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ABSTRACT
Electrospinning is the most widely used production method

for polymer fibers formed from an electrified fluid jet. This
method is very versatile, relatively inexpensive and simple. When
the sufficiently high electric potential (about 20kV) is applied to
the polymer solution, the electrostatic forces overcome the sur-
face tension of the polymer and a thin liquid jet is ejected from
the nozzle. However, after short straight distance of the motion
of the fiber it rapidly grows into an electric charge driven bend-
ing instability and results in a 3D spiraling trajectory leading to
a very random deposition on the grounded collector. This sig-
nificantly reduces the positive qualities of the fiber and its use in
biomechanical engineering like a production of tissue scaffolds
mimicking the structure of the extracellular matrix or a deliv-
ery of expandable chemo- and radio-therapeutic stents. In this
work we present the initial results from investigating the feasi-
bility of using dynamic focusing of the electrified jet in a linear
quadrupole trap. This is a new alternative to the more generally
used mechanical approach with rotating mandrel, could in prin-
ciple lead to the ability to control the deposition location with-
out the use of any moving components. The proposed approach
was originally developed for trapping and transporting individ-
ual charged ions. In contrast to ions, an electrified continuous
fiber represents an infinite degree of freedom system, with poten-
tially much richer dynamics and unknown stability regions in the
parameter space.

∗Address all correspondence to this author.

In order to understand the dynamics of the fiber, we present
a discretized 2D reduced- order mathematical model which is
investigated numerically. The resulting ODEs represent multi-
dimensional form of a non-linear Mathieu‘s and Meissner‘s dif-
ferential equations for harmonic, and step excitation functions,
respectively. The model parameters were obtained from static
experiments with electrodes compressing the fibers in a single
plane. Finite-element model of the electrodes resulted in detailed
potential maps, which were used to develop estimates of the re-
quired strength of the electrostatic field needed to steer the fibers.

The estimated parameters were used to obtain stable solu-
tions of the reduced-order approximate of a spring-mass-charged
dumbbell model of the fiber.

INTRODUCTION
Electrospinning has emerged as a simple method for produc-

tion of nanofibers [1, 2]. However, because the produced fiber
strongly depends on many parameters, it is quite difficult to have
its production completely under control and produce the fiber of
specific material properties. Generally, straightness and orienta-
tion of the fiber are most difficult to control because of the bend-
ing and buckling instabilities of the fiber. This is the reason why
the majority of the produced nanofibers are unstructured and dis-
ordered. Such random deposition patterns prevent the use of the
resulting fiber mats into expandable tissue scaffolds or stents [3].
The most common method for fiber alignment is to use a fast
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moving collector (mandrel/drum) which is spinning and winding
the fiber around its perimeter. If the collector velocity is suffi-
ciently large, the fiber is straightened as it is being collected. This
principle was very well adopted by many researchers and com-
panies producing the nanofibers, however it requires additional
work to stack and shape the fiber to obtain the needed pattern
or design [4]. Also the deposited fiber lands on large surfaces
resulting in small surface density.

An alternative approach would be to use the fiber properties,
namely its electric charge, and control its movement and depo-
sition by electric field [5]. From Earnshaws theorem (1842) it is
known, that a static collection of point charges cannot be main-
tained in a stable stationary equilibrium configuration solely by
the electrostatic interaction of the charges. This means the fiber
could not be controlled by static electric field. Instead, multi-pole
traps utilzie time-varying electric field that under the correct fre-
quency and amplitude results in confinement of the charges to a
small volume. In the absence of dynamic rotation of the elec-
trostatic field, the charges are compressed in one direction and
repelled in the transversal direction due as demonstrated in a pre-
vious two-electrode experiment shown in Fig. 1.

FIGURE 1. Wire electrode focusing design with nozzle on the right,
collector plate on the left and 2 electrodes symmetrically placed in ver-
tical plane.

