

1    **Title:** The wheat microbiome under four management strategies, and potential for endophytes  
2    in disease protection.  
3

4    **Authors:** Kristi Gdanetz<sup>1</sup>, Frances Trail<sup>1,2\*</sup>

5    <sup>1</sup>Department of Plant Biology, Michigan State University. <sup>2</sup>Department of Plant, Soil, and  
6    Microbial Sciences, Michigan State University. East Lansing, Michigan, USA, 48824.

7    \*corresponding author: trail@msu.edu  
8

### 9    **Abstract:**

10       Manipulating plant-associated microbes to reduce disease or improve crop yields  
11    requires a thorough understanding of interactions within the phytobiome. Plants were sampled  
12    from a wheat/maize/soybean crop rotation site that implements four different crop management  
13    strategies. We analyzed the fungal and bacterial communities of leaves, stems, and roots of  
14    wheat throughout the growing season using 16S and ITS2 rRNA gene amplicon sequencing.  
15    The most prevalent operational taxonomic units (OTUs) were shared across all samples,  
16    although levels of the low-abundance OTUs varied. Endophytes were isolated from plants, and  
17    tested for antagonistic activity toward the wheat pathogen *Fusarium graminearum*. Antagonistic  
18    strains were assessed for plant protective activity in seedling assays. Our results suggest that  
19    microbial communities were strongly affected by plant organ and plant age, and may be  
20    influenced by management strategy.  
21

### 22    **Introduction:**

23       The basis for interactions among microorganisms as communities are beginning to be  
24    elucidated, including bacteria, fungi, protists, and viruses growing on and within host organisms.  
25    Microbes interact with plants in a variety of ways: pathogens utilize the plants as a food source,  
26    symbiotic mycorrhizae and rhizobia exchange nutrients with their hosts, endophytes live inside  
27    plant cells asymptotically and some species can provide protection to the plants against  
28    harsh environmental conditions (Rodriguez et al. 2009). Yet, basic knowledge about the  
29    structure of microbial communities across plant organs is still lacking.

30       Wheat is a staple food globally, and is one of the most commonly grown crops, with  
31    approximately two billion bushels produced in the United States annually (USDA 2016). The  
32    fungal pathogen *Fusarium graminearum* has resulted in devastating yield losses, estimated at  
33    \$2.491-7.67 billion between 1993 and 2001 (McMullen et al. 2012). There are few control  
34    options as fungicides have low efficiency against *F. graminearum* and there are no strongly  
35    resistant varieties (reviewed by Wegulo et al. 2015). One potential method that can contribute to

36 an integrated approach to control is manipulation of plant microbial communities to suppress  
37 pathogen populations. The most practical method to achieve this goal involves colonization with  
38 parasitic or competitive endophytes that will kill or displace pathogens of interest.

39 The term endophyte is used to describe microbial organisms that spend the majority or  
40 entirety of their life cycle living within a host plant (Rodriguez et al. 2009). Endophytic fungi have  
41 been documented to benefit their plant hosts in diverse conditions. They can improve salt and  
42 heat tolerance in wild grasses (Rodriguez et al. 2008). In wheat, improved germination rates  
43 have been attributed to endophytes (Hubbard et al. 2012), and protective effects of endophytes  
44 against *Stagonospora* infection have been documented (Sieber et al. 1988). Recently, bacterial  
45 endophytes have been shown to reduce disease and mycotoxin production by pathogens in  
46 millet (Mousa et al. 2016). Identification of wheat endophytes may provide novel strains to  
47 improve crop health and reduce disease.

48 Previous studies of wheat microbiomes have largely focused on identifying microbes in  
49 the roots or rhizosphere (for example, Hartmann et al. 2014; Mahoney et al. 2017; Ofek et al.  
50 2013; Yin et al. 2017), while noticeably fewer studies have focused on aboveground organs  
51 (Granzow et al. 2017; Huang et al. 2016; Karlsson et al. 2017). To our knowledge, there are no  
52 published studies which have surveyed the entire wheat microbiome, including both above- and  
53 below-ground plant organs, with high throughput sequencing techniques. Here we classify the  
54 bacterial and fungal microbiomes of three wheat organs (stems, leaves, and roots) grown under  
55 four land management strategies (conventional tillage, no-till, low input, and organic). Microbial  
56 communities were dependent on type of plant organ, and community composition changed as  
57 plants matured. We then used the wheat microbiome analysis as the context for identifying and  
58 testing potential biocontrol strains isolated from the experimental plots for protective abilities  
59 against *F. graminearum* seedling damping-off.

60

## 61 **Materials and Methods:**

### 62 ***Microbiome Sample Collection***

63 Wheat plants were collected from the Michigan State University (MSU) W.K. Kellogg  
64 Biological Station (KBS) Long-Term Ecological Research (LTER) main crop rotation site located  
65 in Hickory Corners, Michigan, USA (42.411085 N 85.377078 W; <https://lter.kbs.msu.edu>). The  
66 soils of the KBS-LTER site are Typic Hapludalfs of the Kalamazoo (fine-loamy, mixed, mesic)  
67 and Oshtemo (coarse-loamy, mixed, mesic) series, developed on glacial outwash (Crum and  
68 Collins 1995). Soil series were mapped onto the sample site using the USDA Official Soil Series  
69 Descriptions: <https://soilseries.sc.egov.usda.gov/osdname.aspx> (Fig. S1). All

70 wheat/maize/soybean rotation plots were of the soil series Kalamazoo, except plots T1-R3, T3-  
71 R3, and T4-R4 which were Oshtemo. The site has been under continuous  
72 wheat/maize/soybean rotations since 1993 (Robertson 2015) and is organized in randomized,  
73 replicated one-hectare plots under four land management strategies with six replicates of each  
74 conventional till, no-till, reduced chemical inputs with an alfalfa cover crop, and organic with an  
75 alfalfa cover crop (Fig. S1). In the fall of 2012, seeds of soft red winter wheat, variety 25R39  
76 (Pioneer Hi-Bred International, Inc., Johnston, IA), treated with Gaucho fungicide (Bayer Corp.,  
77 Pittsburgh, PA), were planted in plots of all management strategies, except the organic plots,  
78 which were sown with untreated seeds of the same variety. Weeds were controlled by tilling in  
79 organic plots and chemically controlled in the other plots.

80 Plants were collected at the following Zadocks stages (Zadocks et al. 1974) and dates:  
81 stage 30 (vegetative) on May 1, 2013; stage 45 (late boot, early flowering) on May 30, 2013;  
82 stage 83 (early seed development) on July 5, 2013. Six random plants, with intact roots, were  
83 removed from each of the 24 plots for microbiome analysis. Plants were bagged in pairs;  
84 henceforth each pair of plants was treated as one biological replicate. Roots and aboveground  
85 tissues were placed in separate sterile sample collections bags (Nasco Whirl-Pak®, Fort  
86 Atkinson, WI) and maintained on ice during transport. Plants were stored at -80°C then  
87 lyophilized. Lyophilized tissue was stored at room temperature under a desiccant until  
88 processed for DNA isolation.

89

#### 90 ***rRNA Gene Amplification and Sequencing***

91 Approximately 50 mg of 0.2 mm<sup>2</sup> pieces of leaf, stem, or root tissues (fine and thick)  
92 were transferred into ClavePak 1.1 mL tubes (Denville Scientific, Holliston, MA) containing 5/32"  
93 (3.97 mm) stainless steel ball bearings (Grainger, Lansing, MI). DNA extractions were  
94 performed in triplicate for each biological replicate using the Mag-Bind® Plant DNA Plus Kit  
95 (Omega Bio-tek, Norcross, GA) following the manufacturer's protocols with a Retsch Oscillating  
96 Mill M400 (Verder Scientific, Newtown, PA) and a KingFisher™ Flex (ThermoFisher Scientific,  
97 Waltham, MA). Phusion High Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA)  
98 was used to amplify the 16S V4 and ITS2 rRNA gene regions of bacteria and fungi, respectively  
99 (see Table S1 for primers). PCR amplification of each sample was performed in triplicate, PCR  
100 products were pooled and purified with Wizard Gel and PCR Clean-up Kit (Promega, Madison,  
101 WI). Amplicons were sequenced at the MSU Research Technology Support Facility (East  
102 Lansing, MI) using a dual-index barcode strategy (Kozich et al. 2013) and Illumina MiSeq 2x250  
103 bp chemistry. Barcodes were used to distinguish between samples from replicate plots of each

104 management strategy, growth stage, and plant organ. Reads are available in NCBI Small Read  
105 Archive under BioProject PRJNA356450 and accession number SRP102192.

