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ABSTRACT | Every bit of information in a storage or memory
device is bound by a multitude of performance specifications,
and is subject to a variety of reliability impediments. At the other
end, the physical processes tamed to remember our bits offer a
constant source of risk to their reliability. These include a variety
of noise sources, access restrictions, intercell interferences, cell
variabilities, and many more issues. Tying together this vector of
performance figures with that vector of reliability issues is a rich
matrix of emerging coding tools and techniques. Channel coding
schemes ensure target reliability and performance and have been
at the core of memory systems since their nascent age. In this
survey, we first overview the fundamentals of channel coding and
summarize well-known codes that have been used in nonvolatile
memories (NVMs). Next, we demonstrate why the conventional
coding approaches ubiquitously based on symmetric channel
models and optimization for the Hamming metric fail to address
the needs of modern memories. We then discuss several recently
proposed innovative coding schemes. Behind each coding scheme
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lies an interesting theoretical framework, building on deep
ideas from mathematics and the information sciences. We also
survey some of the most fascinating bridges between deep
theory and storage performance. While the focus of this survey
is primarily on the pervasive multilevel nano Flash, we envision
that other benefiting memory technologies will include phase
change memory, resistive memories, and others.

KEYWORDS | Algebraic codes; BCH codes; error-correction
code (ECC); Flash memories; graph codes; LDPC codes;
rewrite codes; WOM codes

I. INTRODUCTION

Nonvolatile memories (NVMs) are a class of computer
memories that maintain the stored data even after being dis-
connected from a power supply. NVMs have many desirable
properties that have made them frontrunners to replace con-
ventional hard-disk drives: they are faster, less power hungry,
more flexible in form factor, amenable to random access,
and not prone to heat-induced damages. As a result, NVMs
are now being actively considered and designed for use in
a diverse set of applications, including personal electronics
and smart devices, autonomous vehicles, enterprise storage,
and data-intensive high-performance computing. This surge
in NVM development has not been without challenges; both
established and emerging NVMs come with a unique set of
operational issues that must be overcome before these tech-
nologies can be broadly deployed at low cost.
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Memories intrinsically suffer from various impairments,
which steeply get worse in the high-density, fast access
regime. It is indeed this stringent regime in which modern
data-intensive applications operate—future NVMs will have
to be robust, fast, and affordable if they are to deliver on the
promise of new information technologies.

In this paper, we demonstrate the essential role channel
coding techniques play in modern NVMs. We first summarize
the key operational characteristics of NVMs, using Flash as the
paragon. As we then show, understanding and appreciation of
physical properties is mandatory for the proper development
of new, mathematically deep yet practical coding solutions for
future memories, in which physical impairments are bound
to only get worse. By explicitly showcasing exciting recent
advancements in coding theory specifically geared for the
NVM applications, we highlight the enormous potential that
tools from coding theory and related mathematical disciplines
can have in the development of future, robust NVMs. These
results build upon rich mathematical fields of combinatorics,
abstract algebra, graph theory, and others, to offer rigorous yet
elegant repertoire of both algebraic and graph codes.

In the next section, we describe the basic operating prin-
ciples of Flash memories and summarize the main sources
of physical impairments. Section III reviews the fundamen-
tals of channel coding necessary to explain the concepts
presented in subsequent sections. The next two sections are
devoted to coding techniques for reliability. Section IV is
devoted to algebraic coding techniques, both classical and
recent. Section V considers graph codes, including conven-
tional methods and recent Flash-tailored advances. Moving
beyond reliability, in Section VI, we discuss rewrite codes
for improved access. Section VII delivers conclusions.

IT. FUNDAMENTALS OF OPERATIONS
IN FLASH MEMORIES

An atomic unit of a Flash memory is one memory cell. A
memory cell corresponds to a transistor that has a control gate
and a floating gate, separated by insulating layers. The value
of data stored in a memory cell corresponds to the amount of
charge on the floating gate. Flash technologies are classified as
NAND Flash and Nor Flash, corresponding to the logical NanD-
like and Nor-like arrangement of the device, respectively. In
NOR Flash, cells can be accessed individually. In contrast, in
NAND Flash, cells are accessed at the much coarser granular-
ity of pages. However, NaND Flash has a substantially lower
cost than Nor Flash and is thus more pervasive; we will hence-
forth primarily focus on NanD Flash. See Fig. 1 for a NanD cell
illustration. In planar NaND Flash architectures, memory cells
are organized into 2-D arrays. Cells are organized into pages,
which are further combined into Nanp-blocks.!

Thousands of NaND-blocks amount to one NAND device. For
example, a 2-GB Flash device may consist of 2048 NanD-blocks
with 64 pages per Nanp-block, and 2112 B (bytes) per page;

The common terminology refers to Nanp-blocks simply as “blocks,”
but we reserve this term to denote a code block, the basic unit of coding.

' =
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Fig. 1. vano Flash array organization with a zoomed-in single
cell. Read operation is performed by activating one word line
(highlighted column).

other combinations of pages/Nanp-block sizes are also pos-
sible and they yield different overall device capacities. More
recently, 3-D (vertical) NaND Flash has been developed, which
has a more complex architecture due to the 3-D structure.

Write and erase operations on the cells are performed by
applying a sufficiently high voltage to the control gate to alter
the amount of charge on the floating gate, which in turn sets the
cell’s threshold voltage. Depending on the direction in which
the electrons flow, the cell is programmed (electrons flow
toward the floating gate) or erased (electrons flow away from
the floating gate). This process is known as Fowler—Nordheim
tunneling [1]. The process of reading amounts to determin-
ing the amount of charge stored on the floating gate. During
a read, an input voltage is applied to the control gate and the
drain current is measured. If the drain current is below/above a
certain threshold, as measured by a sense-amp comparator, we
conclude that the input voltage is below/above the cell thresh-
old voltage representing the information stored. Therefore,
a single-threshold scheme tells us whether the stored charge
is below or above a certain level but does not tell us the exact
amount of stored charge. The input voltage is applied to all
cells in the page together, thus parallelizing the read operation.
Placement of the threshold voltage need not be static; using
tools from information and communications theory, recent
work has demonstrated clear benefits of dynamically adjusted
threshold voltages for improved lifetime [2].

Flash devices are commonly categorized by the num-
ber of bits memory cells can store. Single-level cell (SLC)
devices store a single bit per cell; the SLC nomenclature
comes from the fact that a single threshold is needed to
distinguish the two ranges, corresponding to bit value “0”
and bit value “1.” Multiple level cell (MLC) devices store
multiple bits per cell, and multiple thresholds are needed to
distinguish different levels. In the industry jargon, the MLC
initials commonly refer specifically to two bits per cell. As
somewhat of a misnomer, triple level cell (TLC) refers to
a multilevel Flash device storing three bits per cell—here
seven thresholds, not three, are needed to distinguish among
eight ranges (one for each combination of a pair of adjacent
binary triplets). The lowest level is the fully erased state and
the highest level is the fully programmed state.
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Fig. 2. SLC, MLC, and TLC with digital information associated with
the charge amount. Gray coding is used to label different levels
thus minimizing the possibility of bit errors.

See Fig. 2 for an illustration of SLC, MLC, and TLC
devices. Note that the differentiation among adjacent digi-
tal values shrinks as the density increases making it harder
to distinguish among different values. The figure is also an
idealized representation of memory cells, since the cells do
not always behave in exactly the same way. The value of the
threshold voltage reached when writing a certain informa-
tion value varies across cells, due to variations in cell behav-
ior. As a result, we observe a distribution associated with
different cell levels. Modeling and parameterization of this
difficult distribution requires a careful study that has been a
subject of considerable recent research in industry and aca-
demia alike, including notable works [3]-[8], among others.
See Fig. 3 for the illustration of the threshold voltage distri-
bution in the MLC case.

A critical property of NanD Flash is that the write opera-
tion by way of adding charge is executed at the page level, but
the erase operation is done at the much coarser nanp-block
level. Thus, in principle, if a value of a single cell is to be
decremented, the entire NanD-block of cells this cell belongs
to would also be erased and rewritten. Unfortunately, fre-
quent erases wear out the device to the point that it can
no longer be used with confidence. The usable lifetime is
typically expressed in terms of the number of program-
and-erase (P/E) operations that can be executed before the
device is no longer considered reliable. It is well understood
that the denser the device is, the fewer P/E cycles it can

Sold vertical lines are the 3 hard reads.
Dashed vertical lines are 6 soft reads.

