
0018-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1705

ABSTRACT | Every bit of information in a storage or memory

device is bound by a multitude of performance specifications,

and is subject to a variety of reliability impediments. At the other

end, the physical processes tamed to remember our bits offer a

constant source of risk to their reliability. These include a variety

of noise sources, access restrictions, intercell interferences, cell

variabilities, and many more issues. Tying together this vector of

performance figures with that vector of reliability issues is a rich

matrix of emerging coding tools and techniques. Channel coding

schemes ensure target reliability and performance and have been

at the core of memory systems since their nascent age. In this

survey, we first overview the fundamentals of channel coding and

summarize well-known codes that have been used in nonvolatile

memories (NVMs). Next, we demonstrate why the conventional

coding approaches ubiquitously based on symmetric channel

models and optimization for the Hamming metric fail to address

the needs of modern memories. We then discuss several recently

proposed innovative coding schemes. Behind each coding scheme

Digital Object Identifier: 10.1109/JPROC.2017.2694613

lies an interesting theoretical framework, building on deep

ideas from mathematics and the information sciences. We also

survey some of the most fascinating bridges between deep

theory and storage performance. While the focus of this survey

is primarily on the pervasive multilevel nand Flash, we envision

that other benefiting memory technologies will include phase

change memory, resistive memories, and others.

KEYWORDS | Algebraic codes; BCH codes; error-correction

code (ECC); Flash memories; graph codes; LDPC codes;

rewrite codes; WOM codes

I . IN TRODUCTION

Nonvolatile memories (NVMs) are a class of computer

memories that maintain the stored data even after being dis-

connected from a power supply. NVMs have many desirable

properties that have made them frontrunners to replace con-

ventional hard-disk drives: they are faster, less power hungry,

more flexible in form factor, amenable to random access,
and not prone to heat-induced damages. As a result, NVMs

are now being actively considered and designed for use in

a diverse set of applications, including personal electronics

and smart devices, autonomous vehicles, enterprise storage,

and data-intensive high-performance computing. This surge

in NVM development has not been without challenges; both

established and emerging NVMs come with a unique set of

operational issues that must be overcome before these tech-

nologies can be broadly deployed at low cost.

Manuscript received December 5, 2016; revised March 9, 2017; accepted

April 12, 2017. Date of publication May 5, 2017; date of current version August 18,

2017. The work of L. Dolecek was supported in part by the National

Science Foundation (NSF) under Grants CAREER CCF 1150212 and CCF 1029030;

by Okawa Foundation; by an IBM Faculty Award; and by an Intel Faculty Award.

The work of Y. Cassuto was supported by the Israel Science Foundation and by the

Intel Center for Computing Intelligence. (Corresponding author: L. Dolecek.)

L. Dolecek is with the Department of Electrical and Computer Engineering,

University of California, Los Angeles (UCLA), Los Angeles, CA 90095 USA

(e-mail: dolecek@ee.ucla.edu).

Y. Cassuto is with the Viterbi Department of Electrical Engineering,

TechnionÐIsrael Institute of Technology, Technion City, Haifa 3200003, Israel
(email: ycassuto@ee.technion.ac.il).

Channel Coding for
Nonvolatile Memory
Technologies: Theoretical
Advances and Practical
Considerations
This paper provides an overview of most popular error-correction codes (ECCs)
used in conjunction with nonvolatile memories.

By L a r a DoL ecek , Senior Member IEEE, a nD Yu va L ca ssu to, Senior Member IEEE

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1706 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

Memories intrinsically suffer from various impairments,

which steeply get worse in the high-density, fast access

regime. It is indeed this stringent regime in which modern

data-intensive applications operate—future NVMs will have

to be robust, fast, and affordable if they are to deliver on the

promise of new information technologies.

In this paper, we demonstrate the essential role channel

coding techniques play in modern NVMs. We first summarize
the key operational characteristics of NVMs, using Flash as the

paragon. As we then show, understanding and appreciation of

physical properties is mandatory for the proper development

of new, mathematically deep yet practical coding solutions for

future memories, in which physical impairments are bound

to only get worse. By explicitly showcasing exciting recent
advancements in coding theory specifically geared for the
NVM applications, we highlight the enormous potential that

tools from coding theory and related mathematical disciplines

can have in the development of future, robust NVMs. These

results build upon rich mathematical fields of combinatorics,
abstract algebra, graph theory, and others, to offer rigorous yet

elegant repertoire of both algebraic and graph codes.

In the next section, we describe the basic operating prin-

ciples of Flash memories and summarize the main sources
of physical impairments. Section III reviews the fundamen-

tals of channel coding necessary to explain the concepts
presented in subsequent sections. The next two sections are
devoted to coding techniques for reliability. Section IV is

devoted to algebraic coding techniques, both classical and

recent. Section V considers graph codes, including conven-

tional methods and recent Flash-tailored advances. Moving

beyond reliability, in Section VI, we discuss rewrite codes

for improved access. Section VII delivers conclusions.

II . F U NDA MEN TA LS OF OPER ATIONS
IN FL A SH MEMOR IES

An atomic unit of a Flash memory is one memory cell. A

memory cell corresponds to a transistor that has a control gate

and a floating gate, separated by insulating layers. The value
of data stored in a memory cell corresponds to the amount of

charge on the floating gate. Flash technologies are classified as
nanD Flash and nor Flash, corresponding to the logical nanD-

like and nor-like arrangement of the device, respectively. In

nor Flash, cells can be accessed individually. In contrast, in

nanD Flash, cells are accessed at the much coarser granular-

ity of pages. However, nanD Flash has a substantially lower

cost than nor Flash and is thus more pervasive; we will hence-

forth primarily focus on nanD Flash. See Fig. 1 for a nanD cell

illustration. In planar nanD Flash architectures, memory cells

are organized into 2-D arrays. Cells are organized into pages,
which are further combined into nanD-blocks.1

Thousands of nanD-blocks amount to one nanD device. For

example, a 2-GB Flash device may consist of 2048 nanD-blocks

with 64 pages per nanD-block, and 2112 B (bytes) per page;

other combinations of pages/nanD-block sizes are also pos-

sible and they yield different overall device capacities. More

recently, 3-D (vertical) nanD Flash has been developed, which

has a more complex architecture due to the 3-D structure.
Write and erase operations on the cells are performed by

applying a sufficiently high voltage to the control gate to alter
the amount of charge on the floating gate, which in turn sets the
cell’s threshold voltage. Depending on the direction in which
the electrons flow, the cell is programmed (electrons flow
toward the floating gate) or erased (electrons flow away from
the floating gate). This process is known as Fowler–Nordheim
tunneling [1]. The process of reading amounts to determin-

ing the amount of charge stored on the floating gate. During
a read, an input voltage is applied to the control gate and the

drain current is measured. If the drain current is below/above a

certain threshold, as measured by a sense-amp comparator, we

conclude that the input voltage is below/above the cell thresh-

old voltage representing the information stored. Therefore,

a single-threshold scheme tells us whether the stored charge

is below or above a certain level but does not tell us the exact
amount of stored charge. The input voltage is applied to all

cells in the page together, thus parallelizing the read operation.
Placement of the threshold voltage need not be static; using

tools from information and communications theory, recent

work has demonstrated clear benefits of dynamically adjusted
threshold voltages for improved lifetime [2].

Flash devices are commonly categorized by the num-

ber of bits memory cells can store. Single-level cell (SLC)
devices store a single bit per cell; the SLC nomenclature
comes from the fact that a single threshold is needed to

distinguish the two ranges, corresponding to bit value “0”
and bit value “1.” Multiple level cell (MLC) devices store
multiple bits per cell, and multiple thresholds are needed to

distinguish different levels. In the industry jargon, the MLC
initials commonly refer specifically to two bits per cell. As
somewhat of a misnomer, triple level cell (TLC) refers to
a multilevel Flash device storing three bits per cell—here

seven thresholds, not three, are needed to distinguish among

eight ranges (one for each combination of a pair of adjacent
binary triplets). The lowest level is the fully erased state and

the highest level is the fully programmed state.

1The common terminology refers to nanD-blocks simply as “blocks,”
but we reserve this term to denote a code block, the basic unit of coding.

Fig. 1. nand Flash array organization with a zoomed-in single

cell. Read operation is performed by activating one word line

(highlighted column).

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1707

See Fig. 2 for an illustration of SLC, MLC, and TLC
devices. Note that the differentiation among adjacent digi-
tal values shrinks as the density increases making it harder

to distinguish among different values. The figure is also an
idealized representation of memory cells, since the cells do
not always behave in exactly the same way. The value of the
threshold voltage reached when writing a certain informa-

tion value varies across cells, due to variations in cell behav-

ior. As a result, we observe a distribution associated with

different cell levels. Modeling and parameterization of this
difficult distribution requires a careful study that has been a
subject of considerable recent research in industry and aca-

demia alike, including notable works [3]–[8], among others.
See Fig. 3 for the illustration of the threshold voltage distri-

bution in the MLC case.
A critical property of nanD Flash is that the write opera-

tion by way of adding charge is executed at the page level, but
the erase operation is done at the much coarser nanD-block

level. Thus, in principle, if a value of a single cell is to be

decremented, the entire nanD-block of cells this cell belongs

to would also be erased and rewritten. Unfortunately, fre-

quent erases wear out the device to the point that it can

no longer be used with confidence. The usable lifetime is
typically expressed in terms of the number of program-
and-erase (P/E) operations that can be executed before the
device is no longer considered reliable. It is well understood

that the denser the device is, the fewer P/E cycles it can

sustain before it is deemed unusable. For SLC devices, the
expected lifetime is around 10 5 P/E cycles. For MLC devices
storing two bits per cell, the lifetime drops to 10 4 P/E cycles,

and with three bits per cell TLC memory, it drops even
further to a mere 10 3 P/E cycles or even fewer [9], which

in absence of sophisticated error management translates

to only months of usable lifetime for frequently written

devices. The P/E lifetime issue is further exacerbated by the
reliability requirements: the raw bit error rate (BER) can

be quite high, even as high as 10 −2 − 10 −1 [9], while the

product specification requires the device to operate at the
undetected BER (UBER) level of highly demanding 10 −16

and even lower [10]. Wear leveling is employed in practice
in order to carefully balance the number of P/E cycles across

the nanD-blocks of the device to make the degradation more

uniform. As the densities increase, managing wearout and

impairments becomes an increasingly more daunting mis-

sion; fortunately, when equipped with proper error correc-

tion schemes, the task becomes much more manageable.

There are several intertwined causes of errors in read

and write operations, which we summarize as follows.
Writing into cells is done by way of so-called incremen-

tal step pulse programming (ISPP) across a page of cells: a

small amount of charge is repeatedly being added to each

cell, cell values are read back to test if the target value is

reached, and the next charge increment is added to those
cells that still do not have the target values. ISPP is benefi-

cial as it minimizes the detrimental effects of overshooting
(inadvertent addition of too much charge) that would result

in a costly nanD-block erase. However, very small ISPP steps

also significantly slow down the write process, especially in
the multilevel memories. An additional issue with this write

process is that adding charge into one cell may unintention-

ally raise the charge on the adjacent cell, with which the first
cell shares a line. The worst scenario of intercell interfer-

ence with the ISPP is when a cell with low target level has its

two neighbors programmed to high levels [11].

Even if a cell is correctly programmed, issues may arise

during the read step. As the time passes since the initial pro-

gramming, the electrons slowly leak out of the floating gate,
and when the cell is eventually read, the observed value is

lower than what had originally been written. Additionally, as

the device ages, the total amount of charge that can be stored

in cell gates gets reduced because of worsening defects.

An intriguing and design-critical observation is that

these write and read characteristics are highly asymmetric.

For instance, charge leakage only causes errors in the down-

ward direction, and overshooting and intercell disturbs only

cause errors in the upward direction. Additionally, inter-

cell coupling affects low levels more profoundly than high

levels. Push for smaller geometries and increased densities

has progressively worsened these impairments. Fortunately,

new innovations in coding hold promise to help reverse this

negative trend. Before we describe these advanced methods,

we first review the basic terminology of channel coding.

Fig. 2. SLC, MLC, and TLC with digital information associated with

the charge amount. Gray coding is used to label different levels

thus minimizing the possibility of bit errors.

Fig. 3. MLC level distribution, with different reads.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1708 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

III . ER ROR- COR R ECTION CODES
IN TRODUCTION

In this section, we review some coding terminology necessary

to understand the approaches described later in the paper.

Error-correction codes (ECCs) are widely used in memories.
ECC methods add a certain amount of redundancy to the
input data prior to storing it on the medium in order to com-

bat adverse effects of noise and other device impairments.

These methods can be broadly divided into algebraic and

graph methods, depending on the key mathematical princi-

ples that underpin the given code construction.