106

107 ***Bioinformatics***

108 The USEARCH pipeline (version v8.1.1861) was used for quality filtering, trimming,  
109 Operational Taxonomic Unit (OTU)-clustering, and chimera detection. The cluster threshold was  
110 set to 97% similarity (Edgar 2010; Edgar et al. 2011; Edgar and Flyvbjerg 2015). The Ribosomal  
111 Database Project Naive Bayesian Classifier was used for taxonomic assignment with the 16S  
112 and UNITE fungal training sets (Wang et al. 2007; Cole et al. 2013; Köljalg et al. 2013). OTUs  
113 belonging to Archaea, Plantae, and Protista were discarded. Samples were normalized with  
114 variance-stabilizing normalization and significant OTUs were identified using the 'DESeq2'  
115 package (McMurdie and Holmes 2014; Love et al. 2014). To determine within-sample diversity,  
116 alpha diversity statistics were calculated with the 'phyloseq' package (McMurdie and Holmes  
117 2013; Rideout et al. 2014), significance was tested with ANOVA and Tukey's HSD in the R  
118 statistical computing environment. To determine between-sample diversity, ordination analyses  
119 on Bray-Curtis and Jaccard distances, PERMANOVA to test community centroids and  
120 homogeneity of variance to test community variance, were calculated using the 'adonis' and  
121 'betadisp' functions in the 'vegan' package (Oksanen et al. 2016). Graphs were generated with  
122 'ggplot2' (Wickham 2009). Analyses were completed using R version 3.3.2 (R Core Team  
123 2016).

124

125 ***Microbial Isolation and Identification***

126 Two additional plants for microbe isolations were collected at each growth stage,  
127 following the methods as described above. Plants were stored at 4 °C, and processed as  
128 described below within 48 hours of sample collection. Endophytic fungi were isolated as  
129 previously described (Arnold et al. 2000) with slight modifications: ten 2 mm<sup>2</sup> pieces of tissue  
130 were removed from roots, stems, or leaves and surface sterilized by soaking in 10% sodium  
131 hypochlorite with 0.1% Tween 80 for 2 minutes, followed by a rinse in 70% ethanol for 2  
132 minutes, and a quick rinse in sterile distilled water. Surface sterilized tissue was incubated at  
133 room temperature in Nutrient Broth Yeast Extract agar medium (Suay et al. 2000) or 2% Malt  
134 Extract Agar (MEA; Amresco, Solon, OH) appended with 50 µg/ml ampicillin to reduce  
135 contaminating bacteria. Emerging fungi were transferred singly to MEA and sub-cultured twice  
136 to obtain a homogeneous culture.

137 Endophytic bacteria were isolated as follows: roots or intact aboveground tissues of  
138 vegetative stage plants were surface sterilized as described above. For plants from the two later  
139 growth stages, leaves, roots, and stems were individually surface sterilized and ground in 0.85%  
140 aqueous NaCl with glass beads in a mortar and pestle (Compant et al. 2011). Three 10X serial  
141 dilutions of the extraction wash were generated and duplicates of each dilution were streaked  
142 onto R2A medium (Reasoner and Geldreich, 1985) supplemented with 40 µg/ml cycloheximide  
143 to reduce contamination by eukaryotic microbes.

144 Non-endophytic microbes were isolated by cutting tissue into small fragments,  
145 approximately 5 mm<sup>2</sup>, and transferring them to selective media. MEA or Rose Bengal agar  
146 medium supplemented with 50 µg/ml ampicillin was used to capture a diverse population of  
147 fungi. Fungal colonies were sub-cultured as described above. To select for bacteria, R2A  
148 medium supplemented with 40 µg/ml cycloheximide. Bacterial colonies were re-streaked at least  
149 three times, and single colonies were isolated to ensure cultures were genetically  
150 homogeneous.

151 Fungal isolates used in plant protection assays, and morphotypes of isolates used in *in*  
152 *vitro* competition assays were identified by sequencing of the full ITS rRNA gene region. DNA  
153 extraction was performed on lyophilized mycelium of isolates used in plant protection assays  
154 and isolates of representative morphotypes with the Extract-N-Amp kit (Sigma-Aldrich, St. Louis,  
155 MO) as modified by Bonito et al. (2011). The ITS region was amplified with the ITS1F and ITS4  
156 primer pair (Table S1) and Phusion High Fidelity DNA Polymerase, following manufacturer's  
157 recommendations (New England Biolabs, Ipswich, MA). PCR products were purified with  
158 EXOSAP-IT (Affymetrix, Santa Clara, CA) and sequenced at the MSU Research and  
159 Technology Support Facility. Sequences were identified via BLAST matches to the NCBI  
160 database (Altschul et al. 1990).

161

## 162 ***In vitro* Competition Assays**

163 A Michigan isolate of *F. graminearum* (PH-1, NRRL #31084, FGSC #9075, Trail and  
164 Common, 2000) was used in all *in vitro* competition and plant protection assays. Petri dishes  
165 (35 mm diameter) containing MEA were simultaneously inoculated with *F. graminearum* and the  
166 antagonistic fungus at opposite poles. Bacterial isolates were streaked across the midline of  
167 one-half of the dishes 24 hours after inoculation of *F. graminearum*. Fungal interactions were  
168 recorded starting at 48 hours after inoculation. Interactions were classified based on observed  
169 phenotypes for up to 10 days post-inoculation (Fig. S2).

170

171 **Plant Protection Assays**

172 Endophytic isolates that exhibited inhibitory activity *in vitro* were used *in planta* to  
173 determine if endophytes could protect against seedling blight. Wheat seeds (cultivar Wheaton)  
174 were surface sterilized in 95% ethanol for 10 seconds, rinsed in sterile distilled water for 10  
175 seconds followed by a 3-minute wash in 5% sodium hypochlorite, and three rinses in sterilized  
176 distilled water. Seeds were germinated on 6 cm MEA plates colonized with 2-3 day-old cultures  
177 of isolates of the endophytic fungi, as described in Hubbard et al. (2012). After three days,  
178 endophyte-inoculated seeds were transferred to 50 ml cone-tainers (Steuwe and Sons, Inc.,  
179 Tangent, OR.) with potting mix (Suremix Perlite, Michigan Grower Products, Inc., Galesburg,  
180 MI). Plants were challenged by inoculation with *F. graminearum* with the addition of colonized  
181 agar; 1% of a 10 cm diameter Petri dish containing Synthetic Nutrient-poor Agar (SNA) medium  
182 (Baldwin et al. 2010). Control plants were potted with sterile SNA (Fig. S3). The assay was  
183 replicated three times, independently, each isolate was tested with 10 plants per replicate.  
184 Isolates were scored for plant protective abilities, based on disease incidence, as calculated by  
185 lesion presence at the base of the stem or deceased plants.

186

187 **Results:**188 ***Microbiome Composition across Plant Organs and Land Management Strategies***

189 The ITS2 rRNA gene sequencing of all samples, from wheat organs at three growth  
190 stages and under four management strategies, generated 31,507,778 reads. Of 216 samples,  
191 sequences from 214 resulted in usable sequences that passed quality filtering. Sequence  
192 processing was performed with the USEARCH pipeline and identified 3,164 ITS2 OTUs at 97%  
193 similarity for clustering (Table S2).

194 Taxonomic composition changed across growth stage, and root communities contained  
195 more unique members than phyllosphere communities. Recently, several usages for  
196 “phyllosphere” have appeared in the literature. For clarity, in this publication we will use  
197 “phyllosphere” to refer to aerial parts of the plant, as previously defined (Ruinen 1956; Vorholt  
198 2012). During the vegetative growth stage under all management strategies, approximately 40%  
199 of fungal OTUs were classified as Dothideomycetes, followed by a decrease in abundance at  
200 flowering, and then an increase to 50-90% of all observed sequences at seed development (Fig.  
201 1, Table S3). Dothideomycetes were classified as members of the Pleosporaceae,  
202 Phaeosphaeriaceae, or Leptosphaeriaceae, but many Dothideomycete OTUs remained  
203 unclassified at the family level (Fig. S4A). Across the growing season, we observed a decrease  
204 from vegetative to flowering stages in the relative abundance of low-abundance OTUs, such as

205 Tremellomycetes, Microbotryomycetes, Leotiomycetes, and Agaricomycetes. Agaricomycetes  
206 populations were largely members of the Ceratobasidiaceae and Marasmiaceae (Fig. S4B).  
207 Microbotryomycetes populations were dominated by the Leucosporidiaeae family (Fig. S5A). At  
208 flowering we observed a higher proportion of Eurotiomycetes in leaf samples, specifically the  
209 Herpotrichiellaceae and Massariaceae (Fig. S5B), compared with vegetative and seed  
210 development stages. Also at flowering, leaf and stem samples were dominated by the  
211 Leotiomycetes, specifically the Erysiphaceae (Fig. S6A).

