

295 The cardiac ECM is important for distributing mechanical forces, conveying biochemical
296 and biomechanical signals, and providing structural integrity to the surrounding tissue (55).
297 Since it is essential to transmitting signals between CMs and the neighboring tissue, the ECM
298 composition likely impacts the ability of hPSC-derived CMs to mature. Thus, it is likely a direct
299 coculture or culture on fibroblast-derived ECM can influence hPSC-derived CM cell states (57).
300 Indeed, Suhaeri *et al.* developed a scaffold coated with mouse fibroblast-deposited ECM that,
301 when used to culture hESC-derived CMs, caused enhanced maturation as demonstrated by
302 enhanced transcription of *TNNT2*, upregulation of *Cx43* and α -actinin expression, and increased
303 cell length-to-width ratio (58). Rat neonatal CMs also exhibited enhanced cardiac gene and
304 protein expression, cell hypertrophy, increased sarcomere length, and more extensive cell
305 multinucleation in both direct contact and noncontact cocultures with fibroblasts while cultured
306 on fibroblast-derived ECM. While the neonatal rat CMs approached adult-like phenotypes with
307 respect to cell shape and electrophysiology, the hESC-derived CMs remained more similar to
308 embryonic CMs in their shape. Minimal differences were seen between the contact and non-
309 contact neonatal CM-fibroblast cocultures on fibroblast-derived ECM (58).

310

311 Together these studies demonstrate that a noncontact coculture with fibroblasts and
312 fibroblast-derived ECM can enhance CM maturation and can recapitulate the majority of effects
313 from a direct contact coculture, pointing toward ECM deposition and remodeling along with
314 paracrine secretion being the main methods of interaction between the fibroblasts and CMs for
315 CM maturation. While known paracrine factors could be added to culture media, cell-deposited
316 ECM could be introduced into large-scale production through either direct coculture, co-
317 differentiation, or through pre-depositing ECMs onto the substrate before introducing the CMs
318 into the culture.

319

320 No evidence so far indicates the necessity of having direct cell-cell contact between CMs
321 and fibroblasts, though incorporation of fibroblasts directly into culture with CMs would allow
322 the fibroblasts to deposit their ECM and secrete paracrine factors. It is also not yet evident
323 whether cardiac-specific fibroblasts affect CM maturation to a greater degree than fibroblasts
324 harvested from other tissues. Cardiac fibroblasts are largely responsible for synthesizing cardiac
325 ECM components, including collagens I and III which together comprise 91% of the total
326 collagen in the heart (8). The ECM also includes CM-produced collagen IV and other
327 components including collagen V and VI, fibronectin, laminin, elastin, and fibrillin (57). Unlike
328 other fibroblasts, cardiac fibroblasts specifically express DDR2 (57). In addition to other
329 paracrine and juxtacrine interactions, further research should investigate cardiac fibroblasts, in
330 comparison to others found in the body, to determine the specific factors and ECM components
331 they produce to accelerate maturation of hPSC-derived CMs.
332

333 **3.2 Interactions with ECs**

334 As the most numerous cell type in the myocardium besides CMs, ECs are in close contact
335 with CMs throughout heart development, delivering nutrients and removing wastes via the
336 circulatory system (2). EC-derived factors may also regulate development and maturation of
337 CMs. For example, endocardial ECs have been shown to produce neuregulin-1, a paracrine
338 signaling factor that can induce electrophysiological maturation in hPSC-CMs (59, 60). To
339 investigate whether rat arterial ECs could enhance hPSC-derived CM maturation, Lee *et al.*
340 incorporated either EC lysates, EC-generated ECM, or EC-conditioned medium into the CM
341 culture in addition to direct contact coculture of two cell types (61). Both direct coculture and EC
342 lysates enhanced CM maturation, including better-organized sarcomeres, greater cell elongation
343 and alignment, and improved Ca^{2+} handling, compared to CMs in monoculture. However, EC-
344 conditioned medium and EC-derived ECM had no detectable effect on maturation. Additionally,
345 they found that the EC-induced changes in CM maturity were not replicated by mouse cardiac
346 fibroblast coculture (61). ECs from rat fat, aorta, and heart induced similar effects on CM
347 maturation, suggesting that the EC-derived effects on CM maturation are a general endothelial
348 property. Direct EC coculture and EC lysates induced the CMs to upregulate expression of four
349 specific microRNAs, miR-125b-5p, miR-199a-5p, miR- 221, and miR-222. Transfection of these
350 microRNAs into CMs induced a degree of CM maturation, although not to the same extend as
351 direct EC coculture (61). Adding microRNAs or other genetic targets of maturation pathways
352 may be a facile method to simulate the effects of coculture in a CM manufacturing process,
353 although more research is necessary to determine the mechanisms by which CMs sense and
354 respond to cues produced by other cardiac cell types. Further investigation by Pasquier *et al.* saw
355 improvements in the chronotropy and synchrony of hESC-derived CMs when in direct coculture
356 with E4orf1-transfected human umbilical vein ECs in comparison to both EC-conditioned media
357 and monoculture (62). This study further suggests the importance of juxtacrine signaling
358 between the ECs and CMs for CM maturation. Notably, ECs also may aid in CM survival after
359 transplantation due to their ability to vascularize the tissue and therefore are important to include
360 in cardiac regenerative therapies in addition to possible CM maturation effects.
361

362 **3.3 Hormone and metabolite induction of hPSC-CM maturation**

363 Alternatively, biochemical activation of cardiac maturation pathways may be an effective
364 strategy for manufacturing more mature CMs. Tri-iodo-l-thyronine (T3), a hormone synthesized
365 by the thyroid, has been shown to decrease fetal gene expression and induce an isoform switch

366 from fetal to adult titin in embryonic rat CMs (63). T3 treatment increased iPSC-derived CM cell
367 size and elongation, increased contractility, and increased sarcomere length after 1 week
368 compared to untreated iPSC-derived CMs when the cells were treated with the compound for a
369 week (14). Interestingly, expression of α -MHC was substantially upregulated following T3
370 treatment, which may indicate specification to atrial CMs. Kosmidis *et al.* investigated the ability
371 of glucocorticoid signaling, which is known to enhance maturation of all organs in the fetus, to
372 mature hPSC-derived CMs (64). Treating hESC-derived CMs with the synthetic glucocorticoid
373 dexamethasone increased sarcomere length and force of contraction. A combination of
374 dexamethasone and T3 applied to human iPSC-CMs cultured on a Matrigel substrate induced t-
375 tubule network formation and enhanced excitation-contraction coupling (65). Lastly, it may be
376 possible to induce hPSC-derived CM maturation through the metabolites provided in the culture
377 media. Bhute *et al.* found a substantial shift in the metabolism of the hESC-derived CMs as they
378 aged from 1 month to 3 months old *in vitro* (66). Aging in culture significantly upregulated
379 phospholipid metabolism, pantothenate and Coenzyme A metabolism, and fatty acid oxidation
380 and metabolism. It may be possible to induce these changes by altering media formulations.
381 Indeed, Correia *et al.* found that switching to a medium containing galactose and fatty acids as
382 primary carbon sources, rather than of glucose, forced the hPSC-derived CMs to mature at a
383 faster rate (67). These cells demonstrated enhanced contractility, calcium handling, and a more
384 elongated cell shape than CMs cultured in medium containing glucose. Altogether these studies
385 illustrate the potential of regulating hPSC-derived CM maturation via known molecular and
386 metabolic modulators of heart maturation. Addition of galactose and fatty acids along with T3
387 and dexamethasone could easily be incorporated into large-scale production of hPSC-derived
388 CMs through culture media optimization.
389

390 4 hPSC-derived CM maturation in microtissues

391 While the addition of soluble factors or fibroblast-derived ECM may not be sufficient to
392 fully mature hPSC-derived CMs, these strategies represent a step in the right direction. Signaling
393 through direct cell-cell contact is also important for cardiac maturation. Also, incorporating
394 hPSC-derived CMs into a scaffold with other cell types may enhance engraftment and survival *in*
395 *vivo* (68). For these reasons, cardiac microtissues have been investigated as potential
396 regenerative therapies. To create these microtissues, researchers have combined fibroblasts,
397 SMCs, and ECs with CMs by separately differentiating the cells from stem cells or harvesting
398 them from primary sources, and then constructing the tissue. Initially the strategy to combine
399 multiple cell types into a cardiac microtissue was explored to enhance CM survival and
400 engraftment after transplantation, but effects of intercellular interactions on CM phenotypes were
401 observed in these tissues. Alternatively, it may be possible to use the innate ability of certain
402 CPCs to create a microtissue in which the different cardiac cell types spontaneously organize as
403 they differentiate, which will be discussed in Section 5.
404

405 In the past few years, hPSC differentiation protocols have been developed to generate
406 relatively pure populations of multiple cardiac cell types in addition to the CMs described in
407 Section 2.1. Pure populations of CD34⁺ cells, which can give rise to both ECs and SMCs, are
408 obtainable using either MEK/ERK and BMP4 pathway or Wnt pathway activation, followed by
409 magnetic activated cell sorting (MACS) (69, 70). Lui *et al.* used VEGF-A to drive the formation
410 of cardiac-specific ECs from Isl1⁺ CPCs (71). Purification of CD31⁺CD144⁺ cells was achieved
411 by FACS with antibodies for both CD31⁺ and CD144⁺ surface markers. Epicardial cells and

412 their derivatives have also been differentiated from hPSCs via an $Isl1^+Nkx2-5^+$ progenitor. Iyer
413 *et al.* utilized the WNT3A, BMP4 and RA pathways to create WT1+ epicardial cells whereas
414 Bao *et al.* generated similar cells by stage-specific modulation of the Wnt pathway (72, 73). The
415 resulting epicardial cells were 80-100% pure and could undergo epithelial-to-mesenchymal
416 transition using TGF β 1 together with PDGF-BB or bFGF to generate SMCs and FGF treatment
417 to create fibroblasts (6, 73). Bao *et al.* also demonstrated that hPSC-derived epicardial cells have
418 the capacity to differentiate to cells expressing endothelial markers after VEGF treatment, but
419 this process remains inefficient (74). hPSC-derived epicardial cells may be differentiated to
420 epicardial-derived cells and then combined with hPSC-derived CMs to form cardiac tissues, or
421 hPSC-derived epicardial cells may be directly incorporated into the cardiac tissues.
422