Probability density

v

Threshold voltage

Fig. 3. MLC level distribution, with different reads.

sustain before it is deemed unusable. For SLC devices, the
expected lifetime is around 10° P/E cycles. For MLC devices
storing two bits per cell, the lifetime drops to 10*P/E cycles,
and with three bits per cell TLC memory, it drops even
further to a mere 10> P/E cycles or even fewer [9], which
in absence of sophisticated error management translates
to only months of usable lifetime for frequently written
devices. The P/E lifetime issue is further exacerbated by the
reliability requirements: the raw bit error rate (BER) can
be quite high, even as high as 1072 — 107! [9], while the
product specification requires the device to operate at the
undetected BER (UBER) level of highly demanding 10716
and even lower [10]. Wear leveling is employed in practice
in order to carefully balance the number of P/E cycles across
the NanD-blocks of the device to make the degradation more
uniform. As the densities increase, managing wearout and
impairments becomes an increasingly more daunting mis-
sion; fortunately, when equipped with proper error correc-
tion schemes, the task becomes much more manageable.

There are several intertwined causes of errors in read
and write operations, which we summarize as follows.

Writing into cells is done by way of so-called incremen-
tal step pulse programming (ISPP) across a page of cells: a
small amount of charge is repeatedly being added to each
cell, cell values are read back to test if the target value is
reached, and the next charge increment is added to those
cells that still do not have the target values. ISPP is benefi-
cial as it minimizes the detrimental effects of overshooting
(inadvertent addition of too much charge) that would result
in a costly NaND-block erase. However, very small ISPP steps
also significantly slow down the write process, especially in
the multilevel memories. An additional issue with this write
process is that adding charge into one cell may unintention-
ally raise the charge on the adjacent cell, with which the first
cell shares a line. The worst scenario of intercell interfer-
ence with the ISPP is when a cell with low target level has its
two neighbors programmed to high levels [11].

Even if a cell is correctly programmed, issues may arise
during the read step. As the time passes since the initial pro-
gramming, the electrons slowly leak out of the floating gate,
and when the cell is eventually read, the observed value is
lower than what had originally been written. Additionally, as
the device ages, the total amount of charge that can be stored
in cell gates gets reduced because of worsening defects.

An intriguing and design-critical observation is that
these write and read characteristics are highly asymmetric.
For instance, charge leakage only causes errors in the down-
ward direction, and overshooting and intercell disturbs only
cause errors in the upward direction. Additionally, inter-
cell coupling affects low levels more profoundly than high
levels. Push for smaller geometries and increased densities
has progressively worsened these impairments. Fortunately,
new innovations in coding hold promise to help reverse this
negative trend. Before we describe these advanced methods,
we first review the basic terminology of channel coding.
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ITI. ERROR-CORRECTION CODES
INTRODUCTION

In this section, we review some coding terminology necessary
to understand the approaches described later in the paper.
Error-correction codes (ECCs) are widely used in memories.
ECC methods add a certain amount of redundancy to the
input data prior to storing it on the medium in order to com-
bat adverse effects of noise and other device impairments.
These methods can be broadly divided into algebraic and
graph methods, depending on the key mathematical princi-
ples that underpin the given code construction.

The collection of possible codewords (stored words that
bear redundancy) is called a code. Practical coding methods
used in memories and storage devices store data in equally
sized blocks: input message of length k symbols is mapped
to a codeword of length n symbols, with n > k. A code can
be binary or nonbinary, depending on whether one symbol
corresponds to just one bit or to multiple bits. Nonbinary
codes are defined over finite fields that have cardinality
that is a power of a prime. The representation with the
number of different symbols, say g, that is a power of 2 is
particularly useful for multilevel Flash devices that store
multiple bits per cell (and thus have the number of levels
that are a power of 2).

Codes are typically linear, so that a code forms a
k-dimensional linear subspace in an n-dimensional space,
where n is the codeword length. The rate of a linear code
is k/n. In NVMs, as is the case with other storage devices,
the rate should be close to 1 in order to minimize the stor-
age overhead associated with redundancy. Linearity allows
for a compact representation of the code. A linear code can
be represented both via a generator matrix and via a par-
ity-check matrix. The former has rows that span the range
space of the code and the latter has rows that span the null
space of the code. Alternatively, the rows of the parity check
matrix can be viewed as parity-check equations that each
codeword in the code must satisfy. As we describe in more
details later, the parity-check matrix viewpoint is especially
well suited for graph codes. In the case of algebraic codes,
depending on the details of the construction, interpretation
in terms of one of the two matrices can be more convenient.

The product of a codeword with the parity-check matrix
always produces the all-zeros vector. The product of any
other word that is not a codeword with the parity check
matrix produces a vector which is strictly nonzero. We refer
to the output of the product of a word of length n and the
parity check matrix as the syndrome of the word. In prin-
ciple, exponentially many words have the same syndrome.
Syndromes are often used in the decoding of algebraic codes.

The minimum Hamming distance dp;, of a code is
the smallest number of positions in which two distinct
codewords differ. In the canonical setting, the parameter
t = [(dyin — 1) /2] is the measure of how many errors can
be corrected. Classical coding techniques are typically char-
acterized in terms of how many errors t can be corrected

[12]—for given code parameters k and n, one typically seeks
to maximize the minimum distance of a code. It is an oft-
overlooked fact that these well-studied techniques implic-
itly assume that the errors are equally likely and symmetric.
As we described, modern NVMs possess a large amount of
asymmetry; shoe-horning an existing channel code into the
NVM model is bound to be grossly inefficient. We discuss
many of the recent coding proposals that explicitly depart
from this ineffective approach, but first we summarize early
coding solutions for older NVMs wherein conventional cod-
ing tools were deemed adequate.

IV. ERROR CORRECTION WITH
ALGEBRAIC CODES

A. Classical Codes: From Hamming to BCH and
Reed-Solomon

Early NVM technologies only required mild error-cor-
rection capabilities for which Hamming codes were suffi-
cient [13]. Hamming codes are one of the simplest coding
methods, characterized by a parity-check matrix whose
columns are all the nonzero binary tuples of a particular
length. Hamming codes are single-error-correcting codes
since any error pattern with exactly one nonzero symbol can
be corrected. However, as the devices scaled down and area
density increased, reliability constraints became more strin-
gent, and the need for more sophisticated coding methods
soon followed.

Bose—Chaudhuri-Hocquenghem (BCH) codes are a
well-known class of linear algebraic codes that emerged
as the coding solution of choice for early Flash memories
[14]. BCH codes—and Reed-Solomon codes as their spe-
cial case—were already popular in commercial data storage
technologies (e.g., hard-disk drives) and were well under-
stood by memory designers.

BCH codes can be viewed as a generalization of
Hamming codes. Like Hamming codes, they are linear
block codes with a well-defined structure. Unlike Hamming
codes, they can be constructed to correct multiple errors.
This is done by simply constructing a parity-check matrix of
a code as an array of elements from an appropriately chosen
finite field, using well-established rules from conventional
algebraic coding theory [12]. BCH codes have the guaran-
teed error-correction property that memory designers favor:
one can explicitly design a code capable of correcting all pat-
terns with up to a prescribed number of errors.

A BCH code is also an instance of a cyclic code, wherein
a cyclic shift of a codeword produces another codeword.
This viewpoint is helpful for encoding, as each codeword
is then represented as a product of the message polynomial
(a polynomial with message symbols as coefficients) with
the generator polynomial defining the code. The coeffi-
cients of the resulting polynomial are then symbols of the
produced codeword.
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Decoding is a more difficult task as it amounts to several
nontrivial steps. First, one computes the syndrome associ-
ated with the given retrieved word. Based on this syndrome,
one then seeks to find the most likely error pattern that has
this syndrome. Exhaustively searching for the most likely
error pattern with a given syndrome is completely impracti-
cal. What is done instead for BCH codes is the construction
of an auxiliary polynomial, called error-locator polynomial,
whose roots are precisely the locations of the erroneous
symbols. Once the positions of the errors are identified,
error values at these locations are computed. Construction
of the error-locator polynomial is routinely done via the
Berlekamp—Massey algorithm, and computation of the val-
ues of erroneous symbols is done using Chien search [12].

Practical decoder implementations must always strike
a careful balance between additional coding gain enabled
by more powerful codes and the increased resource con-
sumption caused by additional decoding circuitry. In the
common regime of using high-rate codes, the complexity
is, in general, manageable because the number of corrected
errors is not too large. Several recent works have specifically
addressed this question in the context of BCH decoders for
Flash memories, relying on the techniques of partial paral-
lelization and pipelining, e.g., [15]. In general, the slowest
step in BCH decoding is the Chien search, which is typi-
cally done in parallel to improve the decoding throughput.
However, a parallelized solution also incurs additional hard-
ware complexity and energy consumption—recent archi-
tectural approaches geared toward NVM applications have
been developed to reduce the area consumption of the par-
allel Chien search by removing redundant operations [16],
further combined with more informative scheduling [17],
and by formulating Chien search as a matrix multiplication
for faster search [18], [19].

We also remark that an additional benefit of BCH codes
in the context of NVMs is that they intrinsically have a rate-
compatibility feature: a parity-check matrix of a BCH code
correcting t; errors is a submatrix of a BCH code correcting
ty errors, for t; < t. In other words, for the same code
length n, a ty-error correcting BCH code C; is a subcode
of a tj-error-correcting BCH code C;. Alternatively, from
the encoder’s perspective, since BCH codes are cyclic codes,
C, can be constructed from C; by adding monomial terms
to the generator polynomial of C;. (For theoretical details,
see [12].)

