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ABSTRACT | Every bit of information in a storage or memory 

device is bound by a multitude of performance specifications, 

and is subject to a variety of reliability impediments. At the other 

end, the physical processes tamed to remember our bits offer a 

constant source of risk to their reliability. These include a variety 

of noise sources, access restrictions, intercell interferences, cell 

variabilities, and many more issues. Tying together this vector of 

performance figures with that vector of reliability issues is a rich 

matrix of emerging coding tools and techniques. Channel coding 

schemes ensure target reliability and performance and have been 

at the core of memory systems since their nascent age. In this 

survey, we first overview the fundamentals of channel coding and 

summarize well-known codes that have been used in nonvolatile 

memories (NVMs). Next, we demonstrate why the conventional 

coding approaches ubiquitously based on symmetric channel 

models and optimization for the Hamming metric fail to address 

the needs of modern memories. We then discuss several recently 

proposed innovative coding schemes. Behind each coding scheme 
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lies an interesting theoretical framework, building on deep 

ideas from mathematics and the information sciences. We also 

survey some of the most fascinating bridges between deep 

theory and storage performance. While the focus of this survey 

is primarily on the pervasive multilevel nand Flash, we envision 

that other benefiting memory technologies will include phase 

change memory, resistive memories, and others.

KEYWORDS | Algebraic codes; BCH codes; error-correction 

code (ECC); Flash memories; graph codes; LDPC codes; 

rewrite codes; WOM codes

I .  IN TRODUCTION

Nonvolatile memories (NVMs) are a class of computer 

memories that maintain the stored data even after being dis-

connected from a power supply. NVMs have many desirable 

properties that have made them frontrunners to replace con-

ventional hard-disk drives: they are faster, less power hungry, 

more flexible in form factor, amenable to random access, 
and not prone to heat-induced damages. As a result, NVMs 

are now being actively considered and designed for use in 

a diverse set of applications, including personal electronics 

and smart devices, autonomous vehicles, enterprise storage, 

and data-intensive high-performance computing. This surge 

in NVM development has not been without challenges; both 

established and emerging NVMs come with a unique set of 

operational issues that must be overcome before these tech-

nologies can be broadly deployed at low cost.
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Memories intrinsically suffer from various impairments, 

which steeply get worse in the high-density, fast access 

regime. It is indeed this stringent regime in which modern 

data-intensive applications operate—future NVMs will have 

to be robust, fast, and affordable if they are to deliver on the 

promise of new information technologies.

In this paper, we demonstrate the essential role channel 

coding techniques play in modern NVMs. We first summarize 
the key operational characteristics of NVMs, using Flash as the 

paragon. As we then show, understanding and appreciation of 

physical properties is mandatory for the proper development 

of new, mathematically deep yet practical coding solutions for 

future memories, in which physical impairments are bound 

to only get worse. By explicitly showcasing exciting recent 
advancements in coding theory specifically geared for the 
NVM applications, we highlight the enormous potential that 

tools from coding theory and related mathematical disciplines 

can have in the development of future, robust NVMs. These 

results build upon rich mathematical fields of combinatorics, 
abstract algebra, graph theory, and others, to offer rigorous yet 

elegant repertoire of both algebraic and graph codes.

In the next section, we describe the basic operating prin-

ciples of Flash memories and summarize the main sources 
of physical impairments. Section III reviews the fundamen-

tals of channel coding necessary to explain the concepts 
presented in subsequent sections. The next two sections are 
devoted to coding techniques for reliability. Section IV is 

devoted to algebraic coding techniques, both classical and 

recent. Section V considers graph codes, including conven-

tional methods and recent Flash-tailored advances. Moving 

beyond reliability, in Section VI, we discuss rewrite codes 

for improved access. Section VII delivers conclusions.

II .  F U NDA MEN TA LS OF OPER ATIONS 
IN FL A SH MEMOR IES

An atomic unit of a Flash memory is one memory cell. A 

memory cell corresponds to a transistor that has a control gate 

and a floating gate, separated by insulating layers. The value 
of data stored in a memory cell corresponds to the amount of 

charge on the floating gate. Flash technologies are classified as 
nanD Flash and nor Flash, corresponding to the logical nanD-

like and nor-like arrangement of the device, respectively. In 

nor Flash, cells can be accessed individually. In contrast, in 

nanD Flash, cells are accessed at the much coarser granular-

ity of pages. However, nanD Flash has a substantially lower 

cost than nor Flash and is thus more pervasive; we will hence-

forth primarily focus on nanD Flash. See Fig. 1 for a nanD cell 

illustration. In planar nanD Flash architectures, memory cells 

are organized into 2-D arrays. Cells are organized into pages, 
which are further combined into nanD-blocks.1

Thousands of nanD-blocks amount to one nanD device. For 

example, a 2-GB Flash device may consist of 2048 nanD-blocks  

with 64 pages per nanD-block, and 2112 B (bytes) per page; 

other combinations of pages/nanD-block sizes are also pos-

sible and they yield different overall device capacities. More 

recently, 3-D (vertical) nanD Flash has been developed, which 

has a more complex architecture due to the 3-D structure.
Write and erase operations on the cells are performed by 

applying a sufficiently high voltage to the control gate to alter 
the amount of charge on the floating gate, which in turn sets the 
cell’s threshold voltage. Depending on the direction in which 
the electrons flow, the cell is programmed (electrons flow 
toward the floating gate) or erased (electrons flow away from 
the floating gate). This process is known as Fowler–Nordheim 
tunneling [1]. The process of reading amounts to determin-

ing the amount of charge stored on the floating gate. During 
a read, an input voltage is applied to the control gate and the 

drain current is measured. If the drain current is below/above a 

certain threshold, as measured by a sense-amp comparator, we 

conclude that the input voltage is below/above the cell thresh-

old voltage representing the information stored. Therefore, 

a single-threshold scheme tells us whether the stored charge 

is below or above a certain level but does not tell us the exact 
amount of stored charge. The input voltage is applied to all 

cells in the page together, thus parallelizing the read operation. 
Placement of the threshold voltage need not be static; using 

tools from information and communications theory, recent 

work has demonstrated clear benefits of dynamically adjusted 
threshold voltages for improved lifetime [2].

Flash devices are commonly categorized by the num-

ber of bits memory cells can store. Single-level cell (SLC) 
devices store a single bit per cell; the SLC nomenclature 
comes from the fact that a single threshold is needed to 

distinguish the two ranges, corresponding to bit value “0” 
and bit value “1.” Multiple level cell (MLC) devices store 
multiple bits per cell, and multiple thresholds are needed to 

distinguish different levels. In the industry jargon, the MLC 
initials commonly refer specifically to two bits per cell. As 
somewhat of a misnomer, triple level cell (TLC) refers to 
a multilevel Flash device storing three bits per cell—here 

seven thresholds, not three, are needed to distinguish among 

eight ranges (one for each combination of a pair of adjacent 
binary triplets). The lowest level is the fully erased state and 

the highest level is the fully programmed state.

1The common terminology refers to nanD-blocks simply as “blocks,” 
but we reserve this term to denote a code block, the basic unit of coding.

Fig. 1. nand Flash array organization with a zoomed-in single 

cell. Read operation is performed by activating one word line 

(highlighted column).
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See Fig. 2 for an illustration of SLC, MLC, and TLC 
devices. Note that the differentiation among adjacent digi-
tal values shrinks as the density increases making it harder 

to distinguish among different values. The figure is also an 
idealized representation of memory cells, since the cells do 
not always behave in exactly the same way. The value of the 
threshold voltage reached when writing a certain informa-

tion value varies across cells, due to variations in cell behav-

ior. As a result, we observe a distribution associated with 

different cell levels. Modeling and parameterization of this 
difficult distribution requires a careful study that has been a 
subject of considerable recent research in industry and aca-

demia alike, including notable works [3]–[8], among others. 
See Fig. 3 for the illustration of the threshold voltage distri-

bution in the MLC case.
A critical property of nanD Flash is that the write opera-

tion by way of adding charge is executed at the page level, but 
the erase operation is done at the much coarser nanD-block 

level. Thus, in principle, if a value of a single cell is to be 

decremented, the entire nanD-block of cells this cell belongs 

to would also be erased and rewritten. Unfortunately, fre-

quent erases wear out the device to the point that it can 

no longer be used with confidence. The usable lifetime is 
typically expressed in terms of the number of program-
and-erase (P/E) operations that can be executed before the 
device is no longer considered reliable. It is well understood 

that the denser the device is, the fewer P/E cycles it can 

sustain before it is deemed unusable. For SLC devices, the 
expected lifetime is around   10   5   P/E cycles. For MLC devices 
storing two bits per cell, the lifetime drops to   10   4   P/E cycles, 

and with three bits per cell TLC memory, it drops even 
further to a mere   10   3   P/E cycles or even fewer [9], which 

in absence of sophisticated error management translates 

to only months of usable lifetime for frequently written 

devices. The P/E lifetime issue is further exacerbated by the 
reliability requirements: the raw bit error rate (BER) can 

be quite high, even as high as   10   −2  −  10   −1   [9], while the 

product specification requires the device to operate at the 
undetected BER (UBER) level of highly demanding   10   −16   

and even lower [10]. Wear leveling is employed in practice 
in order to carefully balance the number of P/E cycles across 

the nanD-blocks of the device to make the degradation more 

uniform. As the densities increase, managing wearout and 

impairments becomes an increasingly more daunting mis-

sion; fortunately, when equipped with proper error correc-

tion schemes, the task becomes much more manageable.