423 Initial attempts to generate cardiac tissues often utilized primary cells as a proof of
424 concept to demonstrate the benefits of including these cells into microtissues in comparison to a
425 CM-only graft. For example, Stevens *et al.* found that incorporation of human umbilical vein
426 endothelial cells (HUVECs) and mouse embryonic fibroblasts (MEFs) into spheroids containing
427 hESC-derived CMs greatly enhanced the survival of the CMs after transplantation into nude rat
428 hearts (75). *In vitro*, ECs have the capacity to form tube-like vascular structures, though they are
429 generally unstable and often require specific growth factors and 3D ECM or other scaffolds to
430 form. In the presence of fibroblasts, these vascular-like structures were able to form and were
431 maintained and stabilized without specific growth factor supplementation (76). When MEFs
432 were cocultured with hESC-derived ECs and CMs on Matrigel in poly(lactic-co-glycolic acid)
433 sponges *in vitro*, the stability of the tubes was enhanced and the CMs exhibited increased
434 proliferation and expression of MLC-2v (76). Inclusion of ECs aided CM survival after
435 transplantation of hESC-derived cardiac patches over the anterior cardiac wall of infarcted rat
436 hearts (75, 77). The vascular structures in the patch were able to connect to the host capillaries as
437 shown by the staining of Indian ink that was injected into the inferior vena cava (77) and by the
438 presence of leukocytes and Ter-119-positive red blood cells inside the vessels (75). It is not
439 entirely clear whether the EC-mediated vascularization improved CM survival by enhancing
440 delivery of oxygen and nutrients to the graft, or if paracrine and juxtacrine signaling influenced
441 CM fate.
442

443 Additionally, combining multiple different cardiac cell types into cardiac tissue
444 constructs has elicited greater maturation than individual cell types, suggesting additive or
445 synergistic effects. Vuorenپää *et al.* found that fibroblasts together with ECs helped mature CMs
446 (78). They seeded HUVECs and human foreskin fibroblasts first, allowing the cells to
447 spontaneously form a vascular-like network in the culture dish, before adding iPSC-derived
448 CMs. This caused the resulting CMs to orient longitudinally and to become larger. In a similar
449 experiment, Ravenscroft *et al.* cultured human primary cardiac fibroblasts and ECs with hESC-
450 derived CMs for two weeks (79). The resulting CMs exhibited increased contractile response to
451 drugs targeting the β 1-adrenergic receptor, EGFR-1/EGFR-2 receptor, or Na/K $^+$ ATPase and the
452 increased expression of *S100A1*, *TCAP*, *PDE3A*, *NOS3* and *KCND3* in comparison to either a
453 monoculture or the combination of CMs with either ECs or fibroblasts alone. This response to
454 the pharmacological agents was elicited by cardiac-specific fibroblasts and ECs, but not dermal
455 fibroblasts or ECs, further suggesting a unique capacity for cardiac-specific cells in maturing
456 hPSC-derived CMs. Though cardiac fibroblast and EC coculture improved gene expression in
457 the CMs, they were still much more representative of fetal CMs than adult CMs.

458

459 Further microtissue design and evaluation should test the ability of hPSC-derived cell
 460 types to improve the functionality of hPSC-derived CMs. Production of cardiac tissues
 461 containing multiple cell types including ECs, fibroblasts, and possibly SMCs or epicardial cells
 462 will need to be investigated and optimized. These cardiac microtissues will likely need additional
 463 exogenous stimulation via biochemical and/or biophysical cues to achieve sufficient maturation.
 464

465 5 Creating cardiac tissues via morphogenesis of CPCs

466 Instead of independently differentiating various cardiac cell types then combining them
 467 to create a cardiac microtissue, it may be advantageous to start with a CPC that can form the
 468 desired cell types and differentiate these progenitors in such way that they form organized
 469 cardiac structures. If differentiation can be spatially and temporally controlled, one may be able
 470 to manufacture cardiac tissues similar in composition and structure to the native myocardium,
 471 incorporating key factors that impact CM maturation and survival upon engraftment.
 472

473 The adult heart contains rare populations of adult CPCs that can differentiate into CMs,
 474 ECs, SMCs, and fibroblasts (80). Different markers have been used to identify these adult CPCs
 475 including Sca-1 and c-kit, with consensus still needing to be reached on each populations'
 476 potential to form cardiomyocytes (80-82). Alternatively, CPCs found during development and
 477 differentiation of hPSCs to CMs are characterized primarily by the expression of Nkx2.5, Isl1,
 478 Flk-1/KDR, and PdgfR- α (20). These hPSC-derived CPCs are multipotent and can further
 479 differentiate to epicardial cells, ECs, SMCs, and CMs *in vitro* (71, 73, 83-85). While these CPCs
 480 have the capacity to form myocardial cell types, this potential has not yet fully been harnessed to
 481 manufacture cardiac tissues *in vitro*. Ruan *et al.* utilized an hPSC-derived KDR $^+$ PDGFR α $^+$
 482 progenitor to create cardiac tissue constructs, co-differentiating the CPCs in a medium
 483 containing VEGF into CMs, SMCs, and ECs, which organized into vascular structures
 484 containing lumens (86). Interestingly, 3D differentiation favored CM generation while tissues
 485 differentiated in 2D contained a much greater SMC population. One caveat in using the CPCs for
 486 engineering cardiac tissues is that it is difficult to fully control the differentiation, with up to 40%
 487 of their constructs composed of unidentified cell types (86). Though use of hPSC-derived CPCs
 488 may provide a seemingly facile, development-inspired approach for engineering myocardial
 489 tissues, progress must be first made to understand how to expand and control differentiation of
 490 these cells *in vitro* to generate sufficient quantities of therapeutically relevant cardiac tissues.
 491

492 In fact, several recent advances in expanding and differentiating CPCs have opened the
 493 possibility of implanting CPCs for cardiac regeneration. Isolating CPCs from cardiac tissue and
 494 expand these CPCs *in vitro* is challenging (87). Only recently, Birket *et al.* discovered that by
 495 genetically modifying hESCs to allow doxycycline-induced *MYC* expression, the CPC population
 496 could be maintained for up to 40+ doublings with the addition of IGF-1 and a hedgehog agonist
 497 (88). Though the genetic modification to stimulate *MYC* expression may limit the potential to use
 498 these cells in regenerative therapies, they will likely prove beneficial to study mechanisms of
 499 self-renewal and differentiation fates. Alternatively, two teams have reported methods to
 500 reprogram murine fibroblasts into induced CPCs (iCPCs) that can be expanded *in vitro* (15, 89).
 501 Lalit *et al.* induced expression of the cardiac transcription factors and chromatin regulators
 502 *Mesp1*, *Gata4*, *Tbx5*, *Baf60c*, and *Nkx2-5* in the fibroblasts (15). Zhang's method utilized the
 503 small molecules B431542, CHIR99021, parnate, and forskolin together with induced expression

504 of *Oct4* (89, 90). Both methods resulted in Flk-1⁺PdgfR- α ⁺ iCPCs which were purified and then
505 expanded in medium containing Wnt and JAK/STAT pathway activators (15) or containing
506 BMP4, Activin A, a Wnt inhibitor, and an inhibitor of FGF, VEGF, and PDGF signaling (89).
507 When transplanted into mouse hearts, these cells exhibited the capacity to differentiate into
508 SMCs, ECs, and CMs, but did not form teratomas. The expandable iCPCs generated tissues
509 comprised of approximately 60% SMCs, 7% ECs, and 30% CMs (89). This propensity to
510 differentiate to SMCs may be a consequence of the fibroblast origin of the iCPCs. Lastly,
511 reprogramming of fibroblasts to iCPCs has not yet been demonstrated in human cells and further
512 characterization of the resulting CMs need to be done to determine their subtype specificity and
513 maturity. Therapeutic delivery of reprogrammed iCPCs may eliminate the need to terminally
514 differentiate stem cells to cardiac cell types *in vitro*, but we need a better fundamental
515 understanding of how to control differentiation fates and tissue morphogenesis in order to
516 reliably manufacture structurally organized and functional cardiac tissues from iCPCs.
517

518 This concept of co-differentiation was used to direct hESCs to a mixed population of
519 CMs and ECs using culture conditions permissive for differentiation to both cell types (91).
520 Addition of VEGF at the same time as inhibition of Wnt signaling generated a population
521 comprised of ~50% CMs and ~16% cardiac-specific *GATA4*⁺ ECs by day 10 after initiation of
522 differentiation. It is not clear whether the VEGF directed a cardiac progenitor to an endothelial
523 fate or provided a selective growth advantage to ECs in the differentiating culture. The CMs and
524 ECs were purified then recombined to form a cardiac microtissue with enhanced CM maturity in
525 their ion channel gene expression which was upregulated compared to CMs alone. These
526 microtissues formed from co-differentiated CMs and ECs also exhibited increased sensitivity to
527 the Ca²⁺ inhibitor verapamil and the β -adrenoreceptor agonist isoprenaline, signs of functional
528 maturation. In contrast, the microtissues formed from co-differentiated CMs and ECs contained a
529 lower cTnI:ssTnI ratio than the CMs alone, suggesting that co-differentiation did not induce
530 myofilament maturation.
531

532 Co-differentiation allows cross-talk between developing cell types throughout the
533 differentiation process, similar to what occurs in the embryonic heart during development, while
534 combining cells after differentiation may fail to provide intercellular differentiation and
535 maturation cues during the most impactful developmental stages. However, co-differentiation
536 will likely be more difficult to implement in a manufacturing setting because of challenges in
537 controlling the ratio and organization of multiple cell types and the potential need to purify and
538 recombine cells into tissues if they do not spontaneously assemble into appropriate structures.
539 With enough control of the differentiation and morphogenesis processes, it may be possible to
540 engineer the cells to autonomously form organized cardiac tissue structures, enhancing their
541 function and ability to engraft into an adult heart. Further research will be needed to achieve this
542 level of control through design of effective strategies that permit the formation of structured
543 tissues from mixed populations of differentiating cardiac cells.
544

545 6 Incorporation of acellular methods to induce hPSC-derived CM maturation

546 While intercellular interactions play crucial roles in cardiogenesis, providing these
547 signals during differentiation and subsequent culture of hPSC-derived CMs will likely be
548 insufficient to fully mature the CMs. Other microenvironmental cues, including mechanical
549 forces, electrical stimulation, and ECM composition and mechanical properties also regulate CM

550 phenotypes. Here we will discuss how these cues impact hPSC-derived CM phenotypes and how
551 they can integrate into a CM manufacturing process. These cues and their effects on specific CM
552 maturation phenotypes are shown in **Table 2**.