The collection of possible codewords (stored words that

bear redundancy) is called a code. Practical coding methods

used in memories and storage devices store data in equally

sized blocks: input message of length k symbols is mapped

to a codeword of length n symbols, with n > k . A code can

be binary or nonbinary, depending on whether one symbol

corresponds to just one bit or to multiple bits. Nonbinary
codes are defined over finite fields that have cardinality
that is a power of a prime. The representation with the

number of different symbols, say q , that is a power of 2 is
particularly useful for multilevel Flash devices that store

multiple bits per cell (and thus have the number of levels

that are a power of 2).
Codes are typically linear, so that a code forms a

 k -dimensional linear subspace in an n -dimensional space,

where n is the codeword length. The rate of a linear code

is k / n . In NVMs, as is the case with other storage devices,

the rate should be close to 1 in order to minimize the stor-

age overhead associated with redundancy. Linearity allows

for a compact representation of the code. A linear code can

be represented both via a generator matrix and via a par-

ity-check matrix. The former has rows that span the range
space of the code and the latter has rows that span the null

space of the code. Alternatively, the rows of the parity check

matrix can be viewed as parity-check equations that each
codeword in the code must satisfy. As we describe in more

details later, the parity-check matrix viewpoint is especially
well suited for graph codes. In the case of algebraic codes,

depending on the details of the construction, interpretation

in terms of one of the two matrices can be more convenient.

The product of a codeword with the parity-check matrix
always produces the all-zeros vector. The product of any
other word that is not a codeword with the parity check

matrix produces a vector which is strictly nonzero. We refer
to the output of the product of a word of length n and the

parity check matrix as the syndrome of the word. In prin-

ciple, exponentially many words have the same syndrome.
Syndromes are often used in the decoding of algebraic codes.

The minimum Hamming distance d min of a code is

the smallest number of positions in which two distinct

codewords differ. In the canonical setting, the parameter

 t = ⌊(d min − 1) / 2⌋ is the measure of how many errors can

be corrected. Classical coding techniques are typically char-

acterized in terms of how many errors t can be corrected

[12]—for given code parameters k and n , one typically seeks

to maximize the minimum distance of a code. It is an oft-
overlooked fact that these well-studied techniques implic-

itly assume that the errors are equally likely and symmetric.

As we described, modern NVMs possess a large amount of

asymmetry; shoe-horning an existing channel code into the
NVM model is bound to be grossly inefficient. We discuss
many of the recent coding proposals that explicitly depart
from this ineffective approach, but first we summarize early
coding solutions for older NVMs wherein conventional cod-

ing tools were deemed adequate.

I V. ER ROR COR R ECTION W ITH
A LGEBR A IC CODES

A. Classical Codes: From Hamming to BCH and
Reed–Solomon

Early NVM technologies only required mild error-cor-

rection capabilities for which Hamming codes were suffi-

cient [13]. Hamming codes are one of the simplest coding

methods, characterized by a parity-check matrix whose
columns are all the nonzero binary tuples of a particular
length. Hamming codes are single-error-correcting codes

since any error pattern with exactly one nonzero symbol can
be corrected. However, as the devices scaled down and area

density increased, reliability constraints became more strin-

gent, and the need for more sophisticated coding methods

soon followed.

Bose–Chaudhuri–Hocquenghem (BCH) codes are a
well-known class of linear algebraic codes that emerged

as the coding solution of choice for early Flash memories

[14]. BCH codes—and Reed–Solomon codes as their spe-

cial case—were already popular in commercial data storage

technologies (e.g., hard-disk drives) and were well under-

stood by memory designers.

BCH codes can be viewed as a generalization of
Hamming codes. Like Hamming codes, they are linear

block codes with a well-defined structure. Unlike Hamming
codes, they can be constructed to correct multiple errors.

This is done by simply constructing a parity-check matrix of
a code as an array of elements from an appropriately chosen

finite field, using well-established rules from conventional
algebraic coding theory [12]. BCH codes have the guaran-

teed error-correction property that memory designers favor:

one can explicitly design a code capable of correcting all pat-
terns with up to a prescribed number of errors.

A BCH code is also an instance of a cyclic code, wherein
a cyclic shift of a codeword produces another codeword.

This viewpoint is helpful for encoding, as each codeword

is then represented as a product of the message polynomial

(a polynomial with message symbols as coefficients) with
the generator polynomial defining the code. The coeffi-

cients of the resulting polynomial are then symbols of the

produced codeword.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1709

Decoding is a more difficult task as it amounts to several
nontrivial steps. First, one computes the syndrome associ-

ated with the given retrieved word. Based on this syndrome,

one then seeks to find the most likely error pattern that has
this syndrome. Exhaustively searching for the most likely
error pattern with a given syndrome is completely impracti-

cal. What is done instead for BCH codes is the construction
of an auxiliary polynomial, called error-locator polynomial,
whose roots are precisely the locations of the erroneous

symbols. Once the positions of the errors are identified,
error values at these locations are computed. Construction
of the error-locator polynomial is routinely done via the

Berlekamp–Massey algorithm, and computation of the val-
ues of erroneous symbols is done using Chien search [12].

Practical decoder implementations must always strike

a careful balance between additional coding gain enabled

by more powerful codes and the increased resource con-

sumption caused by additional decoding circuitry. In the

common regime of using high-rate codes, the complexity
is, in general, manageable because the number of corrected

errors is not too large. Several recent works have specifically
addressed this question in the context of BCH decoders for
Flash memories, relying on the techniques of partial paral-

lelization and pipelining, e.g., [15]. In general, the slowest
step in BCH decoding is the Chien search, which is typi-
cally done in parallel to improve the decoding throughput.

However, a parallelized solution also incurs additional hard-

ware complexity and energy consumption—recent archi-
tectural approaches geared toward NVM applications have

been developed to reduce the area consumption of the par-

allel Chien search by removing redundant operations [16],
further combined with more informative scheduling [17],

and by formulating Chien search as a matrix multiplication
for faster search [18], [19].

We also remark that an additional benefit of BCH codes
in the context of NVMs is that they intrinsically have a rate-
compatibility feature: a parity-check matrix of a BCH code
correcting t 1 errors is a submatrix of a BCH code correcting
t 2 errors, for t 1 < t 2 . In other words, for the same code

length n , a t 2 -error correcting BCH code  � 2 is a subcode

of a t 1 -error-correcting BCH code  1 . Alternatively, from

the encoder’s perspective, since BCH codes are cyclic codes,
 2 can be constructed from  1 by adding monomial terms

to the generator polynomial of  1 . (For theoretical details,

see [12].)
As discussed in Section II, NVMs are highly susceptible

to wearout. The noise worsens over time, requiring more

redundancy in the code to deal with higher rate of errors.

One way of addressing this issue is by using rate-compatible

codes, with a high-rate code deployed in the early part of the

lifetime, and a lower rate code in the latter part. Seamlessly

switching to progressively more powerful codes is relatively

easy with the BCH setup because it simply amounts to intro-

ducing additional parity-check symbols over what had already

been stored with respect to a codeword of the initial code.

BCH codes are a prime exemplar of what the conven-

tional coding theory offers: powerful error-correction

schemes intrinsically designed to deal with symmetric

errors wherein the ability to correct an error pattern only

depends on the number of symbol errors in it, and not on

how the symbols change by the errors. However, as we

discussed in the previous section, error patterns arising in

modern NVMs are far from symmetric. This observation

has motivated intense recent research activity that explicitly
departs from the conventional code design for symmetric

errors. We now discuss how several recently proposed cod-

ing approaches have addressed the operational properties of

NVMs, and have also led to a new chapter of fundamental

advances in coding theory.

We choose to survey two algebraic coding schemes that

are the most convenient to deploy, because they can use

existing coding modules (e.g., from BCH codes) as their
main building blocks complexity-wise.

B. Algebraic Codes for NVM Error Models

A central characteristic of multilevel NVM channels

is that the incident errors are structured rather than sym-

metric. The structure of the errors stems from the electric

and algorithmic features of the write and read processes.

For example, the representation of data as q discrete charge

levels makes an error more likely between adjacent lev-

els than between far-apart levels. Such error structure is

not addressed by classical codes such as BCH and Reed–
Solomon, which are designed for symmetric errors. It is still

possible to use symmetric error correcting codes for nonsym-

metric errors, but this use is highly suboptimal because the

codes need to cover error events strictly worse than actually

needed at likely operation. For example, a common tech-

nique in practice is to implement a gray mapping between

q -ary charge levels and tuples of log 2 q bits (cf., Fig. 2).
With this mapping, a q -ary error between nearby levels

translates to a binary error in a small number of bits. But

even with this desired property, a binary code correcting the

resulting bit errors is required to correct more errors than

really needed, thus unjustly adding to the redundancy cost.
For example, consider the simple binary reflected gray code
on 3 b, corresponding to q = 8 levels. In this mapping, we
map the levels (0, 1, 2, 3, 4, 5, 6, 7) to the bit tuples (000, 0
01, 011, 010, 110, 111, 110, 100) . To see that this is a subop-

timal mapping, we observe that the transitions 0 ↔ 3 are

single-bit errors exactly like the transitions 0 ↔ 1 , even

though the former are much less likely in a realistic memory

channel. In the rest of this section, we describe two cod-

ing schemes that better capture the structure of multilevel

NVM channels. In these promising alternatives, we still use

known symmetric error-correcting algebraic codes, but in a

clever way to maximize the coverage of the error patterns
of interest. The schemes rely on the celebrated concept of

code concatenation [20] developed for communication

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1710 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

applications, while specializing and refining to best match
deployment in Flash and other NVMs. Code concatenation
is a powerful technique that combines two codes, wherein

codewords of the inner code are symbols in the alphabet

over which the outer code is defined. The two schemes in
discussion are distinct and complementary: the first one is
especially tailored to NVMs where coding is done directly

over the nonbinary cells; the second one better fits gray-
mapped memories composing a cell level as multiple bits.

1) Codes for Errors With Magnitude Limit: Suppose that

our memory has q = 8 levels, and that a common error
mechanism changes a desired level x to level x − 1 . This

error type is called asymmetric errors with magnitude 1.

One possible source for such errors is retention errors [21],
whereby charges gradually escape the cells when they are

not rewritten or refreshed for a long period of time. A com-

plete analog of this error model takes effect when level x

changes to x + 1 , which can happen for example when the
programmed level (irreversibly) overshoots above the level

requested in a cell write, or due to disturbs from other

cells’ writes. We note that it is not required that all errors

be asymmetric errors with magnitude 1; treating this error

model is beneficial even when other secondary error sources
are active alongside of it. Moreover, codes similar to what

we next describe can also be constructed for two-directional
errors x ± 1 , and with error magnitudes greater than 1.

To start the discussion on coding for asymmetric

errors of magnitude 1, it will be instructive to consider the

extreme case where all cells in the word may experience an
x + 1 error. It is clear that the best solution to this case is

to “give up” one of the three bits in each cell, and use only
half of the q = 8 levels, for example, all the even levels
{ 0, 2, 4, 6} [22]. When the errors are less intensive we do
not want to lose an entire bit per cell, and instead do the

following [23]. We write a page of n cells as 3n bits with the

restriction that the n bits of the lower significance belong
to the binary code BCH1 that corrects t bit errors. This

procedure is depicted in Fig. 4(a), where the shaded area
represents the parity bits of BCH1. Note that the other two
rows in the n cells of Fig. 4(a) are stored uncoded. At read
time, we obtain the bits of the coded n -bit row, and use

the decoder of BCH1 to locate the errors, but not to cor-

rect them as bit errors. Instead, in each error location we

reverse the error by subtracting 1 from the read 8-ary level.
It is clear that this scheme can correct up to t asymmetric

errors of magnitude 1. It borrows all the good properties of

BCH codes for symmetric errors, while exhibiting several
optimality features for the target error model [23].