While the fiber appears aggregated in the horizontal plane, under
a microscope examination is it visible that the individual fibers
are still curly and meandering. To dynamically stabilize the fiber
a second pair of electrodes are required so that the fiber can be
confined in both horizontal and vertical planes. The collection of
four cylindrical electrodes along the extrusion axis form a linear

quadrupole trap with harmonically changing electric field.

LINEAR QUADRUPOLE TRAP
The working principle of a linear quadrupole trap [6] is con-

ceptually simple. The fiber at the point of its creation is highly
charged by electric voltage applied on the nozzle (20-30 kV).
The quadrupole trap is placed in its trajectory in such a way, that
the fiber needs to pass through it before it can get to the col-
lector. These electrodes are symmetrically placed along the trap
axis with 180 degrees between electrodes of the same potential
as depicted on a Fig. 2 One electrode pair of the trap is charged

FIGURE 2. Quadrupole linear trap design - view in the direction of
travel of the fiber from nozzle to the collector plate.

with constant voltage of certain value (here called offset voltage)
and the other electrode pair is powered by an AC voltage of sine
or square waveform with min a given amplitude above and be-
low the offset voltage. Thus its potential varies by the value of
the amplitude above and below the first pari of electrodes.

Figure 3 shows the an example of the resulting electric field
lines and fiber propagation direction for an offset voltage of 8 kV
and amplitude of 2 kV.

As the fiber gets into the electric field of the linear
quadrupole trap, the trap influences its direction of movement
in such a way, that it attracts the fiber to the electrode pair with
lower electric potential during half of the oscillation period (top
half of Fig. 3). If the period is selected properly, before the
fiber reaches the electrode‘s surface, the voltage on AC electrode
pair changes and so that the attractive forces draw the fiber th
the other pair (bottom half of Fig. 3 ). The electric field keeps
changing with the frequency of the AC voltage applied to the
electrodes and forcing the fiber to travel in a spiral until it is col-
lected on a collector. By controlling the frequency and voltage
setting, it is anticipated that a stable regime can be established.
The following sections are devoted to development of numerical
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FIGURE 3. Working principle of the quadrupole trap

evidence of such stable operation using a reduced-order model
of the fiber dynamics.

ELECTRIC FIELD CALCULATION
To be able to model the behavior of the fiber inside the elec-

tric field created by the linear quadrupole trap, properties of this
electric field had to be calculated. To obtain the electric field and
voltage map inside of the trap, static analysis in ANSYS, APDL
was created. Figures 4-6 represent voltage distributions in [kV]
in 3 cross-sections of the quadrupole trap. Planes in which volt-
ages are plotted cut the quadrupole into quarters, starting from
the side closer to the nozzle. This is plotted for offset voltage
=10KV and amplitude=5kV.

Figure 7 shows the variation of the electric field Ey [V/m]
in y (vertical) direction. A nearly linear variation is observed int
the central portion of the trap near the z-axis. ( x = 0,y = 0).

FIGURE 4. Voltage [V] map inside of the quadrupole trap - 1st quar-
ter of the legth of the trap

FIGURE 5. Voltage [V] map inside of the quadrupole trap - middle
of the legth of the trap

Only a half of the trap is plotted as the electric field in y direction
inside of the trap is symmetric with respect to the x-z plane but
of opposite orientation. The vertical plane in which electric field
is plotted is in the middle of the length of the trap.

Also from the Fig. 8 we can see the electric field in y di-
rection (purple line) along the axis of the trap for position offset
from the axis of the trap by 10 mm in y direction as shown on
Fig. 9

From the obtained electric field, one can estimate the center-
ing force acting on the fiber through

Fx = Exx qx cos(ω t) , (1)

where Exx is the static amplitude of the electric field gradient in
the x direction, q is the electrostatic charge of a segment of the
fiber with length l. The electrostatic charge can be estimated
from the electrospinning current, I and the velocity of the fiber v
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FIGURE 6. Voltage [V] map inside of the quadrupole trap - 3rd quar-
ter of the legth of the trap.