553
554 The contractile forces generated by the heart are necessary for cardiac homeostasis and
555 impact heart development. To investigate the role of stresses on hPSC-derived CMs, Tulloch *et*
556 *al.* assessed the effects of cyclic and static stresses on these cells (92). The cells were cast into a
557 gel which was attached to a flexible silicon surface. Mesh tabs were used to introduce static
558 stress whereas the deformable silicon substrate was stretched to induce cyclic stresses. Both
559 cyclic and static stresses induced sarcomere organization, CM enlargement and alignment, and
560 increased expression of *MYH7*, *CACNA1C*, *RYR2*, and *ATP2A2* (92). Cyclic stretch on the CMs
561 cultured with HUVECs did not further enhance maturation in comparison to the monoculture
562 though the cocultured CMs demonstrated increased DNA synthesis (92). By using CPCs to co-
563 differentiate SMCs, ECs, and CMs together, Ruan *et al.* tested the effects of cyclic stretching on
564 the resulting cardiac tissue constructs. Cyclic stretch increased the tissue stiffness and, in the
565 hPSC-derived CMs, expression of cTnT, ratio of β -MHC: α -MHC, and cell contractility (86).
566 Alternatively, Mihic *et al.* incorporated hESC-derived CMs into a gelatin sponge which could
567 then be physically stretched and saw increased expression of the proteins Cx43 and MLC-2v and
568 the genes *CACNA1C*, *SCN5A*, *KCNJ2*, *KCNH2*, *MYH7*, and faster Ca^{2+} handling (93).
569 Incorporation of mechanical stresses into scalable CM manufacturing processes will likely prove
570 challenging, although these cues may be effective when applied to cardiac tissues and might not
571 be necessary during the CM differentiation phase of manufacturing.
572

573 Chan *et al.* employed electrical conditioning to simulate the cardiac conduction system
574 signaling that developing myocytes are exposed to in the embryo in an effort to mature hESC-
575 derived CMs (94). Electrically-paced CMs demonstrated increased spontaneous and caffeine-
576 induced calcium flux and upregulated expression of cardiac genes including *SCN5A*, *ATP2A2*,
577 and *KCNH2*, suggesting enhanced electrophysiological changes in ion channel expression. Eng
578 *et al.* further demonstrated the ability of electrical conditioning to enhance CM expression of
579 cTnI and Cx43, and increase the fraction of rapidly depolarizing cells through inducing
580 expression of *KCNH2*, a gene that encodes a potassium channel responsible for the ability of
581 hPSC-derived CMs to adapt their autonomous beating rate to the rate of the stimulation (95). The
582 ability to respond to signaling provided by the conduction system rather than to follow intrinsic
583 pacing may reduce the risk of arrhythmias after cells are implanted.
584

585 The composition and mechanical properties of the ECM and cell microenvironment
586 impacts hPSC differentiation and cell phenotypes (96). Decellularized tissues provide 3D
587 scaffolds with the composition and structure of native ECM. Fong *et al.* cultured iPSC-derived
588 CMs in decellularized fetal and adult bovine hearts in 3D culture (97). The decellularized adult
589 heart ECM was found to be 10-fold stiffer than the decellularized fetal hearts and resulted in
590 more extensive CM maturation, with increased expression of *JCN*, *CACNA1C*, *GJA1*, and
591 *CASQ2*, compared to the CMs in decellularized fetal hearts. Herron *et al.* found that plating
592 iPSC-derived CMs on soft PDMS gels increased cell size, Cx43 and cTnI expression, and CM
593 contractility compared to CMs plated on glass (98). Culture on PDMS with an elastic modulus
594 similar to that of cardiac tissue led to greater activation of $\beta 1$ integrin receptors than culture on
595 glass. When either the $\beta 1$ integrin was directly inhibited by a neutralizing antibody or its

596 downstream target, focal adhesion kinase, was inhibited, the CMs demonstrated a decrease in
597 cTnI expression and cell size. This study further suggests the benefits of imitating both the
598 composition of cardiac ECM and the stiffness of native heart tissue to accelerate CM maturation.
599 Similarly, alignment of the ECM components also affects CM maturation. Li *et al.* cultured
600 iPSC-derived CMs on electrospun, aligned nanofibers. CMs cultured on aligned fibers exhibited
601 enhanced alignment, increased expression of MLC-2v and β -MHC, and higher electrical field
602 potentials than CMs on random fibers and flat substrates (99). This highlights the ability of
603 substrate topography to regulate both CM organization and maturation. Thus, one must consider
604 ECM mechanics and organization as well as composition in designing a matrix for
605 manufacturing CMs.

606

607 7 Current methods to scale up hPSC-derived CM manufacturing

608 Many recent advances have been made toward up-scaling the production of hPSC-
609 derived CMs. From optimizing the differentiation and identifying how to adjust crucial
610 parameters during the process, the industry is getting closer to being able to reliably produce
611 CMs on a large-scale basis. For example, Tohyama *et al.* recently demonstrated the ability to
612 differentiate hPSC-derived CMs in monolayer culture in 10-layer, 1.2 L culture flasks with
613 active gas ventilation, creating near a therapeutically relevant number of $1.5\text{--}2.8 \times 10^9$ cells with
614 >66% purity (100).

615

616 To reduce the cost of manufacturing, 3D suspension differentiation platforms have been
617 developed. Suspension systems generate higher cell concentrations, reducing the cost of culture
618 medium and the size of reactor needed. Ting *et al.* utilized microcarriers to transition from hESC
619 expansion and differentiation to CMs on a flat 2D substrate to CM production in suspension.
620 (101). Microcarriers have a large surface area per volume and can be coated with different ECMs
621 to facilitate cell attachment, proliferation, and differentiation. With gentle rocking during the
622 stem cell culture and intermittent agitation during the differentiation, they obtained
623 approximately 60% CM purity and about 200 million cells per 15 mL batch. With further
624 development, microcarriers could provide a reliable and inexpensive method to produce
625 clinically-relevant numbers of hPSC-derived CMs. However, the resultant cells would likely
626 have to be separated from the microcarriers prior to clinical use.

627

628 Recent advances also have demonstrated the ability to produce hPSC-derived CMs in
629 suspension without microcarriers. For example, Nguyen *et al.* followed either the Laflamme *et*
630 *al.* 2007 or Lian *et al.* 2012 directed differentiation protocols to generate CMs, singularized the
631 CMs and plated them in microwells to form 3D aggregates before transferring the cells into a
632 rotary orbital suspension culture (18, 21, 102). By optimization of the cell density in the
633 microwells, they achieved almost 100% α -actinin⁺ cells in 3D culture. Both Chen *et al.* and
634 Kempf *et al.* seeded undifferentiated hPSC aggregates in reactors to scale up production of
635 hPSC-derived CMs in suspension culture (103, 104). Kempf *et al.* differentiated the hPSCs in a
636 100 mL stirred tank reactor, generating 40-50 million CMs per batch (104). Chen *et al.* produced
637 1.5 to 2 billion CMs in a 1 L spinner flask (103). To date, these suspension differentiation
638 platforms have strived to produce pure populations of CMs. Moving forward, to introduce
639 intercellular interactions in suspension CM manufacturing processes, direct cocultures may be
640 achieved either through co-differentiation or introduction of other cell types during the
641 differentiation. Further, perfusion of media from a reactor containing other cell types could

642 provide a method to introduce conditioned media to simulate coculture conditions. Alternatively
643 an indirect coculture could be achieved through separation of the cell types with a membrane.
644 The use of small molecules and growth factors to mimic intercellular interactions would provide
645 a simpler, easier to scale, and likely more robust and cost-effective alternative to coculture
646 platforms.

647
648 To create cardiac patches with mature hPSC-derived CMs, several studies have devised
649 methods to culture the constituent cells on a large scale after differentiation. Shadrin *et al.*
650 developed a method to create cardiospheres, using differentiated and singularized hPSC-derived
651 CMs and culturing them in a hydrogel plug free-floating in medium. After three weeks in
652 culture, the CMs demonstrated increased maturation with highly structured sarcomeres and T-
653 tubules (105). The hydrogels were 36 x 36 mm, a size relevant for clinical application (105). In
654 addition to allowing CM maturation, this method of culturing the CMs in the hydrogels post-
655 differentiation is amenable to both coculture and scale-up. The introduction of other cell types
656 could be easily achieved when encapsulating the cells into the hydrogel. Specific ECM
657 components also could be incorporated into the hydrogel.

658
659 Biophysical techniques to mature hPSC-derived CMs may prove difficult to integrate
660 into a large-scale manufacturing process. Lux *et al.* created a bioreactor that can both provide
661 cyclic mechanical stretch and perfusion of medium to cardiac patches up to 2.5 x 4.5 cm in size
662 (106). Tandon *et al.* developed a portable bioreactor which can both provide perfusion and
663 electrical stimulation to cardiac patches (107). Further engineering is required to scale-up these
664 types of reactors, to design systems able to transmit electrical and mechanical cues in suspension.
665 A comparison of the methods to scale-up production of mature hPSC-derived CMs is provided in
666 **Table 3**.

667
668 Research has begun to look at monitoring and controlling the cells during production to
669 ensure the quality of the cell product. Kempf *et al.* investigated the effects of cell density and
670 CHIR concentration on CM yield and purity (108). They found that the CHIR concentration
671 needed to induce CM differentiation correlated with cell density. This suggests that CHIR
672 concentration can be modified to account for differences in growth rates between different cell
673 lines or different batches (109). Metabolic analysis of the media would also allow monitoring of
674 the differentiation and maturation processes. For example, an increase in glycerophosphocholine
675 and the glycerophosphocholine:phosphocholine ratio during maturation may be markers for the
676 maturation state of the hPSC-derived CMs (66).

677
678 **8 Scalable purification of hPSC-derived CMs**
679 After differentiation, hPSC-derived CMs will likely need to undergo a purification
680 process to remove any traces of undifferentiated hPSCs or undesired differentiated cell types,
681 and ensure a consistent product. Antibody-based purification methods are highly selective but
682 costly to scale. Toward a negative-selection process to remove undifferentiated hPSCs, Choo *et*
683 *al.* developed an antibody, mAB 84, which selectively caused undifferentiated hESCs to die,
684 likely through oncosis (110). This antibody could reduce the tumorigenic potential of cells
685 differentiated from hPSCs, although this has not yet been shown to be a significant problem in
686 preclinical models of hPSC-derived cardiac cell therapies. CM-specific surface markers allow
687 separation of hPSC-derived CMs by MACS and FACs. MACS against SIRPA and VCAM1 has

688 been used to yield >95% pure CMs (111, 112). However, there is a loss of CM yield following
689 MACS (111). FACS also separates living cells based on expression of specific surface proteins.
690 While it is highly efficient in terms of purity and yield, FACS is costly to scale. To eliminate the
691 necessity of antibodies, Hattori *et al.* discovered that tetramethylrhodamine methyl ester
692 perchlorate, a fluorescent dye that labels mitochondria, could be used to enrich hPSC-derived
693 CMs to 99% purity (113). To enable their high energy utilization rate, CMs contains a large
694 number of mitochondria in comparison to other cell types, with mitochondria comprising 30% of
695 the CM volume (114).