212 The majority of OTUs, across all samples, belonged to a few groups (Dothideomycetes,  
213 Sordariomycetes, Agaricomycetes), however, abundances of some OTUs differed across  
214 management strategy. Notably, in conventional and no-till plots, we observed a greater  
215 abundance of Microbotryomycetes in leaves and stems (Fig. 1). Roots, compared with leaves or  
216 stems at all growth stages and under all management strategies, had higher numbers of  
217 unidentified OTUs, with nearly 50% of the relative abundance of OTUs from conventional and  
218 low input plots (Fig. 1). The no-till samples had more unique OTUs, and approximately 25% of  
219 the observed OTUs belonged to the Sordariomycetes. Sordariomycete populations were largely  
220 composed of members of the Nectriaceae and Lasiosphaeriaceae across all management  
221 strategies, except the Glomerellaceae dominated the leaves and stems of low input and organic  
222 management types during seed development (Fig. S6B). Pairwise comparison of unique OTUs  
223 in the roots revealed that *Periconia* sp. was enriched in no-till and organic plots when compared  
224 to all other management strategies. *Tetracladium* sp. was enriched in all low-input plots, and  
225 *Fusarium* sp. was enriched in all organic plots (Fig. S7). The same analysis of the phyllosphere  
226 samples showed enrichment of *Fusarium* sp. in organic and no-till plots, enrichment of  
227 *Ceratobasidium* sp. in low-input plots when compared to all other management strategies.  
228 *Puccinia* sp. was enriched in conventional, low input, and organic plots when these  
229 management strategies were compared to no-till (Fig. S8).

230 The 16S rRNA gene sequencing generated 28,082,995 sequences that clustered into  
231 7,906 OTUs. All 216 samples generated high quality sequences. Proteobacteria was the most  
232 abundant bacterial Phylum, followed by Bacteroidetes and Firmicutes (Table S4). At the Class  
233 level, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, Deltaproteobacteria,  
234 Planctomycetia, and Sphingobacteria were the most abundant OTUs (Fig. 2; Table S5).  
235 Fungal alpha diversity was generally consistent across organs and management strategies,  
236 then slightly decreased during seed development (Fig. 3A). The fungal diversity of plant organs,  
237 as calculated by the Shannon Index ( $H'$ ), were not significantly different during vegetative or  
238 flowering growth stages. But at the seed development stage,  $H'$  of stems was significantly lower

239 than roots from the organic plots ( $p \leq 0.05$ ; Fig. 3A; Table S6). This correlates with the large  
240 increase in the dominance of Dothideomycetes in all plant organs as the most abundant OTUs  
241 during seed development. In contrast to the fungal samples, the bacterial alpha diversity in roots  
242 was significantly higher than in stems and leaves when compared ( $p \leq 0.05$ ) across growth  
243 stages and management strategies, but stems and leaves were not significantly different from  
244 each other (Fig. 3B; Table S6).

245 To determine if beta diversity of microbial communities differed, ordination analysis was  
246 conducted within management types and organs. As stated by Kelly et al. (2015), 90% power  
247 for PERMANOVA tests can be achieved with five independent samples in microbiome studies;  
248 here we tested groups of six independent samples. PERMANOVA tests showed that within  
249 each management strategy, fungal communities from different growth stages ( $p < 0.001$ ) and  
250 organs ( $p < 0.05$ ) had significantly different centroids (Fig. 4A; Table S7). Tests of  
251 homoscedasticity for growth stage were not significant, but were significant for organ in no-till  
252 and low input plots ( $p < 0.05$ ). Fungal communities differ at each growth stage, and communities  
253 may differ across wheat organ. Centroids of bacterial communities were significantly different for  
254 organ and growth stage ( $p \leq 0.001$ ; Fig. 4B; Table S7). Dispersions tests were significant for  
255 organs within all management strategies except no-till ( $p \leq 0.01$ ), and were significant for growth  
256 stages within all management strategies except conventional ( $p \leq 0.05$ ). The differences in  
257 group dispersions may cause observed clustering of bacterial communities by organ.

258 In contrast to the analysis of communities under different management strategies,  
259 PERMANOVA tests within each organ, showed fungal communities from different growth stages  
260 and management strategies had significantly different centroids ( $p \leq 0.01$ ; Fig. S9A; Table S7).  
261 Homoscedasticity tests on management strategy were not significant in any organ, but were  
262 significant for growth stage in stems ( $p \leq 0.001$ ). The fungal communities of all organs except  
263 stems, differ across management strategies and at each growth stage. Bacterial communities  
264 had significantly different centroids for management strategy and growth stage ( $p \leq 0.05$ ; Fig.  
265 S9B; Table S7). Homoscedasticity tests were significant for growth stage ( $p \leq 0.01$ ) and  
266 management strategy in leaves ( $p \leq 0.05$ ). The observed differences in bacterial communities  
267 across growth stage may be due to differences in group dispersions, but it appears that  
268 management strategy affects the bacterial communities within different plant organs.

269

## 270 ***Microbe Isolations and In vitro Assays***

271 1,634 fungal and 1,112 bacterial isolates were cultured from all wheat organs and  
272 management strategies across the three growth stages (Table 1). A subset of these isolates,

273 711 fungi and 715 bacteria were screened with an *in vitro* confrontation assay paired with *F.*  
274 *graminearum*. Based on observed interaction phenotypes, five categories were identified and all  
275 isolates used for the *in vitro* confrontation assay were placed in one of the five categories (Table  
276 2): Type 1: Zone of inhibition between colonies, excessive pigment production by *F.*  
277 *graminearum*. Type 2: Zone of inhibition between colonies, no *F. graminearum* pigment  
278 observed in inhibition zone. Type 3: No zone of inhibition, mycelium deadlock between fungal  
279 colonies, or hyphal proliferation at fungal-bacterial colony interface. Type 4: *F. graminearum*  
280 hyphae grew over top of competing microbe. Type 5: Hyphae of competing fungus grew over  
281 top *F. graminearum* colony, or competing bacterial colony covered more than 50% of the petri  
282 dish. The fungal isolates within each of these categories were then grouped into morphotypes,  
283 isolates of similar morphological appearance (Table 2). Morphotypes were identified as  
284 *Alternaria* sp., *Bipolaris* sp., *Cochliobolus* sp., *Fusarium* sp., *Colletotrichum* sp., *Talaromyces*  
285 sp., *Trichoderma* sp., *Parastagnospora* sp., *Penicillium* sp., among others (Table S8).

286

### 287 **Greenhouse Assay and Isolate Identification**

288 Endophytic fungi (78 strains) that generated Type 1 interactions during *in vitro*  
289 confrontation assays were tested in a seedling assay. Fifteen of these strains showed biocontrol  
290 activity during an initial test, and these strains were pursued further. Many of the strains were  
291 identified as species known to be saprotrophs, weak grass pathogens, or pathogens of other  
292 plant species (strains and ID numbers can be found in Table 3). Positive controls (plants  
293 inoculated with *F. graminearum* in the absence of an endophyte) had an average 82% disease  
294 in the seedling assay (Fig. 5). Negative controls (plants not inoculated with an endophyte and  
295 without *F. graminearum* in the soil) had an average of 3% disease. The positive and negative  
296 controls were significantly different from each other ( $\alpha = 0.05$ ; Fig. 5). Endophyte inoculated  
297 seedlings challenged with *F. graminearum* in soil had a 10 to 41% reduction in disease  
298 compared with the positive control (Fig. 5). Strain 40 had significantly reduced disease  
299 compared to the positive control ( $\alpha = 0.05$ ). All other endophyte inoculated plants, besides strain  
300 40, had reduced disease, but due to high variance of the means the disease reduction was not  
301 significant. Two endophyte strains, 11 and 34, had higher or nearly equal disease rates in  
302 control plants when compared with *F. graminearum* challenged-plants (Fig. 5), indicating that  
303 these endophyte strains may be pathogens of wheat.

304 Fungal microbiome data was mined for OTUs closely related to the genera of the  
305 isolates used in the greenhouse assay. *Alternaria* sp. was found in nearly all samples, with the  
306 highest abundances in leaf samples (Fig. S10). *Microdochium* sp. and *Fusarium* sp. were the

307 next most abundant OTUs, with highest abundances specifically in root samples at the flowering  
308 and seed development growth stages (Fig. S11). *Phoma* sp. were most abundant during seed  
309 development in conventional and no-till plots, and *Talaromyces* sp. were most abundant during  
310 flowering, but both *Phoma* sp. and *Talaromyces* sp. were found in relatively low abundances  
311 across multiple samples (Fig. S12). *Aspergillus* sp. and *Penicillium* sp. were found in very few  
312 samples, namely the roots of no-till plants during flowering and vegetative stages, respectively  
313 (Fig. S13).