There are several intertwined causes of errors in read 

and write operations, which we summarize as follows.
Writing into cells is done by way of so-called incremen-

tal step pulse programming (ISPP) across a page of cells: a 

small amount of charge is repeatedly being added to each 

cell, cell values are read back to test if the target value is 

reached, and the next charge increment is added to those 
cells that still do not have the target values. ISPP is benefi-

cial as it minimizes the detrimental effects of overshooting 
(inadvertent addition of too much charge) that would result 

in a costly nanD-block erase. However, very small ISPP steps 

also significantly slow down the write process, especially in 
the multilevel memories. An additional issue with this write 

process is that adding charge into one cell may unintention-

ally raise the charge on the adjacent cell, with which the first 
cell shares a line. The worst scenario of intercell interfer-

ence with the ISPP is when a cell with low target level has its 

two neighbors programmed to high levels [11].

Even if a cell is correctly programmed, issues may arise 

during the read step. As the time passes since the initial pro-

gramming, the electrons slowly leak out of the floating gate, 
and when the cell is eventually read, the observed value is 

lower than what had originally been written. Additionally, as 

the device ages, the total amount of charge that can be stored 

in cell gates gets reduced because of worsening defects.

An intriguing and design-critical observation is that 

these write and read characteristics are highly asymmetric. 

For instance, charge leakage only causes errors in the down-

ward direction, and overshooting and intercell disturbs only 

cause errors in the upward direction. Additionally, inter-

cell coupling affects low levels more profoundly than high 

levels. Push for smaller geometries and increased densities 

has progressively worsened these impairments. Fortunately, 

new innovations in coding hold promise to help reverse this 

negative trend. Before we describe these advanced methods, 

we first review the basic terminology of channel coding.

Fig. 2. SLC, MLC, and TLC with digital information associated with 

the charge amount. Gray coding is used to label different levels 

thus minimizing the possibility of bit errors.

Fig. 3. MLC level distribution, with different reads.
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III .  ER ROR- COR R ECTION CODES 
IN TRODUCTION

In this section, we review some coding terminology necessary 

to understand the approaches described later in the paper. 

Error-correction codes (ECCs) are widely used in memories. 
ECC methods add a certain amount of redundancy to the 
input data prior to storing it on the medium in order to com-

bat adverse effects of noise and other device impairments. 

These methods can be broadly divided into algebraic and 

graph methods, depending on the key mathematical princi-

ples that underpin the given code construction.

The collection of possible codewords (stored words that 

bear redundancy) is called a code. Practical coding methods 

used in memories and storage devices store data in equally 

sized blocks: input message of length  k  symbols is mapped 

to a codeword of length  n  symbols, with  n > k . A code can 

be binary or nonbinary, depending on whether one symbol 

corresponds to just one bit or to multiple bits. Nonbinary 
codes are defined over finite fields that have cardinality  
that is a power of a prime. The representation with the 

number of different symbols, say  q , that is a power of 2 is  
particularly useful for multilevel Flash devices that store 

multiple bits per cell (and thus have the number of levels 

that are a power of 2).
Codes are typically linear, so that a code forms a  

 k -dimensional linear subspace in an  n -dimensional space, 

where  n  is the codeword length. The rate of a linear code 

is  k / n . In NVMs, as is the case with other storage devices, 

the rate should be close to 1 in order to minimize the stor-

age overhead associated with redundancy. Linearity allows 

for a compact representation of the code. A linear code can 

be represented both via a generator matrix and via a par-

ity-check matrix. The former has rows that span the range 
space of the code and the latter has rows that span the null 

space of the code. Alternatively, the rows of the parity check 

matrix can be viewed as parity-check equations that each 
codeword in the code must satisfy. As we describe in more 

details later, the parity-check matrix viewpoint is especially 
well suited for graph codes. In the case of algebraic codes, 

depending on the details of the construction, interpretation 

in terms of one of the two matrices can be more convenient.

The product of a codeword with the parity-check matrix 
always produces the all-zeros vector. The product of any 
other word that is not a codeword with the parity check 

matrix produces a vector which is strictly nonzero. We refer 
to the output of the product of a word of length  n  and the 

parity check matrix as the syndrome of the word. In prin-

ciple, exponentially many words have the same syndrome. 
Syndromes are often used in the decoding of algebraic codes.

The minimum Hamming distance   d min    of a code is 

the smallest number of positions in which two distinct 

codewords differ. In the canonical setting, the parameter 

 t = ⌊(  d min   − 1 )  / 2⌋  is the measure of how many errors can 

be corrected. Classical coding techniques are typically char-

acterized in terms of how many errors  t  can be corrected 

[12]—for given code parameters  k  and  n , one typically seeks 

to maximize the minimum distance of a code. It is an oft-
overlooked fact that these well-studied techniques implic-

itly assume that the errors are equally likely and symmetric. 

As we described, modern NVMs possess a large amount of 

asymmetry; shoe-horning an existing channel code into the 
NVM model is bound to be grossly inefficient. We discuss 
many of the recent coding proposals that explicitly depart 
from this ineffective approach, but first we summarize early 
coding solutions for older NVMs wherein conventional cod-

ing tools were deemed adequate.

I V.  ER ROR COR R ECTION W ITH 
A LGEBR A IC CODES

A. Classical Codes: From Hamming to BCH and 
Reed–Solomon

Early NVM technologies only required mild error-cor-

rection capabilities for which Hamming codes were suffi-

cient [13]. Hamming codes are one of the simplest coding 

methods, characterized by a parity-check matrix whose 
columns are all the nonzero binary tuples of a particular 
length. Hamming codes are single-error-correcting codes 

since any error pattern with exactly one nonzero symbol can 
be corrected. However, as the devices scaled down and area 

density increased, reliability constraints became more strin-

gent, and the need for more sophisticated coding methods 

soon followed.

Bose–Chaudhuri–Hocquenghem (BCH) codes are a 
well-known class of linear algebraic codes that emerged 

as the coding solution of choice for early Flash memories 

[14]. BCH codes—and Reed–Solomon codes as their spe-

cial case—were already popular in commercial data storage 

technologies (e.g., hard-disk drives) and were well under-

stood by memory designers.

BCH codes can be viewed as a generalization of 
Hamming codes. Like Hamming codes, they are linear 

block codes with a well-defined structure. Unlike Hamming 
codes, they can be constructed to correct multiple errors. 

This is done by simply constructing a parity-check matrix of 
a code as an array of elements from an appropriately chosen 

finite field, using well-established rules from conventional 
algebraic coding theory [12]. BCH codes have the guaran-

teed error-correction property that memory designers favor: 

one can explicitly design a code capable of correcting all pat-
terns with up to a prescribed number of errors.

A BCH code is also an instance of a cyclic code, wherein 
a cyclic shift of a codeword produces another codeword. 

This viewpoint is helpful for encoding, as each codeword 

is then represented as a product of the message polynomial  

(a polynomial with message symbols as coefficients) with 
the generator polynomial defining the code. The coeffi-

cients of the resulting polynomial are then symbols of the 

produced codeword.
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Decoding is a more difficult task as it amounts to several 
nontrivial steps. First, one computes the syndrome associ-

ated with the given retrieved word. Based on this syndrome, 

one then seeks to find the most likely error pattern that has 
this syndrome. Exhaustively searching for the most likely 
error pattern with a given syndrome is completely impracti-

cal. What is done instead for BCH codes is the construction 
of an auxiliary polynomial, called error-locator polynomial, 
whose roots are precisely the locations of the erroneous 

symbols. Once the positions of the errors are identified, 
error values at these locations are computed. Construction 
of the error-locator polynomial is routinely done via the 

Berlekamp–Massey algorithm, and computation of the val-
ues of erroneous symbols is done using Chien search [12].

Practical decoder implementations must always strike 

a careful balance between additional coding gain enabled 

by more powerful codes and the increased resource con-

sumption caused by additional decoding circuitry. In the 

common regime of using high-rate codes, the complexity 
is, in general, manageable because the number of corrected 

errors is not too large. Several recent works have specifically 
addressed this question in the context of BCH decoders for 
Flash memories, relying on the techniques of partial paral-

lelization and pipelining, e.g., [15]. In general, the slowest 
step in BCH decoding is the Chien search, which is typi-
cally done in parallel to improve the decoding throughput. 

However, a parallelized solution also incurs additional hard-

ware complexity and energy consumption—recent archi-
tectural approaches geared toward NVM applications have 

been developed to reduce the area consumption of the par-

allel Chien search by removing redundant operations [16], 
further combined with more informative scheduling [17], 

and by formulating Chien search as a matrix multiplication 
for faster search [18], [19].

We also remark that an additional benefit of BCH codes 
in the context of NVMs is that they intrinsically have a rate-
compatibility feature: a parity-check matrix of a BCH code 
correcting   t 1    errors is a submatrix of a BCH code correcting   
t 2    errors, for    t 1   <  t 2   . In other words, for the same code 

length   n , a    t 2   -error correcting BCH code    � 2    is a subcode 

of a    t 1   -error-correcting BCH code     1   . Alternatively, from 

the encoder’s perspective, since BCH codes are cyclic codes,    
 2    can be constructed from     1    by adding monomial terms 

to the generator polynomial of     1   . (For theoretical details, 

see [12].)
As discussed in Section II, NVMs are highly susceptible 

to wearout. The noise worsens over time, requiring more 

redundancy in the code to deal with higher rate of errors. 