As discussed in Section II, NVMs are highly susceptible
to wearout. The noise worsens over time, requiring more
redundancy in the code to deal with higher rate of errors.
One way of addressing this issue is by using rate-compatible
codes, with a high-rate code deployed in the early part of the
lifetime, and a lower rate code in the latter part. Seamlessly
switching to progressively more powerful codes is relatively
easy with the BCH setup because it simply amounts to intro-
ducing additional parity-check symbols over what had already
been stored with respect to a codeword of the initial code.

BCH codes are a prime exemplar of what the conven-
tional coding theory offers: powerful error-correction
schemes intrinsically designed to deal with symmetric
errors wherein the ability to correct an error pattern only
depends on the number of symbol errors in it, and not on
how the symbols change by the errors. However, as we
discussed in the previous section, error patterns arising in
modern NVMs are far from symmetric. This observation
has motivated intense recent research activity that explicitly
departs from the conventional code design for symmetric
errors. We now discuss how several recently proposed cod-
ing approaches have addressed the operational properties of
NVMs, and have also led to a new chapter of fundamental
advances in coding theory.

We choose to survey two algebraic coding schemes that
are the most convenient to deploy, because they can use
existing coding modules (e.g., from BCH codes) as their
main building blocks complexity-wise.

B. Algebraic Codes for NVM Error Models

A central characteristic of multileve]l NVM channels
is that the incident errors are structured rather than sym-
metric. The structure of the errors stems from the electric
and algorithmic features of the write and read processes.
For example, the representation of data as q discrete charge
levels makes an error more likely between adjacent lev-
els than between far-apart levels. Such error structure is
not addressed by classical codes such as BCH and Reed-
Solomon, which are designed for symmetric errors. It is still
possible to use symmetric error correcting codes for nonsym-
metric errors, but this use is highly suboptimal because the
codes need to cover error events strictly worse than actually
needed at likely operation. For example, a common tech-
nique in practice is to implement a gray mapping between
g-ary charge levels and tuples of log,q bits (cf., Fig. 2).
With this mapping, a g-ary error between nearby levels
translates to a binary error in a small number of bits. But
even with this desired property, a binary code correcting the
resulting bit errors is required to correct more errors than
really needed, thus unjustly adding to the redundancy cost.
For example, consider the simple binary reflected gray code
on 3 b, corresponding to g = 8 levels. In this mapping, we
map the levels (0,1,2,3,4,5,6,7) to the bit tuples (000,0
01,011,010,110,111,110,100). To see that this is a subop-
timal mapping, we observe that the transitions 0 < 3 are
single-bit errors exactly like the transitions 0 < 1, even
though the former are much less likely in a realistic memory
channel. In the rest of this section, we describe two cod-
ing schemes that better capture the structure of multilevel
NVM channels. In these promising alternatives, we still use
known symmetric error-correcting algebraic codes, but in a
clever way to maximize the coverage of the error patterns
of interest. The schemes rely on the celebrated concept of
code concatenation [20] developed for communication

Vol. 105, No. 9, September 2017 | PROCEEDINGS OF THE IEEE 1709



Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

applications, while specializing and refining to best match
deployment in Flash and other NVMs. Code concatenation
is a powerful technique that combines two codes, wherein
codewords of the inner code are symbols in the alphabet
over which the outer code is defined. The two schemes in
discussion are distinct and complementary: the first one is
especially tailored to NVMs where coding is done directly
over the nonbinary cells; the second one better fits gray-
mapped memories composing a cell level as multiple bits.

1) Codes for Errors With Magnitude Limit: Suppose that
our memory has q = 8 levels, and that a common error
mechanism changes a desired level x to level x — 1. This
error type is called asymmetric errors with magnitude 1.
One possible source for such errors is retention errors [21],
whereby charges gradually escape the cells when they are
not rewritten or refreshed for a long period of time. A com-
plete analog of this error model takes effect when level x
changes to x + 1, which can happen for example when the
programmed level (irreversibly) overshoots above the level
requested in a cell write, or due to disturbs from other
cells’ writes. We note that it is not required that all errors
be asymmetric errors with magnitude 1; treating this error
model is beneficial even when other secondary error sources
are active alongside of it. Moreover, codes similar to what
we next describe can also be constructed for two-directional
errors x + 1, and with error magnitudes greater than 1.

To start the discussion on coding for asymmetric
errors of magnitude 1, it will be instructive to consider the
extreme case where all cells in the word may experience an
x + 1 error. It is clear that the best solution to this case is
to “give up” one of the three bits in each cell, and use only
half of the ¢ = 8 levels, for example, all the even levels
{0,2,4,6} [22]. When the errors are less intensive we do
not want to lose an entire bit per cell, and instead do the
following [23]. We write a page of n cells as 3n bits with the
restriction that the n bits of the lower significance belong
to the binary code BCH1 that corrects t bit errors. This
procedure is depicted in Fig. 4(a), where the shaded area
represents the parity bits of BCHI1. Note that the other two
rows in the n cells of Fig. 4(a) are stored uncoded. At read
time, we obtain the bits of the coded n-bit row, and use
the decoder of BCH1 to locate the errors, but not to cor-
rect them as bit errors. Instead, in each error location we
reverse the error by subtracting 1 from the read 8-ary level.
It is clear that this scheme can correct up to t asymmetric
errors of magnitude 1. It borrows all the good properties of
BCH codes for symmetric errors, while exhibiting several
optimality features for the target error model [23].

In contrast, an alternative scheme for the same error
model maps to each 8-ary cell level 3 b using a gray code.
Applying a t-error binary code BCH2 to the 3n bits, shown
in Fig. 4(b), also guarantees correction of t asymmet-
ric errors of magnitude 1. However, the number of parity
bits required for this alternative scheme is larger by roughly
tlog, (3) = 1.58t, which amounts to significantly increased

€ BCH1

| | € BCH2
3n

Fig. 4. Encoding strategies for correcting asymmetric magnitude-1
errors in a memory with q = 8 levels. (a) A code designed for
asymmetric magnitude-1 errors. (b) A binary gray-mapped code.
Both codes are based on BCH codes, but (a) requires fewer parity
bits than (b).

redundancy when t is moderate to high. Beyond this specific
example, the presented scheme can use any code for sym-
metric errors, not necessarily a BCH code. In addition, it
can be extended to any g, any error magnitude [, and other
error models with structure [23]-[26].

As the memory technology scales in density, we expect
the low-magnitude errors to become more frequent and
dominant. In the regime of moderate to high rates of low-
magnitude errors, the scheme detailed previously in the sec-
tion may not be the most efficient, because symmetric-error
codes for large t are expensive to implement. We show that
in this case the best approach works quite differently than
previous coding schemes for such errors. Given a block of n
cells with q levels, where n may be smaller than the memory
page size, we encode the data such that the block does not
contain cells with consecutive levels in {0,...,q — 1}. For
example, if the block has a cell with level 3, then it cannot
have any cell with levels 2 or 4. Another block may have a
cell with level 4, but then it cannot have cells with 3 or 5.
The key in this encoding is that its knowledge by the decoder
can help to efficiently correct a large number of asymmet-
ric errors with magnitude 1. Not less importantly, for finite
block lengths n, this encoding is much less redundant than
the encoding that uses only half of the levels {0,2,4,...}.
A coding scheme based on this idea was suggested with
the name nonconsecutive constraint (NCC) [27], and was
shown to have the best error correction given the expended
redundancy. This can be seen in Fig. 5 showing the output
symbol-error rate (output SER) as a function of the input
symbol-error rate (input SER). It is seen that other coding
alternatives with the same code rate have inferior perfor-
mance. The plot with + markers shows the performance of
the coding scheme depicted in Fig. 4(a), using a constitu-
ent BCH code, and the one with ¢ markers shows it for the
even/odd code that restricts the n levels to be all even or
all odd. Conveniently, the NCC can control the tradeoff of
rate versus correction capability by merely changing the
codeword length n: a small n gives high rate and weak error
correction, and as n grows the error correction improves
and the rate decreases. Overall the significant reduction in
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Fig. 5. Correcting many asymmetric errors of magnitude 1:
comparison between three coding schemes with equal code rate,
set to 0.77.

SER from input to output by the NCC code allows clean-
ing up the remaining symbol errors (together with errors
from other types) by a reasonable-strength outer code, e.g.,
a binary graph code, to be discussed shortly.

2) Tensor-Product Codes (TPCs) for Heterogeneous
Errors: Another promising example of carefully exploiting
BCH-like codes for errors of special characteristics reported
in the literature [28], [29] is given by the TPCs [30], which
have the intrinsic capability of incorporating fine-grained
knowledge of the error patterns.