314

315 **Discussion:**

316 One of the proposed applications of microbiome research is the manipulation of  
317 microbial communities to reduce pathogen pressure and increase yield. Before this can  
318 successfully occur, the composition of a plant-associated community that can induce these  
319 effects must be determined. Toward this goal, the present study provides the first in-depth  
320 analysis of the wheat microbiome -- phyllosphere, roots, and rhizosphere.

321 Contrary to our expectations, management strategy did not have a strong influence on  
322 plant microbial communities. Previous studies compared soil and root microbial communities  
323 across management strategies, such as conventional versus organic including wheat in the  
324 rotation. These studies have reached varied conclusions regarding the impact of management  
325 strategies on soil or plant associated microbial communities (Hartmann et al. 2014; Lenc et al.  
326 2014; Li et al. 2012). Studies which found that management strategy influenced the microbial  
327 community compared sites in which the rotated crops differed across management strategy  
328 and/or compared sites which were separated by significant geographic distances (Hartmann et  
329 al. 2014; Lenc et al. 2014; Li et al. 2012; Rascovan et al. 2016). Similar to the present study, a  
330 previous study on the wheat phyllosphere used sites with a maximum distance of 10 km  
331 between fields of differing management strategies (Karlsson et al. 2017). The majority of the of  
332 the high-abundance OTUs from leaf microbiomes were detected across all fields and  
333 management strategies, but the authors found significant differences in low-abundance OTUs.  
334 Previous surveys of plant microbiomes comparing the same genotypes across multiple locations  
335 found that geography has a stronger influence on microbial community than management  
336 strategy or plant genotype (Chen et al. 2016; Copeland et al. 2015; Finkel et al. 2011; Peiffer et  
337 al. 2013). As discussed by Peay et al. (2016), decay-by-distance patterns for fungal  
338 communities are commonly observed, indicating geography and associated environmental  
339 factors impose strong effects on fungal community composition. These same factors would  
340 likely also impose these effects on the bacterial community.

341        The structure of the KBS-LTER site is nearly ideal for testing management effects -- all  
342    of the plots are located within 2 km<sup>2</sup> and have been planted with the same 3-crop rotation for  
343    almost three decades. Studies of soil microbial communities conducted at the KBS-LTER site  
344    found similar results to the present study. For example, Lauber et al. (2013) sampled the 16S  
345    soil community of the conventional and low-input plots at the KBS-LTER. They observed similar  
346    community composition among management strategies, and also observed increased soil  
347    diversity throughout the growing season (Lauber et al. 2013). Xue et al. (2013) investigated the  
348    functional differences in soil communities of the KBS-LTER plots using the Geochip, an array  
349    based on genes involved in biogeochemical processes of soil microbes. They surveyed  
350    conventional, no-till, and low input plots, but found no significant differences in community  
351    function (Xue et al. 2013). Seed treatments could influence these outcomes. In our study, plots  
352    from three of the management strategies were planted with fungicide-treated seed, and the  
353    seed for the organic plots was not treated. This did not appear to affect the outcome, in that  
354    there were no major differences between the microbiomes of the plants in these plots. However,  
355    previous studies have shown that fungicide treatments affect rhizosphere and phyllosphere  
356    microbiomes of maize and soybean tested during the vegetative growth phase (Nettles et al.  
357    2016). Further research is warranted to detect the impact of seed fungicides on the extant  
358    microbiome, and to determine the degree the fungicide, inherited microbes, or environment  
359    impact the microbiome of a mature plant. In the present study, the absence of strong  
360    management effects in any of the three growth stages, together with the survey of published  
361    data discussed above, suggest a strong influence of geographical factors on wheat  
362    microbiomes. However, it is likely that a combination of climate, cultivar, land use history, and  
363    management strategies all impact plant microbial communities in ways we may not be able to  
364    detect at this time.

365        Our study found that bacterial alpha diversity in roots was higher than in stems and  
366    leaves, whereas fungi show consistent diversity across plant organs. These results are  
367    consistent with previous studies showing soil and rhizosphere bacterial diversity were greater  
368    than diversity of the phyllosphere (Coleman-Derr et al. 2015; de Souza et al. 2016; Knief et al.  
369    2011), and others showing rhizosphere and phyllosphere fungal diversity were similar  
370    (Coleman-Derr et al. 2015). The observed consistencies in fungal diversity across plant organs  
371    may be due to systemic colonization of crops by endophytic fungi, or due to aerial dispersal and  
372    subsequent phyllosphere colonization by fungal spores. Microclimate effects on plant organs  
373    that inhibit colonization by microbes may be one explanation for the low diversity of  
374    phyllosphere bacterial communities on wheat.

375 Our experimental design did not distinguish between epiphytic and endophytic microbes.  
376 Other studies that examined microbial communities of epiphytic and endophytic plant  
377 compartments found that the plant organs had a stronger effect than compartment on fungal  
378 community assembly (Coleman-Derr et al. 2015; de Souza et al. 2016). In contrast, the  
379 rhizosphere and the leaf episphere, had higher bacterial diversity than corresponding  
380 endophytic compartments (Coleman-Derr et al. 2015; de Souza et al. 2016). Thus, it is not  
381 surprising that microbial communities of stems and leaves in the present study were very  
382 similar. It is possible that in the rhizosphere and in the root endophytic compartment, the plant  
383 genotype imparts a greater selective force on community assembly (Coleman-Derr et al. 2015;  
384 Mendes et al. 2014; Ofek et al. 2013; Peiffer et al. 2013).

385 We observed increased microbial community diversity over the growing season. This is  
386 a consistent pattern found across other plant microbiome studies of cereals and fruits (Bakker et  
387 al. 2017; Donn et al. 2014; Shade et al. 2013). However, the observed increase in diversity is in  
388 contrast with the results of Copeland et al. (2015) who found a decrease in phyllosphere  
389 bacterial diversity throughout the growing season in beans and canola. The increase in diversity  
390 could be explained by ecological succession within the plant microbiome through the growing  
391 season, as emerging surfaces on crops bringing new habitats and an expansion of niche  
392 breadth. As plants grow and age, the community complexity and diversity would then increase.  
393 In addition, the observed increase in diversity could be a direct response to signals between the  
394 plants and microbes; that is, colonization by saprotrophic organisms that are able to colonize  
395 the plant host at earlier growth stages. The increased diversity could also reflect microbial  
396 responses to complex metabolites produced by mature plants. These interactions would not be  
397 limited to pathogens or saprotrophs. A more comprehensive study of the colonization of older  
398 plants is needed.

399 The bacterial communities of wheat at the KBS-LTER site were composed of common  
400 wheat- and plant-associated taxa. Previous wheat-microbiome studies, which were limited to  
401 studies of soils of wheat fields, roots, or rhizosphere, found similar fungal and bacterial  
402 community composition as the study presented here. Proteobacteria, Firmicutes, and  
403 Actinobacteria were the dominant bacterial taxa in the KBS-LTER plots, similar to other wheat  
404 rhizosphere studies (Donn et al. 2014; Hartmann et al. 2014; Lenc et al. 2014; Ofek et al. 2013).  
405 Dothideomycetes, Leotiomycetes, Sordariomycetes were the most common fungal taxa  
406 observed in the present study as well as previous studies (Karlsson et al. 2017; Kwaśna et al.  
407 2010; Lenc et al 2014). Future studies are needed to investigate genotype-, inflorescence-, and  
408 developing seed-specific microbial communities.

409        The limited approaches available for control of *F. graminearum* suggest implementation  
410 of an integrated approach combining crop rotation and use of partially resistant varieties as the  
411 optimum control strategy. Biologicals used as soil or seed amendments would provide another  
412 tool to control a difficult disease. As reviewed recently, the phyllosphere microbiome contains  
413 organisms that influence plant defense and carbon cycling, among other functions (Vorholt  
414 2012; Bulgarelli et al. 2013; Rastogi et al. 2013). We used damping-off of seedlings to test our  
415 strains for protective effects. In wheat seedlings, damping-off is currently controlled with  
416 fungicide-coated seeds (Wegulo et al. 2015), but fungicide resistance in *F. graminearum* is an  
417 increasing problem. We tested single protective strains, however multi-strain protection from  
418 disease is likely to make a more robust application in the field, as has been reported (Slininger  
419 et al. 2010). We speculate that these tested strains, isolated in Michigan, are likely to be more  
420 successful protectors than products derived from strains native to other geographic regions,  
421 based on previous work with *Trichoderma* sp. biological controls (Chaverri et al. 2015;  
422 Grondona et al. 1997; Sharma et al. 2009) and aflatoxin control strains (Adhikari et al. 2016).