In contrast, an alternative scheme for the same error

model maps to each 8-ary cell level 3 b using a gray code.
Applying a t -error binary code BCH2 to the 3n bits, shown

in Fig. 4(b), also guarantees correction of t asymmet-

ric errors of magnitude 1. However, the number of parity

bits required for this alternative scheme is larger by roughly

t log 2 (3) ≈ 1 . 58t , which amounts to significantly increased

redundancy when t is moderate to high. Beyond this specific
example, the presented scheme can use any code for sym-

metric errors, not necessarily a BCH code. In addition, it
can be extended to any q , any error magnitude l , and other

error models with structure [23]–[26].
As the memory technology scales in density, we expect

the low-magnitude errors to become more frequent and

dominant. In the regime of moderate to high rates of low-

magnitude errors, the scheme detailed previously in the sec-

tion may not be the most efficient, because symmetric-error
codes for large t are expensive to implement. We show that
in this case the best approach works quite differently than

previous coding schemes for such errors. Given a block of n

cells with q levels, where n may be smaller than the memory

page size, we encode the data such that the block does not
contain cells with consecutive levels in { 0, …, q − 1} . For
example, if the block has a cell with level 3, then it cannot
have any cell with levels 2 or 4. Another block may have a
cell with level 4, but then it cannot have cells with 3 or 5.
The key in this encoding is that its knowledge by the decoder

can help to efficiently correct a large number of asymmet-
ric errors with magnitude 1. Not less importantly, for finite
block lengths n , this encoding is much less redundant than

the encoding that uses only half of the levels { 0, 2, 4, …} .
A coding scheme based on this idea was suggested with

the name nonconsecutive constraint (NCC) [27], and was
shown to have the best error correction given the expended
redundancy. This can be seen in Fig. 5 showing the output

symbol-error rate (output SER) as a function of the input

symbol-error rate (input SER). It is seen that other coding

alternatives with the same code rate have inferior perfor-

mance. The plot with + markers shows the performance of

the coding scheme depicted in Fig. 4(a), using a constitu-

ent BCH code, and the one with ⋄ markers shows it for the

even/odd code that restricts the n levels to be all even or

all odd. Conveniently, the NCC can control the tradeoff of
rate versus correction capability by merely changing the

codeword length n : a small n gives high rate and weak error

correction, and as n grows the error correction improves

and the rate decreases. Overall the significant reduction in

Fig. 4. Encoding strategies for correcting asymmetric magnitude-1

errors in a memory with q = 8 levels. (a) A code designed for

asymmetric magnitude-1 errors. (b) A binary gray-mapped code.

Both codes are based on BCH codes, but (a) requires fewer parity

bits than (b).

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1711

SER from input to output by the NCC code allows clean-

ing up the remaining symbol errors (together with errors

from other types) by a reasonable-strength outer code, e.g.,

a binary graph code, to be discussed shortly.

2) Tensor-Product Codes (TPCs) for Heterogeneous
Errors: Another promising example of carefully exploiting
BCH-like codes for errors of special characteristics reported
in the literature [28], [29] is given by the TPCs [30], which
have the intrinsic capability of incorporating fine-grained
knowledge of the error patterns.

To motivate this discussion, let us consider the fol-

lowing example for q = 8 levels representing 3 b (TLC
Flash): Data are stored in triplets (each triplet corresponds
to one triple-level cell.) For five TLC cells, let us say that
(100, 110, 000, 000, 010) is stored. We read back the block
(100, 100, 000, 011, 011) . The binary difference (xor) is

(000, 010, 000, 011, 001) .
We could consider each triplet a symbol, observe that

there are three symbol errors, and thus seek a code cor-

recting at least three symbol errors. However, this is not a

sufficiently refined definition: note that the majority of the
erroneous triplets only contain 1 b in error (as indeed would

be the case in Flash). This observation is not considered by

symmetric ECCs, such as nonbinary BCH codes. A more
efficient code must exploit this notion, correcting a certain
number of erroneous triplets with few bits in error and a

much smaller number of erroneous triplets with many bits

in error. TPCs offer precisely this added efficiency.
Mathematically speaking, the baseline TPCs (from [30])

are expressed as a particular type of concatenation: their
parity-check matrix H is itself a tensor product (hence the

name) of a parity-check matrix A of a nonbinary code  A

with a parity-check matrix B of a binary code  B , denoted

H = [A ⊗ B] . In the context of multilevel Flash memories,

the code length of  A corresponds to the number of memory

cells and the code length of  B corresponds to the number

of bits per each cell. This construction then allows for con-

trolling the error-correction capability simultaneously over

cells and over bits per each cell, that is, we aim to correct a

certain number of erroneous cells, and for each erroneous

cell, we correct a certain (small) number of erroneous bits.

Flash-motivated extension of this construction was
developed in [31], where the parity-check matrix H was

built out of four constituent binary/nonbinary parity-check

matrices, in order to also accommodate rarer, larger weight

errors, which the original construction is too rigid to han-

dle. The resultant parity check matrix is then H = [
A ⊗ B

C ⊗ D

] .

Binary matrices B and D control the number of correctable

erroneous bits per erroneous cell, and nonbinary matrices

A and C (over appropriately defined finite fields) control
the number of correctable symbol errors that have a pre-

scribed number of bit errors; for example, we can construct
a code that corrects t 1 symbol errors each flipping at most
ℓ 1 bits and t 2 symbol errors each flipping at most ℓ 2 bits;

the regime with t 1 > > t 2 and ℓ 1 < ℓ 2 is of interest in Flash.

Observe that this specification defines the error-correction
capability of a code in a much more precise way than what

is allowed by the conventional t -error correcting moniker.

In the context of the example above, we could parameterize
the error pattern (000, 010, 000, 011, 001) via t 1 = 2, t 2 = 1,

ℓ 1 = 1 , and ℓ 2 = 3 .

It was shown in [31] on real experimental data that this
tensor-product construction with four constituent matrices

chosen in a way that mimics the Flash behavior, leads to life-

time increase of at least 40%. Even further, the resultant TPC
has two highly desirable features from the implementation

standpoint: the guaranteed error correction (with respect to

the more finely specified error patterns), and low-complex-

ity encoding and decoding algorithms. The latter property is

a consequence of the fact that the proposed TPCs are built
from simple symmetric ECCs. Fig. 6 shows performance
results of applying TPCs from [31] to TLC Flash. The codes
are all of length 4096 and have rate 0.86. It is especially
interesting to point out that the TPC construction outper-

forms not only good nonbinary and binary BCH codes, the
latter derived by using the same code over the three pages,

but that it also outperforms the best combination of three

BCH codes, one for each page, where BCH codes with dif-
ferent error correction capabilities are assigned to different

pages—while the other three codes hit error rates of 10 −6

and higher much earlier, TPCs offer excellent reliability
the longest (i.e., no errors were observed). This is precisely

because TPC can correct certain error patterns spanning
multiple bits per cell with less redundancy than three paral-

lel codes can. Tensor-product constructions can be further

customized for Flash. For example, a simple transformation
of the tensor-product operation allows for limited program-

ming into certain cells [32]. This operation is particularly

Fig. 5. Correcting many asymmetric errors of magnitude 1:

comparison between three coding schemes with equal code rate,

set to 0.77.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1712 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

beneficial for Flash memories that have a small number of
defective cells, which can needlessly consume a dispropor-

tionate amount of error correction.

The codes we showed for limited-magnitude errors ear-

lier in this section can also be combined into the flexible
tensor-product construction of the latter part. A similar

graded error-correction profile can be obtained where ℓ 1

and ℓ 2 represent other types of errors besides symmetric bit

errors.

C. Additional Promising Algebraic-Coding Schemes

We now briefly comment on other algebraic methods
that have shown promise over the baseline BCH codes. The
majority of these works are on the exploration of appropri-
ate combinations of known coding tools, using to a large

extent idealized channel assumptions, and not explicitly
focusing on the code design tailored specifically for asym-

metric Flash.

Code concatenation is a powerful technique exploited
in the two memory codes we previously described. Other

approaches of a related flavor include the following. Product
code refers to a construction based on two constituent codes

 1 and  2 such that each row of the resultant code is a code-

word of  1 and each column of the resultant code is a code-

word of  2 . An attractive feature of a product code is that its

minimum distance is the product of the minimum distances

of the two constituent codes, and that it has an efficient
iterative row/column decoder that can correct with high

probability many more errors than half the minimum dis-

tance [12]. One of the first results on the product codes for
Flash is the work in [33], which demonstrated via simula-

tions on a synthetic channel the potential gains over a plain

BCH-coded scheme when a two-step coding is employed: a
BCH code is used across rows and a simple Hamming code
is used across columns in a way that more error patterns of

interest can be corrected relative to the uninformed BCH
code. The architecture proposed in [33] also allows for par-

allel processing of multiple codewords, thus reducing the

overall latency. Additional progress on concatenated BCH
codes was made in [34], which also exploited the property
that a combination of weaker, shorter (and hence cheaper)

BCH codes is competitive with one stronger, longer (and
thus more expensive) BCH code. Another interesting twist
on product codes was recently explored in [35], where
it was shown that so-called half product codes have bet-

ter minimum distance properties than their (full) product

counterparts.

Complementing theoretical investigations on BCH-
enhanced designs, several recent works and industry pat-

ents have explored performance benefits and implementa-

tion issues of concatenated/product codes in the context of
Flash [36]–[38], although likely primarily in the idealized
settings.

Intracell variability can also be exploited by trellis coded
modulation (TCM) [39], another idea from classical commu-

nications theory—TCM limits the magnitude of errors in a
way that is relevant in Flash [40]. Benefits of the BCH–TCM
concatenated schemes over the baseline Reed–Solomon/
BCH-coded system were demonstrated in [41]–[44]. Since
TCM requires some amount of redundancy, concatenated
schemes with a TCM component could be of interest in
Flash architectures that permit additional threshold levels

and can tolerate rate loss incurred by the TCM component.
Even with the implicit emphasis on the symmetric noise

model, these coding techniques already demonstrate poten-

tial in NVM applications; a compelling open research ques-

tion is how to best utilize them in the channel-aware way.
Building upon the results presented in this section, we

summarize the properties of classical and modern algebraic
codes in Fig. 7.

V. ER ROR COR R ECTION W ITH GR A PH
CODES

A. Classical Graph Codes: LDPC Codes and Iterative
Decoding

Like previously discussed algebraic codes, low-density

parity-check (LDPC) codes are also linear block codes. They
can also be binary or nonbinary, depending on whether the

information is organized in bits or in symbols. LDPC codes
are described by a sparse parity-check matrix, hence the
“low-density” adjective. It is especially convenient to view
an LDPC code as a bipartite graph where one set of nodes,
called variable nodes, corresponds to the columns of the

parity-check matrix, and the other set of nodes, called check
nodes, corresponds to the rows of the parity-check matrix. An
edge between a variable node and a check node exists if and
only if the corresponding entry in the parity-check matrix is
nonzero. Concretely, an edge between variable-node i and

Fig. 6. Simulation results showing the benefits of using graded-bit

ECCs in Flash. MSB/CSB/LSB refers to most significant/center

significant/least significant bits. Figure derived based on results

from [31].

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1713

check-node j marks that the i th code symbol participates in

the j th linear check equation of the code.

In the binary case, the parity-check matrix is the adja-

cency matrix of this bipartite graph. In the nonbinary (i.e.,
q -ary) case, each nonzero entry in the parity-check matrix
is a nonzero element of a Galois finite field GF (q) , and the

corresponding edge in the bipartite representation of the

code has this nonzero value as its label. The sparse graphi-
cal representation of the code enables low-complexity itera-

tive decoding algorithms, executed as a series of message-
passing steps alternating between the set of variable and the

set of check nodes. The exchanged messages are proxies of
the likelihoods of the values of the variable nodes; in prac-

tice, computations are performed in a transformed domain

and the messages represent log-likelihood ratios (LLRs).

Message exchange terminates when all the checks are satis-

fied in the sense that the linear equations associated with
them hold. NVM channels are especially natural for repre-

senting the code symbols as q -ary symbols, which calls for

the use of q -ary LDPC codes. It is generally understood that
q -ary LDPC codes offer significant performance benefits
over their binary counterparts, at the expense of substan-

tially increased decoder complexity.
Owing to their excellent performance, LDPC codes

have already found phenomenal success in many modern

data transmission applications. It is thus not a surprise that

LDPC codes are actively being considered in modern NVMs
as well, with a number of industry-based patents recently

issued on this topic; see, e.g., [45]–[49], wherein the focus
has mostly been on binary LDPC codes.

LDPC codes offer most benefits when decoded using
real-valued LLRs, i.e., with the initialization and the mes-

sages expressed in full precision. However, read informa-

tion about Flash channels is obtained through a sense amp

that can only report whether the threshold voltage of a cell

is below or above some value, information that is intrinsi-

cally discrete (see also Section II). As a result, the channel

that the LDPC decoder sees is inevitably discrete. A non-

trivial question then is where to place threshold voltages

as a function of the number of available reads in order to

maximize the utility of memory devices; see also Fig. 3.
One mathematically precise yet intuitive idea is to assign

threshold voltages exactly in the way that would maximize
mutual information between the input and the output of

the induced discretized channel [50]. Placement of thresh-

old voltages is also important for the code design. As we dis-

cuss next, code design and optimization critically depend
on proper channel modeling.

B. Graph Codes for NVM Error Models

LDPC codes are very powerful ECCs because they mimic
Shannon-optimal random codes, with the added feature of

low-complexity decoding. They have also been around for
sufficient time so that their design for classical channels has
been nicely perfected by a massive body of research. Despite
this favorable state of matters, the application of LDPC codes
to NVMs motivates interesting new fundamental research.