To motivate this discussion, let us consider the fol-
lowing example for g = 8 levels representing 3 b (TLC
Flash): Data are stored in triplets (each triplet corresponds
to one triple-level cell.) For five TLC cells, let us say that
(100,110,000, 000,010) is stored. We read back the block
(100,100,000,011,011). The binary difference (xor) is
(000,010, 000,011,001).

We could consider each triplet a symbol, observe that
there are three symbol errors, and thus seek a code cor-
recting at least three symbol errors. However, this is not a
sufficiently refined definition: note that the majority of the
erroneous triplets only contain 1 b in error (as indeed would
be the case in Flash). This observation is not considered by
symmetric ECCs, such as nonbinary BCH codes. A more
efficient code must exploit this notion, correcting a certain
number of erroneous triplets with few bits in error and a
much smaller number of erroneous triplets with many bits
in error. TPCs offer precisely this added efficiency.

Mathematically speaking, the baseline TPCs (from [30])
are expressed as a particular type of concatenation: their
parity-check matrix H is itself a tensor product (hence the
name) of a parity-check matrix A of a nonbinary code C 4
with a parity-check matrix B of a binary code Cg, denoted
H = [A ® B]. In the context of multilevel Flash memories,

the code length of C, corresponds to the number of memory
cells and the code length of Cy corresponds to the number
of bits per each cell. This construction then allows for con-
trolling the error-correction capability simultaneously over
cells and over bits per each cell, that is, we aim to correct a
certain number of erroneous cells, and for each erroneous
cell, we correct a certain (small) number of erroneous bits.

Flash-motivated extension of this construction was
developed in [31], where the parity-check matrix H was
built out of four constituent binary/nonbinary parity-check
matrices, in order to also accommodate rarer, larger weight
errors, which the original construction is too rigid to han-
dle. The resultant parity check matrix is then H = [é g ]]?)] .
Binary matrices B and D control the number of correctable
erroneous bits per erroneous cell, and nonbinary matrices
A and C (over appropriately defined finite fields) control
the number of correctable symbol errors that have a pre-
scribed number of bit errors; for example, we can construct
a code that corrects t; symbol errors each flipping at most
¢1 bits and t, symbol errors each flipping at most £, bits;
the regime with t; > > t; and 1 < ¢, is of interest in Flash.
Observe that this specification defines the error-correction
capability of a code in a much more precise way than what
is allowed by the conventional t-error correcting moniker.
In the context of the example above, we could parameterize
the error pattern (000, 010,000,011,001) via t; = 2,t, =1,
Z1=1,and £, =3.

It was shown in [31] on real experimental data that this
tensor-product construction with four constituent matrices
chosen in a way that mimics the Flash behavior, leads to life-
time increase of at least 40%. Even further, the resultant TPC
has two highly desirable features from the implementation
standpoint: the guaranteed error correction (with respect to
the more finely specified error patterns), and low-complex-
ity encoding and decoding algorithms. The latter property is
a consequence of the fact that the proposed TPCs are built
from simple symmetric ECCs. Fig. 6 shows performance
results of applying TPCs from [31] to TLC Flash. The codes
are all of length 4096 and have rate 0.86. It is especially
interesting to point out that the TPC construction outper-
forms not only good nonbinary and binary BCH codes, the
latter derived by using the same code over the three pages,
but that it also outperforms the best combination of three
BCH codes, one for each page, where BCH codes with dif-
ferent error correction capabilities are assigned to different
pages—while the other three codes hit error rates of 107°
and higher much earlier, TPCs offer excellent reliability
the longest (i.e., no errors were observed). This is precisely
because TPC can correct certain error patterns spanning
multiple bits per cell with less redundancy than three paral-
lel codes can. Tensor-product constructions can be further
customized for Flash. For example, a simple transformation
of the tensor-product operation allows for limited program-
ming into certain cells [32]. This operation is particularly
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Fig. 6. simulation results showing the benefits of using graded-bit
ECCs in Flash. MSB/CSB/LSB refers to most significant/center

significant/least significant bits. Figure derived based on results
from [31].

beneficial for Flash memories that have a small number of
defective cells, which can needlessly consume a dispropor-
tionate amount of error correction.

The codes we showed for limited-magnitude errors ear-
lier in this section can also be combined into the flexible
tensor-product construction of the latter part. A similar
graded error-correction profile can be obtained where ¢
and ¢, represent other types of errors besides symmetric bit
errors.

C. Additional Promising Algebraic-Coding Schemes

We now briefly comment on other algebraic methods
that have shown promise over the baseline BCH codes. The
majority of these works are on the exploration of appropri-
ate combinations of known coding tools, using to a large
extent idealized channel assumptions, and not explicitly
focusing on the code design tailored specifically for asym-
metric Flash.

Code concatenation is a powerful technique exploited
in the two memory codes we previously described. Other
approaches of a related flavor include the following. Product
code refers to a construction based on two constituent codes
C; and C, such that each row of the resultant code is a code-
word of C; and each column of the resultant code is a code-
word of C,. An attractive feature of a product code is that its
minimum distance is the product of the minimum distances
of the two constituent codes, and that it has an efficient
iterative row/column decoder that can correct with high
probability many more errors than half the minimum dis-
tance [12]. One of the first results on the product codes for
Flash is the work in [33], which demonstrated via simula-
tions on a synthetic channel the potential gains over a plain
BCH-coded scheme when a two-step coding is employed: a
BCH code is used across rows and a simple Hamming code
is used across columns in a way that more error patterns of

interest can be corrected relative to the uninformed BCH
code. The architecture proposed in [33] also allows for par-
allel processing of multiple codewords, thus reducing the
overall latency. Additional progress on concatenated BCH
codes was made in [34], which also exploited the property
that a combination of weaker, shorter (and hence cheaper)
BCH codes is competitive with one stronger, longer (and
thus more expensive) BCH code. Another interesting twist
on product codes was recently explored in [35], where
it was shown that so-called half product codes have bet-
ter minimum distance properties than their (full) product
counterparts.

Complementing theoretical investigations on BCH-
enhanced designs, several recent works and industry pat-
ents have explored performance benefits and implementa-
tion issues of concatenated/product codes in the context of
Flash [36]-[38], although likely primarily in the idealized
settings.

Intracell variability can also be exploited by trellis coded
modulation (TCM) [39], another idea from classical commu-
nications theory—TCM limits the magnitude of errors in a
way that is relevant in Flash [40]. Benefits of the BCH-TCM
concatenated schemes over the baseline Reed—-Solomon/
BCH-coded system were demonstrated in [41]-[44]. Since
TCM requires some amount of redundancy, concatenated
schemes with a TCM component could be of interest in
Flash architectures that permit additional threshold levels
and can tolerate rate loss incurred by the TCM component.

Even with the implicit emphasis on the symmetric noise
model, these coding techniques already demonstrate poten-
tial in NVM applications; a compelling open research ques-
tion is how to best utilize them in the channel-aware way.

Building upon the results presented in this section, we
summarize the properties of classical and modern algebraic
codes in Fig. 7.

V. ERROR CORRECTION WITH GRAPH
CODES

A. Classical Graph Codes: LDPC Codes and Iterative
Decoding

Like previously discussed algebraic codes, low-density
parity-check (LDPC) codes are also linear block codes. They
can also be binary or nonbinary, depending on whether the
information is organized in bits or in symbols. LDPC codes
are described by a sparse parity-check matrix, hence the
“low-density” adjective. It is especially convenient to view
an LDPC code as a bipartite graph where one set of nodes,
called variable nodes, corresponds to the columns of the
parity-check matrix, and the other set of nodes, called check
nodes, corresponds to the rows of the parity-check matrix. An
edge between a variable node and a check node exists if and
only if the corresponding entry in the parity-check matrix is
nonzero. Concretely, an edge between variable-node i and
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Fig. 7. sSummary of main algebraic codes and their key properties in the context of NVMs. Advantages are highlighted in green and

disadvantages in red.

check-node j marks that the ith code symbol participates in
the jth linear check equation of the code.

In the binary case, the parity-check matrix is the adja-
cency matrix of this bipartite graph. In the nonbinary (i.e.,
g-ary) case, each nonzero entry in the parity-check matrix
is a nonzero element of a Galois finite field GF(q), and the
corresponding edge in the bipartite representation of the
code has this nonzero value as its label. The sparse graphi-
cal representation of the code enables low-complexity itera-
tive decoding algorithms, executed as a series of message-
passing steps alternating between the set of variable and the
set of check nodes. The exchanged messages are proxies of
the likelihoods of the values of the variable nodes; in prac-
tice, computations are performed in a transformed domain
and the messages represent log-likelihood ratios (LLRs).
Message exchange terminates when all the checks are satis-
fied in the sense that the linear equations associated with
them hold. NVM channels are especially natural for repre-
senting the code symbols as g-ary symbols, which calls for
the use of g-ary LDPC codes. It is generally understood that
g-ary LDPC codes offer significant performance benefits
over their binary counterparts, at the expense of substan-
tially increased decoder complexity.