423        For more than 150 years, plant pathologists have shown us that individual microbes  
424 have adapted to specific niches on their hosts (Stakman and Harrar, 1957). Our ability to  
425 perform high-throughput sequencing of these niches has revealed large numbers of microbes  
426 forming communities that can affect disease outcomes. More research is required to better  
427 understand the composition of organisms in these niches, the interactions among members of  
428 these communities, and how the communities impact plant health. A fundamental understanding  
429 of the plant microbiome is necessary for successful manipulation for agricultural benefit.

430

431 **Acknowledgements:**

432        This work was supported by the Michigan Wheat Program, MSU Plant Science  
433 Fellowship, and by the NSF Long-term Ecological Research Program (DEB 1637653) at the  
434 Kellogg Biological Station and by Michigan State University AgBioResearch. The authors thank  
435 Gregory Bonito for his suggestions on this manuscript, particularly during the data analysis.

436

## References

439 Adhikari, B. N., Bandyopadhyay, R., and Cotty, P. J. 2016. Degeneration of aflatoxin gene  
440 clusters in *Aspergillus flavus* from Africa and North America. *AMB Expr.* 6:1–16.

441

442 Altschul, S. F., Gish, W., Miller, W., and Myers, E. W. 1990. Basic local alignment search tool. *J*  
443 *Mol Bio.* 215:403–410.

444

445 Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., and Kursar, T. A. 2000. Are tropical  
446 fungal endophytes hyperdiverse? *Ecol Lett.* 3:267–274.

447

448 Bakker, M. G., Moorman, T. B., Kaspar, T. C., and Manter, D. K. 2017. Isolation of cultivation-  
449 resistant Oomycetes, first detected as amplicon sequences, from roots of herbicide-terminated  
450 winter rye. *Phytobiomes.* 1:1–12.

451

452 Baldwin, T. K., Gaffoor, I., Antoniw, J., Andries, C., Guenther, J., Urban, M., Hallen-Adams, H.  
453 E., Pitkin, J., Hammond-Kosack, K. E., and Trail, F. 2010. A partial chromosomal deletion  
454 caused by random plasmid integration resulted in a reduced virulence phenotype in *Fusarium*  
455 *graminearum*. *Mol Plant Microbe Int.* 23:1083–1096.

456

457 Bonito, G., Brenneman, T., and Vilgalys, R. 2011. Ectomycorrhizal fungal diversity in orchards  
458 of cultivated pecan (*Carya illinoinensis*; Juglandaceae). *Mycorrhiza.* 21:601–612.

459

460 Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., and Schulze-Lefert, P. 2013.  
461 Structure and functions of the bacterial microbiota of plants. *Annu Rev Plant Biol.* 64:807–838.

462

463 Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T., and Samuels, G. J.  
464 2015. Systematics of the *Trichoderma harzianum* species complex and the re-identification of  
465 commercial biocontrol strains. *Mycologia.* 107:558–590.

466

467 Chen, W., Turkington, T. K., Lévesque, C. A., Bamforth, J. M., Patrick, S. K., Lewis, C. T.,  
468 Chapados, J. T., Gaba, D., Tittlemier, S. A., MacLeod, A., and Gräfenhan, T. 2016. Geography  
469 and agronomical practices drive diversification of the epiphytic mycoflora associated with barley  
470 and its malt end product in western Canada. *Agr Ecosyst Environ.* 226:43–55.

471

472 Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-

473 Alfaro, A., Kuske, C. R., and Tiedje, J. M. 2013. Ribosomal Database Project: data and tools for

474 high throughput rRNA analysis. *Nucl Acids Res.* 42:D633–D642.

475

476 Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T.,

477 North, G., Visel, A., Partida-Martinex, L. P., and Tringe, S. G. 2015. Plant compartment and

478 biogeography affect microbiome composition in cultivated and native *Agave* species. *New*

479 *Phytol.* 209:798–811.

480

481 Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., and Sessitsch, A. 2011. Endophytes of

482 grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other

483 plant parts, and visualization of niches of colonization. *Microb Ecol.* 62:188–197.

484

485 Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., and Guttman, D. S. 2015. Seasonal

486 community succession of the phyllosphere microbiome. *Mol Plant Microbe Int.* 28:274–285.

487

488 Crum, J.R., and Collins, H.P. 1995. Soil description: KBS soils. Kellogg Biological Station

489 LTER. Available at: [www.lter.kbs.msu.edu/research/site-descriptionand-maps/soil-description](http://www.lter.kbs.msu.edu/research/site-descriptionand-maps/soil-description). □

490

491 de Souza, R. S. C., Okura, V. K., Armanhi, J. S. L., Jorrín, B., Lozano, N., da Silva, M. J.,

492 González-Guerrero, M., de Araújo, L. M., Verza, N. C., Bagheri, H. C., Imperial, J., and Arruda,

493 P. 2016. Unlocking the bacterial and fungal communities assemblages of sugarcane

494 microbiome. *Sci Rep-UK.* 6:1–15.

495

496 Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E., and Watt, M. 2014. Evolution of

497 bacterial communities in the wheat crop rhizosphere. *Environ Microbiol.* 17:610–621.

498

499 Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST.

500 *Bioinformatics.* 26:2460–2461.

501

502 Edgar, R. C., and Flyvbjerg, H. 2015. Error filtering, pair assembly and error correction for next-

503 generation sequencing reads. *Bioinformatics.* 31:3476–3482.

504

505 Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. 2011. UCHIME improves  
506 sensitivity and speed of chimera detection. *Bioinformatics*. 27:2194–2200.

507

508 Finkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F., and Belkin, S. 2011. Geographical  
509 location determines the population structure in phyllosphere microbial communities of a salt-  
510 excreting desert tree. *Appl Environ Microb*. 77:7647–7655.

511

512 Granzow, S., Kaiser, K., Wemheuer, B., Pfeiffer, B., Daniel, R., Vidal, S., and Wemheuer, F.  
513 2017. The effects of cropping regimes on fungal and bacterial communities of wheat and faba  
514 bean in a greenhouse pot experiment differ between plant species and compartment. *Front  
515 Microbiol*. 8:305–22.

516

517 Grondona, I., Hermosa, R., Tejada, M., Gomis, M. D., Mateos, P. F., Bridge, P. D., Monte, E.,  
518 and Garcia-Acha, I. 1997. Physiological and biochemical characterization of *Trichoderma  
519 harzianum*, a biological control agent against soilborne fungal plant pathogens. *Appl Environ  
520 Microb*. 63:3189–3198.

521

522 Hartmann, M., Frey, B., Mayer, J., der, P. M. A., and Widmer, F. 2014. Distinct soil microbial  
523 diversity under long-term organic and conventional farming. *ISME J*. 9:1177–1194.

524

525 Huang, Y., Kuang, Z., Wang, W., and Cao, L. 2016. Exploring potential bacterial and fungal  
526 biocontrol agents transmitted from seeds to sprouts of wheat. *Biol Control*. 98:27–33.

527

528 Hubbard, M., Germida, J., and Vujanovic, V. 2012. Fungal endophytes improve wheat seed  
529 germination under heat and drought stress. *Botany*. 90:137–149.

530

531 Jangid, K., Williams, M. A., Franzluebbers, A. J., Schmidt, T. M., Coleman, D. C., and Whitman,  
532 W. B. 2011. Land-use history has a stronger impact on soil microbial community composition  
533 than aboveground vegetation and soil properties. *Soil Biol Biochem*. 43:2184–2193.

534

535 Karlsson, I., Friberg, H., Kolseth, A. K., and Steinberg, C. 2017. Organic farming increases  
536 richness of fungal taxa in the wheat phyllosphere. *Mol Ecol*. 2017:1-13.

537

538 Kelly, B. J., Gross, R., Bittinger, K., Sherrill-Mix, S., Lewis, J. D., Collman, R. G., Bushman, F.  
539 D., and Li, H.. 2015. Power and sample-size estimation for microbiome studies using pairwise  
540 distances and PERMANOVA. *Bioinformatics*. 31:2461-2468.

541

542 Knief, C., Delmotte, N. E. L., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von  
543 Mering, C., and Vorholt, J. A. 2011. Metaproteogenomic analysis of microbial communities in  
544 the phyllosphere and rhizosphere of rice. *6*:1378–1390.

545

546 Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S.  
547 T., Bruns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt,  
548 U., Duenas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., Larsson, E.,  
549 Lindahl, B. D., Luecking, R., Martin, M. P., Matheny, P. B., Nguyen, N. H., Niskanen, T., Oja, J.,  
550 Peay, K. G., Peintner, U., et al. 2013. Towards a unified paradigm for sequence-based  
551 identification of fungi. *Mol Ecol*. 22:5271–5277.