NVM distinctive error models and unique operation modes

necessitate the enrichment of the constructive toolbox
for LDPC codes, and also their analysis. Nonbinary LDPC
codes are ideally suited for multilevel memories. We thus

focus in this section on two promising directions for NVM

LDPC codes: one is their finite-length design of nonbinary
codes optimized for common error types, and another is the
design of nonbinary codes optimized to the multibit struc-

ture of the Flash MLC/TLC architectures. Other interesting
avenues are discussed in the next section.

Fig. 7. Summary of main algebraic codes and their key properties in the context of NVMs. Advantages are highlighted in green and

disadvantages in red.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1714 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

1) Finite-Length Code Design for NVM Errors: It is well

known that practical LDPC codes, both binary and nonbi-
nary, suffer from the so-called “error floor,” manifested as a
failure of the code to lower the output error rate sufficiently
when the input error rate is very low [51]. This undesirable

behavior is especially problematic for modern Flash devices

as the flooring effect prevents the system from meeting
target reliability constraints; see the schematic in Fig. 8.
Here RBER denotes raw bit error rate and Dec. Error Rate
denotes residual errors after LDPC decoding. The unwanted
error-floor effect is due to the fact that the low-complexity
iterative decoding algorithm operates on the LDPC bipartite
graph which inevitably has cycles. (We quickly remark that

this issue vanishes in the infinite block-length regime where
one assumes that the bipartite graph is essentially cycle free.

In this regime, the elegant theory of density evolution offers

crisp code performance characterization [52]. This theory
critically depends on the cycle-free assumption and is not

directly useful in the finite-length setting.)
The issue of the error floor is particularly problematic

for applications that need to operate under stringent con-

straints on reliability, including modern NVMs. Extensive
prior work was performed on the analysis of the LDPC error
floor, implicitly assuming the transmission over a symmetric
channel. Trapping/absorbing sets is the terminology (e.g.,

[51] and [53]–[55]) adopted in the coding literature used
to refer to combinatorial objects that exist in the bipartite
representation of the code that trick the iterative decoder

into making decoding errors. Trapping sets encompass con-

vergence to noncodewords and oscillations among different

configurations [51]. Typically, oscillation errors can be sup-

pressed with a more informed quantization scheme [56].
The definition of the absorbing sets [55] is purely combina-

torial and it refers to objects that are fixed points of certain
practical decoders, notably including detrimental noncode-

words. These configurations are locally consistent (from a
vantage point of an individual node) but are not necessarily

globally consistent in the sense that they need not produce

a codeword. As a result, during the decoding, some of the

checks remain unsatisfied despite repeated iterations of the

message-passing decoder. The configurations are typically
characterized by a certain number of variable nodes a con-

nected to a certain number b of unsatisfied checks; a code-

word is a special case of such a configuration with b = 0 .
Intriguingly, it is often the case that absorbing sets with

small a and with b ≠ 0 cause decoding errors in iteratively-
decoded LDPC codes—that is, there exist problematic
configurations with weight less than the code minimum
distance. In other words, in contrast to traditional coding

theory principles, quantifying the goodness of a code in

terms of distances between codewords is insufficient in the
case of iteratively decoded graph codes.

As argued before, NVM channels fundamentally dif-

fer from their oft-utilized symmetric counterparts, further
complicating LDPC code optimization techniques. Despite
a common practice of using AWGN-optimized LDPC codes
on a Flash channel, the approach is grossly inadequate. The

reason for this rests with a closer investigation of prob-

lematic objects for the two types of channels. The type of
absorbing sets causing decoding errors and in turn the pesky

error floor is significantly different for the two channels. For
example, for AWGN-like channels, due to noise symmetry,
dominant absorbing sets are those that have a small number

of variable nodes a , and for each such variable node, there

are more satisfied than unsatisfied neighboring check nodes.
In contrast, for Flash-like channels, due to asymmetry, cat-

egorization of absorbing sets into problematic and nonprob-

lematic is topologically more subtle [57]. As a result, code

optimization focused on the removal of AWGN-detrimental
structures is essentially useless if the code is to be used over

the highly asymmetric Flash channel. Fortunately, as in the

case of algebraic codes, substantial gains can be made once

the code is designed in a way that is cognizant of the channel
characteristics, as we illustrate in Fig. 9, where we plot raw

BER (RBER) against “decoded” BER (DBER); the latter is
the error rate after the decoding step.

In this example, based on construction from [58] we use
an instance of widely popular quasi-cyclic designs, which are

known to offer implementation-friendly, circulant-based

Fig. 8. Typical performance plot of unoptimized LDPC codes.

Fig. 9. Benefits of channel-aware LDPC code optimization on a

realistic MLC Flash channel model.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1715

structure of the parity check matrix. Since the target appli-
cation is MLC Flash, the codes are nonbinary and are
defined over the finite field of size 4. Additionally, they have
rate 0.9, length 4000 b, and variable-node degree equal to 3.
Without any further channel-aware optimization, the per-

formance is as shown by the top curve (in blue).

A promising technique for nonbinary code optimiza-

tion consists of two steps. First, choose the ordering of the

constituent circulants in the parity-check matrix to mini-
mize the number of possible detrimental configurations
in the bipartite representation of the code. Second, assign

edge labels (from the finite field of size 4 in this example)
to ensure the nonexistence of detrimental configurations.
This technique is attractive as it results in a design that pre-

serves all desirable code properties (length, rate, circulant

organization of the parity check matrix, node degree regu-

larity), and moreover can be described in crisp combinato-

rial terms—recently developed frameworks [59] and [57]

are based on succinct linear-algebraic description of the

absorbing set, so that the provable elimination of possibly

numerous instances of the detrimental structure can be

achieved by controlling the null space of one simple matrix.
As a result, the optimization protocol is highly computation-

ally efficient, systematic, and can at once produce a whole
family of parity check matrices with the desired properties.

In fact, mathematical characterization of absorbing set/trap-

ping set topologies is more tractable for codes with lower

variable node degree [60], [61]. The codes that have high
rate—the rate regime in which NVMs need to operate—

imply low variable node degree, thereby making combina-

torial optimization of graph codes aimed at handling bad
configurations especially well suited for NVM applications.

Even with a fast optimization algorithm in place, the key
question to answer is what configurations one should opti-
mize for. The answer is highly channel dependent and the
more the channel differs from the AWGN setting, the more
diverse the problematic objects are relative to their AWGN
counterparts. In the context of our example, optimizing this
code by only removing absorbing sets that are problematic

in the AWGN setting results in the middle curve of Fig. 9
(in black), which roughly corresponds to the elimination of

sets with (a , b) parameters being (4,2) or (4,4). This offers
only modest improvements on the Flash channel (modeling

akin to [4]), whereas optimization that removes a broader
collection of objects that are truly problematic in the Flash
domain gives the lowest curve (in red), which reflects
order of magnitude improvement while maintaining all

other structural code properties. This optimization targets
absorbing sets with (a , b) parameters with 4 ≤ a ≤ 7 and

1 ≤ b ≤ 4 . Combinatorial strategies for the removal of
problematic configurations in the nonbinary domain are
substantially more involved than in the binary case; they are

discussed in [57].

Beyond effective performance-improvement tools for

accepted code constructions, NVM coding performance

can greatly benefit from tools that illuminate the underly-

ing constructive considerations. We next show, using a new
theoretical framework, how q -ary LDPC codes should be
designed when the multibit structure of a q -ary channel is

explicitly taken into account.
2) Nonbinary Codes With Multibit Structure: Deeply

ingrained in the Flash architecture is the duality of binary

logical pages stored on q -ary physical pages. A common

choice by SSD vendors is to map log 2 q binary logical pages—

for example, three pages in q = 8 TLC—to a single page of
q -ary cells. The main motivation is access benefits: allow-

ing lower latency access to a logical page before the physical

cells are fully read. This is possible because the unit of bit is

naturally expressed in the physical processes, for example, a
read primitive that returns a bit of information comparing a

cell threshold level to a reference value. However, even in

the presence of smart gray-like mappings, we lose in error-

correction efficiency when employing a binary code for each
logical page individually. As was the case in Section IV-B for

algebraic codes, ignoring the features of the q -ary channel in

code design is suboptimal and inefficient. We instead want
to deploy the code on the q -ary physical page, but in a way

that considers the underlying bit structure of the physical

processes. In other words, we want to design LDPC codes
that are defined over q -ary alphabets, but designed for chan-

nels preserving the bit-structure of the read/write processes.

This will offer improvement over the known approaches of

either 1) use a q -ary LDPC code designed for symmetric
errors; or 2) use a hierarchy of binary LDPC codes through
the concept of multilevel coding [62]. The key is that the
new approach gets the best of both worlds: it enjoys the
inherent advantage of q -ary LDPC codes, and it optimizes
the code design to the true underlying channel.

Making progress with design of LDPC codes for NVM
channel models is most promising by first defining new
erasure models corresponding to the channel errors. This

has been the case with binary LDPC codes, for which perfor-

mance analysis over the binary erasure channel (BEC) con-

tributed most insights and design practices [63]. The analog

of an erasure in our case is a partial erasure, which repre-

sents a read where the cell level is not fully resolved but also

not completely unknown [64]. Given that a cell level can be
any symbol in the set  = { 0, 1, …, q − 1} , a partial eras-

ure is a subset of  whose contents are the possible levels

for that cell after the read. A subset of size q represents the

standard q -ary (full) erasure, and a subset of size 1 represents
the no-erasure case where the cell level is perfectly known.

All subset sizes in between those two extremes are the par-

tial erasures we find useful in our code design. Note that a
partial erasure is a useful proxy for a structured q -ary error,

similarly to a full q -ary erasure being a good proxy for sym-

metric q -ary errors. To model error channels with a multibit

structure, we consider the following definition of a partial-
erasure channel, which we call here q -ary multi-bit eras-

ure channel [65]. Let q = 2 s , where s is the number of bits

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1716 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

mapped to each cell level. For convenience, let us take

the special case of q = 8 and s = 3 (TLC). Suppose that
a cell has the level x = 0 stored in it. Then, the channel
output y is either { 0} representing perfect readout, or { 0, 1}
representing a partial erasure missing the least significant
bit of x , or { 0, 1, 2, 3} representing a partial erasure missing
the two lower bits, or { 0, 1, …, 7} representing a full eras-

ure missing all three bits. We get { 0, 1} with probability
 ϵ 1 , { 0, 1, 2, 3} with probability ϵ 2 , { 0, 1, …, 7} with probability
ϵ 3 , and { 0} with probability 1 − ϵ 1 − ϵ 2 − ϵ 3 . Note that this

is a generalization of the symmetric case that can accom-

modate the variable reliabilities among the three bits. In

particular, it captures the property of the q -ary channel that

a given error magnitude affects all bits from some signifi-

cance level and downward. To combat real NVM errors we

will set values of ϵ 1 , ϵ 2 , ϵ 3 according to the media proper-

ties, and design a code that corrects such error events with

high probability.

Some ingredients need to be developed to enable code

design for q -ary multibit channels. The first is an iterative
decoder that extends the efficient message-passing algo-

rithms of symmetric channels to the new channels. For

 q -ary partial-erasure channels such an extension is provided
in [64]. Second, we need an efficient analysis framework
that can tell the performance of code ensembles over the

new channels. In [65], such an analysis is developed based

on density evolution [63], with a careful exploitation of the
channel structure to reduce the analysis complexity that oth-

erwise blows up quickly with q . Last, and most importantly,

we need to find ways by which the analysis framework can
be used to design better codes for the new channels. An

interesting example for this is the following crisp design rule
from [65]: for q = 4 (s = 2 ,MLC), if the multibit erasure
channel has a dominant occurrence of single-bit erasures

(ϵ 1 ≫ ϵ 2), then the edge labels of the q -ary LDPC code must
not be selected uniformly from the nonzero field elements
{ 1, 2, 3} , but rather uniformly over two of the elements, e.g.,
{ 1, 2} , with no labels selected as the remaining element 3. It
is not clear a priori why this rule should apply, but it is prov-

ably correct given the analysis framework. A more compre-

hensive design tool building on the new analysis framework

optimizes the code degree distributions taking into account
the parameters of the partial-erasure channel. It has been

shown [64] that degree distributions obtained through this
dedicated optimization have superior decoding thresholds
and error rates compared to codes that were designed for

the standard erasure channel.

Moving to finite block-length optimization of LDPC
codes for multibit channels, we seek algorithms that improve

the code specifically for the more common error types. In
this part, we build upon the erasure interpretation of the

channel, and study how the well-defined configurations
called stopping sets [66] can be mitigated in the case where

we have additional knowledge on the erasure types. (We

have previously discussed absorbing sets; the two classes of

objects are topologically related, wherein absorbing sets are
more suitable for the analysis of errors and stopping sets are

more suitable for capturing erasures.)