Owing to their excellent performance, LDPC codes
have already found phenomenal success in many modern
data transmission applications. It is thus not a surprise that
LDPC codes are actively being considered in modern NVMs
as well, with a number of industry-based patents recently
issued on this topic; see, e.g., [45]-[49], wherein the focus
has mostly been on binary LDPC codes.

LDPC codes offer most benefits when decoded using
real-valued LLRs, i.e., with the initialization and the mes-
sages expressed in full precision. However, read informa-
tion about Flash channels is obtained through a sense amp

that can only report whether the threshold voltage of a cell
is below or above some value, information that is intrinsi-
cally discrete (see also Section II). As a result, the channel
that the LDPC decoder sees is inevitably discrete. A non-
trivial question then is where to place threshold voltages
as a function of the number of available reads in order to
maximize the utility of memory devices; see also Fig. 3.
One mathematically precise yet intuitive idea is to assign
threshold voltages exactly in the way that would maximize
mutual information between the input and the output of
the induced discretized channel [50]. Placement of thresh-
old voltages is also important for the code design. As we dis-
cuss next, code design and optimization critically depend
on proper channel modeling.

B. Graph Codes for NVM Error Models

LDPC codes are very powerful ECCs because they mimic
Shannon-optimal random codes, with the added feature of
low-complexity decoding. They have also been around for
sufficient time so that their design for classical channels has
been nicely perfected by a massive body of research. Despite
this favorable state of matters, the application of LDPC codes
to NVMs motivates interesting new fundamental research.
NVM distinctive error models and unique operation modes
necessitate the enrichment of the constructive toolbox
for LDPC codes, and also their analysis. Nonbinary LDPC
codes are ideally suited for multilevel memories. We thus
focus in this section on two promising directions for NVM
LDPC codes: one is their finite-length design of nonbinary
codes optimized for common error types, and another is the
design of nonbinary codes optimized to the multibit struc-
ture of the Flash MLC/TLC architectures. Other interesting
avenues are discussed in the next section.

Vol. 105, No. 9, September 2017 | PROCEEDINGS OF THE IEEE 1713



Dolocek and Cassuto: Channel Coding for Nonvolatile Memory Technologies

© 54
© =y
o !
S 3
@
g i|  Error floor
a :
Reliability 3
requirement\?‘§
2y
o
low high
RBER

Fig. 8. Typical performance plot of unoptimized LDPC codes.

1) Finite-Length Code Design for NVM Errors: It is well
known that practical LDPC codes, both binary and nonbi-
nary, suffer from the so-called “error floor,” manifested as a
failure of the code to lower the output error rate sufficiently
when the input error rate is very low [51]. This undesirable
behavior is especially problematic for modern Flash devices
as the flooring effect prevents the system from meeting
target reliability constraints; see the schematic in Fig. 8.
Here RBER denotes raw bit error rate and Dec. Error Rate
denotes residual errors after LDPC decoding. The unwanted
error-floor effect is due to the fact that the low-complexity
iterative decoding algorithm operates on the LDPC bipartite
graph which inevitably has cycles. (We quickly remark that
this issue vanishes in the infinite block-length regime where
one assumes that the bipartite graph is essentially cycle free.
In this regime, the elegant theory of density evolution offers
crisp code performance characterization [52]. This theory
critically depends on the cycle-free assumption and is not
directly useful in the finite-length setting.)

The issue of the error floor is particularly problematic
for applications that need to operate under stringent con-
straints on reliability, including modern NVMs. Extensive
prior work was performed on the analysis of the LDPC error
floor, implicitly assuming the transmission over a symmetric
channel. Trapping/absorbing sets is the terminology (e.g.,
[51] and [53]-[55]) adopted in the coding literature used
to refer to combinatorial objects that exist in the bipartite
representation of the code that trick the iterative decoder
into making decoding errors. Trapping sets encompass con-
vergence to noncodewords and oscillations among different
configurations [51]. Typically, oscillation errors can be sup-
pressed with a more informed quantization scheme [56].
The definition of the absorbing sets [55] is purely combina-
torial and it refers to objects that are fixed points of certain
practical decoders, notably including detrimental noncode-
words. These configurations are locally consistent (from a
vantage point of an individual node) but are not necessarily
globally consistent in the sense that they need not produce
a codeword. As a result, during the decoding, some of the
checks remain unsatisfied despite repeated iterations of the

message-passing decoder. The configurations are typically
characterized by a certain number of variable nodes a con-
nected to a certain number b of unsatisfied checks; a code-
word is a special case of such a configuration with b = 0.

Intriguingly, it is often the case that absorbing sets with
small a and withb # 0 cause decoding errors in iteratively-
decoded LDPC codes—that is, there exist problematic
configurations with weight less than the code minimum
distance. In other words, in contrast to traditional coding
theory principles, quantifying the goodness of a code in
terms of distances between codewords is insufficient in the
case of iteratively decoded graph codes.

As argued before, NVM channels fundamentally dif-
fer from their oft-utilized symmetric counterparts, further
complicating LDPC code optimization techniques. Despite
a common practice of using AWGN-optimized LDPC codes
on a Flash channel, the approach is grossly inadequate. The
reason for this rests with a closer investigation of prob-
lematic objects for the two types of channels. The type of
absorbing sets causing decoding errors and in turn the pesky
error floor is significantly different for the two channels. For
example, for AWGN:-like channels, due to noise symmetry,
dominant absorbing sets are those that have a small number
of variable nodes a, and for each such variable node, there
are more satisfied than unsatisfied neighboring check nodes.
In contrast, for Flash-like channels, due to asymmetry, cat-
egorization of absorbing sets into problematic and nonprob-
lematic is topologically more subtle [57]. As a result, code
optimization focused on the removal of AWGN-detrimental
structures is essentially useless if the code is to be used over
the highly asymmetric Flash channel. Fortunately, as in the
case of algebraic codes, substantial gains can be made once
the code is designed in a way that is cognizant of the channel
characteristics, as we illustrate in Fig. 9, where we plot raw
BER (RBER) against “decoded” BER (DBER); the latter is
the error rate after the decoding step.

In this example, based on construction from [58] we use
an instance of widely popular quasi-cyclic designs, which are
known to offer implementation-friendly, circulant-based
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Fig. 9. Benefits of channel-aware LDPC code optimization on a
realistic MLC Flash channel model.
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structure of the parity check matrix. Since the target appli-
cation is MLC Flash, the codes are nonbinary and are
defined over the finite field of size 4. Additionally, they have
rate 0.9, length 4000 b, and variable-node degree equal to 3.
Without any further channel-aware optimization, the per-
formance is as shown by the top curve (in blue).

A promising technique for nonbinary code optimiza-
tion consists of two steps. First, choose the ordering of the
constituent circulants in the parity-check matrix to mini-
mize the number of possible detrimental configurations
in the bipartite representation of the code. Second, assign
edge labels (from the finite field of size 4 in this example)
to ensure the nonexistence of detrimental configurations.
This technique is attractive as it results in a design that pre-
serves all desirable code properties (length, rate, circulant
organization of the parity check matrix, node degree regu-
larity), and moreover can be described in crisp combinato-
rial terms—recently developed frameworks [59] and [57]
are based on succinct linear-algebraic description of the
absorbing set, so that the provable elimination of possibly
numerous instances of the detrimental structure can be
achieved by controlling the null space of one simple matrix.
As aresult, the optimization protocol is highly computation-
ally efficient, systematic, and can at once produce a whole
family of parity check matrices with the desired properties.
In fact, mathematical characterization of absorbing set/trap-
ping set topologies is more tractable for codes with lower
variable node degree [60], [61]. The codes that have high
rate—the rate regime in which NVMs need to operate—
imply low variable node degree, thereby making combina-
torial optimization of graph codes aimed at handling bad
configurations especially well suited for NVM applications.

Even with a fast optimization algorithm in place, the key
question to answer is what configurations one should opti-
mize for. The answer is highly channel dependent and the
more the channel differs from the AWGN setting, the more
diverse the problematic objects are relative to their AWGN
counterparts. In the context of our example, optimizing this
code by only removing absorbing sets that are problematic
in the AWGN setting results in the middle curve of Fig. 9
(in black), which roughly corresponds to the elimination of
sets with (a,b) parameters being (4,2) or (4,4). This offers
only modest improvements on the Flash channel (modeling
akin to [4]), whereas optimization that removes a broader
collection of objects that are truly problematic in the Flash
domain gives the lowest curve (in red), which reflects
order of magnitude improvement while maintaining all
other structural code properties. This optimization targets
absorbing sets with (a,b) parameters with 4 < a < 7 and
1 < b £ 4. Combinatorial strategies for the removal of
problematic configurations in the nonbinary domain are
substantially more involved than in the binary case; they are
discussed in [57].