552

553 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D. 2013.  
554 Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon  
555 sequence data on the MiSeq Illumina sequencing platform. *Appl Environ Microb*. 79:5112–5120.

556

557 Kwaśna, H., Bateman, G. L., and Ward, E. 2010. Microbiota in wheat roots evaluated by cloning  
558 of ITS1/2 rDNA and sequencing. *J Phytopathology*. 158:278–287.

559

560 Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J., and Fierer, N. 2013. Temporal  
561 variability in soil microbial communities across land-use types. *ISME J*. 7:1641–1650.

562

563 Lenc, L., Kwaśna, H., Sadowski, C., and Grabowski, A. 2014. Microbiota in wheat roots,  
564 rhizosphere and soil in crops grown in organic and other production systems. *J Phytopathology*.  
565 163:245–263.

566

567 Li, R., Khafipour, E., Krause, D. O., Entz, M. H., de Kievit, T. R., and Fernando, W. G. D. 2012.  
568 Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial  
569 communities. *PLOS ONE*. 7:e51897–12.

570

571 Love, M. I., Huber, W., and Anders, S. 2014. Moderated estimation of fold change and  
572 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15:31–21.

573

574 Mahoney, A. K., Yin, C., and Hulbert, S. H. 2017. Community structure, species variation, and  
575 potential functions of rhizosphere-associated bacteria of different winter wheat (*Triticum*  
576 *aestivum*) cultivars. *Front Plant Sci.* 8:2276–14.

577

578 McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., and Van  
579 Sanford, D. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight.  
580 *Plant Dis.* 96:1712–1728.

581

582 McMurdie, P. J., and Holmes, S. 2013. phyloseq: An R package for reproducible interactive  
583 analysis and graphics of microbiome census data ed. Michael Watson. *PLOS ONE.* 8:e61217–  
584 11.

585

586 McMurdie, P. J., and Holmes, S. 2014. Waste not, want not: why rarefying microbiome data is  
587 inadmissible. *PLoS Comp Biol.* 10:e1003531–12.

588

589 Mendes, L. W., Kuramae, E. E., Navarrete, A. A. C. A., van Veen, J. A., and Tsai, S. M. 2014.  
590 Taxonomical and functional microbial community selection in soybean rhizosphere. *ISME J.*  
591 8:1577–1587.

592

593 Mousa, W. K., Shearer, C., Limay-Rios, V., and Ettinger, C. L. 2016. Root-hair endophyte  
594 stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen *Fusarium*  
595 *graminearum*. *Nature.* 1:16167.

596

597 Nettles, R., Watkins, J., Ricks, K., Boyer, M., Licht, M., Atwood, L. W., Peoples, M., Smith, R.  
598 G., Mortensen, D. A., and Koide, R. T. 2016. Influence of pesticide seed treatments on  
599 rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize  
600 and soybean. *Appl Soil Ecol.* 102:61–69.

601

602 Ofek, M., Voronov-Goldman, M., Hadar, Y., and Minz, D. 2013. Host signature effect on plant  
603 root-associated microbiomes revealed through analyses of resident vs. active communities.  
604 *Environ Microbiol.* 16:2157–2167.

605

606 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 2016.

607 *vegan: Community Ecology Package*. URL: <https://CRAN.R-project.org/package=vegan>.

608

609 Peay, K. G., Kennedy, P. G., and Talbot, J. M. 2016. Dimensions of biodiversity in the Earth

610 mycobiome. *Nat Rev Micro*. 14:434–447.

611

612 Peiffer, J. A., Spor, A., Koren, O., and Jin, Z. 2013. Diversity and heritability of the maize

613 rhizosphere microbiome under field conditions. *P Natl Acad Sci USA*. 110: 6548–6553.

614

615 R Core Team. 2016. *R: A language and environment for statistical computing*. Vienna, Austria.

616 URL: <https://www.R-project.org/>.

617

618 Rascovan, N., Carbonetto, B., Perrig, D., Díaz, M., Canciani, W., Abalo, M., Alloati, J.,

619 González-Ant, G., and Vazquez, M. P. 2016. Integrated analysis of root microbiomes of

620 soybean and wheat from agricultural fields. *Sci Rep-UK*. 6:1–12.

621

622 Rastogi, G., Coaker, G. L., and Leveau, J. H. J. 2013. New insights into the structure and

623 function of phyllosphere microbiota through high-throughput molecular approaches. *FEMS*

624 *Microbiol Lett*. 348:1–10.

625

626 Reasoner, D. J., and Geldreich, E. E. 1985. A new medium for the enumeration and subculture

627 of bacteria from potable water. *Appl Environ Microb*. 49:1–7.

628

629 Rideout, J. R., He, Y., Navas-Molina, J. A., Walters, W. A., Ursell, L. K., Gibbons, S. M., Chase,

630 J., McDonald, D., Gonzalez, A., Robbins-Pianka, A., Clemente, J. C., Gilbert, J., Huse, S. M.,

631 Zhou, H. W., Knight, R., and Caporaso, J. G. 2014. Subsampled open-reference clustering

632 creates consistent, comprehensive OTU definitions and scales to billions of sequences. *PeerJ*.

633 2:e545–25.

634

635 Robertson, P. G. 2015. *The ecology of agricultural landscapes: Long-term research on the path*

636 *to sustainability*. eds. P G Robertson, S K Hamilton, and J E Doll. Oxford University Press.

637

638 Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O.,  
639 and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. *ISME J.*  
640 2:404–416.

641

642 Rodriguez, R. J., White, J. F., Jr, Arnold, A. E., and Redman, R. S. 2009. Fungal endophytes:  
643 diversity and functional roles. *New Phytologist*. 182:314–330.

644

645 Ruinen, J. 1956. Occurrence of *Beijerinckia* species in the “phylosphere.” *Nature*. 177:220–221.

646

647 Shade, A., McManus, P. S., and Handelsman, J. 2013. Unexpected diversity during community  
648 succession in the apple flower microbiome. *mBio*. 4:e00602–e00612.

649

650 Sharma, K., Mishra, A. K., and Misra, R. S. 2009. Morphological, biochemical and molecular  
651 characterization of *Trichoderma harzianum* isolates for their efficacy as biocontrol agents. *J*  
652 *Phytopathology*. 157:51–56.

653

654 Sieber, T., Riesen, T. K., Müller, E., and Fried, P. M. 1988. Endophytic fungi in four winter wheat  
655 cultivars (*Triticum aestivum* L.) differing in resistance against *Stagonospora nodorum* (Berk.)  
656 Cast. & Germ.= *Septoria nodorum* (Berk.) Berk. *J Phytopathology*. 122:289–306.

657

658 Slininger, P. J., Schisler, D. A., Shea-Andersh, M. A., Sloan, J. M., Woodell, L. K., Frazier, M. J.,  
659 and Olsen, N. L. 2010. Multi-strain co-cultures surpass blends for broad spectrum biological  
660 control of maladies of potatoes in storage. *Biocontrol Sci Technol*. 20:763–786.

661

662 Stakman, E. C., and Harrar, J. G. *Principles of Plant Pathology*. New York: The Ronald Press  
663 Company, 1957.

664

665 Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., García, J. B., del Val,  
666 A., G., Gorrochategui, J., Hernández P., Peláez, F., and Vincente, M. F. 2000. Screening of  
667 Basidiomycetes for antimicrobial activities. *Antonie Van Leeuwenhoek*. 78:129–140.

668

669 Trail, F., Common, R. 2000. Perithecial development by *Gibberella zeae*: a light microscopy  
670 study. *Mycologia*. 92:130–138.

671

672 USDA. 2016. *Crop Production 2015 Summary* 01/12/2016. eds. Robert Johansson and James  
673 M Harris.

674

675 Vorholt, J. A. 2012. Microbial life in the phyllosphere. *Nat Rev Microbiol.* 10:828–840.

676

677 Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. 2007. Naive Bayesian classifier for rapid  
678 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microb.*  
679 73:5261–5267.

680

681 Wegulo, S. N., Baenziger, P. S., Nopsa, J. H., Bockus, W. W., and Hallen-Adams, H. 2015.  
682 Management of Fusarium head blight of wheat and barley. *Crop Prot.* 73:100–107.

683

684 Wickham, H. 2009. *ggplot2: elegant graphics for data analysis*. New York: Springer. *URL:*  
685 <http://R-project.org/package=ggplot2>.