696

697 Alternatively, genetic modification could allow purification of hPSC-derived CMs and
698 other cardiac cells. Antibiotic resistance genes that are under the control of a cardiac specific
699 transcriptional regulator enables purification via negative antibiotic selection. For example, a
700 99% pure population of CMs differentiated from a murine stem cell line expressing
701 aminoglycoside phosphotransferase under control of the *Myh6* promoter was isolated following
702 treatment with G418 (115). Additionally, lineage-specific expression of fluorescent markers
703 would allow FACS without the need for antibodies. Expressing eGFP from the *MYL2* promoter
704 allowed purification of a 95% pure hESC-derived ventricular CM population. (116). Miki *et al.*
705 developed microRNA switches that can selectively terminate undesired cell types (117). Upon
706 successful transfection of a specific microRNA switch corresponding to the desired cell type, the
707 switch will induce apoptosis of all cell types except the target. By using microRNA 208a, they
708 were able to enrich iPSC-derived CMs to a 95% purity with a loss of only 10% of the CMs
709 (117). They further demonstrated the ability to use one switch with two targets, microRNA 208a
710 for CMs and 126-3p for ECs, yielding a purified coculture of these two cell types (117). This
711 method may be able to eliminate any non-CMs in tissue patches without disrupting the cellular
712 organization. The main limitation of the microRNA switches and genetic selection methods is
713 the necessity for either transient or permanent genetic modification of these cells, which will
714 have to be thoroughly analyzed to establish safety *in vivo* before their potential use in
715 regenerative medicine.

716

717 Lastly, a metabolic selection may be used to purify CMs, taking advantage of their ability
718 to use carbon sources that other cells cannot, such as lactate. Tohyama *et al.* demonstrated that
719 lactate-containing medium can be used to generate 99% pure iPSC-derived CMs (118). This
720 selection method was optimized in concert with differentiation of hPSC-derived CMs such that a
721 pure population of cells was obtained within 20 days after the initiation of differentiation (24).
722 By using a glucose-free medium, a pure CM population can be manufactured in a simple,
723 defined, scalable process.

724

725 An overall comparison of the purification methods can be found in Table 4. After CM
726 purification, the cells could undergo either density gradient or membrane filtration purification to
727 remove any debris from the culture. Both of these methods are conducive to sterile large-scale
728 cell manufacturing (119).

729

730 9 Preservation of hPSC-derived CMs

731 Preservation would simplify the supply chain for meeting the clinical demand of hPSC-
732 derived CMs. Typically the cells will be singularized then cryopreserved in a medium that
733 contains a cryoprotectant, such as DMSO, and apoptosis inhibitors. When using the proprietary

734 DMSO-containing cryopreservation solution CryoStor, Xu *et al.* found that the hESC-derived
735 CMs had a recovery rate of 70-77% with similar viability and purity as before freezing (120). To
736 enhance survival, the cells were pretreated with a pro-survival cocktail containing apoptosis
737 inhibitors, K⁺ channel modulators, and growth factors for 24 hours prior to cryopreservation
738 (18). Following implantation into an ischemic rat heart, there were no differences in the sizes of
739 grafts composed of hESC-derived CMs that had or had not undergone cryopreservation (120).
740 Chong *et al.* also found no effect of hESC-derived CM cryopreservation on graft size after
741 implantation of into mice hearts following myocardial infarction (13). DMSO causes cell toxicity
742 and adverse reaction of patients, and thus must be removed from the cells prior to
743 transplantation. DMSO alternatives including trehalose and poly-L-lysine, have been
744 investigated although none have yet proven to effectively replace DMSO in cryopreservation
745 media (121).

746

747 Alternatives to cryopreservation have been designed to simplify stabilization of hPSC-
748 derived CMs. Correia *et al.* found that in 3D aggregates, about 70% of hPSC-derived CMs
749 survived after storage at 4°C for up to 7 days (122). Although large scale manufacturing will
750 likely require long-term cryopreservation, hypothermic stabilization may be suitable for
751 transporting cells from a central manufacturing site to the clinic.

752

753 10 Conclusion:

754 Significant advances have recently been made in manufacturing relatively pure
755 populations of CMs from hPSCs in fully-defined processes, making the use hPSC-derived CMs
756 for heart repair more plausible. The focus of research in this field is shifting to imparting more
757 mature phenotypes in these cells to increase their safety and efficacy following transplantation.
758 Additionally standards need to be defined to both quantify the extent of maturation and
759 determine the level of maturation that is optimal for transplantation. The ratio of cTnI:ssTnI
760 expression was proposed to be such a marker, but it is not yet clear how to assess electrical,
761 mechanical, or metabolic maturation.

762

763 Recent efforts to simulate the intercellular interactions found in the heart *in vivo* during
764 hPSC differentiation to CMs *in vitro* have demonstrated the importance of incorporating ECM,
765 juxtacrine, and paracrine interactions between CMs, ECs, and fibroblasts. Of these, fibroblast
766 ECM and EC juxtacrine signaling have been shown to enhance maturation phenotypes in hPSC-
767 derived CMs. In addition, several experiments have pointed toward the necessity to use cardiac-
768 specific cell types to induce maturation with the coculture. This should be further investigated to
769 reveal mechanisms by which fibroblasts and ECs induce specific phenotypes in CMs. These cues
770 could then be engineered into CM manufacturing processes in simpler manner than coculture.
771 Also, efforts to discover genetic and epigenetic regulators of cell state, growth factors, hormones,
772 and metabolites that enhance maturation would facilitate scalable production of hPSC-derived
773 CMs.

774

775 Introduction of cardiac intercellular interactions via either microtissues or co-
776 differentiation has been shown to enhance CM survival and engraftment *in vivo* in addition to
777 CM maturation. Thus far the potential to co-differentiate cardiac cells from stem and progenitor
778 cell types has not been investigated in sufficient depth due to insufficient control of these
779 complex differentiation systems. In addition, co-differentiation would likely require purification

780 using methods such as microRNA switches or antibiotic or metabolic selection. The potential of
781 CPCs to form appropriately-structured myocardial tissue is a powerful advantage in developing
782 cardiac regenerative therapies and should be investigated more extensively.

783
784 Mechanical and electrical simulation are effective means to accelerate maturation in
785 hPSC-derived CMs but are difficult to incorporate in scalable manufacturing processes. Design
786 of bioreactors to deliver these biophysical cues will likely improve CM and cardiac tissue
787 manufacturing processes. A better mechanistic understanding of mechanotransduction during
788 differentiation and maturation would enable alternative biochemical or genetic strategies to
789 modulate these pathways during CM manufacturing. Control of ECM organization, stiffness, and
790 structure represents another promising approach to regulate hPSC-derived CM maturation.

791
792 To date no single method has proved effective in inducing maturation in hPSC-derived
793 CMs. A combination of factors will likely be necessary to generate CMs of the appropriate
794 maturity for regenerative therapies. Identification of effective strategies will be enabled by
795 studies that relate the effects of maturation cues on specific phenotypes and identify mechanisms
796 by which these signals impart maturation.

797
798 **11 Conflict of Interest**
799 The authors declare that the research was conducted in the absence of any commercial or
800 financial relationships that could be construed as a potential conflict of interest.

801
802 **12 Acknowledgements**
803 We would like to thank Aaron Simmons and Martha Floy for their help in editing and
804 proofreading the paper.

805
806 **13 Author Contributions**
807 KD and SP wrote the manuscript and read and approved the submitted version.

808
809 **14 Funding**

810 This work was supported by NIH grant R01EB007534 and NSF grants 1547225, 1743346, and

811 1648035. KD was supported by a NIH Chemistry Biology Interface Training Grand (NIGMS

812 T32 GM008505).

813
814 **15 References**

- 815 1) Hirsch E, Nagai R, Thum T. Heterocellular signalling and crosstalk in the heart in
816 ischaemia and heart failure. *Cardiovasc Res* (2014) 102(2):191–3. doi:
817 10.1093/cvr/cvu073
- 818 2) Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'antoni ML, Debuque R, et al. Revisiting
819 cardiac cellular composition. *Circ Res* (2016) 118(3):400–409. doi:
820 10.1161/CIRCRESAHA.115.307778
- 821 3) Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, et al.. Functional
822 profiling of human atrial and ventricular gene expression. *Pflugers Archiv* (2005)
823 450(4):201–208. doi: 10.1007/s00424-005-1404-8
- 824 4) Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM, Lee JH, et al. Human Pluripotent
825 Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct

826 Mesoderm Populations. *Cell Stem Cell* (2017) 21(2):179–194.e4. doi:
827 10.1016/j.stem.2017.07.003

828 5) Synnergren J, Heins N, Brolen G, Eriksson G, Lindahl A, Hyllner J, Olsson B, et al.
829 Transcriptional profiling of human embryonic stem cells differentiating to definitive and
830 primitive endoderm and further toward the hepatic lineage. *Stem Cells Dev* (2010)
831 19:961–978. doi: 10.1002/hep.28886

832 6) Witty AD, Mihic A, Tam RY, Fisher S, Mikryukov A, Shoichet MS, et al. Generation of
833 the epicardial lineage from human pluripotent stem cells. *Nat Biotechnol* (2014)
834 32(10):1026–35. doi: 10.1038/nbt.3002

835 7) Katz TC, Singh MK, Degenhardt K, Rivera-feliciano J. Distinct Compartments of the
836 Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells. *Dev Cell* (2012)
837 22(3):639–650. doi: 10.1016/j.devcel.2012.01.012.

838 8) Bax NM, van Marion MH, Shah B, Goumans MJ, Bouter CVC, van der Schaft DWJ.
839 Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in
840 vitro differentiation. *J Mol and Cell Cardiol* (2012) 53(4):497–508. doi:
841 10.1016/j.yjmcc.2012.07.003

842 9) Cardiovascular diseases (CVDs) [Internet]. World Health Organization; 2017 May [cited
843 2017 Dec 15]. Available from <http://www.who.int/mediacentre/factsheets/fs317/en/>

844 10) van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. *Nat Med*
845 (2014) 20(12):1386–1393. doi: 10.1038/nm.3764

846 11) Laflamme MA, Murry CE. Heart regeneration. *Nature* (2011) 473(7347):326–35. doi:
847 10.1038/nature10147

848 12) Rojas SV, Avsar M, Uribarri A, Hanke JS, Haverich A, Schmitto JD. A new era of
849 ventricular assist device surgery: less invasive procedures. *Minerva Chir.* (2015)
850 70(1):63–8.