A stopping set is defined as a subset of the variable
nodes that collectively connect to a set of check nodes each

of which has degree more than 1 to the variable-node sub-

set. Stopping sets are detrimental for iterative decoding,

because if all variable nodes in them are erased, the decoder

cannot continue iteratively. Examining an iterative decoder
operating over a q -ary partial-erasure channel, we observe

that a stopping set existing in the graph can be neutralized
by carefully setting the edge labels to not halt the iterative

decoder. This is true only for partial erasures, and does not

apply to codes for the q -ary (full) erasure channel (any stop-

ping set for the binary erasure channel is also a stopping set

for the q -ary erasure channel, for any edge-label combina-

tion). Following a detailed characterization of the label sets
that resolve stopping sets for the multibit channel, we have

developed an algorithm that sets edge labels in a specific
code graph to remove stopping sets of small sizes. Note that
this label optimization can be done on top and beyond other
known stopping-set reduction techniques applied to the

code graph (e.g., [67]). In Fig. 10, we show sample results
showing the potential advantage of this coding scheme. We

take a regular LDPC code with check-node degree 18 and
variable-node degree 2 (rate 8 / 9), and run our labeling algo-

rithm removing partial-erasure stopping sets for q = 8 . We
plot the symbol-erasure rate (SER) at the decoder output as

a function of the probability ϵ 1 that a symbol undergoes a

1-b erasure. The performance after the label optimization
improves significantly in most of the ϵ 1 range. We also com-

pare the performance to a binary code drawn from the same

ensemble, but with triple length (to get the same number of

bits), and third the erasure rate (to get the same expected

Fig. 10. Performance of 8-ary LDPC codes before (dashed) and

after (dashedÐdotted) removal of stopping sets affecting the
multibit erasure channel. In comparison, a binary LDPC code that is

three times longer (solid) has much worse correction performance.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1717

number of bit erasures). It is shown that the binary code is

not competitive to the q -ary option, even though the errors

we considered here are single-bit errors. This motivates

further research constructing stronger and more practical

LDPC codes that perform well over multibit channels. An
interesting open research question is how to best combine

the combinatorial framework and the new bit-level interpre-

tation introduced in the last two subsections, respectively,

for the ultimate LDPC solutions.

C. Additional Considerations and Future Directions
for Graph Codes

Complementing proper channel code design is the
implementation of associated decoders. In the unoptimized
case, excellent LDPC code performance comes at the prohib-

itively high implementation complexity of the decoder that
exceeds latency, hardware footprint, and power consump-

tion allowed in modern NVM applications. One way to reap

the benefits of LDPC codes while maintaining target latency
is by use of coarse decoding and look-ahead computations

when channel conditions permit, as recently proposed in

[68]. The idea is that since the hard-decision decoder is suc-

cessful most of the time, one would only invoke additional

soft-information LLRs when the hard-decision decoder fails

to decode. To minimize the latency, this additional informa-

tion is computed concurrently with the baseline decoder,

and used only as necessary. The work in [68] also quantifies
the impact of progressive sensing on the overall power con-

sumption of the LDPC decoder. A recently proposed tech-

nique for reducing decoder latency in TLC Flash operates
directly on the soft decisions: soft information is generated

by only using center read references. By interleaving the

three pages, errors are effectively evenly spread across the

pages [69].

Further architectural solutions for LDPC decoders in
NVMs include a circumspect combination of throughput-

enhancing techniques, such as strategic message update,

dynamic scheduling, use of lookup tables, code structure-

aware parallelized structure, and local error correlations,
among others [70]–[73]. Additionally, new formulations
of iterative decoders that are well suited for limited preci-

sion implementations, such as finite precision decoders
proposed in [74] and [75], will further help in the broader
adoption of LDPC-coded systems. Another fruitful research
direction would be to optimize LDPC decoders specifically
from the point of view of recovery from noncodeword errors

dominant in the NVM error models analyzed in the previ-
ous section [57]. This could be done, for example, by oppor-

tunistically pruning computations in high-performance but

costly nonbinary LDPC decoders [76], or by using the intra-

cell variations in the LLR scalings [77].

Spatially coupled (SC) codes (also known as LDPC con-

volutional codes) are the newest exemplar of graph designs;
they offer excellent performance in a variety of settings.

These codes are obtained by chaining together bipartite

graphs each corresponding to a smaller LDPC code. This
concatenation results in structured irregularity that has led

to capacity-approaching performance in the asymptotic set-

ting [78]. Moreover, SC codes are amenable to low complex-

ity window decoding with message passing decoder oper-

ating on the block constituents [79]. Initial results on the

optimization of SC codes in NVM and related applications
already show promise [80], [81], and a thorough study will
likely lead to significant results.

Additionally, the power of recently invented polar codes

has not yet been fully explored in the context of NVMs.
Another recent work has proposed the use of nonlinear

polar codes for asymmetric channels potentially suitable for

Flash memories [82] and the work in [83] offered the first
study on using polar codes as the error-correction technique

in Flash memories. Comprehensive analysis of polar codes
and polarization principles in the context of NVMs could be
another interesting open research direction, provided issues

stemming from the higher complexity and decoding latency
of polar codes can be adequately addressed.

As a counterpart to the summary of the algebraic codes

given in Fig. 7 and based on the discussion in this section,

we sum up the key features of graph codes for NVM applica-

tions in Fig. 11.

V I. REWRITE CODES FOR THE IN-PL ACE
UPDATE FEATURE

Since the early days of data storage, density scaling has

always meant challenges to data reliability. But in modern

storage media starting from Flash, competitive density also

means significant compromise to access performance. The
best known access-performance issue in Flash storage is

the inability to perform erase operations (remove charges

from cells) at the same small granularity of the program

operation (add charges to cells). While helpful for storage

density, this restriction is extremely limiting for access
performance, because data cannot be updated in-place. In

fact, a vast amount of research in the storage-systems field
is devoted to circumventing this restriction in applications

where it prohibits adequate performance. Coding enables a
more direct solution for this restriction, through the use of

rewrite codes.

A. Rewrite and WOM Codes

To solve the write-access problem stemming from

restricted erase operations, coding needs to bridge between

the restricted physical media and the unrestricted user data

written to the storage. The user may want to update data

arbitrarily by rewriting a data unit, and the code provides

a representation for the data that adheres to the restriction

to only add charges to the physical cells. It turns out that

a model known since the 1980s called write-once memory

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1718 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

(WOM) [84] coding is highly applicable to the problem
of update-restricted Flash storage. In the WOM model,

information can be written t times on a block of n binary

physical cells, such that physical cell levels change from 0
to 1, but not from 1 to 0. By applying the WOM model to
Flash,2 the user can write t times to the same physical cells

without requiring a slow and costly erase operation. Thus,

such codes hold great potential to improve the performance

and life span of storage devices. The design objective for a
 t -write WOM code is to maximize the sum rate, which is the
total amount of information (in bits) written to the n cells

in t writes, divided by the number of cells n . Toward this

objective, several new theoretical constructions with good
sum rates have been proposed. For example, recent works
in [85]–[89] provided high sum-rate WOM codes based on
careful adaptation of powerful coding theoretic construc-

tions, and by clever compositions of simple WOM codes

into stronger ones, e.g., constructing multiple-write WOM

codes from two-write WOM codes, constructing non-binary

WOM codes from binary WOM codes, and others.

For application in multilevel memories, q -ary WOM

codes are of interest. The q -ary generalization of WOM3

was defined in [90], where cell levels are restricted to only
change in the upward direction. Note that when q is a power

of 2, for example, q = 8 in the TLC technology, it is pos-

sible to use the q -ary cell as multiple bits in a binary WOM

code (3 b in TLC) without violating the update restrictions.

However, this is inefficient because it is well known that
using larger alphabet sizes improves the rewrite sum rate
for a given amount of physical storage [91]. Coding results
for the q -ary model appeared in [91], and later in [92] and
[93]. A theory based on lattices aiding the construction of q

-ary codes was developed in [94]. In addition to q -ary WOM,

there are other rewrite coding models applicable to multi-

level memories. In the model of floating codes [95], the code
supports t writes, but in each write only a single bit out of k

information bits is updated. Other rewrite models for mul-

tilevel memories were studied in [96]–[98]. Most recently,
Mappouras et al. [99] developed codes based on the coset

coding idea to improve memory lifetime.

A rewrite code in the q -ary WOM model is defined by the
parameters q , n , t , and M = [M 1 , …, M t] . Parameter n is

the number of physical q -ary cells in the memory word used

by the code. Parameter t is number of times the memory

word can be written to, and the vector M specifies for each
of the t writes the number of possible values of the input

information. In the sequel we focus on the practical case

where in all t writes we have the same input size, that is,
M 1 = M 2 = ⋯ = M t = M . With this restriction the code

is called fixed rate, and its parameters are denoted with the
tuple (q, n, t, M) , where M is a scalar integer. We also define
k = log 2 M and say that k is the number of input informa-

tion bits. In practical use, once a (q, n, t, M) code exhausts
its t writes, the n cells may not be further reused without an

external erase operation, which is not an explicit part of the
model (but does happen in practical use in Flash).

The motives to use WOM codes in Flash are compel-

ling: it has been demonstrated in the literature that with a

Fig. 11. Summary of main graph codes and their key properties in the context of NVMs. We highlight advantages in green and

disadvantages in red. We reserve ªlight greenº for the possible advantages of emerging LDPC designs as these theoretical constructs need
to also be validated in practice.

2We adopt the convention that an erase operation decreases the cell
level, which may be different from the convention in the memory-devices
community (but fully equivalent to it).

3Note that WOM is a misnomer for nonbinary codes, because the
physical cells are no longer limited to be written only once.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1719

clever use of WOM codes in an SSD, the write amplification
can be reduced significantly [100]. In addition, implement-
ing WOM codes in an SSD simulator has shown significant
advantage in write throughput [101]. With this promise
come some nontrivial challenges. Probably the greatest con-

cern in deploying WOM codes is the impact on data reli-

ability. Operating a WOM code implies rewriting data in-

place and no longer in a pure sequential order, and this may

introduce new issues of disturbs and intercell interference.

Adding to that concern is the fact that constructing error-

tolerant WOM codes is not an easy task. Coding schemes
that combine rewrite and error-correction capabilities exist
in the theoretical literature [102], but are not practical
enough for implementation. Combining the two features
by concatenating a WOM code and an ECC is also prob-

lematic: an outer WOM code means that ECC parity bits
computed from the WOM codeword will violate the WOM

constraints; an inner WOM code means that small channel

errors can propagate to massive error events by the WOM

decoder. A good potential solution around these issues is to

use short q -ary WOM codes. If we use a short inner WOM

code, then channel errors cannot propagate beyond the

small WOM block length, and concatenation with a long

outer ECC can work well. It turns out that q -ary WOM codes

can have attractive rewrite capabilities even if they use as

few as n = 2 cells. We demonstrate this next.
To specify a WOM code, one needs to provide a pair of

functions: the decoding and update functions. We define the
decoding function as ψ : { 0, …, q − 1} n → { 0, …, M − 1} ,
which maps the current levels of the n cells to one of the M

possible information values. The update function is defined
as µ : { 0, …, q − 1} n × { 0, …, M − 1} → { 0, …, q − 1} n ,

specifying how the cell levels need to change as a function of

the current cell levels and the new information value at the

input (here again the input is taken from a set of M possible

values). The update function needs to satisfy the WOM con-

straints of not moving a cell to a lower level. Let us consider

the special case of q = 8 (TLC), n = 2 (two cells), and
M = 8 (k = 3 information bits per write). Note that n is

the block length for coding purposes only, and a page with

N ≫ n cells can be used with multiple WOM blocks in par-

allel. A convenient way to represent a decoding function ψ :

{ 0, …, 7} 2 → { 0, …, 7} is by a 2-D matrix where a position
 (c 1 , c 2) represents the physical levels of the two cells, and the

numbers in the matrix are the information values returned
by the decoding function. For example, Fig. 12 shows a
decoding function obtained by tiling the q × q = 8 × 8
matrix with a polygonal shape with area M = 8 . To make
it a decoding function of a WOM code, we need to define
on it an update function that only moves upward and to the

right in the matrix. Given a current matrix position, the
encoding function takes an input value and needs to find it
in a position neither below nor to the left of its current posi-

tion. In [103], an update function was given for the decod-

ing function in Fig. 12 that guarantees t = 4 writes with

any sequence of input values. For example, a sequence of
four writes with the input values 6 → 4 → 7 → 3 will

be written by updating the cell levels with the sequence

(1, 2) → (2, 4) → (3, 6) → (7, 7) . Hence, this is a

(q = 8, n = 2, t = 4, M = 8) code. It was also shown in
[103] that t = 4 is the maximum possible number of writes
given the other code parameters, hence this is an optimal

code. Despite the extremely short length of this code, the six
bits that it consumes (two cells, three bits each) are within

0.65 b from the information-theoretic fundamental limit of
binary fixed-rate WOM codes [104], which is only attainable
with very long and high complexity codes.