One way of addressing this issue is by using rate-compatible 

codes, with a high-rate code deployed in the early part of the 

lifetime, and a lower rate code in the latter part. Seamlessly 

switching to progressively more powerful codes is relatively 

easy with the BCH setup because it simply amounts to intro-

ducing additional parity-check symbols over what had already 

been stored with respect to a codeword of the initial code.

BCH codes are a prime exemplar of what the conven-

tional coding theory offers: powerful error-correction 

schemes intrinsically designed to deal with symmetric 

errors wherein the ability to correct an error pattern only 

depends on the number of symbol errors in it, and not on 

how the symbols change by the errors. However, as we 

discussed in the previous section, error patterns arising in 

modern NVMs are far from symmetric. This observation 

has motivated intense recent research activity that explicitly 
departs from the conventional code design for symmetric 

errors. We now discuss how several recently proposed cod-

ing approaches have addressed the operational properties of 

NVMs, and have also led to a new chapter of fundamental 

advances in coding theory.

We choose to survey two algebraic coding schemes that 

are the most convenient to deploy, because they can use 

existing coding modules (e.g., from BCH codes) as their 
main building blocks complexity-wise.

B. Algebraic Codes for NVM Error Models

A central characteristic of multilevel NVM channels 

is that the incident errors are structured rather than sym-

metric. The structure of the errors stems from the electric 

and algorithmic features of the write and read processes. 

For example, the representation of data as  q  discrete charge 

levels makes an error more likely between adjacent lev-

els than between far-apart levels. Such error structure is 

not addressed by classical codes such as BCH and Reed–
Solomon, which are designed for symmetric errors. It is still 

possible to use symmetric error correcting codes for nonsym-

metric errors, but this use is highly suboptimal because the 

codes need to cover error events strictly worse than actually 

needed at likely operation. For example, a common tech-

nique in practice is to implement a gray mapping between  

q -ary charge levels and tuples of   log 2   q  bits (cf., Fig. 2). 
With this mapping, a  q -ary error between nearby levels 

translates to a binary error in a small number of bits. But 

even with this desired property, a binary code correcting the 

resulting bit errors is required to correct more errors than 

really needed, thus unjustly adding to the redundancy cost. 
For example, consider the simple binary reflected gray code 
on 3 b, corresponding to  q = 8  levels. In this mapping, we 
map the levels  (0, 1, 2, 3, 4, 5, 6, 7 )  to the bit tuples  (000, 0
01, 011, 010, 110, 111, 110, 100 ) . To see that this is a subop-

timal mapping, we observe that the transitions  0 ↔ 3  are 

single-bit errors exactly like the transitions  0 ↔ 1 , even 

though the former are much less likely in a realistic memory 

channel. In the rest of this section, we describe two cod-

ing schemes that better capture the structure of multilevel 

NVM channels. In these promising alternatives, we still use 

known symmetric error-correcting algebraic codes, but in a 

clever way to maximize the coverage of the error patterns 
of interest. The schemes rely on the celebrated concept of 

code concatenation [20] developed for communication 
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applications, while specializing and refining to best match 
deployment in Flash and other NVMs. Code concatenation 
is a powerful technique that combines two codes, wherein 

codewords of the inner code are symbols in the alphabet 

over which the outer code is defined. The two schemes in 
discussion are distinct and complementary: the first one is 
especially tailored to NVMs where coding is done directly 

over the nonbinary cells; the second one better fits gray-
mapped memories composing a cell level as multiple bits.

1) Codes for Errors With Magnitude Limit: Suppose that 

our memory has   q = 8  levels, and that a common error 
mechanism changes a desired level   x  to level   x − 1 . This 

error type is called asymmetric errors with magnitude 1. 

One possible source for such errors is retention errors [21], 
whereby charges gradually escape the cells when they are 

not rewritten or refreshed for a long period of time. A com-

plete analog of this error model takes effect when level  x  

changes to  x + 1 , which can happen for example when the 
programmed level (irreversibly) overshoots above the level 

requested in a cell write, or due to disturbs from other 

cells’ writes. We note that it is not required that all errors 

be asymmetric errors with magnitude 1; treating this error 

model is beneficial even when other secondary error sources 
are active alongside of it. Moreover, codes similar to what 

we next describe can also be constructed for two-directional 
errors  x ± 1 , and with error magnitudes greater than 1.

To start the discussion on coding for asymmetric 

errors of magnitude 1, it will be instructive to consider the 

extreme case where all cells in the word may experience an  
x + 1  error. It is clear that the best solution to this case is 

to “give up” one of the three bits in each cell, and use only 
half of the  q = 8  levels, for example, all the even levels  
{ 0, 2, 4, 6}  [22]. When the errors are less intensive we do 
not want to lose an entire bit per cell, and instead do the 

following [23]. We write a page of  n  cells as  3n  bits with the 

restriction that the  n  bits of the lower significance belong 
to the binary code BCH1 that corrects  t  bit errors. This 

procedure is depicted in Fig. 4(a), where the shaded area 
represents the parity bits of BCH1. Note that the other two 
rows in the  n  cells of Fig. 4(a) are stored uncoded. At read 
time, we obtain the bits of the coded  n -bit row, and use 

the decoder of BCH1 to locate the errors, but not to cor-

rect them as bit errors. Instead, in each error location we 

reverse the error by subtracting 1 from the read 8-ary level. 
It is clear that this scheme can correct up to  t  asymmetric 

errors of magnitude 1. It borrows all the good properties of 

BCH codes for symmetric errors, while exhibiting several 
optimality features for the target error model [23].

In contrast, an alternative scheme for the same error 

model maps to each 8-ary cell level 3 b using a gray code. 
Applying a  t -error binary code BCH2 to the  3n  bits, shown 

in Fig. 4(b), also guarantees correction of  t  asymmet-

ric errors of magnitude 1. However, the number of parity  

bits required for this alternative scheme is larger by roughly  

t  log 2   (3 )  ≈ 1 . 58t , which amounts to significantly increased 

redundancy when  t  is moderate to high. Beyond this specific 
example, the presented scheme can use any code for sym-

metric errors, not necessarily a BCH code. In addition, it 
can be extended to any  q , any error magnitude  l , and other 

error models with structure [23]–[26].
As the memory technology scales in density, we expect 

the low-magnitude errors to become more frequent and 

dominant. In the regime of moderate to high rates of low-

magnitude errors, the scheme detailed previously in the sec-

tion may not be the most efficient, because symmetric-error 
codes for large  t  are expensive to implement. We show that 
in this case the best approach works quite differently than 

previous coding schemes for such errors. Given a block of  n  

cells with  q  levels, where  n  may be smaller than the memory 

page size, we encode the data such that the block does not 
contain cells with consecutive levels in  { 0, …, q − 1} . For 
example, if the block has a cell with level 3, then it cannot 
have any cell with levels 2 or 4. Another block may have a 
cell with level 4, but then it cannot have cells with 3 or 5. 
The key in this encoding is that its knowledge by the decoder 

can help to efficiently correct a large number of asymmet-
ric errors with magnitude 1. Not less importantly, for finite 
block lengths  n , this encoding is much less redundant than 

the encoding that uses only half of the levels  { 0, 2, 4, …} . 
A coding scheme based on this idea was suggested with 

the name nonconsecutive constraint (NCC) [27], and was 
shown to have the best error correction given the expended 
redundancy. This can be seen in Fig. 5 showing the output 

symbol-error rate (output SER) as a function of the input 

symbol-error rate (input SER). It is seen that other coding 

alternatives with the same code rate have inferior perfor-

mance. The plot with  +  markers shows the performance of 

the coding scheme depicted in Fig. 4(a), using a constitu-

ent BCH code, and the one with  ⋄  markers shows it for the 

even/odd code that restricts the  n  levels to be all even or 

all odd. Conveniently, the NCC can control the tradeoff of 
rate versus correction capability by merely changing the 

codeword length  n : a small  n  gives high rate and weak error 

correction, and as  n  grows the error correction improves 

and the rate decreases. Overall the significant reduction in 

Fig. 4. Encoding strategies for correcting asymmetric magnitude-1 

errors in a memory with  q = 8  levels. (a) A code designed for 

asymmetric magnitude-1 errors. (b) A binary gray-mapped code. 

Both codes are based on BCH codes, but (a) requires fewer parity 

bits than (b).
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SER from input to output by the NCC code allows clean-

ing up the remaining symbol errors (together with errors 

from other types) by a reasonable-strength outer code, e.g., 

a binary graph code, to be discussed shortly.

2) Tensor-Product Codes (TPCs) for Heterogeneous 
Errors: Another promising example of carefully exploiting 
BCH-like codes for errors of special characteristics reported 
in the literature [28], [29] is given by the TPCs [30], which 
have the intrinsic capability of incorporating fine-grained 
knowledge of the error patterns.