FIGURE 7. Electric field [V/m] in y direction inside of the upper half
of the quadrupole trap - in the middle of the legth of the trap.

through

q =
I l
v
. (2)

To verify the value of the electric field gradient, point measure-
ments of the electrostatic potential were carried out on a grid
of test points within the upper half of the vertical plane along the
axis of the trap. Figure 10 shows the resulting equipotential lines.
Fig. 11 shows the simulation results for the same wire electrode
model and we can see the equipotential lines (edges of each of
the color fields) are very similar what proves the correctness of
the simulation.

MATHEMATICAL MODELS AND SIMULATIONS
The analysis of the dynamics of the fiber were examined

through series of several models of increasing complexity. The
first model is a simplified one-dimensional 1-DOF model of a
fiber to examine the effect of a a half of the quadrupole trap and
develop an order-of-magnitude estimate of the resulting forces.
This model can be seen on Fig. 12. The corresponding equation

FIGURE 8. Electric field [V/m] inside of the quadrupole trap - offset
10mm in y direction.

FIGURE 9. Model of the trap used for electric field simulation with
marked offset from the center line of the trap.

of motion of the system is described by Eqn. (3), which is re-
written in a more-familiar form of Eqn. (4).

ẍm+ c ẋ+2k x
(

1− l√
l2 + x2

)
= A cos(ω t) (3)

ẍ+ x
(

2k
m

− 2k l

m
√

l2 + x2
+

A cos(ω t)
m

)
= 0 (4)

The latter is a form of a Hill equation with one harmonic mode,
which is known as the Mathieu equation. A distinguishing fea-
ture of Eqn. (3) is that it has a non-linear stiffness dependence
on x.

A common method for examining Mathieu’s equation is to
re-write it in a non-dimensional-time form, resulting in two pa-
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FIGURE 10. Equipotential lines inside of the focusing device with
two wire electrodes. Plotted only for upper half as the field is symmetric
with respect to a central horizontal plane.

FIGURE 11. Electric Potential [V] calculated inside of the focusing
device with two wire electrodes. Plotted only for upper half as the field
is symmetric with respect to a central horizontal plane.

rameters q and a [7, 8]. Following this approach, Eqn(4) is re-
written into (6) via the transformation

t̃ = tω → dt̃ = dtω → dt =
dt̃
ω

ẋ =
dx
dt

= ω
dx
dt̃

→ x = ω2 dx
dt̃

= ω2 ¨̃x (5)

¨̃x+ x̃
[

2
k

mω2 − 2kL

mω2
√

x2 +L2
+

A
mω2 cos(t̃)

]
= 0 (6)

It can be seen that for small deflections x, Eqn. (6), results in the
classical linear Mathieu equation with parameters a and q

ẍ+ x (a+q cos(ωt)) = 0 (7)

Therefore, it is anticipated that for small amplitudes of oscilla-
tions around the axis of the linear trap, the stability of the solu-

FIGURE 12. 1dimensional, 1DOF simplified model of the fiber

tion will be governed by the stability chart obtained for the linear
Mathieu equation. Mathieu equation stability chart (Fig. 13) de-
scribes the stable(white) and unstable(hatched) regions. Since
the exact material properties of the fiber are not known, its is
desirable to choose a parameter pair well within the stability do-
main of the diagram [9, 10]. The least known parameter is the
stiffness of the fiber. It could change due to diameter variations,
different amount of solvent during the drying of the fiber as it
travels in the air.

FIGURE 13. Instability domains for the Mathieu‘s equation, where
hatched regions are unstable.