686

687 Xue, K., Wu, L., Deng, Y., He, Z., Van Nostrand, J., Robertson, P. G., Schmidt, T. M., and Zhou,  
688 J. 2013. Functional gene differences in soil microbial communities from conventional, low-input,  
689 and organic Farmlands. *Appl Environ Microb.* 79:1284–1292.

690

691 Yin, C., Mueth, N., Hulbert, S., Schlatter, D., Paulitz, T. C., Schroeder, K., Prescott, A., and  
692 Dhingra, A. 2017. Bacterial communities on wheat grown under long-term conventional tillage  
693 and no-till in the Pacific Northwest of the United States. *Phytobiomes.* doi:10.1094/PBIOMES-  
694 09-16-0008-R.

695

696 Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of  
697 cereals. *Weed Res.* 14:415–421.

698

**Table 1.** Microbe isolates recovered from wheat plants.

| <b>Growth stage</b> | <b>Number isolated<sup>a</sup></b> |                 |
|---------------------|------------------------------------|-----------------|
|                     | <b>Fungi</b>                       | <b>Bacteria</b> |
| Early Vegetative    | 456                                | 510             |
| Boot                | 527                                | 211             |
| Kernel Development  | 651                                | 391             |

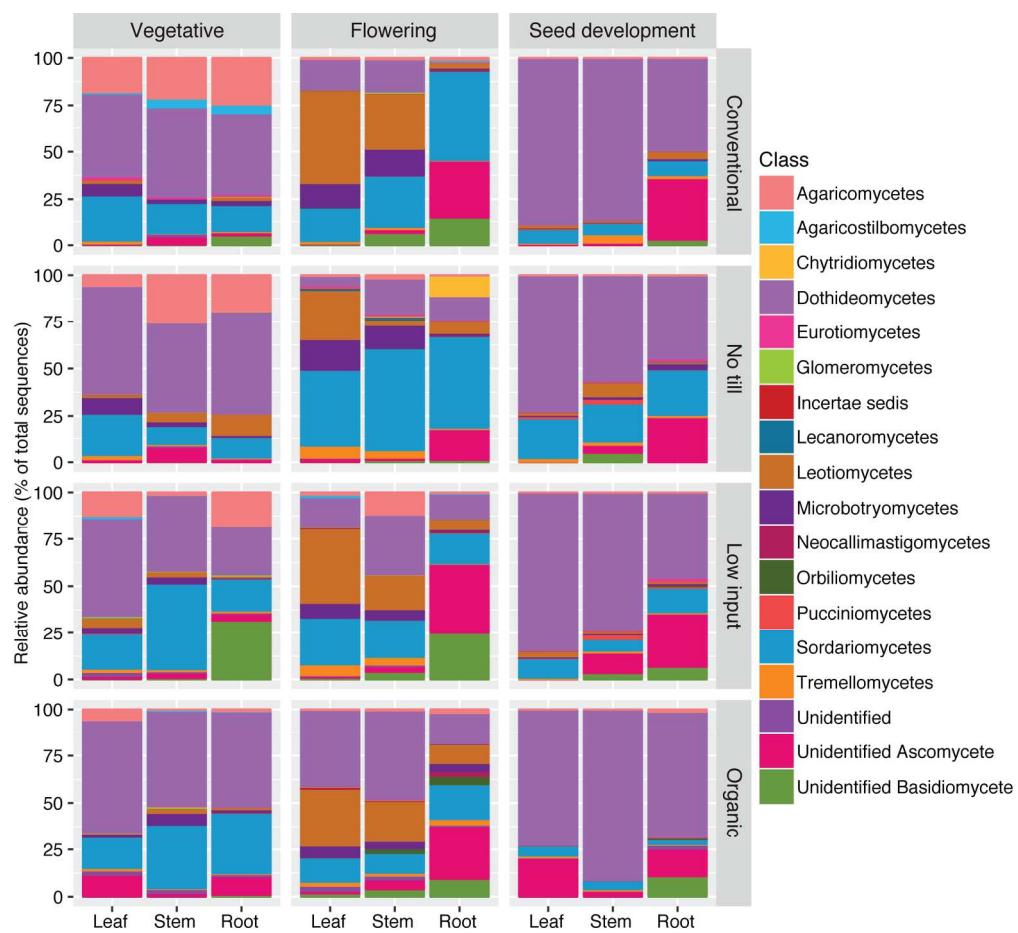
<sup>a</sup>Numbers presented here are totals and do not account for duplicates of morphotypes.

699

700

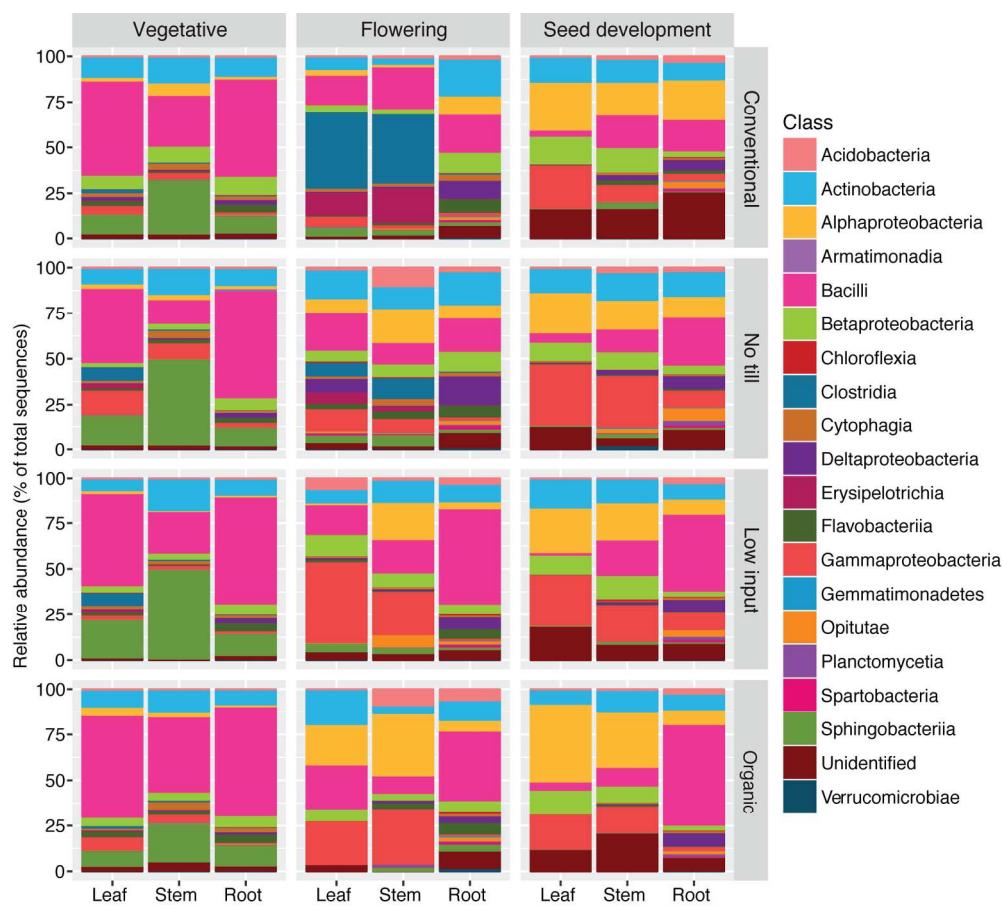
701

**Table 2.** Results of in vitro co-culture competition assay with *Fusarium graminearum*.


| Category | Number observed |          |         |       |         |    | Observed morphotypes |  |
|----------|-----------------|----------|---------|-------|---------|----|----------------------|--|
|          | Total           | Bacteria |         | Fungi |         |    |                      |  |
|          |                 | Total    | Percent | Total | Percent |    |                      |  |
| Type 1   | 175             | 74       | 10.3%   | 101   | 14.2%   | 15 |                      |  |
| Type 2   | 308             | 113      | 15.8%   | 195   | 27.4%   | 16 |                      |  |
| Type 3   | 442             | 175      | 24.5%   | 267   | 37.6%   | 11 |                      |  |
| Type 4   | 463             | 341      | 47.7%   | 122   | 17.2%   | 15 |                      |  |
| Type 5   | 38              | 12       | 1.7%    | 26    | 3.7%    | 10 |                      |  |