To motivate this discussion, let us consider the fol-

lowing example for  q = 8  levels representing 3 b (TLC 
Flash): Data are stored in triplets (each triplet corresponds 
to one triple-level cell.) For five TLC cells, let us say that  
(100, 110, 000, 000, 010 )  is stored. We read back the block  
(100, 100, 000, 011, 011 ) . The binary difference (xor) is  

(000, 010, 000, 011, 001 ) .
We could consider each triplet a symbol, observe that 

there are three symbol errors, and thus seek a code cor-

recting at least three symbol errors. However, this is not a 

sufficiently refined definition: note that the majority of the 
erroneous triplets only contain 1 b in error (as indeed would 

be the case in Flash). This observation is not considered by 

symmetric ECCs, such as nonbinary BCH codes. A more 
efficient code must exploit this notion, correcting a certain 
number of erroneous triplets with few bits in error and a 

much smaller number of erroneous triplets with many bits 

in error. TPCs offer precisely this added efficiency.
Mathematically speaking, the baseline TPCs (from [30]) 

are expressed as a particular type of concatenation: their 
parity-check matrix  H  is itself a tensor product (hence the 

name) of a parity-check matrix  A  of a nonbinary code     A    

with a parity-check matrix  B  of a binary code    B   , denoted  

H = [ A ⊗ B ] . In the context of multilevel Flash memories, 

the code length of    A    corresponds to the number of memory 

cells and the code length of    B    corresponds to the number 

of bits per each cell. This construction then allows for con-

trolling the error-correction capability simultaneously over 

cells and over bits per each cell, that is, we aim to correct a 

certain number of erroneous cells, and for each erroneous 

cell, we correct a certain (small) number of erroneous bits.

Flash-motivated extension of this construction was 
developed in [31], where the parity-check matrix  H  was 

built out of four constituent binary/nonbinary parity-check 

matrices, in order to also accommodate rarer, larger weight 

errors, which the original construction is too rigid to han-

dle. The resultant parity check matrix is then  H =  [ 
A ⊗ B

  
C ⊗ D

 ]  . 

Binary matrices  B  and  D  control the number of correctable 

erroneous bits per erroneous cell, and nonbinary matrices  

A  and  C  (over appropriately defined finite fields) control 
the number of correctable symbol errors that have a pre-

scribed number of bit errors; for example, we can construct 
a code that corrects   t 1    symbol errors each flipping at most   
ℓ 1    bits and   t 2    symbol errors each flipping at most   ℓ 2    bits; 

the regime with   t 1   > >  t 2    and   ℓ 1   <  ℓ 2    is of interest in Flash. 

Observe that this specification defines the error-correction 
capability of a code in a much more precise way than what 

is allowed by the conventional  t -error correcting moniker. 

In the context of the example above, we could parameterize 
the error pattern  (000, 010, 000, 011, 001 )  via   t 1   = 2,  t 2   = 1,  

ℓ 1   = 1 , and   ℓ 2   = 3 .

It was shown in [31] on real experimental data that this 
tensor-product construction with four constituent matrices 

chosen in a way that mimics the Flash behavior, leads to life-

time increase of at least 40%. Even further, the resultant TPC 
has two highly desirable features from the implementation 

standpoint: the guaranteed error correction (with respect to 

the more finely specified error patterns), and low-complex-

ity encoding and decoding algorithms. The latter property is 

a consequence of the fact that the proposed TPCs are built 
from simple symmetric ECCs. Fig. 6 shows performance 
results of applying TPCs from [31] to TLC Flash. The codes 
are all of length 4096 and have rate 0.86. It is especially 
interesting to point out that the TPC construction outper-

forms not only good nonbinary and binary BCH codes, the 
latter derived by using the same code over the three pages, 

but that it also outperforms the best combination of three 

BCH codes, one for each page, where BCH codes with dif-
ferent error correction capabilities are assigned to different 

pages—while the other three codes hit error rates of   10   −6   

and higher much earlier, TPCs offer excellent reliability 
the longest (i.e., no errors were observed). This is precisely 

because TPC can correct certain error patterns spanning 
multiple bits per cell with less redundancy than three paral-

lel codes can. Tensor-product constructions can be further 

customized for Flash. For example, a simple transformation 
of the tensor-product operation allows for limited program-

ming into certain cells [32]. This operation is particularly 

Fig. 5. Correcting many asymmetric errors of magnitude 1: 

comparison between three coding schemes with equal code rate, 

set to 0.77.
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beneficial for Flash memories that have a small number of 
defective cells, which can needlessly consume a dispropor-

tionate amount of error correction.

The codes we showed for limited-magnitude errors ear-

lier in this section can also be combined into the flexible 
tensor-product construction of the latter part. A similar 

graded error-correction profile can be obtained where   ℓ 1    

and   ℓ 2    represent other types of errors besides symmetric bit 

errors.

C. Additional Promising Algebraic-Coding Schemes

We now briefly comment on other algebraic methods 
that have shown promise over the baseline BCH codes. The 
majority of these works are on the exploration of appropri-
ate combinations of known coding tools, using to a large 

extent idealized channel assumptions, and not explicitly 
focusing on the code design tailored specifically for asym-

metric Flash.

Code concatenation is a powerful technique exploited 
in the two memory codes we previously described. Other 

approaches of a related flavor include the following. Product 
code refers to a construction based on two constituent codes   

 1    and    2    such that each row of the resultant code is a code-

word of    1    and each column of the resultant code is a code-

word of    2   . An attractive feature of a product code is that its 

minimum distance is the product of the minimum distances 

of the two constituent codes, and that it has an efficient 
iterative row/column decoder that can correct with high 

probability many more errors than half the minimum dis-

tance [12]. One of the first results on the product codes for 
Flash is the work in [33], which demonstrated via simula-

tions on a synthetic channel the potential gains over a plain 

BCH-coded scheme when a two-step coding is employed: a 
BCH code is used across rows and a simple Hamming code 
is used across columns in a way that more error patterns of 

interest can be corrected relative to the uninformed BCH 
code. The architecture proposed in [33] also allows for par-

allel processing of multiple codewords, thus reducing the 

overall latency. Additional progress on concatenated BCH 
codes was made in [34], which also exploited the property 
that a combination of weaker, shorter (and hence cheaper) 

BCH codes is competitive with one stronger, longer (and 
thus more expensive) BCH code. Another interesting twist 
on product codes was recently explored in [35], where 
it was shown that so-called half product codes have bet-

ter minimum distance properties than their (full) product 

counterparts.

Complementing theoretical investigations on BCH-
enhanced designs, several recent works and industry pat-

ents have explored performance benefits and implementa-

tion issues of concatenated/product codes in the context of 
Flash [36]–[38], although likely primarily in the idealized 
settings.

Intracell variability can also be exploited by trellis coded 
modulation (TCM) [39], another idea from classical commu-

nications theory—TCM limits the magnitude of errors in a 
way that is relevant in Flash [40]. Benefits of the BCH–TCM 
concatenated schemes over the baseline Reed–Solomon/
BCH-coded system were demonstrated in [41]–[44]. Since 
TCM requires some amount of redundancy, concatenated 
schemes with a TCM component could be of interest in 
Flash architectures that permit additional threshold levels 

and can tolerate rate loss incurred by the TCM component.
Even with the implicit emphasis on the symmetric noise 

model, these coding techniques already demonstrate poten-

tial in NVM applications; a compelling open research ques-

tion is how to best utilize them in the channel-aware way.
Building upon the results presented in this section, we 

summarize the properties of classical and modern algebraic 
codes in Fig. 7.

V. ER ROR COR R ECTION W ITH GR A PH 
CODES

A. Classical Graph Codes: LDPC Codes and Iterative 
Decoding

Like previously discussed algebraic codes, low-density 

parity-check (LDPC) codes are also linear block codes. They 
can also be binary or nonbinary, depending on whether the 

information is organized in bits or in symbols. LDPC codes 
are described by a sparse parity-check matrix, hence the 
“low-density” adjective. It is especially convenient to view 
an LDPC code as a bipartite graph where one set of nodes, 
called variable nodes, corresponds to the columns of the 

parity-check matrix, and the other set of nodes, called check 
nodes, corresponds to the rows of the parity-check matrix. An 
edge between a variable node and a check node exists if and 
only if the corresponding entry in the parity-check matrix is 
nonzero. Concretely, an edge between variable-node  i  and 

Fig. 6. Simulation results showing the benefits of using graded-bit  

ECCs in Flash. MSB/CSB/LSB refers to most significant/center 

significant/least significant bits. Figure derived based on results 

from [31].
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check-node  j  marks that the  i th code symbol participates in 

the  j th linear check equation of the code.

In the binary case, the parity-check matrix is the adja-

cency matrix of this bipartite graph. In the nonbinary (i.e.,  
q -ary) case, each nonzero entry in the parity-check matrix 
is a nonzero element of a Galois finite field GF (q ) , and the 

corresponding edge in the bipartite representation of the 

code has this nonzero value as its label. The sparse graphi-
cal representation of the code enables low-complexity itera-

tive decoding algorithms, executed as a series of message-
passing steps alternating between the set of variable and the 

set of check nodes. The exchanged messages are proxies of 
the likelihoods of the values of the variable nodes; in prac-

tice, computations are performed in a transformed domain 

and the messages represent log-likelihood ratios (LLRs). 