851 13) Chong JJH, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-
852 stem-cell-derived cardiomyocytes regenerate non-human primate hearts. *Nature* (2014)
853 510(7504):273–7. doi: 10.1038/nature13233

854 14) Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-
855 thyronine promotes the maturation of human cardiomyocytes-derived from induced
856 pluripotent stem cells. *J Mol Cell Cardiol* (2014) 72:296–304. doi:
857 10.1016/j.yjmcc.2014.04.005

858 15) Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, et al. Lineage
859 Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by
860 Defined Factors. *Cell Stem Cell* (2016) 18(3):354–367. doi: 10.1016/j.stem.2015.12.001

861 16) Kehat I, Kenyagin-Karsenti D. Human embryonic stem cells can differentiate into
862 myocytes with structural and functional properties of cardiomyocytes. *J Clin Invest*
863 (2001) 108(3):407–414. doi: 10.1172/JCI200112131

864 17) He J, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human Embryonic Stem Cells Develop Into
865 Multiple Types of Cardiac Myocytes Action Potential Characterization. *Circ Res* (2003)
866 93:32–39. doi: 10.1161/01.RES.0000080317.92718.99

867 18) Laflamme M, Chen KY, Naumova AV, Muskheli V, Fugate J, Dupras SK, et al.
868 Cardiomyocytes derived from human embryonic stem cells in pro-survival factors
869 enhance function of infarcted rat hearts. *Nat Biotechnol* (2007) 25(9):1015–1024. doi:
870 10.1038/nbt1327

871 19) Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human
872 cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived
873 population. *Nature* (2008) 453(7194):524–528. doi: 10.1038/nature06894

874 20) Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-
875 specific optimization of activin/nodal and BMP signaling promotes cardiac
876 differentiation of mouse and human pluripotent stem cell lines. *Cell Stem Cell* (2011)
877 8(2):228–240. doi: 10.1016/j.stem.2010.12.008

878 21) Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust
879 cardiomyocyte differentiation from human pluripotent stem cells via temporal
880 modulation of canonical Wnt signaling. *Proc Natl Acad Sci U S A* (2012) 109(27):E1848-
881 57. doi: 10.1073/pnas.1200250109

882 22) Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte
883 differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling
884 under fully defined conditions. *Nat Protoc* (2013) 8(1):162–75. doi:
885 10.1038/nprot.2012.150

886 23) Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, et al.
887 Generating high-purity cardiac and endothelial derivatives from patterned mesoderm
888 using human pluripotent stem cells. *Nat Protoc* (2016) 12(1):15–31. doi:
889 10.1038/nprot.2016.153

890 24) Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically
891 defined generation of human cardiomyocytes. *Nat Methods* (2014) 11(8):855–860. doi:
892 10.1038/nmeth.2999

893 25) Lian X, Bao X, Zilberter M, Westman M, Fisahn A. Chemically defined albumin-free
894 human cardiomyocyte generation. *Nat Methods* (2015) 12(7):595–596. doi:
895 10.1038/nmeth.3448

896 26) Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, et al. Allogeneic
897 transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. *Nature*
898 (2016) 538(7625):388–391. doi: 10.1038/nature19815

899 27) Fijnvandraat AC, van Ginneken AC, de Boer PA, et al. Cardiomyocytes derived from
900 embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. *Cardiovasc
901 Res* (2003) 58(2):399–409

902 28) Lieu DK, Liu J, Siu C, Mcnerney GP, Tse H, Abu-khalil A, et al. Absence of Transverse
903 Tubules Contributes to Non-Uniform Ca 2 + Wavefronts in Mouse and Human
904 Embryonic Stem Cell – Derived Cardiomyocytes. *Stem Cells Dev* (2009) 18(10):1493–
905 1500. doi: 10.1089/scd.2009.0052

906 29) Mollova M, Bersell K, Walsh S, Savla J, Tanmoy L, Park S. Cardiomyocyte proliferation
907 contributes to heart growth in young humans. *Proc Natl Acad Sci U S A* (2012) 110(4):1–
908 6. doi: 10.1073/pnas.1214608110

909 30) Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, et al. Assessment of
910 the ultrastructural and proliferative properties of human embryonic stem cell-derived
911 cardiomyocytes. *Am J Physiol Heart Circ Physiol* (2003) 285:H2355–H2363. doi:
912 10.1152/ajpheart.00020.2003

913 31) Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, et al.
914 Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy.
915 *Circulation* (1992) 86:426–430. doi: 10.1161/01.CIR.86.2.426

916 32) Feric NT, and Radisic M. Maturing human pluripotent stem cell-derived cardiomyocytes
917 in human engineered cardiac tissues. *Adv Drug Deliv Rev* (2016) 96:110–134. doi:
918 10.1016/j.addr.2015.04.019

919 33) Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI,
920 Gourdie RG. Dissociated spatial patterning of gap junctions and cell adhesion junctions
921 during postnatal differentiation of ventricular myocardium. *Circ Res* (1997) 80:88–94.
922 doi: 10.1161/01.RES.80.1.88

923 34) Xu XQ, Soo SY, Sun W, Zweigerdt R. Global expression profile of highly enriched
924 cardiomyocytes derived from human embryonic stem cells. *Stem Cells* (2009) 27:2163–
925 2174. doi: 10.1002/stem.166

926 35) Bedada FB, Chan SSK, Metzger SK, Zhang L, Zhang J, Garry DJ, et al. Acquisition of a
927 quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem
928 cell-derived cardiac myocytes. *Stem Cell Reports* (2014) 3(4):594–605. doi:
929 10.1016/j.stemcr.2014.07.012

930 36) Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of
931 cardiomyocytes derived from human embryonic stem cells. *Circ Res* (2002) 91(6):501–8.

932 37) Lundy SD, Zhu WZ, Regnier M, Laflamme M. Structural and functional maturation of
933 cardiomyocytes derived from human pluripotent stem cells. *Stem Cells Dev* (2013)
934 22(14):1991–2002. doi: 10.1089/scd.2012.0490

935 38) Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during
936 development, differentiation, and postnatal maturation. *J Cardiovasc Pharmacol* (2010)
937 56(2):130–40. doi: 10.1097/FJC.0b013e3181e74a14

938 39) Ribeiro AJS, Ang YS, Fu JD, Rivas RN, Mohamed TMA, Higgs GC, et al. Contractility
939 of single cardiomyocytes differentiated from pluripotent stem cells depends on
940 physiological shape and substrate stiffness. *Proc Natl Acad Sci U S A* (2015)
941 112(41):12705–12710. doi: 10.1073/pnas.1508073112

942 40) Korte FS, Herron TJ, Rovetto MJ, McDonald KS. Power output is linearly related to
943 MyHC content in rat skinned myocytes and isolated working hearts. *Am J Physiol Heart
944 Circ Physiol* (2005) 289:H801–H812. doi: 10.1152/ajpheart.01227.2004

945 41) Pekkanen-Mattila M, Chapman H, Kerkela E, Suuronen R, Skottman H, Koivisto AP, et
946 al. Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of
947 cardiac cells with fairly mature electrical phenotype. *Exp Biol Med* (2010) 235:522–530.
948 doi: 10.1258/ebm.2010.009345

949 42) Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp T J, et al. Simultaneous voltage
950 and calcium mapping of genetically purified human induced pluripotent stem cell-derived
951 cardiac myocyte monolayers. *Circ Res* (2012) 110:1556–1563. doi:
952 10.1161/CIRCRESAHA.111.262535

953 43) Caspi O, Itzhaki I, Kehat I, Gepstein A, Arbel G, Huber I, et al. In vitro
954 electrophysiological drug testing using human embryonic stem cell derived
955 cardiomyocytes. *Stem Cells Dev* (2009) 18:161–172. doi: 10.1089/scd.2007.0280

956 44) Drouin E, Charpentier F, Gauthier C, Laurent K, and Le Marec H. Electrophysiologic
957 characteristics of cells spanning the left ventricular wall of human heart: evidence for
958 presence of M cells. *J Am Coll Cardiol* (1995) 26:185–192.

959 45) Lu P, Ceto S, Wang Y, Graham L, Wu D, Kumamaru H, et al. Prolonged human neural
960 stem cell maturation supports recovery in injured rodent CNS. *J Clin Invest* (2017)
961 127(9):3287–3299. doi: 10.1172/JCI92955

962 46) Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic
963 endoderm derived from human embryonic stem cells generates glucose-responsive
964 insulin-secreting cells in vivo. *Nat Biotechnol* (2008) 26(4):443–452. doi:
965 10.1038/nbt1393

966 47) Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human
967 embryonic stem cell-derived pancreatic progenitors into functional islets capable of
968 treating pre-existing diabetes in mice. *Diabetes* (2012) 61(8):2016–2029. doi:
969 10.2337/db11-1711

970 48) Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N. Development of a
971 reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets.
972 *Eur Heart J* (2013) 34(15):1147–56. doi: 10.1093/eurheartj/ehs418

973 49) Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, et al. Enhanced
974 engraftment, proliferation, and therapeutic potential in heart using optimized human
975 iPSC-derived cardiomyocytes. *Sci Rep* (2016) 6:19111. doi: 10.1038/srep19111

976 50) Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, et al. C.
977 Interspecies Chimerism with Mammalian Pluripotent Stem Cells. *Cell* (2017)
978 168(3):473–486.e15. doi: 10.1016/j.cell.2016.12.036

979 51) Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin Z, Xiaoping X, Needle S, et al. Human-
980 induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in
981 phenotype. *Am J Physiol Heart Circ Physiol* (2013) 305(6):H913-22. doi:
982 10.1152/ajpheart.00819.2012

983 52) Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D’Amato G, MacGrogan D, et al.
984 Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction
985 cardiomyopathy. *Nat Med* (2013) 19(2):193–201. doi: 10.1038/nm.3046

986 53) Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM. Endocardial and
987 epicardial derived FGF signals regulate myocardial proliferation and differentiation in
988 vivo. *Dev Cell* (2005) 8(1):85–95. doi: 10.1016/j.devcel.2004.12.002

989 54) Kim C, Majdi M, Xia P, Wei K, Talantova M, Spiering S, et al. Non-cardiomyocytes
990 influence the electrophysiological maturation of human embryonic stem cell-derived
991 cardiomyocytes during differentiation. *Stem Cells Dev* (2010) 19(6):783–95. doi:
992 10.1089/scd.2009.0349

993 55) Souders CA, Bowers SLK, Baudino TA. Cardiac fibroblast: the renaissance cell. *Circ Res*
994 (2009) 105(12):1164–76. doi: 10.1161/CIRCRESAHA.109.209809