Interestingly, the code shown in Fig. 12 is not the only
option for getting a (q = 8, n = 2, t = 4, M = 8) code.
Without losing anything in the number of writes, we can

construct other codes that offer additional useful features.

As two examples we take the codes depicted in Fig. 13. The
code on the left guarantees in addition that the two cells

will be balanced to be at most three levels apart through-

out the write sequence [105]. This feature reduces intercell
interference (ICI) between the cells, which is known to be
more significant when the two cells have large level differ-

ences [11]. The code on the right is designed with the feature

that increasing the number of cell levels to q = 9 can add a

fifth guaranteed write (the previous two codes cannot add a
write with one more level). This shows that the use of WOM

Fig. 12. Decoding function of a (q = 8, n = 2, t = 4, M = 8) code.

Four guaranteed writes is optimal for the code parameters.

Fig. 13. Decoding functions of two more (q = 8, n = 2, t = 4, M = 8)

codes. The left code is designed to reduce ICI, and the right one can

give t = 5 if q grows to 9.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1720 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

codes opens the way to using cells with numbers of levels

that are not necessarily powers of two, and such uses can

actually give good performance with a simple implementa-

tion. Moreover, this example motivates considering WOM
codes with additional features, for example, maximizing the
data reliability when an outer ECC is employed.

We end this section with the remark that a related tech-

nique called “flip-N-write” was successfully proposed for
phase change memories [106]. In this simple but powerful
scheme, either a desired word or its complement is written,

depending on which one would be faster to write. One bit of

redundancy is used to indicate whether the intended word

or its complement is being written.

B. Other Coding Schemes to Watch for in the Future

We now briefly discuss two additional coding mecha-

nisms that are of interest in NVMs: constrained coding and

rank modulation. Constrained coding for NVMs is strongly
motivated by the pronounced amount of ICI. ICI is caused
by parasitic capacitances between physically adjacent cells
in the Flash chip. As a result, when charge is added to a cell

(during programming), the charge levels of neighboring

cells may inadvertently increase as well. The amount of this

unintended charge is a function of device parameters and

design but has a roughly inversely proportional relationship

to the physical distances between the cells [107]. As a result,
as Flash technology is scaled down, the ICI becomes increas-

ingly more pronounced. One way to overcome the adverse

effects of ICI is by preemptively preventing certain patterns
to be written. Constrained coding is a branch of information
theory that precisely answers the question of maximizing
data transmission/storage while ensuring that undesirable

subsequences are never stored. Constrained coding tech-

niques have already been successfully deployed in other

more conventional data storage technologies, such as HDDs
[108], and as with other existing methods mentioned before
the challenge is to design constrained coding methods that

accurately address technology-specific particularities. In
the context of Flash, one seeks to avoid “high–low–high”
patterns. This has led to the development of elegant math-

ematical theory of constrained systems, as in [109], where
the focus was on characterizing the set of sequences that are
free of detrimental patterns. Recent results on construction

of constrained codes for NVMs are presented in [110]–[112].
A challenging open question is to transfer the results from

the asymptotic domain to the practical finite-length setting
while offering codes with minimal rate penalty and easy

encoding/decoding.

The special physical properties of the Flash channel

have recently motivated an exploration of a different type
of data representation: rank modulation [113]. The idea in

rank modulation is to represent information as the relative

ranking of a cell with respect to the entire block, rather

than as the absolute amount of charge in a particular cell.

Information is stored in permutations, and is read by com-

paring the values of different cells in blocks. Ordering-based

representation has many advantages, including the fact that

charge leakage, which affects all cells at roughly equal rates,

will not change the relative ranks of cells, only their abso-

lute values. One distinct concern regarding the implementa-

tion of rank modulation techniques is the need to have very

finely grained comparators, which are currently imprac-

tical. If this key issue is resolved, many fascinating recent

theoretical results on rank-modulation codes [114]–[117],
among others, could then be used in practice.

V II. CONCLUSION A ND PER SPECTI V ES

In this survey paper, we reviewed several recent exciting
developments in coding methods for nonvolatile memories.

The need for novel coding schemes is by now clear to the

memory industry, which has already advanced research and

development in this area considerably, including commer-

cialization of BCH codes, LDPC codes, constrained codes,
and various concatenated codes. While specific details of
code constructions remain carefully guarded trade secrets,

numerous industry patents on this topic offer a glimpse into

practical deployment and importance of various ECC meth-

ods: for LDPC, among many others, these patents include
[45] (LSI corp.), [46] (Intel Corp.), [47] (Marvell Ltd.), [48]
sTec Inc. (acquired by Western Digital Corp.); for algebraic
and concatenated codes, these include [38], [37], [118]
(Marvell Ltd.), [119] (Qualcomm Inc.), and [120] (SK Hynix
Inc.), and for constrained codes these include [121] (IBM
Corp.), [122], [123] (Marvell Ltd.), [124] (Intel Corp.). Our
goal in this survey is to present the mathematical concepts

underpinning these trends in industry, and show how the

same concepts lead to more advanced coding schemes that

were recently proposed in the literature.

We advocate that the departure from channel codes pre-

viously made popular in traditional data communications

and storage systems is fundamental for the future advances

in NVM reliability and performance: a flourishing math-

ematical repertoire exists beyond the conventional coding
that implicitly assumes symmetric errors. What is more,

several of these techniques are also amenable to code com-

bining in the sense that the most dominant error patterns

could be first cleaned up by customized codes, followed
by another perhaps more generic code for the remaining

errors, which would be done in a way that is more efficient
than directly applying a code that is agnostic to error pat-

terns. As evidenced by presented examples, NVM channel-
aware code design offers significant opportunities for deep
theoretical explorations while simultaneously furthering
the reach of memory technologies.

We presented in detail two representative classes of

codes: algebraic codes and graph codes. As discussed ear-

lier, the two approaches by design offer fundamentally

different tradeoffs in terms of performance guarantee and

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1721

error-correction capability. Which one is ultimately chosen

for deployment is a function of system-architecture consid-

erations and the demands of the end applications—for larger

page sizes, in terms of performance alone, LDPC codes are
bound to be superior to BCH codes. On the other hand,
well-designed code concatenation and associated algebraic

codes can correct a very refined set of error patterns and can
also offer backward compatibility with legacy BCH codes.

At the same time, a large body of work on coding for

NVMs has still largely remained of solely theoretical inter-

est. Moving forward, we envision that the best advance-

ments and facilitated efforts in practice and theory alike will

be achieved through a more open dialog between industry

leaders and academia. Toward that goal, in the context of
different coding tools, we have outlined several (what we

believe are promising) research directions. For example,
best utilization of these new powerful algebraic and graph
codes may require multipage read architectures, which is in

contrast to current practice of single-page reads. This new

approach may already be feasible as recent evidence sug-

gests the benefits of multipage reads when used in conjunc-

tion with simple code interleaving [69]. How to best balance

read operations and coding benefits is an interesting system
design problem.

We envision that several of the code design principles

developed for multilevel Flash will also have a positive

impact on alternative NVM technologies, including phase

change memories (PCMs) and resistive RAM (RRAM).
These technologies also possess certain domain-specific
asymmetries, e.g., in PCM, thermal cross-talk and ther-

mal accumulation cause significant spatiotemporal vari-
ations in cell reliability, and in RRAM, errors are data

dependent and with strong spatial correlations. New

innovative coding schemes that are appropriately device

aware could play a critical role in transitioning these and

other technologies into the mainstream. As the nonvola-

tile technologies further evolve and diversify, it is not

unforeseeable that different NVMs will have varied types

of dominant error patterns. In each case, appropriately

chosen coding methods (standalone or a combination of

multiple pattern-specific methods) would yield a winning
combination. Building on the fundamental coding con-

cepts covered in this survey will help tailor the best solu-

tion to the specific design setup. Moving beyond coding
for reliability lies an interesting tradeoff between coding

performance (that needs long blocks) and access perfor-

mance (that prefers short blocks). Developing codes that
operate at the desirable points of this tradeoff is another

fruitful avenue of future research. 

Acknowledgment
The authors would like to thank A. Hareedy, F. Sala,

C. Schoeny, R. Cohen, and E. Hemo for preparing and help-

ing with some figures.

REFERENCES

 [1] R. Bez, E. Camerlenghi, A. Modelli, and
A. Visconti, “Introduction to flash memory,”
Proc. IEEE, vol. 91, no. 4, pp. 489–502,
Apr. 2003.

 [2] H. Wang, N. Wong, T.-Y. Chen, and R. D.
Wesel, “Using dynamic allocation of write
voltage to extend flash memory lifetime,”
IEEE Trans. Commun., vol. 64, no. 11,
pp. 4474–4486, Nov. 2016.

 [3] T. Parnell, N. Papandreou, T. Mittelholzer,
and H. Pozidis, “Modelling of the threshold
voltage distributions of sub-20nm NAND
flash memory,” in Proc. IEEE Global Commun.
Conf., London, U.K., Dec. 2014, pp. 2351–2356.

 [4] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai,
“Threshold voltage distribution in MLC
NAND flash memory: Characterization,
analysis, and modeling,” in Proc. Design
Autom. Test Eur., Grenoble, France, Mar.
2013, pp. 1285–1290.

 [5] H. Wang, T.-Y. Chen, and R. D. Wesel, “His-
togram-based flash channel estimation,” in
Proc. IEEE Int. Conf. Commun., London, U.K.,
Jun. 2015, pp. 283–288.

 [6] D.-H. Lee and W. Sung, “Estimation of
NAND flash memory threshold voltage dis-
tribution for optimum soft-decision error
correction,” IEEE Trans. Signal Process.,
vol. 61, no. 2, pp. 440–449, Jan. 2013.

 [7] V. Taranalli, H. Uchikawa, and P. H. Siegel,
“Channel models for multi-level cell flash
memories based on empirical error analysis,”
IEEE Trans. Commun., vol. 64, no. 8, pp.
3169–3181, Aug. 2016.

 [8] V. Taranalli, H. Uchikawa, and P. H. Siegel,
“On the capacity of the beta-binomial chan-
nel model for multi-level cell flash memo-
ries,” IEEE J. Sel. Areas Commun., vol. 34,
no. 9, pp. 2312–2324, Sep. 2016.

 [9] L. Grupp, J. Davis, and S. Swanson, “The
bleak future of NAND flash memory,” in
Proc. USENIX Conf. File Storage Technol., San
Jose, CA, USA, Feb. 2012.

 [10] Solid State Drive (SSD) Requirements and
Endurance Test Method, 2016. [Online].
Available: http://www.jedec.org/standards-
documents/results/jesd218b01

 [11] A. Berman and Y. Birk, “Constrained flash
memory programming,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2011, pp. 2128–2132.

 [12] S. Lin and D. Costello, Error Control Coding.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2004.

 [13] “TN-29-63: Error correction code (ECC) in
Micron single-level cell (SLC) NAND,”
Micron Technologies, Boise, ID, USA, Tech.
Rep., 2011.

 [14] “TN-29-71: Enabling software BCH ECC on a
linux platform,” Micron Technologies, Boise,
ID, USA, Tech. Rep., 2012.

 [15] K. Lee, S. Lim, and J. Kim, “Low-cost, low-
power and high-throughput BCH decoder for
NAND flash memory,” in Proc. IEEE Int.
Symp. Circuits Syst., Aug. 2012, pp. 413–415.

 [16] M. Zhang, F. Wu, Y. Zhou, and K. Zou, “A
novel optimization algorithm for Chien
search of BCH codes in NAND flash memory
devices,” in Proc. IEEE Int. Conf. Netw. Archit.
Storage, Boston, MA, USA, Aug. 2015,
pp. 106–111.

 [17] C.-H. Yang, Y.-H. Chen, and H.-C. Chang,
“An area-efficient BCH codec with echelon
scheduling for NAND flash applications,” in
Proc. IEEE Int. Conf. Commun., Jun. 2013,
pp. 4332–4336.

 [18] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park,
“6.4Gb/s multi-threaded BCH encoder and
decoder for multi-channel SSD controllers,”
in Proc. IEEE Int. Solid-State Circuits Conf.,
San Francisco, CA, USA, Feb. 2012,
pp. 426–428.

 [19] Y. Lee, H. Yoo, I. Yoo, and I.-C. Park, “High-
throughput and low-complexity BCH
decoding architecture for solid-state drives,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 22, no. 5, pp. 1183–1187, May 2014.

 [20] G. Forney, “Concatenated codes,” Ph.D.
dissertation, Massachusetts Inst. Technol.,
Cambridge, MA, USA, 1965.