Message exchange terminates when all the checks are satis-

fied in the sense that the linear equations associated with 
them hold. NVM channels are especially natural for repre-

senting the code symbols as  q -ary symbols, which calls for 

the use of  q -ary LDPC codes. It is generally understood that  
q -ary LDPC codes offer significant performance benefits 
over their binary counterparts, at the expense of substan-

tially increased decoder complexity.
Owing to their excellent performance, LDPC codes 

have already found phenomenal success in many modern 

data transmission applications. It is thus not a surprise that 

LDPC codes are actively being considered in modern NVMs 
as well, with a number of industry-based patents recently 

issued on this topic; see, e.g., [45]–[49], wherein the focus 
has mostly been on binary LDPC codes.

LDPC codes offer most benefits when decoded using 
real-valued LLRs, i.e., with the initialization and the mes-

sages expressed in full precision. However, read informa-

tion about Flash channels is obtained through a sense amp 

that can only report whether the threshold voltage of a cell 

is below or above some value, information that is intrinsi-

cally discrete (see also Section II). As a result, the channel 

that the LDPC decoder sees is inevitably discrete. A non-

trivial question then is where to place threshold voltages 

as a function of the number of available reads in order to 

maximize the utility of memory devices; see also Fig. 3. 
One mathematically precise yet intuitive idea is to assign 

threshold voltages exactly in the way that would maximize 
mutual information between the input and the output of 

the induced discretized channel [50]. Placement of thresh-

old voltages is also important for the code design. As we dis-

cuss next, code design and optimization critically depend 
on proper channel modeling.

B. Graph Codes for NVM Error Models

LDPC codes are very powerful ECCs because they mimic 
Shannon-optimal random codes, with the added feature of 

low-complexity decoding. They have also been around for 
sufficient time so that their design for classical channels has 
been nicely perfected by a massive body of research. Despite 
this favorable state of matters, the application of LDPC codes 
to NVMs motivates interesting new fundamental research. 

NVM distinctive error models and unique operation modes 

necessitate the enrichment of the constructive toolbox 
for LDPC codes, and also their analysis. Nonbinary LDPC 
codes are ideally suited for multilevel memories. We thus 

focus in this section on two promising directions for NVM 

LDPC codes: one is their finite-length design of nonbinary 
codes optimized for common error types, and another is the 
design of nonbinary codes optimized to the multibit struc-

ture of the Flash MLC/TLC architectures. Other interesting 
avenues are discussed in the next section.

Fig. 7. Summary of main algebraic codes and their key properties in the context of NVMs. Advantages are highlighted in green and 

disadvantages in red.
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1) Finite-Length Code Design for NVM Errors: It is well 

known that practical LDPC codes, both binary and nonbi-
nary, suffer from the so-called “error floor,” manifested as a 
failure of the code to lower the output error rate sufficiently 
when the input error rate is very low [51]. This undesirable 

behavior is especially problematic for modern Flash devices 

as the flooring effect prevents the system from meeting 
target reliability constraints; see the schematic in Fig. 8. 
Here RBER denotes raw bit error rate and Dec. Error Rate 
denotes residual errors after LDPC decoding. The unwanted 
error-floor effect is due to the fact that the low-complexity 
iterative decoding algorithm operates on the LDPC bipartite 
graph which inevitably has cycles. (We quickly remark that 

this issue vanishes in the infinite block-length regime where 
one assumes that the bipartite graph is essentially cycle free. 

In this regime, the elegant theory of density evolution offers 

crisp code performance characterization [52]. This theory 
critically depends on the cycle-free assumption and is not 

directly useful in the finite-length setting.)
The issue of the error floor is particularly problematic 

for applications that need to operate under stringent con-

straints on reliability, including modern NVMs. Extensive 
prior work was performed on the analysis of the LDPC error 
floor, implicitly assuming the transmission over a symmetric 
channel. Trapping/absorbing sets is the terminology (e.g., 

[51] and  [53]–[55]) adopted in the coding literature used 
to refer to combinatorial objects that exist in the bipartite 
representation of the code that trick the iterative decoder 

into making decoding errors. Trapping sets encompass con-

vergence to noncodewords and oscillations among different 

configurations [51]. Typically, oscillation errors can be sup-

pressed with a more informed quantization scheme [56]. 
The definition of the absorbing sets [55] is purely combina-

torial and it refers to objects that are fixed points of certain 
practical decoders, notably including detrimental noncode-

words. These configurations are locally consistent (from a 
vantage point of an individual node) but are not necessarily 

globally consistent in the sense that they need not produce 

a codeword. As a result, during the decoding, some of the 

checks remain unsatisfied despite repeated iterations of the 

message-passing decoder. The configurations are typically 
characterized by a certain number of variable nodes  a  con-

nected to a certain number  b  of unsatisfied checks; a code-

word is a special case of such a configuration with  b = 0 .
Intriguingly, it is often the case that absorbing sets with 

small  a  and with  b ≠ 0  cause decoding errors in iteratively-
decoded LDPC codes—that is, there exist problematic 
configurations with weight less than the code minimum 
distance. In other words, in contrast to traditional coding 

theory principles, quantifying the goodness of a code in 

terms of distances between codewords is insufficient in the 
case of iteratively decoded graph codes.

As argued before, NVM channels fundamentally dif-

fer from their oft-utilized symmetric counterparts, further 
complicating LDPC code optimization techniques. Despite 
a common practice of using AWGN-optimized LDPC codes 
on a Flash channel, the approach is grossly inadequate. The 

reason for this rests with a closer investigation of prob-

lematic objects for the two types of channels. The type of 
absorbing sets causing decoding errors and in turn the pesky 

error floor is significantly different for the two channels. For 
example, for AWGN-like channels, due to noise symmetry, 
dominant absorbing sets are those that have a small number 

of variable nodes  a , and for each such variable node, there 

are more satisfied than unsatisfied neighboring check nodes. 
In contrast, for Flash-like channels, due to asymmetry, cat-

egorization of absorbing sets into problematic and nonprob-

lematic is topologically more subtle [57]. As a result, code 

optimization focused on the removal of AWGN-detrimental 
structures is essentially useless if the code is to be used over 

the highly asymmetric Flash channel. Fortunately, as in the 

case of algebraic codes, substantial gains can be made once 

the code is designed in a way that is cognizant of the channel 
characteristics, as we illustrate in Fig. 9, where we plot raw 

BER (RBER) against “decoded” BER (DBER); the latter is 
the error rate after the decoding step.

In this example, based on construction from [58] we use 
an instance of widely popular quasi-cyclic designs, which are 

known to offer implementation-friendly, circulant-based 

Fig. 8. Typical performance plot of unoptimized LDPC codes.

Fig. 9. Benefits of channel-aware LDPC code optimization on a 

realistic MLC Flash channel model.
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structure of the parity check matrix. Since the target appli-
cation is MLC Flash, the codes are nonbinary and are 
defined over the finite field of size 4. Additionally, they have 
rate 0.9, length 4000 b, and variable-node degree equal to 3. 
Without any further channel-aware optimization, the per-

formance is as shown by the top curve (in blue).

A promising technique for nonbinary code optimiza-

tion consists of two steps. First, choose the ordering of the 

constituent circulants in the parity-check matrix to mini-
mize the number of possible detrimental configurations 
in the bipartite representation of the code. Second, assign 

edge labels (from the finite field of size 4 in this example) 
to ensure the nonexistence of detrimental configurations. 
This technique is attractive as it results in a design that pre-

serves all desirable code properties (length, rate, circulant 

organization of the parity check matrix, node degree regu-

larity), and moreover can be described in crisp combinato-

rial terms—recently developed frameworks [59] and [57] 

are based on succinct linear-algebraic description of the 

absorbing set, so that the provable elimination of possibly 

numerous instances of the detrimental structure can be 

achieved by controlling the null space of one simple matrix. 
As a result, the optimization protocol is highly computation-

ally efficient, systematic, and can at once produce a whole 
family of parity check matrices with the desired properties. 

In fact, mathematical characterization of absorbing set/trap-

ping set topologies is more tractable for codes with lower 

variable node degree [60], [61]. The codes that have high 
rate—the rate regime in which NVMs need to operate—

imply low variable node degree, thereby making combina-

torial optimization of graph codes aimed at handling bad 
configurations especially well suited for NVM applications.

Even with a fast optimization algorithm in place, the key 
question to answer is what configurations one should opti-
mize for. The answer is highly channel dependent and the 
more the channel differs from the AWGN setting, the more 
diverse the problematic objects are relative to their AWGN 
counterparts. In the context of our example, optimizing this 
code by only removing absorbing sets that are problematic 

in the AWGN setting results in the middle curve of Fig. 9 
(in black), which roughly corresponds to the elimination of 

sets with ( a , b ) parameters being (4,2) or (4,4). This offers 
only modest improvements on the Flash channel (modeling 

akin to [4]), whereas optimization that removes a broader 
collection of objects that are truly problematic in the Flash 
domain gives the lowest curve (in red), which reflects 
order of magnitude improvement while maintaining all 

other structural code properties. This optimization targets 
absorbing sets with ( a , b ) parameters with  4 ≤ a ≤ 7  and  

1 ≤ b ≤ 4 . Combinatorial strategies for the removal of 
problematic configurations in the nonbinary domain are 
substantially more involved than in the binary case; they are 

discussed in [57].