Beyond effective performance-improvement tools for
accepted code constructions, NVM coding performance

can greatly benefit from tools that illuminate the underly-
ing constructive considerations. We next show, using a new
theoretical framework, how g-ary LDPC codes should be
designed when the multibit structure of a g-ary channel is
explicitly taken into account.

2) Nonbinary Codes With Multibit Structure: Deeply
ingrained in the Flash architecture is the duality of binary
logical pages stored on q -ary physical pages. A common
choice by SSD vendors is to map log, q binary logical pages—
for example, three pages in ¢ = 8 TLC—to a single page of
g-ary cells. The main motivation is access benefits: allow-
ing lower latency access to a logical page before the physical
cells are fully read. This is possible because the unit of bit is
naturally expressed in the physical processes, for example, a
read primitive that returns a bit of information comparing a
cell threshold level to a reference value. However, even in
the presence of smart gray-like mappings, we lose in error-
correction efficiency when employing a binary code for each
logical page individually. As was the case in Section IV-B for
algebraic codes, ignoring the features of the g-ary channel in
code design is suboptimal and inefficient. We instead want
to deploy the code on the g-ary physical page, but in a way
that considers the underlying bit structure of the physical
processes. In other words, we want to design LDPC codes
that are defined over g-ary alphabets, but designed for chan-
nels preserving the bit-structure of the read/write processes.
This will offer improvement over the known approaches of
either 1) use a g-ary LDPC code designed for symmetric
errors; or 2) use a hierarchy of binary LDPC codes through
the concept of multilevel coding [62]. The key is that the
new approach gets the best of both worlds: it enjoys the
inherent advantage of g-ary LDPC codes, and it optimizes
the code design to the true underlying channel.

Making progress with design of LDPC codes for NVM
channel models is most promising by first defining new
erasure models corresponding to the channel errors. This
has been the case with binary LDPC codes, for which perfor-
mance analysis over the binary erasure channel (BEC) con-
tributed most insights and design practices [63]. The analog
of an erasure in our case is a partial erasure, which repre-
sents a read where the cell level is not fully resolved but also
not completely unknown [64]. Given that a cell level can be
any symbol in the set Q = {0,1,...,q — 1}, a partial eras-
ure is a subset of Q whose contents are the possible levels
for that cell after the read. A subset of size q represents the
standard g-ary (full) erasure, and a subset of size 1 represents
the no-erasure case where the cell level is perfectly known.
All subset sizes in between those two extremes are the par-
tial erasures we find useful in our code design. Note that a
partial erasure is a useful proxy for a structured g-ary error,
similarly to a full g-ary erasure being a good proxy for sym-
metric g-ary errors. To model error channels with a multibit
structure, we consider the following definition of a partial-
erasure channel, which we call here q -ary multi-bit eras-
ure channel [65]. Let ¢ = 2°, where s is the number of bits
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mapped to each cell level. For convenience, let us take
the special case of ¢ = 8 and s = 3 (TLC). Suppose that
a cell has the level x = 0 stored in it. Then, the channel
output y is either {0} representing perfect readout, or {0, 1}
representing a partial erasure missing the least significant
bit of x, or {0,1,2,3} representing a partial erasure missing
the two lower bits, or {0,1,...,7} representing a full eras-
ure missing all three bits. We get {0,1} with probability
€1,{0,1, 2,3} with probability €, {0, 1, ...,7} with probability
€3, and {0} with probability 1 — €; — €, — €3. Note that this
is a generalization of the symmetric case that can accom-
modate the variable reliabilities among the three bits. In
particular, it captures the property of the g-ary channel that
a given error magnitude affects all bits from some signifi-
cance level and downward. To combat real NVM errors we
will set values of €;,€;,€3 according to the media proper-
ties, and design a code that corrects such error events with
high probability.

Some ingredients need to be developed to enable code
design for g-ary multibit channels. The first is an iterative
decoder that extends the efficient message-passing algo-
rithms of symmetric channels to the new channels. For
g-ary partial-erasure channels such an extension is provided
in [64]. Second, we need an efficient analysis framework
that can tell the performance of code ensembles over the
new channels. In [65], such an analysis is developed based
on density evolution [63], with a careful exploitation of the
channel structure to reduce the analysis complexity that oth-
erwise blows up quickly with q. Last, and most importantly,
we need to find ways by which the analysis framework can
be used to design better codes for the new channels. An
interesting example for this is the following crisp design rule
from [65]: for ¢ = 4 (s = 2,MLC), if the multibit erasure
channel has a dominant occurrence of single-bit erasures
(€1 > €;), then the edge labels of the g-ary LDPC code must
not be selected uniformly from the nonzero field elements
{1, 2,3}, but rather uniformly over two of the elements, e.g.,
{1, 2}, with no labels selected as the remaining element 3. It
is not clear a priori why this rule should apply, but it is prov-
ably correct given the analysis framework. A more compre-
hensive design tool building on the new analysis framework
optimizes the code degree distributions taking into account
the parameters of the partial-erasure channel. It has been
shown [64] that degree distributions obtained through this
dedicated optimization have superior decoding thresholds
and error rates compared to codes that were designed for
the standard erasure channel.

Moving to finite block-length optimization of LDPC
codes for multibit channels, we seek algorithms that improve
the code specifically for the more common error types. In
this part, we build upon the erasure interpretation of the
channel, and study how the well-defined configurations
called stopping sets [66] can be mitigated in the case where
we have additional knowledge on the erasure types. (We
have previously discussed absorbing sets; the two classes of

objects are topologically related, wherein absorbing sets are
more suitable for the analysis of errors and stopping sets are
more suitable for capturing erasures.)

A stopping set is defined as a subset of the variable
nodes that collectively connect to a set of check nodes each
of which has degree more than 1 to the variable-node sub-
set. Stopping sets are detrimental for iterative decoding,
because if all variable nodes in them are erased, the decoder
cannot continue iteratively. Examining an iterative decoder
operating over a g-ary partial-erasure channel, we observe
that a stopping set existing in the graph can be neutralized
by carefully setting the edge labels to not halt the iterative
decoder. This is true only for partial erasures, and does not
apply to codes for the g-ary (full) erasure channel (any stop-
ping set for the binary erasure channel is also a stopping set
for the g-ary erasure channel, for any edge-label combina-
tion). Following a detailed characterization of the label sets
that resolve stopping sets for the multibit channel, we have
developed an algorithm that sets edge labels in a specific
code graph to remove stopping sets of small sizes. Note that
this label optimization can be done on top and beyond other
known stopping-set reduction techniques applied to the
code graph (e.g., [67]). In Fig. 10, we show sample results
showing the potential advantage of this coding scheme. We
take a regular LDPC code with check-node degree 18 and
variable-node degree 2 (rate 8/9), and run our labeling algo-
rithm removing partial-erasure stopping sets forq = 8. We
plot the symbol-erasure rate (SER) at the decoder output as
a function of the probability €; that a symbol undergoes a
1-b erasure. The performance after the label optimization
improves significantly in most of the €; range. We also com-
pare the performance to a binary code drawn from the same
ensemble, but with triple length (to get the same number of
bits), and third the erasure rate (to get the same expected

—-GF(2), n = 3024
=© GF(8), n = 1008, Uniform
=a- GF(8), n = 1008, Optimized

SER

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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Fig. 10. Performance of 8-ary LDPC codes before (dashed) and
after (dashed—dotted) removal of stopping sets affecting the
multibit erasure channel. In comparison, a binary LDPC code that is
three times longer (solid) has much worse correction performance.
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number of bit erasures). It is shown that the binary code is
not competitive to the g-ary option, even though the errors
we considered here are single-bit errors. This motivates
further research constructing stronger and more practical
LDPC codes that perform well over multibit channels. An
interesting open research question is how to best combine
the combinatorial framework and the new bit-level interpre-
tation introduced in the last two subsections, respectively,
for the ultimate LDPC solutions.

C. Additional Considerations and Future Directions
for Graph Codes

Complementing proper channel code design is the
implementation of associated decoders. In the unoptimized
case, excellent LDPC code performance comes at the prohib-
itively high implementation complexity of the decoder that
exceeds latency, hardware footprint, and power consump-
tion allowed in modern NVM applications. One way to reap
the benefits of LDPC codes while maintaining target latency
is by use of coarse decoding and look-ahead computations
when channel conditions permit, as recently proposed in
[68]. The idea is that since the hard-decision decoder is suc-
cessful most of the time, one would only invoke additional
soft-information LLRs when the hard-decision decoder fails
to decode. To minimize the latency, this additional informa-
tion is computed concurrently with the baseline decoder,
and used only as necessary. The work in [68] also quantifies
the impact of progressive sensing on the overall power con-
sumption of the LDPC decoder. A recently proposed tech-
nique for reducing decoder latency in TLC Flash operates
directly on the soft decisions: soft information is generated
by only using center read references. By interleaving the
three pages, errors are effectively evenly spread across the
pages [69].