A deficiency of the current model is that it constraints the
fiber at its beginning and end points. This constraint is making
the system very stiff and quite unrealistic. To relax the constraint,
a new model with additional point masses is needed. This model
is shown on Fig. 14. The resulting 10-th order differential equa-
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FIGURE 14. Mathematical model of the fiber discretized into 3beads
that are free to move in x-z plane-except of the first one that is still
constrained in z.

tion is in the form of

ẋ = f (x, t), (8)

where f (x, t) is periodic in t and contains non-linear stiffness
terms such as

k l

m
√
(x1−x3)

2 +x5
2
− A cos(ω t)

m
− 2k

m
+

k l

m
√
(x3−x7)

2 +(x5−x9)
2

Material Properties
To be able to run a simulation of Eq.(8), an order-of-

magnitude estimation of realistic values of its parameters is
needed. The length segment was arbitrarily set to l = 1e−3m.
The thickness of the fiber that was obtained from the scanning
electron microscope (SEM) image of the fiber (Fig.??). The av-
erage measured value is d = 3−7m. The mass of each element
was estimated from

m =
π d2 l ρ

4
(9)

The density of the fiber at the point where it is being controlled
by the electric field was set to be ρ = 690kg/m3. The liquid so-
lution consists only 5% of PEO and the rest is water. As the fiber
travels, water is evaporating and only a dry PEO is collected.
Density of PEO is about ρPEO = 350kg/m3 and so the change of
density over the traveled distance is quite signifficant. This has
strong influence also on the stiffness of the fiber calculated from

k =
π E d2

4 l
, (10)

where E is a Young‘s modulus of the PEO [11]. Damping coeffi-
cient was estimated from the Stokes drag force for elliptic body.
Fiber is not truly an ellipsoid but if the major axis is much big-
ger than minor axis, the ellipse becomes very thin and long and
actually represents fiber quite well. The coefficient of damping
is then calculated from

c =
32π ã e3 ν

2e+ log
(
− e+1

e−1

)
(3e2−1)

, (11)

where e is an eccentricity calculated as on Eqn. 12, ã is a major
axis and b is the minor axis of the ellipse. ν is the dynamic
viscosity of air and its value is ν = 1.983∗10−5Pas.

e =

√
1− b2

ã2 (12)

Numerical Results
The calculation was carried out in Matlab using a built-in

solver ODE45. Simulation of movement of the fiber based on
model from Fig. 14 gave stable behaviour for certain properties
of the electric field at given initial conditions, that were chosen
to closely represent the probable positions of points on the fiber
represented by 3 point masses as they enter the electric field of
the linear quadrupole trap.
With the frequency chosen far from natural frequency of the fiber
( fn = ( k

m )
1/2 = 26.5kHz) f=60Hz and initial conditions given by

(13-14)

x(0) = [1e−7, 0, −1e−7, 0, l, 0, 1e−7, 0, 2∗ l, 0]′ (13)

where

x = [x1, ẋ1, x2, ẋ2, z2, ż2, x3, ẋ3, z3, ż3]
′ (14)

The resulting time responses are shown in figures Fig. 15 -
17.
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FIGURE 15. Positions of all beads over time in x direction on left
and in z direction on right, where z position is reduced by l and so the
oscillation about length l is plotted.

As anticipated a frequency of 60Hz was observed in the mo-
tion of the beads under the action of the electric field. The posi-
tion about all beads oscillate over the time converges to 0 indi-
cating that the motion stabilizes on the z axis. This all happens
quite fast what is a result of the strong electric field. We can
also see that beads are oscillating in z direction as well, however
the initial condition in this direction was 0 for all beads. This is
caused by the fact that x and y direction movements are bounded
and so thy can not move independently from each other.

FIGURE 16. Velocities of all beads over time in x direction on left
and in z direction on right.

FIGURE 17. Poincare map(plot of x vs ẋ) for all beads in both x and
z direction, where z direction position is reduced by l

Poincaré map ploted on Fig. 17 is showing the position of
the bead over its velocity every period T with which it oscillates.

DISCUSSION AND CONCLUSIONS
Several models of the dynamics of electrified fibers in

an harmonically oscillating field were presented. The models
demonstrated that for small deviations from the central axis, the
fibers dynamics follows that of a classical multi-dimensional
Mathieu equation with stable solutions near the origin. Model
parameters extracted from static experiments resulted in stable
operation of the trap for a frequency of 60 Hz using a low-order
model of the fiber (10-DOF). Experimental validation of the op-
eration of the trap is currently underway, as well as development
of stability chart for the system parameters.
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