 [21] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai,
“Error patterns in MLC NAND flash
memory: Measurement, characterization,
and analysis,” in Proc. Design Autom. Test
Eur., Dresden, Germany, Mar. 2012.

 [22] R. Ahlswede, H. Aydinian, and L.
Khachatrian, “Unidirectional error control
codes and related combinatorial problems,”
in Proc. 8th Int. Workshop Algebraic Combinat.
Coding Theory, St. Petersburg, Russia,
Sep. 2002, pp. 6–9.

 [23] Y. Cassuto, M. Schwartz, V. Bohossian, and
J. Bruck, “Codes for asymmetric limited-
magnitude errors with application to multilevel
flash memories,” IEEE Trans. Inf. Theory, vol.
56, no. 4, pp. 1582–1595, Apr. 2010.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1722 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

 [24] T. Kløve, J. Luo, I. Naydenova, and S. Yari,
“Some codes correcting asymmetric errors of
limited magnitude,” IEEE Trans. Inf. Theory,
vol. 57, no. 11, pp. 7459–7472, Nov. 2011.

 [25] M. Schwartz, “Quasi-cross lattice tilings
with applications to flash memory,” IEEE
Trans. Inf. Theory, vol. 58, no. 4, pp. 2397–
2405, Apr. 2012.

 [26] L. Tallini and B. Bose, “On L1-distance error
control codes,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2011, pp. 1061–1065.

 [27] E. Hemo and Y. Cassuto, “A constraint
scheme for correcting massive asymmetric
magnitude-1 errors in multi-level NVMs,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun. 2015,
pp. 2086–2090.

 [28] L. M. Grupp et al., “Characterizing flash
memory: Anomalies, observations, and
applications,” in Proc. IEEE/ACM MICRO,
New York, NY, USA, Dec. 2009, pp. 24–33.

 [29] E. Yaakobi, L. Grupp, P. H. Siegel, S.
Swanson, and J. Wolf, “Characterization and
error-correcting codes for TLC flash
memories,” in Proc. ICNC, Jan. 2012,
pp. 489–791.

 [30] J. Wolf, “On codes derivable from the tensor
product of check matrices,” IEEE Trans. Inf.
Theory, vol. 11, no. 2, pp. 281–284, Apr. 1965.

 [31] R. Gabrys, E. Yaakobi, and L. Dolecek,
“Graded bit error correcting codes with
applications to flash memory,” IEEE Trans.
Inf. Theory, vol. 59, no. 4, pp. 2315–2327,
Apr. 2013.

 [32] R. Gabrys, F. Sala, and L. Dolecek, “Coding
for unreliable flash memory cells,” IEEE
Commun. Lett., vol. 18, no. 9, pp. 1491–1494,
Sep. 2014.

 [33] C. Yang, Y. Emre, and C. Chakrabarti,
“Product code schemes for error correction
in MLC NAND flash memories,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 12, pp. 2302–2314, Dec. 2012.

 [34] S.-G. Cho, D. Kim, J. Choi, and J. Ha, “Block-
wise concatenated BCH codes for NAND
flash memories,” IEEE Trans. Commun.,
vol. 62, no. 4, pp. 1164–1177, Apr. 2014.

 [35] S. Emmadi, K. R. Narayanan, and H. Pfister,
“Half-product codes for flash memory,” in
Proc. Non-Volatile Memories Workshop, San
Diego, CA, USA, Mar. 2015.

 [36] D. Kim and J. Ha, “Quasi-primitive block-
wise concatenated BCH codes with
collaborative decoding for NAND flash
memories,” IEEE Trans. Commun., vol. 63,
no. 10, pp. 3482–3496, Oct. 2015.

 [37] J. Xu, P. Chaichanavong, G. Burd, and Z.
Wu, “Tensor product codes containing an
iterative code,” U.S. Patent 7861131 B1,
Dec. 28, 2010.

 [38] X. Yang, “Tensor product codes for flash,”
U.S. Patent 8732543 B1, May 1, 2014.

 [39] G. Ungerboeck, “Trellis-coded modulation
with redundant signal sets Part II: State of
the art,” IEEE Commun. Mag., vol. 25, no. 2,
pp. 5–21, Feb. 1987.

 [40] A. Ramamoorthy, A. Wu, and P. Sutardja,
“Method and system for error correction in
flash memory,” U.S. Patent 7844879 B2,
Nov. 1, 2010.

 [41] S. Li and T. Zhang, “Improving multi-level
NAND flash memory storage reliability
using concatenated BCH-TCM coding,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 10, pp. 1412–1420, Oct. 2010.

 [42] J. Oh, J. Ha, J. Moon, and G. Ungerboeck,
“RS-enhanced TCM for multilevel flash

memories,” IEEE Trans. Commun., vol. 61,
no. 5, pp. 1674–1683, May 2013.

 [43] T. Luo and B. Peleato, “Spreading
modulation for multilevel nonvolatile
memories,” IEEE Trans. Commun., vol. 64,
no. 3, pp. 1110–1119, Mar. 2016.

 [44] B. Kurkoski, “Coded modulation using
lattices and Reed-Solomon codes, with
applications to flash memories,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 900–908,
May 2014.

 [45] H. Zhong, Y. Li, R. Danilak, and E. T. Cohen,
“LDPC erasure decoding for flash memories,”
U.S. Patent 8935595 B2, Jan. 2, 2015.

 [46] R. Motwani, “Storage drive with LDPC
coding,” U.S. Patent 8549382 B2, Oct. 2,
2013.

 [47] A. Ramamoorthy, “Multi-level signal
memory with LDPC and interleaving,”
U.S. Patent 7971130 B2, Jun. 3, 2011.

 [48] A. D. Weathers, R. D. Barndt, and X. Hu,
“Optimal programming levels for LDPC,”
U.S. Patent 8484519 B2, Jul. 3, 2013.

 [49] E. Sharon, I. Alrod, A. Navon, and O. Lieber,
“Low density parity code (LDPC) decoding
for memory with multiple log likelihood ratio
(LLR) decoders,” U.S. Patent 8301979 B2,
Oct. 8, 2012.

 [50] J. Wang et al., “Enhanced precision through
multiple reads for LDPC decoding in flash
memories,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 880–891, May 2014.

 [51] T. Richardson, “Error floors of LDPC codes,”
in Proc. Allerton Conf. Commun., Oct. 2003.

 [52] T. J. Richardson and R. L. Urbanke, “The
capacity of low-density parity-check codes
under message-passing decoding,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,
Feb. 2001.

 [53] B. Vasic, S. K. Chilappagari, D. V. Nguyen,
and D. Declercq, “Trapping set ontology,” in
Proc. Allerton Conf. Commun., Control,
Comput., Monticello, IL, USA, Oct. 2009.

 [54] S. Landner and O. Milenkovic, “Algorithmic
and combinatorial analysis of trapping sets
in structured LDPC codes,” in Proc. IEEE Int.
Conf. Wireless Netw., Commun. Mobile
Comput., Honolulu, HI, USA, Jun. 2005,
pp. 630–635.

 [55] L. Dolecek, Z. Zhang, V. Anantharam, M.
Wainwright, and B. Nikolic, “Analysis of
absorbing sets and fully absorbing sets for
array-based LDPC codes,” IEEE Trans. Inf.
Theory, vol. 56, no. 1, pp. 181–201, Jan. 2010.

 [56] Z. Zhang, L. Dolecek, B. Nikolic, V.
Anantharam, and M. Wainwright, “Design
of LDPC decoders for low bit error rate
performance: Quantization and algorithm
choices,” IEEE Trans. Commun., vol. 57,
no. 11, pp. 3258–3268, Nov. 2009.

 [57] A. Hareedy, C. Lanka, and L. Dolecek, “A
general non-binary LDPC code optimization
framework suitable for dense flash memory
and magnetic storage,” IEEE J. Sel. Areas
Commun., vol. 34, no. 9, pp. 2402–2415,
Sep. 2016.

 [58] A. Bazarsky, N. Presman, and S. Litsyn,
“Design of non-binary quasi-cyclic LDPC
codes by ACE optimization,” in Proc. IEEE
Inf. Theory Workshop, Sevilla, Spain,
Sep. 2013, pp. 1–5.

 [59] J. Wang, L. Dolecek, and R. D. Wesel, “The
cycle consistency matrix approach to
absorbing sets in separable circulant-based
LDPC Codes,” IEEE Trans. Inf. Theory, vol. 59,
no. 4, pp. 2293–2314, Apr. 2013.

 [60] B. Vasic, S. K. Chilappagari, D. V. Nguyen,
and S. K. Planjery, “Trapping set ontology,”
in Proc. Allerton Conf. Commun. Control
Comput., Monticello, IL, USA, Oct. 2009.

 [61] L. Dolecek, “On absorbing sets of structured
sparse graph codes,” in Proc. Inf. Theory Appl.
Workshop, San Diego, CA, USA, Feb. 2010.

 [62] H. Imai and S. Hirakawa, “A new multilevel
coding method using error-correcting
codes,” IEEE Trans. Inf. Theory, vol. 23, no. 3,
pp. 371–377, May 1977.

 [63] T. Richardson and R. Urbanke, Modern
Coding Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2008.

 [64] R. Cohen and Y. Cassuto, “Iterative decoding
of LDPC codes over the q-ary partial erasure
channel,” IEEE Trans. Inf. Theory, vol. 62,
no. 5, pp. 2658–2672, May 2016.

 [65] R. Cohen and Y. Cassuto, “LDPC codes for
the q-ary bit-measurement channel,” in Proc.
9th Int. Symp. Turbo Codes Iterative Inf.
Process., Brest, France, Aug. 2016.

 [66] C. Di, D. Proietti, I. E. Telatar, T. J.
Richardson, and R. L. Urbanke, “Finite-
length analysis of low-density parity-check
codes on the binary erasure channel,” IEEE
Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579,
Jun. 2002.

 [67] C. Poulliat, M. Fossorier, and D. Declercq,
“Design of regular (2, d c) -LDPC codes over
GF(q) using their binary images,” IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626–1635,
Oct. 2008.

 [68] K. Zhao, W. Zhao, H. Sun, T. Zhang, X.
Zhang, and N. Zheng, “LDPC-in-SSD:
Making advanced error correction codes
work effectively in solid state drives,” in
Proc. USENIX Conf. File Storage Technol., San
Jose, CA, USA, Feb. 2013.

 [69] S.-H. Song et al., “High speed soft decision
decoding architecture for triple level cell
NAND flash memory,” in Proc. Nonvolatile
Memories Workshop, San Diego, CA, USA,
Mar. 2016.

 [70] Y. Zhang, C. Zhang, Z. Yan, S. Chen, and H.
Jiang, “A high-throughput multi-rate LDPC
decoder for error correction of solid-state
drives,” in Proc. IEEE Workshop Signal
Process. Syst., Hangzhou, China, Oct. 2015,
pp. 1–6.

 [71] J. Kim and W. Sung, “Rate-0.96 LDPC
decoding VLSI for soft-decision error
correction of NAND flash memory,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 22, no. 5, pp. 1004–1015, May 2014.

 [72] W. Zhao, G. Dong, H. Sun, N. Zheng, and T.
Zhang, “Reducing latency overhead caused
by using LDPC codes in NAND flash
memory,” EURASIP J. Adv. Signal Process.,
Special Issue Coding Signal Process. Non-
Volatile Memories, vol. 203, pp. 1–9,
Sep. 2012.

 [73] R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li,
K.-C. Ho, and H.-P. Li, “Improving read
performance of NAND flash SSDs by
exploiting error locality,” IEEE Trans.
Comput., vol. 65, no. 4, pp. 1090–1102,
Apr. 2016.

 [74] F. Cai, X. Zhang, D. Declercq, S. K. Planjery,
and B. Vasic, “Finite Alphabet Iterative
Decoders for LDPC Codes: Optimization,
Architecture and Analysis,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 5,
pp. 1366–1375, May 2014.

 [75] S. K. Planjery, D. Declercq, L. Danjean, and
B. Vasic, “Finite alphabet iterative decoders,
Part I: Decoding beyond belief propagation

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1723

on the binary symmetric channel,” IEEE
Trans. Commun., vol. 61, no. 10, pp. 4033–4045,
Oct. 2013.

 [76] Y. Toriyama, B. Amiri, L. Dolecek, and D.
Markovic, “Logarithmic quantization
scheme for reduced hardware cost and
improved error floor in non-binary LDPC
decoders,” in Proc. IEEE Global Commun.
Conf., London, U.K., Dec. 2014, pp. 3162–3167.

 [77] H. Sun, W. Zhao, M. Lv, G. Dong, N. Zheng,
and T. Zhang, “Exploiting intracell bit-error
characteristics to improve min-sum LDPC
decoding for MLC NAND flash-based
storage in mobile device,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 24, no. 8,
pp. 2654–2664, Aug. 2016.