Further architectural solutions for LDPC decoders in
NVMs include a circumspect combination of throughput-
enhancing techniques, such as strategic message update,
dynamic scheduling, use of lookup tables, code structure-
aware parallelized structure, and local error correlations,
among others [70]-[73]. Additionally, new formulations
of iterative decoders that are well suited for limited preci-
sion implementations, such as finite precision decoders
proposed in [74] and [75], will further help in the broader
adoption of LDPC-coded systems. Another fruitful research
direction would be to optimize LDPC decoders specifically
from the point of view of recovery from noncodeword errors
dominant in the NVM error models analyzed in the previ-
ous section [57]. This could be done, for example, by oppor-
tunistically pruning computations in high-performance but
costly nonbinary LDPC decoders [76], or by using the intra-
cell variations in the LLR scalings [77].

Spatially coupled (SC) codes (also known as LDPC con-
volutional codes) are the newest exemplar of graph designs;
they offer excellent performance in a variety of settings.

These codes are obtained by chaining together bipartite
graphs each corresponding to a smaller LDPC code. This
concatenation results in structured irregularity that has led
to capacity-approaching performance in the asymptotic set-
ting [78]. Moreover, SC codes are amenable to low complex-
ity window decoding with message passing decoder oper-
ating on the block constituents [79]. Initial results on the
optimization of SC codes in NVM and related applications
already show promise [80], [81], and a thorough study will
likely lead to significant results.

Additionally, the power of recently invented polar codes
has not yet been fully explored in the context of NVMs.
Another recent work has proposed the use of nonlinear
polar codes for asymmetric channels potentially suitable for
Flash memories [82] and the work in [83] offered the first
study on using polar codes as the error-correction technique
in Flash memories. Comprehensive analysis of polar codes
and polarization principles in the context of NVM:s could be
another interesting open research direction, provided issues
stemming from the higher complexity and decoding latency
of polar codes can be adequately addressed.

As a counterpart to the summary of the algebraic codes
given in Fig. 7 and based on the discussion in this section,
we sum up the key features of graph codes for NVM applica-
tions in Fig. 11.

VI. REWRITE CODES FOR THE IN-PLACE
UPDATE FEATURE

Since the early days of data storage, density scaling has
always meant challenges to data reliability. But in modern
storage media starting from Flash, competitive density also
means significant compromise to access performance. The
best known access-performance issue in Flash storage is
the inability to perform erase operations (remove charges
from cells) at the same small granularity of the program
operation (add charges to cells). While helpful for storage
density, this restriction is extremely limiting for access
performance, because data cannot be updated in-place. In
fact, a vast amount of research in the storage-systems field
is devoted to circumventing this restriction in applications
where it prohibits adequate performance. Coding enables a
more direct solution for this restriction, through the use of
rewrite codes.

A. Rewrite and WOM Codes

To solve the write-access problem stemming from
restricted erase operations, coding needs to bridge between
the restricted physical media and the unrestricted user data
written to the storage. The user may want to update data
arbitrarily by rewriting a data unit, and the code provides
a representation for the data that adheres to the restriction
to only add charges to the physical cells. It turns out that
a model known since the 1980s called write-once memory
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Graph-Based Codes for NVMs

Excellent for high reliability, soft read-enabled applications

/ Established Constructions \

e LDPC codes

.

/Future Memory-Aware Constructions\

* Optimized non-binary LDPC codes
*  Multi-bit LDPC codes

Possible advantages:

> Elimination of error floor through
channel-aware designs;

> Reduced complexity and latency at
high performance;

> Added design flexibility

* Optimized spatially coupled codes
K- Exploratory polar codes

4

Fig. 11. Summary of main graph codes and their key properties in the context of NVMs. We highlight advantages in green and
disadvantages in red. We reserve “light green” for the possible advantages of emerging LDPC designs as these theoretical constructs need

to also be validated in practice.

(WOM) [84] coding is highly applicable to the problem
of update-restricted Flash storage. In the WOM model,
information can be written t times on a block of n binary
physical cells, such that physical cell levels change from 0
to 1, but not from 1 to 0. By applying the WOM model to
Flash,? the user can write t times to the same physical cells
without requiring a slow and costly erase operation. Thus,
such codes hold great potential to improve the performance
and life span of storage devices. The design objective for a
t-write WOM code is to maximize the sum rate, which is the
total amount of information (in bits) written to the n cells
in t writes, divided by the number of cells n. Toward this
objective, several new theoretical constructions with good
sum rates have been proposed. For example, recent works
in [85]-[89] provided high sum-rate WOM codes based on
careful adaptation of powerful coding theoretic construc-
tions, and by clever compositions of simple WOM codes
into stronger ones, e.g., constructing multiple—write WOM
codes from two-write WOM codes, constructing non-binary
WOM codes from binary WOM codes, and others.

For application in multilevel memories, g-ary WOM
codes are of interest. The g-ary generalization of wom?
was defined in [90], where cell levels are restricted to only
change in the upward direction. Note that when q is a power
of 2, for example, ¢ = 8 in the TLC technology, it is pos-
sible to use the g-ary cell as multiple bits in a binary WOM
code (3 b in TLC) without violating the update restrictions.

2We adopt the convention that an erase operation decreases the cell
level, which may be different from the convention in the memory-devices
community (but fully equivalent to it).

3Note that WOM is a misnomer for nonbinary codes, because the
physical cells are no longer limited to be written only once.

However, this is inefficient because it is well known that
using larger alphabet sizes improves the rewrite sum rate
for a given amount of physical storage [91]. Coding results
for the g-ary model appeared in [91], and later in [92] and
[93]. A theory based on lattices aiding the construction of q
-ary codes was developed in [94]. In addition to g-ary WOM,
there are other rewrite coding models applicable to multi-
level memories. In the model of floating codes [95], the code
supports t writes, but in each write only a single bit out of k
information bits is updated. Other rewrite models for mul-
tilevel memories were studied in [96]-[98]. Most recently,
Mappouras et al. [99] developed codes based on the coset
coding idea to improve memory lifetime.

A rewrite code in the g-ary WOM model is defined by the
parameters g, n, t, and M = [Mj,...,M;]. Parameter n is
the number of physical g-ary cells in the memory word used
by the code. Parameter t is number of times the memory
word can be written to, and the vector M specifies for each
of the t writes the number of possible values of the input
information. In the sequel we focus on the practical case
where in all ¢t writes we have the same input size, that is,
M; = M, = . =M, = M. With this restriction the code
is called fixed rate, and its parameters are denoted with the
tuple (q,n,t, M), where M is a scalar integer. We also define
k = log; M and say that k is the number of input informa-
tion bits. In practical use, once a (g,n,t,M) code exhausts
its t writes, the n cells may not be further reused without an
external erase operation, which is not an explicit part of the
model (but does happen in practical use in Flash).

The motives to use WOM codes in Flash are compel-
ling: it has been demonstrated in the literature that with a
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clever use of WOM codes in an SSD, the write amplification
can be reduced significantly [100]. In addition, implement-
ing WOM codes in an SSD simulator has shown significant
advantage in write throughput [101]. With this promise
come some nontrivial challenges. Probably the greatest con-
cern in deploying WOM codes is the impact on data reli-
ability. Operating a WOM code implies rewriting data in-
place and no longer in a pure sequential order, and this may
introduce new issues of disturbs and intercell interference.
Adding to that concern is the fact that constructing error-
tolerant WOM codes is not an easy task. Coding schemes
that combine rewrite and error-correction capabilities exist
in the theoretical literature [102], but are not practical
enough for implementation. Combining the two features
by concatenating a WOM code and an ECC is also prob-
lematic: an outer WOM code means that ECC parity bits
computed from the WOM codeword will violate the WOM
constraints; an inner WOM code means that small channel
eITors can propagate to massive error events by the WOM
decoder. A good potential solution around these issues is to
use short q -ary WOM codes. If we use a short inner WOM
code, then channel errors cannot propagate beyond the
small WOM block length, and concatenation with a long
outer ECC can work well. It turns out that g-ary WOM codes
can have attractive rewrite capabilities even if they use as
fewasn = 2 cells. We demonstrate this next.