995 56) Pedrotty DM, Klinger RY, Kirkton RD, Bursac N, Hall H. Cardiac fibroblast paracrine
996 factors alter impulse conduction and ion channel expression of neonatal rat
997 cardiomyocytes. *Cardiovasc Res* (2009) 83:688–697. doi: 10.1093/cvr/cvp164

998 57) Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular
999 matrix remodeling in heart disease. *Fibrogenesis Tissue Repair* (2012) 5(1):15. doi:
1000 10.1186/1755-1536-5-15

1001 58) Suhaeri M, Subbiah R, Kim SH, Kim CH, Oh SJ, Kim SH, Park K. Novel Platform of
1002 Cardiomyocyte Culture and Coculture via Fibroblast-Derived Matrix-Coupled Aligned
1003 Electrospun Nanofiber. *ACS Appl. Mater. Interfaces* (2017) 9(1):224–35. doi:
1004 10.1021/acsami.6b14020

1005 59) Marchionni, MA. Neu tack on neuregulin. *Nature* (1995) 378(6555):334–335. doi:
1006 10.1038/378334a0

1007 60) Iglesias-García O, Baumgartner S, Macrí-Pellizzi L, Rodriguez-Madoz JR, Abizanda
1008 G, Guruceaga E, et al. Neuregulin-1 β Induces Mature Ventricular Cardiac Differentiation
1009 from Induced Pluripotent Stem Cells Contributing to Cardiac Tissue Repair. *Stem Cells*
1010 *Dev* (2015) 24(4):484–496. doi: 10.1089/scd.2014.0211

1011 61) Lee DS, Chen JH, Lundy DJ, Liu CH, Hwang SM, Pabon L, et al. Defined MicroRNAs
1012 Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived
1013 Cardiomyocytes. *Cell Rep* (2015) 12(12):1960–7. doi: 10.1016/j.celrep.2015.08.042

1014 62) Pasquier J, Gupta R, Rioult D, Hoarau-Véchot J, Courjaret R, Machaca K, et al.
1015 Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of
1016 human embryonic stem cell-derived cardiomyocytes. *J Heart Lung Transplant* (2017)
1017 36(6):684–693. doi: 10.1016/j.healun.2017.01.001

1018 63) Krüger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA. Thyroid
1019 hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-
1020 kinase/Akt pathway. *Circ Res* (2008) 102(4):439–447. doi:
1021 10.1161/CIRCRESAHA.107.162719

1022 64) Kosmidis G, Bellin M, Ribeiro MC, Van Meer B, Ward-Van Oostwaard D, Passier R, et
1023 al. Altered calcium handling and increased contraction force in human embryonic stem
1024 cell derived cardiomyocytes following short term dexamethasone exposure. *Biochem
1025 Biophys Res Commun* (2015) 467(4):998–1005. doi: 10.1016/j.bbrc.2015.10.026

1026 65) Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, et al. Thyroid
1027 and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-
1028 Induced Pluripotent Stem Cell-Derived Cardiomyocytes. *Circ Res* (2017) 121(12):1323–
1029 1330. doi: 10.1161/CIRCRESAHA.117.311920

1030 66) Bhute VJ, Bao X, Dunn KK, Knutson KR, McCurry EC, Jin G, et al. Metabolomics
1031 Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived
1032 Cardiomyocytes. *Theranostics* (2017) 7(7):2078–2091. doi: 10.7150/thno.19390

1033 67) Correia C, Koshkin A, Duarte P, Hu D, Tei A. Distinct carbon sources affect structural
1034 and functional maturation of cardiomyocytes derived from human pluripotent stem cells.
1035 *Sci Rep* (2017) 7(1):8590. doi: 10.1038/s41598-017-08713-4

1036 68) Marquardt LM, Heilshorn SC. Design of Injectable Materials to Improve Stem Cell
1037 Transplantation. *Curr Stem Cell Rep* (2016) 2(3), 207–220. doi: 10.1007/s40778-016-
1038 0058-0

1039 69) Park S, Koh YJ, Jeon J, Cho Y, Jang M, Kang Y, et al. Efficient differentiation of human
1040 pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of
1041 the MEK / ERK and BMP4 signaling pathways. *Blood* (2010) 116(25):5762–5772. doi:
1042 10.1182/blood-2010-04-280719

1043 70) Bao X, Lian X, Dunn KK, Shi M, Han T, Qian T, et al. Chemically-defined albumin-free
1044 differentiation of human pluripotent stem cells to endothelial progenitor cells. *Stem Cell
1045 Res* (2015) 15(1):122–129. doi: 10.1016/j.scr.2015.05.004

1046 71) Lui KO, Zangi L, Silva E, Bu L, Sahara M, Li R, et al. Driving vascular endothelial cell
1047 fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. *Cell Res*
1048 (2013) 23(10):1172–86. doi: 10.1038/cr.2013.112

1049 72) Iyer D, Gambardella L, Bernard WG, Serrano F, Mascetti VL, Pedersen RA, et al. Robust
1050 derivation of epicardium and its differentiated smooth muscle cell progeny from human
1051 pluripotent stem cells. *Development* (2016) 143(5):904–904. doi: 10.1242/dev.136143

1052 73) Bao X, Lian X, Hacker TA, Schmuck EG, Qian T, Bhute VJ, et al. Long-term self-
1053 renewing human epicardial cells generated from pluripotent stem cells under defined
1054 xeno-free conditions. *Nat Biomed Eng* (2016) 1(December):3. doi: 10.1038/s41551-016-
1055 0003

1056 74) Bao X, Bhute VJ, Han T, Qian T, Lian X, Palecek SP. Human pluripotent stem cell-
1057 derived epicardial progenitors can differentiate to endocardial-like endothelial cells.
1058 *Bioeng Transl Med* (2017) 2(2):191–201. doi: 10.1002/BTM2.10062

1059 75) Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V, et al.
1060 Physiological function and transplantation of scaffold-free and vascularized human. *Proc
1061 Natl Acad Sci U S A* (2009) 106(39):16568–16573. doi: 10.1073/pnas.0908381106

1062 76) Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IHM, et al. Tissue
1063 engineering of vascularized cardiac muscle from human embryonic stem cells. *Circ Res*
1064 (2007) 100(2):263–72. doi: 10.1161/01.RES.0000257776.05673.ff

1065 77) Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, et al. Endothelial cell
1066 coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization
1067 and improves cardiac function of ischemic hearts. *Circulation* (2008) 118(14
1068 Suppl):S145–52. doi: 10.1161/CIRCULATIONAHA.107.757286

1069 78) Vuorenpää H, Penttinen K, Heinonen T, Pekkanen-Mattila M, Sarkanen JR, Ylikomi T,
1070 Aalto-Setälä K. Maturation of human pluripotent stem cell derived cardiomyocytes is
1071 improved in cardiovascular construct. *Cytotechnology* (2017) 69:785–800. doi:
1072 10.1007/s10616-017-0088-1

1073 79) Ravenscroft SM, Pointon A, Williams AW, Cross MJ, Sidaway JE. Cardiac non-myocyte
1074 cells show enhanced pharmacological function suggestive of contractile maturity in stem
1075 cell derived cardiomyocyte microtissues. *Toxicol Sci* (2016) 152(1):99–112. doi:
1076 10.1093/toxsci/kfw069

1077 80) Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult Cardiac Sca-
1078 1-positive Cells Differentiate into Beating Cardiomyocytes. *J Biol Chem* (2004)
1079 279(12):11384–11391. doi: 10.1074/jbc.M310822200

1080 81) Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult
1081 Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration. *Cell* (2003)
1082 114:763–776. doi: 10.1016/S0092-8674(03)00687-1

1083 82) Le T, Chong J. Cardiac progenitor cells for heart repair. *Cell Death Dis* (2016)
1084 2(May):16052. doi: 10.1038/cddiscovery.2016.52

1085 83) Misfeldt AM, Boyle SC, Tompkins KL, Bautch VL, Labosky P, Baldwin HS.
1086 Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent
1087 cardiovascular progenitors. *Dev Biol* (2009) 333(1):78–89. doi:
1088 10.1016/j.ydbio.2009.06.033

1089 84) Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent
1090 Embryonic Isl1+Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell
1091 Diversification. *Cell* (2006) 127(6):1151–1165. doi: 10.1016/j.cell.2006.10.029

1092 85) Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and
1093 systematic differentiation of cardiovascular cells from mouse induced pluripotent stem
1094 cells. *Circulation* (2008) 118(5):498–506. doi:
1095 10.1161/CIRCULATIONAHA.108.769562

1096 86) Ruan JL, Tulloch N, Saiget M, Paige S, Razumova M, Regnier M, et al. Mechanical
1097 Stress Promotes Maturation of Human Myocardium from Pluripotent Stem Cell-Derived
1098 Progenitors. *Stem Cells* (2015) 33:2148–57. doi: 10.1002/stem.2036

1099 87) Chen IY, Wu JC. Finding expandable induced cardiovascular progenitor cells. *Circ Res*
1100 (2016) 119:16–20. doi: 10.1161/CIRCRESAHA.116.308679

1101 88) Birket MJ, Ribeiro MC, Verkerk AO, Ward D, Leitoguinho AR, den Hartogh SC, et al.
1102 Expansion and patterning of cardiovascular progenitors derived from human pluripotent
1103 stem cells. *Nat Biotechnol* (2015) 33(July):1–12. doi: 10.1038/nbt.3271

1104 89) Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, et al. Expandable Cardiovascular
1105 Progenitor Cells Reprogrammed from Fibroblasts. *Cell Stem Cell* (2016) 18(3):368–381.
1106 doi: 10.1016/j.stem.2016.02.001

1107 90) Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, et al. Small molecules enable cardiac
1108 reprogramming of mouse fibroblasts with a single factor, oct4. *Cell Rep* (2014) 6(5):951–
1109 960. doi: 10.1016/j.celrep.2014.01.038

1110 91) Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ, Orlova VV, Mummery CL.
1111 Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial
1112 cells co-differentiated from human pluripotent stem cells. *Development* (2017) 144:1008–
1113 17. doi: 10.1242/dev.143438

1114 92) Tulloch NL, Muskheli V, Razumova MV, Steven F, Regnier M, Hauch KD, et al. Growth
1115 of Engineered Human Myocardium with Mechanical Loading and Vascular Coculture.
1116 *Circ Res* (2011) 109(1):47–59. doi: 10.1161/CIRCRESAHA.110.237206

1117 93) Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, et al. The effect of cyclic stretch on
1118 maturation and 3D tissue formation of human embryonic stem cell-derived
1119 cardiomyocytes. *Biomaterials* (2014) 35(9):2798–808. doi:
1120 10.1016/j.biomaterials.2013.12.052