 [78] M. Lentmaier, A. Sridharan, D. J. Costello,
and K. Sh. Zigangirov, “Iterative decoding
threshold analysis for LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5274–5289, Oct. 2010.

 [79] A. R. Iyengar, P. H. Siegel, R. L. Urbanke,
and J. K. Wolf, “Windowed decoding of
spatially coupled codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 4, pp. 2277–2292,
Apr. 2013.

 [80] B. Amiri, A. Reisizadehmobarakeh, H.
Esfahanizadeh, J. Kliewer, and L. Dolecek,
“Optimized design of finite-length separable
circulant-based spatially-coupled codes: An
absorbing set-based analysis,” IEEE Trans.
Commun., vol. 64, no. 10, pp. 4029–4043,
Oct. 2016.

 [81] H. Esfahanizadeh, A. Hareedy, and L.
Dolecek, “Optimized graph-based codes for
Flash memories,” in Proc. Flash Memory
Summit, San Jose, CA, USA, Aug. 2016.

 [82] E. En Gad, Y. Li, J. Kliewer, M. Langberg, A.
Jiang, and J. Bruck, “Asymmetric error
correction and flash-memory rewriting using
polar codes,” IEEE Trans. Inf. Theory, vol. 62,
no. 7, pp. 4024–4038, Jul. 2014.

 [83] Y. Li, H. Alhussien, E. F. Haratsch, and A.
Jiang, “A study of polar codes for MLC
NAND flash memories,” in Proc. IEEE Int.
Conf. Comput. Netw. Commun., Anaheim, CA,
USA, Feb. 2015, pp. 608–612.

 [84] R. L. Rivest and A. Shamir, “How to reuse a
write-once memory,” Inf. Control, vol. 55,
no. 1, pp. 1–19, Dec. 1982.

 [85] D. Burshtein and A. Strugatski, “Polar write
once memory codes,” IEEE Trans. Inf. Theory,
vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

 [86] E. Yaakobi and A. Shpilka, “High sum-rate
three-write and non binary WOM codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp. 7006–7015, Nov. 2014.

 [87] A. Shpilka, “New constructions of WOM
codes using the Wozencraft ensemble,” IEEE
Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529,
Jul. 2013.

 [88] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy,
and J. K. Wolf, “Codes for write-once
memories,” IEEE Trans. Inf. Theory, vol. 58,
no. 9, pp. 5985–5999, Sep. 2012.

 [89] R. Gabrys and L. Dolecek, “Constructions of
non-binary WOM codes for multilevel flash
memories,” IEEE Trans. Inf. Theory, vol. 61,
no. 4, pp. 1905–1919, Apr. 2015.

 [90] A. Fiat and A. Shamir, “Generalized ‘write-
once’ memories,” IEEE Trans. Inf. Theory,
vol. 30, no. 3, pp. 470–480, May 1984.

 [91] F.-W. Fu and A. J. H. Vinck, “On the capacity
of generalized write-once memory with state
transitions described by an arbitrary
directed acyclic graph,” IEEE Trans. Inf.
Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

 [92] R. Gabrys and L. Dolecek, “Characterizing
capacity achieving write once memory
codes for multilevel flash memories,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2011,
pp. 2517–2521.

 [93] K. Haymaker and C. Kelley, “Geometric wom
codes and coding strategies for multilevel
flash memories,” Designs Codes Cryptogr., vol.
70, nos. 1–2, pp. 91–104, May 2012.

 [94] A. Bhatia, M. Qin, A. Iyengar, B. M.
Kurkoski, and P. H. Siegel, “Lattice-based
WOM codes for multilevel flash memories,”
IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 933–945, May 2014.

 [95] A. Jiang, V. Bohossian, and J. Bruck,
“Rewriting codes for joint information
storage in flash memories,” IEEE Trans. Inf.
Theory, vol. 56, no. 10, pp. 5300–5313,
Oct. 2010.

 [96] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K.
Wolf, “Multidimensional flash codes,” in
Proc. Allerton Conf. Commun. Control
Comput., Monticello, IL, USA, Oct. 2008.

 [97] H. Finucane, Z. Liu, and M. Mitzenmaher,
“Designing floating codes for expected
performance,” in Proc. Allerton Conf.
Commun. Control Comput., Monticello, IL,
USA, Oct. 2008.

 [98] A. Jiang, M. Langberg, M. Schwartz, and J.
Bruck, “Trajectory codes for flash
memory,” IEEE Trans. Inf. Theory, vol. 59,
no. 7, pp. 4530–4541, Jul. 2013.

 [99] G. Mappouras, A. Vahid, A. R. Calderbank,
and D. J. Sorin, “Methuselah Flash:
Rewriting codes for extra long storage
lifetime,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw., Toulouse, France,
Jun. 2016, pp. 180–191.

 [100] S. Odeh and Y. Cassuto, “NAND flash
architectures reducing write amplification
through multi-write codes,” in Proc. IEEE
Int. Conf. Massive Storage Syst. Technol.,
Santa Clara, CA, USA, Jun. 2014, pp. 1–10.

 [101] G. Yadgar, E. Yaakobi, and A. Schuster,
“Write once, get 50% free: Saving SSD
erase costs using WOM codes,” in Proc.
USENIX Conf. File Storage Technol., Santa
Clara, CA, USA, Feb. 2015.

 [102] A. Jiang, Y. Li, E. E. Gad, M. Langberg, and
J. Bruck, “Joint rewriting and error
correction in write-once memories,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2013,
pp. 1067–1071.

 [103] Y. Cassuto and E. Yaakobi, “Short q-ary
fixed-rate WOM codes for guaranteed
rewrites and with hot/cold write
differentiation,” IEEE Trans. Inf. Theory,
vol. 60, no. 7, pp. 3942–3958, Jul. 2014.

 [104] C. Heegard, “On the capacity of permanent
memory,” IEEE Trans. Inf. Theory, vol. 31,
no. 1, pp. 34–42, Jan. 1985.

 [105] E. Hemo and Y. Cassuto, “d-imbalance
WOM codes for reduced inter-cell
interference in multi-level NVMs,” IEEE J.
Sel. Areas Commun., vol. 34, no. 9,
pp. 2378–2390, Sep. 2016.

 [106] S. Cho and H. Lee, “Flip-N-write: A simple
deterministic technique to improve PRAM
write performance, energy and endurance,”
in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitect., New York, NY, USA,
Dec. 2009, pp. 347–357.

 [107] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects
of floating-gate interference on NAND
flash memory cell operation,” IEEE Electron
Device Lett., vol. 23, no. 5, pp. 264–266,
May 2002.

 [108] B. H. Marcus, R. M. Roth, and P. H. Siegel,
Constrained Systems and Coding for
Recording Channels, Handbook of Coding
Theory, V. S. Pless and W. C. Huffman, Ed.
Amsterdam, The Netherlands: Elsevier,
1998.

 [109] M. Qin, E. Yaakobi, and P. H. Siegel,
“Constrained codes that mitigate inter-cell
interference in read/write cycles for flash
memories,” IEEE J. Sel. Areas Commun., vol.
32, no. 5, pp. 836–846, May 2014.

 [110] S. Buzaglo, E. Yaakobi, and P. H. Siegel,
“Coding schemes for inter-cell interference
in flash memory,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2015, pp. 1736–1740.

 [111] V. Taranalli, H. Uchikawa, and P. H. Siegel,
“Error analysis and inter-cell interference
mitigation in multi-level cell flash
memories,” in Proc. IEEE Int. Conf.
Commun., London, U.K., Jun. 2015,
pp. 271–276.

 [112] Y. Kim, R. Mateescu, S.-H. Song, Z.
Bandic, and B. V. K. V. Kumar, “Coding
scheme for 3D vertical flash memory,” in
Proc. IEEE Int. Conf. Commun., London,
U.K., Jun. 2015, pp. 264–270.

 [113] A. Jiang, R. Mateescu, M. Schwartz, and
J. Bruck, “Rank modulation for flash
memories,” IEEE Trans. Inf. Theory, vol. 55,
no. 6, pp. 2659–2673, Jun. 2009.

 [114] A. Barg and A. Mazumdar, “Codes in
permutations and error correction for rank
modulation,” IEEE Trans. Inf. Theory,
vol. 56, no. 7, pp. 3158–3165, Jul. 2010.

 [115] A. Mazumdar, A. Barg, and G. Zemor,
“Constructions of rank modulation codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 2,
pp. 1018–1029, Feb. 2013.

 [116] E. En Gad, M. Langberg, M. Schwartz, and
J. Bruck, “Constant-weight Gray codes for
local rank modulation,” IEEE Trans. Inf.
Theory, vol. 57, no. 11, pp. 7431–7442,
Nov. 2011.

 [117] R. Gabrys, E. Yaakobi, F. Farnoud, F. Sala,
J. Bruck, and L. Dolecek, “Codes correcting
erasures and deletions for rank modulation,”
IEEE Trans. Inf. Theory, vol. 62, no. 1,
pp. 136–150, Jan. 2016.

 [118] N. Varnica, G. Burd, S. Low, L. Sun, and
Z. Wu, “Concatenated codes for holographic
storage,” U.S. Patent 8583981 B2, Nov. 8,
2013.

 [119] J. K. Wolf, “Method and apparatus for
transmitting and receiving concatenated
code data,” U.S. Patent 5983383, Nov. 8,
1999.

 [120] M. Marrow, “Coding architecture for
multi-level NAND flash memory with
stuck cells,” U.S. Patent 8719670 B1,
May 1, 2014.

 [121] M. M. Franceschini, A. Jagmohan,
L. A. Lastras-Montano, and M. Sharma,
“Constrained coding to reduce floating
gate coupling in non-volatile memories,”
U.S. Patent 8463985 B2, Jun. 8, 2013.

 [122] P. Sutardja and Z. Wu, “Flash memory with
coding and signal processing,” U.S. Patent
2007084751 A2, Jul. 6 2007.

 [123] P. Chaichanavong, “Systems and methods
for constructing high-rate constrained
codes,” U.S. Patent 7714748 B1, May 2
2010.

 [124] R. Motwani, “Maximum-likelihood
decoder in a memory controller for
synchronization,” U.S. Patent 2013048385
A1, Apr. 9, 2013.

Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

1724 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

ABOUT THE AUTHORS

Lara Dolecek (Senior Member, IEEE) received

the B.S. (with honors), M.S., and Ph.D. degrees in

electrical engineering and computer sciences and

the M.A. degree in statistics from the University of

California Berkeley, Berkeley, CA, USA.

Currently, she is an Associate Professor with

the Electrical Engineering Department, University

of California, Los Angeles (UCLA), Los Angeles, CA,

USA. Prior to joining UCLA, she was a Postdoctoral

Researcher with the Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge, MA, USA. Her research

interests span coding and information theory, graphical models, statisti-

cal algorithms, and computational methods, with applications to emerg-

ing systems for data storage and management.

Prof. Dolecek currently serves as an Associate Editor for the IEEE

TransacTIons on communIcaTIons. She received the 2007 David J. Sakrison

Memorial Prize for the most outstanding doctoral research in the Depart-

ment of Electrical Engineering and Computer Sciences at the University of

California Berkeley. She received the IBM Faculty Award (2014), the North-

rop Grumman Excellence in Teaching Award (2013), the Intel Early Career

Faculty Award (2013), the University of California Faculty Development

Award (2013), the Okawa Research Grant (2013), the National Science

Foundation (NSF) CAREER Award (2012), and the Hellman Fellowship

Award (2011).With her research group and collaborators, she received a

best paper award from the 2015 IEEE Globecom Conference, the

2015 IEEE Data Storage Best Student Paper Award, and two Best-of-SELSE

2016 awards.

Yuval Cassuto (Senior Member, IEEE) received the

B.Sc. degree in electrical engineering (summa cum

laude) from TechnionÐIsrael Institute of Technology,

Technion City, Haifa, Israel, in 2001 and the M.S.

and Ph.D. degrees in electrical engineering from

the California Institute of Technology, Pasadena,

CA, USA, in 2004 and 2008, respectively.

Currently, he is a faculty member at the

Andrew and Erna Viterbi Department of Electrical

Engineering, Technion. His research interests lie at the intersection of the

theoretical information sciences and the engineering of practical comput-

ing and storage systems. During 2010Ð2011, he was a Scientist at the Swiss

Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.

From 2008 to 2010, he was a Research Staff Member at Hitachi Global Stor-

age Technologies, San Jose Research Center, San Jose, CA, USA. From 2000

to 2002, he was with Qualcomm, Israel R&D Center, where he worked on

modeling, design, and analysis in wireless communications.

Dr. Cassuto has won the 2010 Best Student Paper Award in data stor-

age from the IEEE Communications Society, as well as the 2001 Texas

Instruments DSP and Analog Challenge $100 000 prize.