Beyond effective performance-improvement tools for 

accepted code constructions, NVM coding performance 

can greatly benefit from tools that illuminate the underly-

ing constructive considerations. We next show, using a new 
theoretical framework, how  q -ary LDPC codes should be 
designed when the multibit structure of a  q -ary channel is 

explicitly taken into account.
2) Nonbinary Codes With Multibit Structure: Deeply 

ingrained in the Flash architecture is the duality of binary 

logical pages stored on  q  -ary physical pages. A common 

choice by SSD vendors is to map   log 2   q  binary logical pages—

for example, three pages in  q = 8  TLC—to a single page of  
q -ary cells. The main motivation is access benefits: allow-

ing lower latency access to a logical page before the physical 

cells are fully read. This is possible because the unit of bit is 

naturally expressed in the physical processes, for example, a 
read primitive that returns a bit of information comparing a 

cell threshold level to a reference value. However, even in 

the presence of smart gray-like mappings, we lose in error-

correction efficiency when employing a binary code for each 
logical page individually. As was the case in Section IV-B for 

algebraic codes, ignoring the features of the  q -ary channel in 

code design is suboptimal and inefficient. We instead want 
to deploy the code on the  q -ary physical page, but in a way 

that considers the underlying bit structure of the physical 

processes. In other words, we want to design LDPC codes 
that are defined over  q -ary alphabets, but designed for chan-

nels preserving the bit-structure of the read/write processes. 

This will offer improvement over the known approaches of 

either 1) use a  q -ary LDPC code designed for symmetric 
errors; or 2) use a hierarchy of binary LDPC codes through 
the concept of multilevel coding [62]. The key is that the 
new approach gets the best of both worlds: it enjoys the 
inherent advantage of  q -ary LDPC codes, and it optimizes 
the code design to the true underlying channel.

Making progress with design of LDPC codes for NVM 
channel models is most promising by first defining new 
erasure models corresponding to the channel errors. This 

has been the case with binary LDPC codes, for which perfor-

mance analysis over the binary erasure channel (BEC) con-

tributed most insights and design practices [63]. The analog 

of an erasure in our case is a partial erasure, which repre-

sents a read where the cell level is not fully resolved but also 

not completely unknown [64]. Given that a cell level can be 
any symbol in the set    = { 0, 1, …, q − 1} , a partial eras-

ure is a subset of    whose contents are the possible levels 

for that cell after the read. A subset of size  q  represents the 

standard  q -ary (full) erasure, and a subset of size 1 represents 
the no-erasure case where the cell level is perfectly known. 

All subset sizes in between those two extremes are the par-

tial erasures we find useful in our code design. Note that a 
partial erasure is a useful proxy for a structured  q -ary error, 

similarly to a full  q -ary erasure being a good proxy for sym-

metric  q -ary errors. To model error channels with a multibit 

structure, we consider the following definition of a partial-
erasure channel, which we call here  q  -ary multi-bit eras-

ure channel [65]. Let  q =  2   s  , where  s  is the number of bits  
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mapped to each cell level. For convenience, let us take 

the special case of  q = 8  and  s = 3  (TLC). Suppose that 
a cell has the level  x = 0  stored in it. Then, the channel 
output  y  is either  { 0}  representing perfect readout, or  { 0, 1}   
representing a partial erasure missing the least significant 
bit of  x , or  { 0, 1, 2, 3}  representing a partial erasure missing 
the two lower bits, or  { 0, 1, …, 7}  representing a full eras-

ure missing all three bits. We get  { 0, 1}  with probability  
  ϵ 1   ,  { 0, 1, 2, 3}  with probability   ϵ 2   ,  { 0, 1, …, 7}  with probability   
ϵ 3   , and  { 0}  with probability  1 −  ϵ 1   −  ϵ 2   −  ϵ 3   . Note that this 

is a generalization of the symmetric case that can accom-

modate the variable reliabilities among the three bits. In 

particular, it captures the property of the  q -ary channel that 

a given error magnitude affects all bits from some signifi-

cance level and downward. To combat real NVM errors we 

will set values of   ϵ 1   ,  ϵ 2   ,  ϵ 3    according to the media proper-

ties, and design a code that corrects such error events with 

high probability.

Some ingredients need to be developed to enable code 

design for  q -ary multibit channels. The first is an iterative 
decoder that extends the efficient message-passing algo-

rithms of symmetric channels to the new channels. For  

 q -ary partial-erasure channels such an extension is provided 
in [64]. Second, we need an efficient analysis framework 
that can tell the performance of code ensembles over the 

new channels. In [65], such an analysis is developed based 

on density evolution [63], with a careful exploitation of the 
channel structure to reduce the analysis complexity that oth-

erwise blows up quickly with  q . Last, and most importantly, 

we need to find ways by which the analysis framework can 
be used to design better codes for the new channels. An 

interesting example for this is the following crisp design rule 
from [65]: for  q = 4  ( s = 2 ,MLC), if the multibit erasure 
channel has a dominant occurrence of single-bit erasures  

(  ϵ 1   ≫  ϵ 2   ), then the edge labels of the  q -ary LDPC code must 
not be selected uniformly from the nonzero field elements  
{ 1, 2, 3} , but rather uniformly over two of the elements, e.g.,  
{ 1, 2} , with no labels selected as the remaining element 3. It 
is not clear a priori why this rule should apply, but it is prov-

ably correct given the analysis framework. A more compre-

hensive design tool building on the new analysis framework 

optimizes the code degree distributions taking into account 
the parameters of the partial-erasure channel. It has been 

shown [64] that degree distributions obtained through this 
dedicated optimization have superior decoding thresholds 
and error rates compared to codes that were designed for 

the standard erasure channel.

Moving to finite block-length optimization of LDPC 
codes for multibit channels, we seek algorithms that improve 

the code specifically for the more common error types. In 
this part, we build upon the erasure interpretation of the 

channel, and study how the well-defined configurations 
called stopping sets [66] can be mitigated in the case where 

we have additional knowledge on the erasure types. (We 

have previously discussed absorbing sets; the two classes of 

objects are topologically related, wherein absorbing sets are 
more suitable for the analysis of errors and stopping sets are 

more suitable for capturing erasures.)

A stopping set is defined as a subset of the variable 
nodes that collectively connect to a set of check nodes each 

of which has degree more than 1 to the variable-node sub-

set. Stopping sets are detrimental for iterative decoding, 

because if all variable nodes in them are erased, the decoder 

cannot continue iteratively. Examining an iterative decoder 
operating over a  q -ary partial-erasure channel, we observe 

that a stopping set existing in the graph can be neutralized 
by carefully setting the edge labels to not halt the iterative 

decoder. This is true only for partial erasures, and does not 

apply to codes for the  q -ary (full) erasure channel (any stop-

ping set for the binary erasure channel is also a stopping set 

for the  q -ary erasure channel, for any edge-label combina-

tion). Following a detailed characterization of the label sets 
that resolve stopping sets for the multibit channel, we have 

developed an algorithm that sets edge labels in a specific 
code graph to remove stopping sets of small sizes. Note that 
this label optimization can be done on top and beyond other 
known stopping-set reduction techniques applied to the 

code graph (e.g., [67]). In Fig. 10, we show sample results 
showing the potential advantage of this coding scheme. We 

take a regular LDPC code with check-node degree 18 and 
variable-node degree 2 (rate  8 / 9 ), and run our labeling algo-

rithm removing partial-erasure stopping sets for  q = 8 . We 
plot the symbol-erasure rate (SER) at the decoder output as 

a function of the probability   ϵ 1    that a symbol undergoes a 

1-b erasure. The performance after the label optimization 
improves significantly in most of the   ϵ 1    range. We also com-

pare the performance to a binary code drawn from the same 

ensemble, but with triple length (to get the same number of 

bits), and third the erasure rate (to get the same expected 

Fig. 10. Performance of 8-ary LDPC codes before (dashed) and 

after (dashedÐdotted) removal of stopping sets affecting the 
multibit erasure channel. In comparison, a binary LDPC code that is 

three times longer (solid) has much worse correction performance.
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number of bit erasures). It is shown that the binary code is 

not competitive to the  q -ary option, even though the errors 

we considered here are single-bit errors. This motivates 

further research constructing stronger and more practical 

LDPC codes that perform well over multibit channels. An 
interesting open research question is how to best combine 

the combinatorial framework and the new bit-level interpre-

tation introduced in the last two subsections, respectively, 

for the ultimate LDPC solutions.

C. Additional Considerations and Future Directions 
for Graph Codes

Complementing proper channel code design is the 
implementation of associated decoders. In the unoptimized 
case, excellent LDPC code performance comes at the prohib-

itively high implementation complexity of the decoder that 
exceeds latency, hardware footprint, and power consump-

tion allowed in modern NVM applications. One way to reap 

the benefits of LDPC codes while maintaining target latency 
is by use of coarse decoding and look-ahead computations 

when channel conditions permit, as recently proposed in 

[68]. The idea is that since the hard-decision decoder is suc-

cessful most of the time, one would only invoke additional 

soft-information LLRs when the hard-decision decoder fails 

to decode. To minimize the latency, this additional informa-

tion is computed concurrently with the baseline decoder, 

and used only as necessary. The work in [68] also quantifies 
the impact of progressive sensing on the overall power con-

sumption of the LDPC decoder. A recently proposed tech-

nique for reducing decoder latency in TLC Flash operates 
directly on the soft decisions: soft information is generated 

by only using center read references. By interleaving the 

three pages, errors are effectively evenly spread across the 

pages [69].