1121 94) Chan YC, Ting S, Lee YK, Ng KM, Zhang J, Chen Z, et al. Electrical stimulation
1122 promotes maturation of cardiomyocytes derived from human embryonic stem cells. *J
1123 Cardiovasc Transl Res* (2013) 6(6):989–99. doi: 10.1007/s12265-013-9510-z

1124 95) Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, et al. Autonomous beating
1125 rate adaptation in human stem cell-derived cardiomyocytes. *Nature Commun* (2016)
1126 7(10312):1–10. doi: 10.1038/ncomms10312

1127 96) Scuderi GJ, Butcher J. Naturally Engineered Maturation of Cardiomyocytes. *Front Cell
1128 Dev Biol* (2017) 5:50. doi: 10.3389/fcell.2017.00050

1129 97) Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, et al. Three-
1130 Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced
1131 Pluripotent Stem Cell-Derived Cardiomyocytes. *Tissue Eng Part A* (2016) 22(15–
1132 16):1016–25. doi: 10.1089/ten.tea.2016.0027

1133 98) Herron TJ, Da Rocha AM, Campbell KF, Ponce-Balbuena D, Willis BC, Guerrero-Serna
1134 G, et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived
1135 cardiac monolayer structure and electrophysiological function. *Circ Arrhythm
1136 Electrophysiol* (2016) 9(4):e003638. doi: 10.1161/CIRCEP.113.003638

1137 99) Li J, Minami I, Yu L, Tsuji K, Nakajima M, Qiao J, et al. Extracellular recordings of
1138 patterned human pluripotent stem cell-derived cardiomyocytes on aligned fibers. *Stem
1139 Cells Int* (2016) 2016:26340131–9. doi: 10.1155/2016/2634013

1140 100) Tohyama S, Fujita J, Fujita C, Yamaguchi M, Kanaami S, Ohno R, et al. Efficient
1141 Large-Scale 2D Culture System for Human Induced Pluripotent Stem Cells and

1142 Differentiated Cardiomyocytes. *Stem Cell Rep* (2017) 9(5):1406–1414. doi:
1143 10.1016/j.stemcr.2017.08.025

1144 101) Ting S, Chen A, Reuveny S, Oh S. An intermittent rocking platform for integrated
1145 expansion and differentiation of human pluripotent stem cells to cardiomyocytes in
1146 suspended microcarrier cultures. *Stem Cell Res* (2014) 13(2):202–213. doi:
1147 10.1016/j.scr.2014.06.002

1148 102) Nguyen DC, Hookway TA, Wu Q, Jha R, Preininger MK, Chen X, et al.
1149 Microscale Generation of Cardiospheres Promotes Robust Enrichment of
1150 Cardiomyocytes Derived from Human Pluripotent Stem Cells. *Stem Cell Rep* (2014)
1151 3(2):260–268. doi:10.1016/j.stemcr.2014.06.002

1152 103) Chen VC, Ye J, Shukla P, Hu G, Chen D, Lin Z, et al. Development of a scalable
1153 suspension culture for cardiac differentiation from human pluripotent stem cells. *Stem*
1154 *Cell Res* (2016) 15(2):137–143. doi: 10.1016/j.scr.2015.08.002

1155 104) Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R. Cardiac differentiation of
1156 human pluripotent stem cells in scalable suspension culture. *Nat Protoc* (2015)
1157 10(9):1345–61. doi: 10.1038/nprot.2015.089

1158 105) Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N.
1159 Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-
1160 derived engineered heart tissues. *Nat Commun* (2017) 8(1):1825. doi: 10.1038/s41467-
1161 017-01946-x

1162 106) Lux M, Andrée B, Horvath T, Nosko A, Manikowski D, Hilfiker-Kleiner D, et al.
1163 In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by
1164 cyclic mechanical stimulation. *Acta Biomater* (2016) 30:177–187. doi:
1165 10.1016/j.actbio.2015.11.006

1166 107) Tandon N, Taubman A, Cimetta E, Saccenti L, Vunjak G, Tandon N, et al.
1167 Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue.
1168 *Conf Proc IEEE Eng Med Biol Soc* (2013) 2013:6219–6223. doi:
1169 10.1109/EMBC.2013.6610974

1170 108) Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Dra G, et al. Bulk cell
1171 density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human
1172 pluripotent stem cells. *Nat Commun* (2016) 7:13602 doi: 10.1038/ncomms13602

1173 109) Tavakoli T, Xu X, Derby E, Serebryakova Y, Reid Y, Rao MS, et al. Self-renewal
1174 and differentiation capabilities are variable between human embryonic stem cell lines I3,
1175 I6 and BG01V. *BMC Cell Biol* (2009) 10:44. doi: 10.1186/1471-2121-10-44

1176 110) Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, et al. Selection Against
1177 Undifferentiated Human Embryonic Stem Cells by a Cytotoxic Antibody Recognizing
1178 Podocalyxin-Like Protein-1. *Stem Cells* (2008) 26(6):1454–63. doi:
1179 10.1634/stemcells.2007-0576

1180 111) Dubois NC, Craft AM, Sharma P, Elliott Da, Stanley EG, Elefanti AG, et al.
1181 SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human
1182 pluripotent stem cells. *Nature Biotechnol* (2011) 29(11):1011–8. doi: 10.1038/nbt.2005

1183 112) Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S,
1184 Yamashita JK. Efficient and scalable purification of cardiomyocytes from human
1185 embryonic and induced pluripotent stem cells by VCAM1 surface expression. *PLoS One*
1186 (2011) 6(8):e23657. doi: 10.1371/journal.pone.0023657

1187 113) Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, et al.
1188 Nongenetic method for purifying stem cell-derived cardiomyocytes. *Nat Methods* (2010)
1189 7(1):61–66. doi: 10.1038/nmeth.1403

1190 114) Page E, McCallister LP. Quantitative electron microscopic description of heart
1191 muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. *Am J*
1192 *Cardiol* (1973) 31(2):172–81. doi: 10.1016/0002-9149(73)91030-8

1193 115) Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes
1194 from differentiating embryonic stem cells form stable intracardiac grafts. *J Clin Invest*
1195 (1996) 98(1):216–224. doi: 10.1172/JCI118769

1196 116) Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A, et al.
1197 Identification and selection of cardiomyocytes during human embryonic stem cell
1198 differentiation. *Faseb J* (2007) 21(10):2551–2563. doi: 10.1096/fj.05-5711com

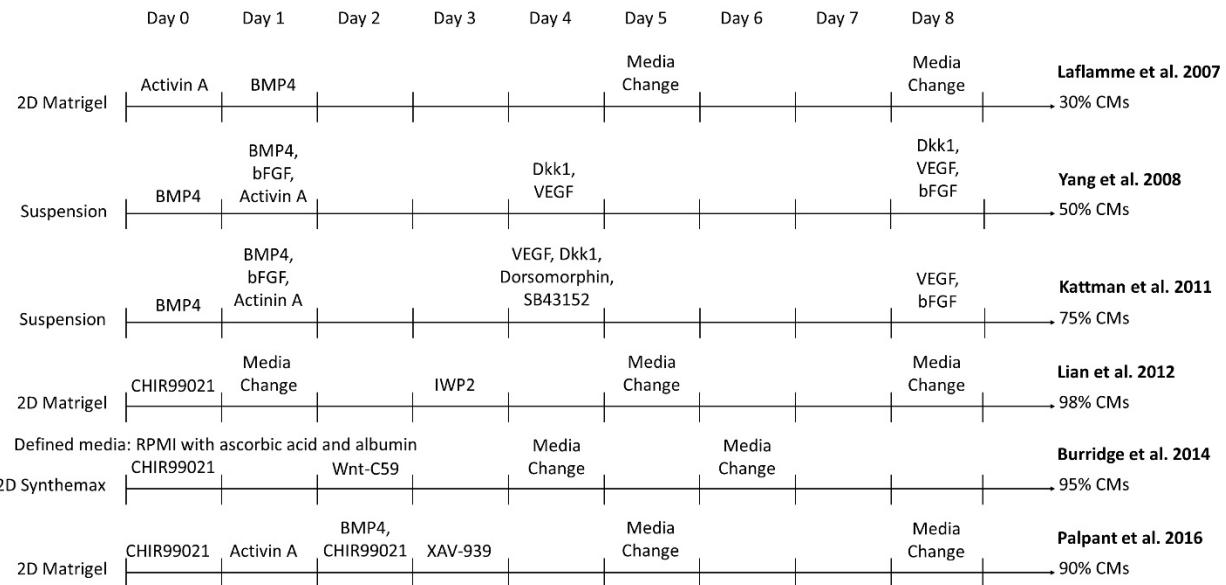
1199 117) Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., ...
1200 Yoshida, Y. (2015). Efficient Detection and Purification of Cell Populations Using
1201 Synthetic MicroRNA Switches. *Cell Stem Cell*, 16(6), 699–711. doi:
1202 10.1016/j.stem.2015.04.005

1203 118) Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct
1204 metabolic flow enables large-scale purification of mouse and human pluripotent stem
1205 cell-derived cardiomyocytes. *Cell Stem Cell* (2013) 12:127–137. doi:
1206 10.1016/j.stem.2012.09.013

1207 119) Darkins CL, Mandenius CF. Design of large-scale manufacturing of induced
1208 pluripotent stem cell derived cardiomyocytes. *Chem Eng Res Des* (2014) 92(6):1142–52.
1209 doi: 10.1016/j.cherd.2013.08.021

1210 120) Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, et al. Efficient generation
1211 and cryopreservation of cardiomyocytes derived from human embryonic stem cells.
1212 *Regen Med* (2011) 6(1):53–66. doi: 10.2217/rme.10.91

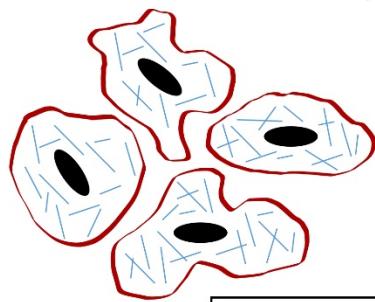
1213 121) Hunt CJ. Cryopreservation of human stem cells for clinical application: A review.
1214 *Transfus Med Hemother* (2011) 38(2):107–123. doi: 10.1159/000326623