To specify a WOM code, one needs to provide a pair of
functions: the decoding and update functions. We define the
decoding function as y:{0,...,q —1}" — {0,...M —1},
which maps the current levels of the n cells to one of the M
possible information values. The update function is defined
as u:10,....,q—11"x{0,....M -1} - {0,....q —1}",
specifying how the cell levels need to change as a function of
the current cell levels and the new information value at the
input (here again the input is taken from a set of M possible
values). The update function needs to satisfy the WOM con-
straints of not moving a cell to a lower level. Let us consider
the special case of ¢ = 8 (TLC), n = 2 (two cells), and
M = 8 (k = 3 information bits per write). Note that n is
the block length for coding purposes only, and a page with
N > ncells can be used with multiple WOM blocks in par-
allel. A convenient way to represent a decoding function /:
{o,..., 7}2 — {0, ...,7} is by a 2-D matrix where a position
(c1, ¢y ) represents the physical levels of the two cells, and the
numbers in the matrix are the information values returned
by the decoding function. For example, Fig. 12 shows a
decoding function obtained by tiling the X q = 8% 8
matrix with a polygonal shape with area M = 8. To make
it a decoding function of a WOM code, we need to define
on it an update function that only moves upward and to the
right in the matrix. Given a current matrix position, the
encoding function takes an input value and needs to find it
in a position neither below nor to the left of its current posi-
tion. In [103], an update function was given for the decod-
ing function in Fig. 12 that guarantees t = 4 writes with

27 Talelol2]5 13
6|5(1|3|7|4]6]0]2
5/6|0|2|5]1]3]|7]4
4|3 7(al6|0|2|5]|1
3l2/5|1|3|7|4|6]0
21416025137
1113|7460 ]2]5
Ofoj2|5|1|3|7]|4]6
01234567

C1

Fig. 12. Decoding functionofa(q = 8n = 2,t = 4,M = 8) code.
Four guaranteed writes is optimal for the code parameters.

any sequence of input values. For example, a sequence of
four writes with the input values 6 — 4 — 7 — 3 will
be written by updating the cell levels with the sequence
(1,2) - (2,4) — (3,6) — (7,7). Hence, this is a
(g =8n =2t =4M = 8)code. It was also shown in
[103] thatt = 4 is the maximum possible number of writes
given the other code parameters, hence this is an optimal
code. Despite the extremely short length of this code, the six
bits that it consumes (two cells, three bits each) are within
0.65 b from the information-theoretic fundamental limit of
binary fixed-rate WOM codes [104], which is only attainable
with very long and high complexity codes.

Interestingly, the code shown in Fig. 12 is not the only
option for gettinga (q = 8,n = 2,t = 4 M = 8) code.
Without losing anything in the number of writes, we can
construct other codes that offer additional useful features.
As two examples we take the codes depicted in Fig. 13. The
code on the left guarantees in addition that the two cells
will be balanced to be at most three levels apart through-
out the write sequence [105]. This feature reduces intercell
interference (ICI) between the cells, which is known to be
more significant when the two cells have large level differ-
ences [11]. The code on the right is designed with the feature
that increasing the number of cell levels toq = 9 canadda
fifth guaranteed write (the previous two codes cannot add a
write with one more level). This shows that the use of WOM

7 6|7 7 713156

6 3105 6 20614
5 705 |3[a]1|2 5 a4|7(3ol2]|7
4 506201 4 2|6 f1]o|5]|7]3
3 2|3 |4(6]|7 3 1342605
216 |(7|o]1]2]>5 2(316f0|5|7]4a]|1]6
113(4|5]|6]|7 1l1ja|7|1]2

Ofo |12 Ofo |25

012 3 4567 0123 4567

Fig. 13. Decoding functions of two more (q=8,n=2,t =4,M =8)
codes. The left code is designed to reduce ICI, and the right one can
give t =5 if q grows to 9.
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codes opens the way to using cells with numbers of levels
that are not necessarily powers of two, and such uses can
actually give good performance with a simple implementa-
tion. Moreover, this example motivates considering WOM
codes with additional features, for example, maximizing the
data reliability when an outer ECC is employed.

We end this section with the remark that a related tech-
nique called “flip-N-write” was successfully proposed for
phase change memories [106]. In this simple but powerful
scheme, either a desired word or its complement is written,
depending on which one would be faster to write. One bit of
redundancy is used to indicate whether the intended word
or its complement is being written.

B. Other Coding Schemes to Watch for in the Future

We now briefly discuss two additional coding mecha-
nisms that are of interest in NVMs: constrained coding and
rank modulation. Constrained coding for NVMs is strongly
motivated by the pronounced amount of ICI. ICI is caused
by parasitic capacitances between physically adjacent cells
in the Flash chip. As a result, when charge is added to a cell
(during programming), the charge levels of neighboring
cells may inadvertently increase as well. The amount of this
unintended charge is a function of device parameters and
design but has a roughly inversely proportional relationship
to the physical distances between the cells [107]. As a result,
as Flash technology is scaled down, the ICI becomes increas-
ingly more pronounced. One way to overcome the adverse
effects of ICI is by preemptively preventing certain patterns
to be written. Constrained coding is a branch of information
theory that precisely answers the question of maximizing
data transmission/storage while ensuring that undesirable
subsequences are never stored. Constrained coding tech-
niques have already been successfully deployed in other
more conventional data storage technologies, such as HDDs
[108], and as with other existing methods mentioned before
the challenge is to design constrained coding methods that
accurately address technology-specific particularities. In
the context of Flash, one seeks to avoid “high—low-high”
patterns. This has led to the development of elegant math-
ematical theory of constrained systems, as in [109], where
the focus was on characterizing the set of sequences that are
free of detrimental patterns. Recent results on construction
of constrained codes for NVMs are presented in [110]-[112].
A challenging open question is to transfer the results from
the asymptotic domain to the practical finite-length setting
while offering codes with minimal rate penalty and easy
encoding/decoding.

The special physical properties of the Flash channel
have recently motivated an exploration of a different type
of data representation: rank modulation [113]. The idea in
rank modulation is to represent information as the relative
ranking of a cell with respect to the entire block, rather
than as the absolute amount of charge in a particular cell.

Information is stored in permutations, and is read by com-
paring the values of different cells in blocks. Ordering-based
representation has many advantages, including the fact that
charge leakage, which affects all cells at roughly equal rates,
will not change the relative ranks of cells, only their abso-
lute values. One distinct concern regarding the implementa-
tion of rank modulation techniques is the need to have very
finely grained comparators, which are currently imprac-
tical. If this key issue is resolved, many fascinating recent
theoretical results on rank-modulation codes [114]-[117],
among others, could then be used in practice.

VII. CONCLUSION AND PERSPECTIVES

In this survey paper, we reviewed several recent exciting
developments in coding methods for nonvolatile memories.
The need for novel coding schemes is by now clear to the
memory industry, which has already advanced research and
development in this area considerably, including commer-
cialization of BCH codes, LDPC codes, constrained codes,
and various concatenated codes. While specific details of
code constructions remain carefully guarded trade secrets,
numerous industry patents on this topic offer a glimpse into
practical deployment and importance of various ECC meth-
ods: for LDPC, among many others, these patents include
[45] (LSI corp.), [46] (Intel Corp.), [47] (Marvell Ltd.), [48]
sTec Inc. (acquired by Western Digital Corp.); for algebraic
and concatenated codes, these include [38], [37], [118]
(Marvell Ltd.), [119] (Qualcomm Inc.), and [120] (SK Hynix
Inc.), and for constrained codes these include [121] (IBM
Corp.), [122], [123] (Marvell Ltd.), [124] (Intel Corp.). Our
goal in this survey is to present the mathematical concepts
underpinning these trends in industry, and show how the
same concepts lead to more advanced coding schemes that
were recently proposed in the literature.

We advocate that the departure from channel codes pre-
viously made popular in traditional data communications
and storage systems is fundamental for the future advances
in NVM reliability and performance: a flourishing math-
ematical repertoire exists beyond the conventional coding
that implicitly assumes symmetric errors. What is more,
several of these techniques are also amenable to code com-
bining in the sense that the most dominant error patterns
could be first cleaned up by customized codes, followed
by another perhaps more generic code for the remaining
errors, which would be done in a way that is more efficient
than directly applying a code that is agnostic to error pat-
terns. As evidenced by presented examples, NVM channel-
aware code design offers significant opportunities for deep
theoretical explorations while simultaneously furthering
the reach of memory technologies.

We presented in detail two representative classes of
codes: algebraic codes and graph codes. As discussed ear-
lier, the two approaches by design offer fundamentally
different tradeoffs in terms of performance guarantee and
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error-correction capability. Which one is ultimately chosen
for deployment is a function of system-architecture consid-
erations and the demands of the end applications—for larger
page sizes, in terms of performance alone, LDPC codes are
bound to be superior to BCH codes. On the other hand,
well-designed code concatenation and associated algebraic
codes can correct a very refined set of error patterns and can
also offer backward compatibility with legacy BCH codes.

At the same time, a large body of work on coding for
NVMs has still largely remained of solely theoretical inter-
est. Moving forward, we envision that the best advance-
ments and facilitated efforts in practice and theory alike will
be achieved through a more open dialog between industry
leaders and academia. Toward that goal, in the context of
different coding tools, we have outlined several (what we
believe are promising) research directions. For example,
best utilization of these new powerful algebraic and graph
codes may require multipage read architectures, which is in
contrast to current practice of single-page reads. This new
approach may already be feasible as recent evidence sug-
gests the benefits of multipage reads when used in conjunc-
tion with simple code interleaving [69]. How to best balance
read operations and coding benefits is an interesting system
design problem.

We envision that several of the code design principles
developed for multilevel Flash will also have a positive
impact on alternative NVM technologies, including phase
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