Further architectural solutions for LDPC decoders in 
NVMs include a circumspect combination of throughput-

enhancing techniques, such as strategic message update, 

dynamic scheduling, use of lookup tables, code structure-

aware parallelized structure, and local error correlations, 
among others [70]–[73]. Additionally, new formulations 
of iterative decoders that are well suited for limited preci-

sion implementations, such as finite precision decoders 
proposed in [74] and  [75], will further help in the broader 
adoption of LDPC-coded systems. Another fruitful research 
direction would be to optimize LDPC decoders specifically 
from the point of view of recovery from noncodeword errors 

dominant in the NVM error models analyzed in the previ-
ous section [57]. This could be done, for example, by oppor-

tunistically pruning computations in high-performance but 

costly nonbinary LDPC decoders [76], or by using the intra-

cell variations in the LLR scalings [77].

Spatially coupled (SC) codes (also known as LDPC con-

volutional codes) are the newest exemplar of graph designs; 
they offer excellent performance in a variety of settings. 

These codes are obtained by chaining together bipartite 

graphs each corresponding to a smaller LDPC code. This 
concatenation results in structured irregularity that has led 

to capacity-approaching performance in the asymptotic set-

ting [78]. Moreover, SC codes are amenable to low complex-

ity window decoding with message passing decoder oper-

ating on the block constituents [79]. Initial results on the 

optimization of SC codes in NVM and related applications 
already show promise [80], [81], and a thorough study will 
likely lead to significant results.

Additionally, the power of recently invented polar codes 

has not yet been fully explored in the context of NVMs. 
Another recent work has proposed the use of nonlinear 

polar codes for asymmetric channels potentially suitable for 

Flash memories [82] and the work in [83] offered the first 
study on using polar codes as the error-correction technique 

in Flash memories. Comprehensive analysis of polar codes 
and polarization principles in the context of NVMs could be 
another interesting open research direction, provided issues 

stemming from the higher complexity and decoding latency 
of polar codes can be adequately addressed.

As a counterpart to the summary of the algebraic codes 

given in Fig. 7 and based on the discussion in this section, 

we sum up the key features of graph codes for NVM applica-

tions in Fig. 11.

V I.  REWRITE CODES FOR THE IN-PL ACE 
UPDATE FEATURE

Since the early days of data storage, density scaling has 

always meant challenges to data reliability. But in modern 

storage media starting from Flash, competitive density also 

means significant compromise to access performance. The 
best known access-performance issue in Flash storage is 

the inability to perform erase operations (remove charges 

from cells) at the same small granularity of the program 

operation (add charges to cells). While helpful for storage 

density, this restriction is extremely limiting for access 
performance, because data cannot be updated in-place. In 

fact, a vast amount of research in the storage-systems field 
is devoted to circumventing this restriction in applications 

where it prohibits adequate performance. Coding enables a 
more direct solution for this restriction, through the use of 

rewrite codes.

A. Rewrite and WOM Codes

To solve the write-access problem stemming from 

restricted erase operations, coding needs to bridge between 

the restricted physical media and the unrestricted user data 

written to the storage. The user may want to update data 

arbitrarily by rewriting a data unit, and the code provides 

a representation for the data that adheres to the restriction 

to only add charges to the physical cells. It turns out that 

a model known since the 1980s called write-once memory 
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(WOM) [84] coding is highly applicable to the problem 
of update-restricted Flash storage. In the WOM model, 

information can be written  t  times on a block of  n  binary 

physical cells, such that physical cell levels change from 0 
to 1, but not from 1 to 0. By applying the WOM model to 
Flash,2 the user can write  t  times to the same physical cells 

without requiring a slow and costly erase operation. Thus, 

such codes hold great potential to improve the performance 

and life span of storage devices. The design objective for a  
 t -write WOM code is to maximize the sum rate, which is the 
total amount of information (in bits) written to the  n  cells 

in  t  writes, divided by the number of cells  n . Toward this 

objective, several new theoretical constructions with good 
sum rates have been proposed. For example, recent works 
in [85]–[89] provided high sum-rate WOM codes based on 
careful adaptation of powerful coding theoretic construc-

tions, and by clever compositions of simple WOM codes 

into stronger ones, e.g., constructing multiple-write WOM 

codes from two-write WOM codes, constructing non-binary 

WOM codes from binary WOM codes, and others.

For application in multilevel memories,  q -ary WOM 

codes are of interest. The  q -ary generalization of WOM3 

was defined in [90], where cell levels are restricted to only 
change in the upward direction. Note that when  q  is a power 

of 2, for example,  q = 8  in the TLC technology, it is pos-

sible to use the  q -ary cell as multiple bits in a binary WOM 

code (3 b in TLC) without violating the update restrictions. 

However, this is inefficient because it is well known that 
using larger alphabet sizes improves the rewrite sum rate 
for a given amount of physical storage [91]. Coding results 
for the  q -ary model appeared in [91], and later in [92] and  
[93]. A theory based on lattices aiding the construction of  q 

-ary codes was developed in [94]. In addition to  q -ary WOM, 

there are other rewrite coding models applicable to multi-

level memories. In the model of floating codes [95], the code 
supports  t  writes, but in each write only a single bit out of  k  

information bits is updated. Other rewrite models for mul-

tilevel memories were studied in [96]–[98]. Most recently, 
Mappouras et al. [99] developed codes based on the coset 

coding idea to improve memory lifetime.

A rewrite code in the  q -ary WOM model is defined by the 
parameters  q ,  n ,  t , and  M = [  M 1   , …,  M t   ] . Parameter  n  is 

the number of physical  q -ary cells in the memory word used 

by the code. Parameter  t  is number of times the memory 

word can be written to, and the vector  M  specifies for each 
of the  t  writes the number of possible values of the input 

information. In the sequel we focus on the practical case 

where in all  t  writes we have the same input size, that is,   
M 1   =  M 2   = ⋯ =  M t   = M . With this restriction the code 

is called fixed rate, and its parameters are denoted with the 
tuple  (q, n, t, M ) , where  M  is a scalar integer. We also define  
k =  log 2   M  and say that  k  is the number of input informa-

tion bits. In practical use, once a  (q, n, t, M )  code exhausts 
its  t  writes, the  n  cells may not be further reused without an 

external erase operation, which is not an explicit part of the 
model (but does happen in practical use in Flash).

The motives to use WOM codes in Flash are compel-

ling: it has been demonstrated in the literature that with a 

Fig. 11. Summary of main graph codes and their key properties in the context of NVMs. We highlight advantages in green and 

disadvantages in red. We reserve ªlight greenº for the possible advantages of emerging LDPC designs as these theoretical constructs need 
to also be validated in practice.

2We adopt the convention that an erase operation decreases the cell 
level, which may be different from the convention in the memory-devices 
community (but fully equivalent to it).

3Note that WOM is a misnomer for nonbinary codes, because the 
physical cells are no longer limited to be written only once.
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clever use of WOM codes in an SSD, the write amplification 
can be reduced significantly [100]. In addition, implement-
ing WOM codes in an SSD simulator has shown significant 
advantage in write throughput [101]. With this promise 
come some nontrivial challenges. Probably the greatest con-

cern in deploying WOM codes is the impact on data reli-

ability. Operating a WOM code implies rewriting data in-

place and no longer in a pure sequential order, and this may 

introduce new issues of disturbs and intercell interference. 

Adding to that concern is the fact that constructing error-

tolerant WOM codes is not an easy task. Coding schemes 
that combine rewrite and error-correction capabilities exist 
in the theoretical literature [102], but are not practical 
enough for implementation. Combining the two features 
by concatenating a WOM code and an ECC is also prob-

lematic: an outer WOM code means that ECC parity bits 
computed from the WOM codeword will violate the WOM 

constraints; an inner WOM code means that small channel 

errors can propagate to massive error events by the WOM 

decoder. A good potential solution around these issues is to 

use short  q  -ary WOM codes. If we use a short inner WOM 

code, then channel errors cannot propagate beyond the 

small WOM block length, and concatenation with a long 

outer ECC can work well. It turns out that  q -ary WOM codes 

can have attractive rewrite capabilities even if they use as 

few as  n = 2  cells. We demonstrate this next.
To specify a WOM code, one needs to provide a pair of 

functions: the decoding and update functions. We define the 
decoding function as  ψ :  { 0, …, q − 1}   n  → { 0, …, M − 1} ,  
which maps the current levels of the  n  cells to one of the  M  

possible information values. The update function is defined 
as  µ :  { 0, …, q − 1}   n  × { 0, …, M − 1} →  { 0, …, q − 1}   n  ,  

specifying how the cell levels need to change as a function of 

the current cell levels and the new information value at the 

input (here again the input is taken from a set of  M  possible 

values). The update function needs to satisfy the WOM con-

straints of not moving a cell to a lower level. Let us consider 

the special case of  q = 8  (TLC),  n = 2  (two cells), and  
M = 8  ( k = 3  information bits per write). Note that  n  is 

the block length for coding purposes only, and a page with  

N ≫ n  cells can be used with multiple WOM blocks in par-

allel. A convenient way to represent a decoding function  ψ :  

{ 0, …,  7}   2  → { 0, …, 7}  is by a 2-D matrix where a position  
 (  c 1   ,  c 2   )  represents the physical levels of the two cells, and the 

numbers in the matrix are the information values returned 
by the decoding function. For example, Fig. 12 shows a 
decoding function obtained by tiling the  q × q = 8 × 8  
matrix with a polygonal shape with area  M = 8 . To make 
it a decoding function of a WOM code, we need to define 
on it an update function that only moves upward and to the 

right in the matrix. Given a current matrix position, the 
encoding function takes an input value and needs to find it 
in a position neither below nor to the left of its current posi-

tion. In [103], an update function was given for the decod-

ing function in Fig. 12 that guarantees  t = 4  writes with 

any sequence of input values. For example, a sequence of 
four writes with the input values  6 → 4 → 7 → 3  will 

be written by updating the cell levels with the sequence  

(1, 2 )  → (2, 4 )  → (3, 6 )  → (7, 7 ) . Hence, this is a  

(q = 8, n = 2, t = 4, M = 8 )  code. It was also shown in 
[103] that  t = 4  is the maximum possible number of writes 
given the other code parameters, hence this is an optimal 

code. Despite the extremely short length of this code, the six 
bits that it consumes (two cells, three bits each) are within 

0.65 b from the information-theoretic fundamental limit of 
binary fixed-rate WOM codes [104], which is only attainable 
with very long and high complexity codes.