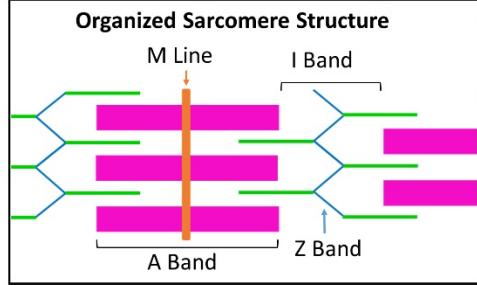
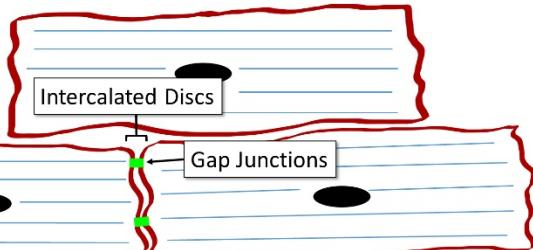

1215 122) Correia C, Koshkin A, Carido M, Espinha N, Saric T, Lima PA, et al. Effective
1216 Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes
1217 Compatible With Global Distribution of Cells for Clinical Applications and Toxicology
1218 Testing. *Stem Cells Transl Med* (2016) 5:658–669. doi: 10.5966/sctm.2015-0238

1219

1220

1221 **16 Figures and Tables**


1222
1223



1224 **Figure 1:** Comparison of select directed differentiation protocols for differentiating hPSCs to
1225 CMs.
1226
1227
1228

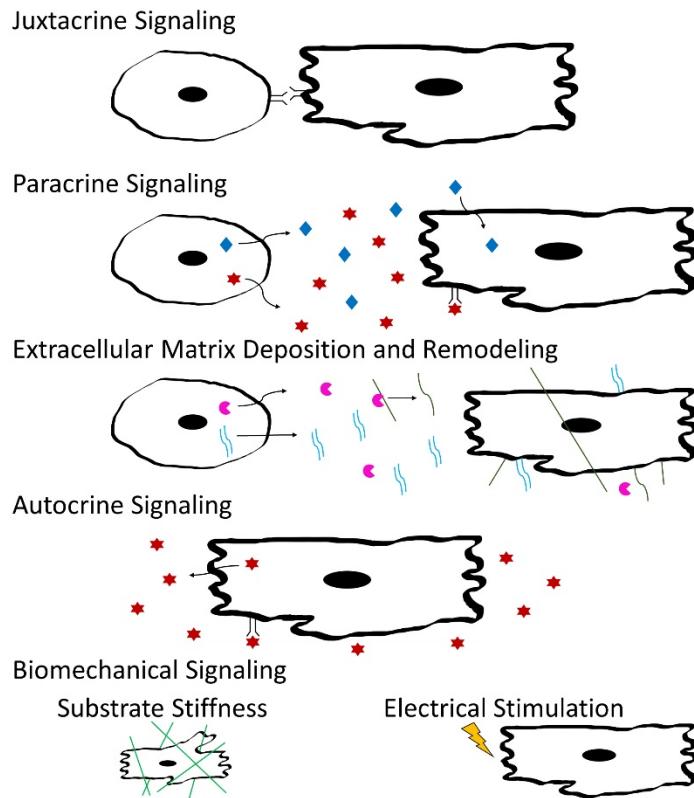
1229

Immature hPSC-derived Cardiomyocytes

Mature Adult Cardiomyocytes

1230

1231 **Figure 2:** Comparison of hPSC-derived CMs and adult CMs demonstrating the structural and
1232 organizational changes during maturation.


1233

1234

1235 **Table 1:** Comparison of hPSC-derived CMs and adult CMs to demonstrate the changes during
 1236 maturation.

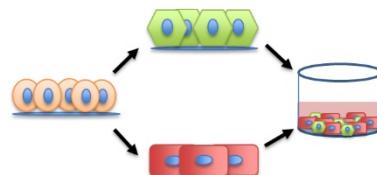
Differences between hPSC-derived CMs and Adult CMs		
	hPSC-derived CMs	Adult CMs
Cell Structure and Organization		
Cell Shape	Round	Rod-like
	Mono-nucleated	30% Multinucleated
Cell Alignment	Disordered	Anisotropic alignment
Sarcomere Structure	Disordered sarcomere	I bands, M lines, A bands, Z bands, and Intercalated Discs
Sarcomeric Gene and Protein Expression	Low expression	High expression of <i>MYL2</i> , <i>TNNI3</i> , <i>ACTN2</i> , <i>MYH7</i> , <i>MYL3</i> , <i>TNNC1</i> , <i>TNNT2</i>
	MLC-2a	MLC-2v (ventricular CMs)
	α-MHC	β-MHC
	ssTnI	cTnI
Electrophysiology		
Upstroke velocity	2 to >200 V/s	300 V/s
Resting-Membrane Potential	-58 mV	-80 mV
Ion channel Gene Expression	Low expression	High expression of <i>CACNA1C</i> , <i>HCN4</i> , <i>SCN5A</i> , <i>ATP2A2</i> , <i>KCND3</i> , and <i>KCNH2</i>
Contractility		
Excitation-Contraction Coupling	Low coupling, spontaneous beating	High coupling, quiescent
Contraction force	~30 nN	on the order of μN
Gap Junctions	Low expression	High expression, including connexin-43
Ca²⁺ Handling		
T-tubules	Not present	Present
Conduction Velocity	2.1-20 cm/s	41-84 cm/s
Metabolism	Glucose oxidation	Fatty acid β-oxidation

1237

Scalability
Requires introduction of another cell type into the culture through co-differentiation or after differentiation

Signals can be introduced into the culture media during cell production

Cells can be cultured in defined ECM during or after cell production. ECM remodeling may require coculture.


These signals are already produced by the cells in culture. Optimization of the introduction of new media is important to maintain active concentrations.

Cells can be cultured in defined ECM during or after cell production. ECM remodeling may require coculture.

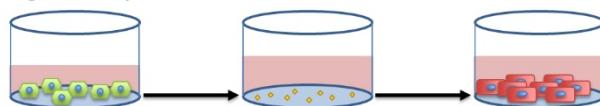
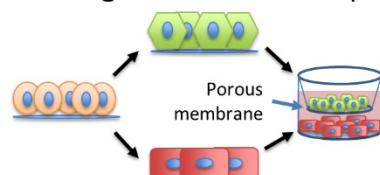
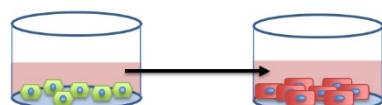

1238
1239
1240
1241
1242

Figure 3: Schematic illustrating types of intercellular interactions and their scalability for inclusion into large-scaling manufacturing.


Coculturing differentiated cells


Plating on deposited ECM

Indirect coculture through a membrane separation

Conditioned media

Co-differentiation through a progenitor

1243

1244

1245

1246

Figure 4: Different strategies to introduce intercellular interactions during hPSC-derived CM manufacturing.

1247 **Table 2:** Summary of improvements to maturation phenotypes through different cues. +
 1248 symbolizes an improvement of maturation, 0 is no significant improvement, - is a decrease in
 1249 maturation. If left blank, then that type of analysis was not reported.

Methods to Induce hPSC-derived CM Maturation										
	Cell Shape	Cell Alignment	Gap Junctions	Sarcomere Structure	Sarcomeric Gene or Protein Expression	cTnI:ssTnI Ratio	Electrophysiology	Ion channel Gene or Protein Expression	Contractility	Ca ²⁺ Handling
Cell-secreted factors										
Fibroblast conditioned media (56)	+			0				-		
Indirect fibroblast coculture (56)							+			
EC-lysates (61)				+						
EC-conditioned media (61)				0						
EC-conditioned media (62)								0	0	
Juxtacline										
Direct fibroblast coculture on fibroblast ECM in comparison to indirect coculture (58)					+					
Direct EC coculture (61)	+	+		+	+				+	
Direct EC coculture (62)								+	+	
Fibroblast and EC coculture (78)	+	+	+		+		+		+	
Fibroblast and EC coculture (79)					+		+	+	+	
Direct EC coculture (91)					+	-	0	+	+	
Extracellular Matrix										
Fibroblast-deposited ECM (58)	+		+		+					
EC-deposited ECM (61)				0						
Decellularized adult bovine heart ECM in comparison to decellularized fetal heart (97)					+		+		+	
Metabolite and Hormone										
Tri-iodo-l-thyronine (14)	+			+	-		+	+	+	
Glucocorticoid signaling (64)				+		0		+	+	
Galactose and fatty acid carbon source (67)	+	+		+	+	+	+	+	+	
Biomechanical										
Cyclic stretch (92)	+	+			+			+		
Cyclic Stretch with fibroblasts and ECs present (86)			+		+				+	
Cyclic stretch (93)	+	+	+		+			+		
Culture on soft PDMS in comparison to glass (98)			+			+	+		+	
Culture on aligned fibers (99)		+		+			+		+	
Electrical										
Electrical pacing (94)	+				+		+	+	+	
Electrical pacing (95)		+	+	+		+	+	+	+	

1250

1251

1252 **Table 3:** Comparison of scaling methods for the generation of mature hPSC-derived CMs. +
 1253 symbolizes minimal engineering to incorporate the maturation method into the bioreactor; -
 1254 symbolizes significant engineering necessary.

Scaling Method	Bioreactor Capacity					Ease of Potential Incorporation						
	Size	Scalability	Purity	Cell Yield	Starting cell type in bioreactor	Mechanical	Electrical	Perfusion	Membrane separated coculture	ECM	Coculture of differentiated cells	Co-differentiation
10-layer tissue culture flasks (100)	1.2L	high	>66%	1.5-2.8B	hPSC	-	-	+	+	+	+	+
Microcarriers (101)	15mL	high	60%	0.2B	hPSC	-	-	+	+	+	+	+
3D cell aggregates (103)	1L	high	>90%	1.5-2B	hPSC	-	-	+	+	-	+	+
Cardiospheres (105)	proof-of-concept	high	Pre-purified	N/A	CMs	-	-	+	+	+	+	-
Perfusible, mechanical stimulation bioreactor (106)	N/A	low	Pre-purified	0.008B	CMs	+	-	+	-	+	+	-
Portable bioreactor (107)	N/A	low	Pre-purified	0.1B	CMs	-	+	+	-	+	+	-

1255

1256 **Table 4:** Purification methods for large-scale production of hPSC-derived CMs.

	Scalability	Cost	Singularization required	Purity	Multiplexibility
Fluorescently Activated Cell Sorting-mitochondria dyes (113)	low	low	yes	99%	no
Fluorescently Activated Cell Sorting- eGFP expression (116)	low	low	yes	95%	yes
Magnetically Activated Cell Sorting (111, 112)	medium	high	yes	95%	yes
Metabolic selection (24, 118)	high	low	no	99%	no
Antibiotic selection (115)	high	low	no	99%	yes
Antibody-based negative selection for hPSCs (110)	high	medium	no	98% removal of hPSCs	yes
MicroRNA switches (117)	high	medium	no	95%	yes

1257