Interestingly, the code shown in Fig. 12 is not the only 
option for getting a  (q = 8, n = 2, t = 4, M = 8 )  code. 
Without losing anything in the number of writes, we can 

construct other codes that offer additional useful features. 

As two examples we take the codes depicted in Fig. 13. The 
code on the left guarantees in addition that the two cells 

will be balanced to be at most three levels apart through-

out the write sequence [105]. This feature reduces intercell 
interference (ICI) between the cells, which is known to be 
more significant when the two cells have large level differ-

ences [11]. The code on the right is designed with the feature 

that increasing the number of cell levels to  q = 9  can add a 

fifth guaranteed write (the previous two codes cannot add a 
write with one more level). This shows that the use of WOM 

Fig. 12. Decoding function of a  (q = 8, n = 2, t = 4, M = 8 )  code. 

Four guaranteed writes is optimal for the code parameters.

Fig. 13. Decoding functions of two more  (q = 8, n = 2, t = 4, M = 8 )  

codes. The left code is designed to reduce ICI, and the right one can 

give  t = 5  if  q  grows to 9.
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codes opens the way to using cells with numbers of levels 

that are not necessarily powers of two, and such uses can 

actually give good performance with a simple implementa-

tion. Moreover, this example motivates considering WOM 
codes with additional features, for example, maximizing the 
data reliability when an outer ECC is employed.

We end this section with the remark that a related tech-

nique called “flip-N-write” was successfully proposed for 
phase change memories [106]. In this simple but powerful 
scheme, either a desired word or its complement is written, 

depending on which one would be faster to write. One bit of 

redundancy is used to indicate whether the intended word 

or its complement is being written.

B. Other Coding Schemes to Watch for in the Future

We now briefly discuss two additional coding mecha-

nisms that are of interest in NVMs: constrained coding and 

rank modulation. Constrained coding for NVMs is strongly 
motivated by the pronounced amount of ICI. ICI is caused 
by parasitic capacitances between physically adjacent cells 
in the Flash chip. As a result, when charge is added to a cell 

(during programming), the charge levels of neighboring 

cells may inadvertently increase as well. The amount of this 

unintended charge is a function of device parameters and 

design but has a roughly inversely proportional relationship 

to the physical distances between the cells [107]. As a result, 
as Flash technology is scaled down, the ICI becomes increas-

ingly more pronounced. One way to overcome the adverse 

effects of ICI is by preemptively preventing certain patterns 
to be written. Constrained coding is a branch of information 
theory that precisely answers the question of maximizing 
data transmission/storage while ensuring that undesirable 

subsequences are never stored. Constrained coding tech-

niques have already been successfully deployed in other 

more conventional data storage technologies, such as HDDs 
[108], and as with other existing methods mentioned before 
the challenge is to design constrained coding methods that 

accurately address technology-specific particularities. In 
the context of Flash, one seeks to avoid “high–low–high” 
patterns. This has led to the development of elegant math-

ematical theory of constrained systems, as in [109], where 
the focus was on characterizing the set of sequences that are 
free of detrimental patterns. Recent results on construction 

of constrained codes for NVMs are presented in [110]–[112]. 
A challenging open question is to transfer the results from 

the asymptotic domain to the practical finite-length setting 
while offering codes with minimal rate penalty and easy 

encoding/decoding.

The special physical properties of the Flash channel 

have recently motivated an exploration of a different type 
of data representation: rank modulation [113]. The idea in 

rank modulation is to represent information as the relative 

ranking of a cell with respect to the entire block, rather 

than as the absolute amount of charge in a particular cell. 

Information is stored in permutations, and is read by com-

paring the values of different cells in blocks. Ordering-based 

representation has many advantages, including the fact that 

charge leakage, which affects all cells at roughly equal rates, 

will not change the relative ranks of cells, only their abso-

lute values. One distinct concern regarding the implementa-

tion of rank modulation techniques is the need to have very 

finely grained comparators, which are currently imprac-

tical. If this key issue is resolved, many fascinating recent 

theoretical results on rank-modulation codes [114]–[117], 
among others, could then be used in practice.

V II.  CONCLUSION A ND PER SPECTI V ES

In this survey paper, we reviewed several recent exciting 
developments in coding methods for nonvolatile memories. 

The need for novel coding schemes is by now clear to the 

memory industry, which has already advanced research and 

development in this area considerably, including commer-

cialization of BCH codes, LDPC codes, constrained codes, 
and various concatenated codes. While specific details of 
code constructions remain carefully guarded trade secrets, 

numerous industry patents on this topic offer a glimpse into 

practical deployment and importance of various ECC meth-

ods: for LDPC, among many others, these patents include 
[45] (LSI corp.), [46] (Intel Corp.), [47] (Marvell Ltd.), [48] 
sTec Inc. (acquired by Western Digital Corp.); for algebraic 
and concatenated codes, these include [38], [37], [118] 
(Marvell Ltd.), [119] (Qualcomm Inc.), and [120] (SK Hynix 
Inc.), and for constrained codes these include [121] (IBM 
Corp.), [122], [123] (Marvell Ltd.), [124] (Intel Corp.). Our 
goal in this survey is to present the mathematical concepts 

underpinning these trends in industry, and show how the 

same concepts lead to more advanced coding schemes that 

were recently proposed in the literature.

We advocate that the departure from channel codes pre-

viously made popular in traditional data communications 

and storage systems is fundamental for the future advances 

in NVM reliability and performance: a flourishing math-

ematical repertoire exists beyond the conventional coding 
that implicitly assumes symmetric errors. What is more, 

several of these techniques are also amenable to code com-

bining in the sense that the most dominant error patterns 

could be first cleaned up by customized codes, followed 
by another perhaps more generic code for the remaining 

errors, which would be done in a way that is more efficient 
than directly applying a code that is agnostic to error pat-

terns. As evidenced by presented examples, NVM channel-
aware code design offers significant opportunities for deep 
theoretical explorations while simultaneously furthering 
the reach of memory technologies.

We presented in detail two representative classes of 

codes: algebraic codes and graph codes. As discussed ear-

lier, the two approaches by design offer fundamentally 

different tradeoffs in terms of performance guarantee and 
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error-correction capability. Which one is ultimately chosen 

for deployment is a function of system-architecture consid-

erations and the demands of the end applications—for larger 

page sizes, in terms of performance alone, LDPC codes are 
bound to be superior to BCH codes. On the other hand, 
well-designed code concatenation and associated algebraic 

codes can correct a very refined set of error patterns and can 
also offer backward compatibility with legacy BCH codes.

At the same time, a large body of work on coding for 

NVMs has still largely remained of solely theoretical inter-

est. Moving forward, we envision that the best advance-

ments and facilitated efforts in practice and theory alike will 

be achieved through a more open dialog between industry 

leaders and academia. Toward that goal, in the context of 
different coding tools, we have outlined several (what we 

believe are promising) research directions. For example, 
best utilization of these new powerful algebraic and graph 
codes may require multipage read architectures, which is in 

contrast to current practice of single-page reads. This new 

approach may already be feasible as recent evidence sug-

gests the benefits of multipage reads when used in conjunc-

tion with simple code interleaving [69]. How to best balance 

read operations and coding benefits is an interesting system 
design problem.

We envision that several of the code design principles 

developed for multilevel Flash will also have a positive 

impact on alternative NVM technologies, including phase 

change memories (PCMs) and resistive RAM (RRAM). 
These technologies also possess certain domain-specific 
asymmetries, e.g., in PCM, thermal cross-talk and ther-

mal accumulation cause significant spatiotemporal vari-
ations in cell reliability, and in RRAM, errors are data 

dependent and with strong spatial correlations. New 

innovative coding schemes that are appropriately device 

aware could play a critical role in transitioning these and 

other technologies into the mainstream. As the nonvola-

tile technologies further evolve and diversify, it is not 

unforeseeable that different NVMs will have varied types 

of dominant error patterns. In each case, appropriately 

chosen coding methods (standalone or a combination of 

multiple pattern-specific methods) would yield a winning 
combination. Building on the fundamental coding con-

cepts covered in this survey will help tailor the best solu-

tion to the specific design setup. Moving beyond coding 
for reliability lies an interesting tradeoff between coding 

performance (that needs long blocks) and access perfor-

mance (that prefers short blocks). Developing codes that 
operate at the desirable points of this tradeoff is another 

fruitful avenue of future research. 
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