702

703


**Table 3.** Identification of most protective fungal strains used in greenhouse plant assays.

| Strain ID | ID by full length ITS locus      |
|-----------|----------------------------------|
| 11        | <i>Microdochium bolleyi</i>      |
| 30        | <i>Alternaria tenuissima</i>     |
| 34        | <i>Alternaria</i> sp.            |
| 35        | <i>Talaromyces trachyspermus</i> |
| 36        | <i>Aspergillus niger</i>         |
| 37        | <i>Alternaria tenuissima</i>     |
| 38        | <i>Fusarium solani</i>           |
| 40        | <i>Fusarium</i> sp.              |
| 44        | <i>Fusarium</i> sp.              |
| 45        | <i>Penicillium reticulisorum</i> |
| 51        | <i>Phoma</i> sp.                 |
| 57        | <i>Phoma</i> sp.                 |
| 59        | <i>Fusarium</i> sp.              |
| 70        | <i>Fusarium oxysporum</i>        |
| 88        | <i>Penicillium commune</i>       |

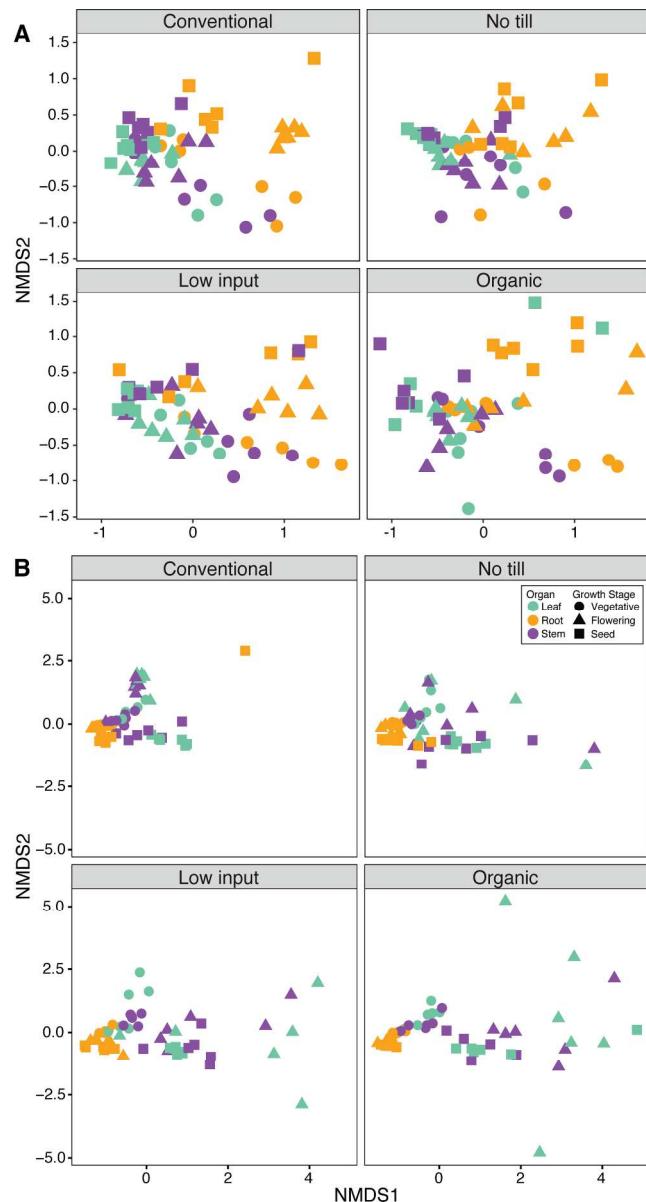


Class-level relative abundance of fungal communities across growth stage, plant organ, and crop management strategies.

176x163mm (300 x 300 DPI)



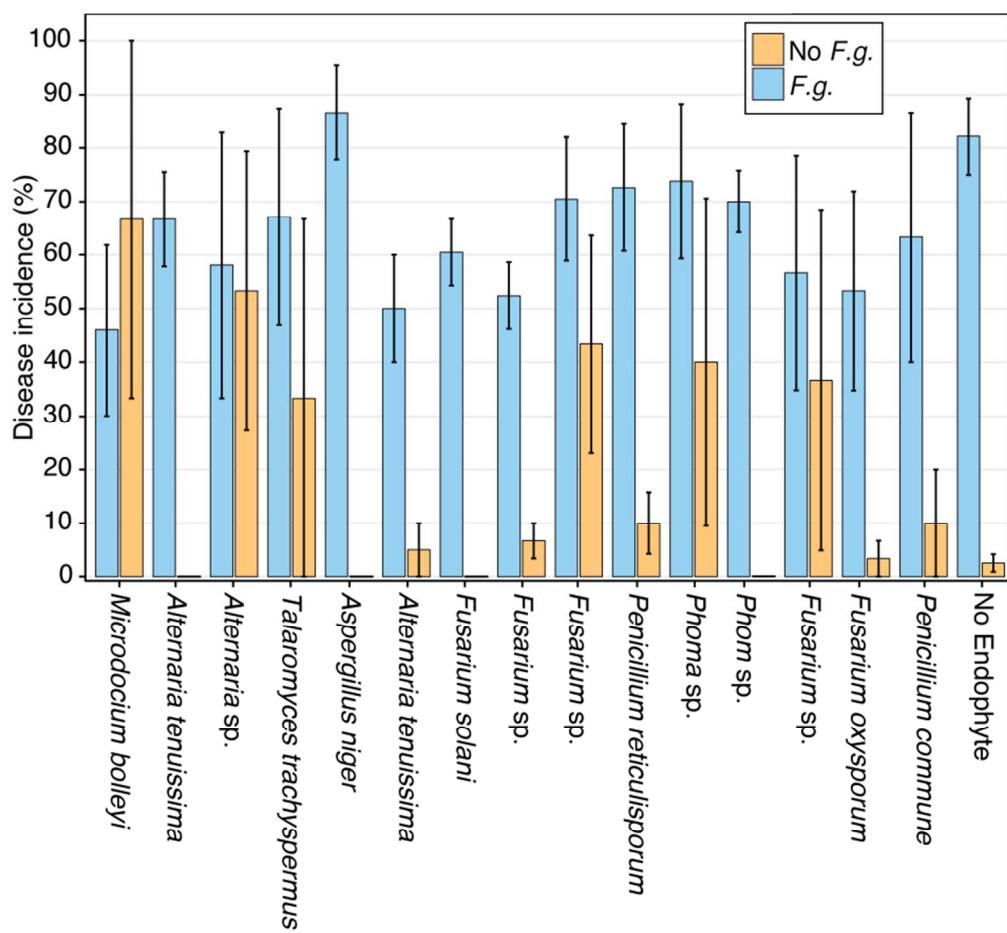
Class-level relative abundance of bacterial communities across growth stage, plant organ, and crop management strategies.


175x157mm (300 x 300 DPI)



Alpha diversity of fungi (A) and bacteria (B) found across all samples estimated by Shannon diversity index.

Data are represented by six replicates from each stage-management-organ combination. Center line of boxes represents median of samples. The upper and lower sides of the boxes represent the third and first quartiles, respectively. Whiskers represent  $\pm 1.5$  times the interquartile range. Data points beyond whiskers represent outliers. ANOVA and Tukey's HSD were used to test significance ( $p < 0.05$ ). Statistical support is detailed in Table S6. Conven = conventional.


159x243mm (300 x 300 DPI)



Effect of management strategies on beta diversity of fungal (A) and bacterial (B) communities originating from plant organs. Non-metric multidimensional scaling (NMDS) calculated by Bray-Curtis distance.

Difference between centroids were tested using PERMANOVA and homoscedasticity to test variance (Oksanen et al. 2016). Stress values of fungal data (A), which reveals goodness of fit, were 0.115, 0.117, 0.117, and 0.121 for conventional, no till, low input, and organic NMDS plots, respectively. Stress values of bacterial data (B) were 0.086, 0.092, 0.086, and 0.113 for conventional, no till, low input, and organic NMDS plots, respectively. Statistical support is detailed in Table S7.

131x247mm (300 x 300 DPI)



Mean disease incidence (percentage of replicate) of endophyte inoculated seedlings  $\pm$  standard error of the mean. Ten plants per replicate, three independent replicates. Labels on x-axis indicate strain identification numbers. F.g. = *Fusarium graminearum*. ANOVA and Tukey's HSD were used to test significance ( $p < 0.05$ ).

80x73mm (300 x 300 DPI)

**Table 1.** Microbe isolates recovered from wheat plants.

| <b>Growth stage</b> | <b>Number isolated<sup>a</sup></b> |                 |
|---------------------|------------------------------------|-----------------|
|                     | <b>Fungi</b>                       | <b>Bacteria</b> |
| Early Vegetative    | 456                                | 510             |
| Boot                | 527                                | 211             |
| Kernel Development  | 651                                | 391             |

<sup>a</sup>Numbers presented here are totals and do not account for duplicates of morphotypes

§.

**Table 2.** Results of in vitro co-culture competition assay with *Fusarium graminearum*.

| Category | Number observed |          |         |       | Observed morphotypes |    |
|----------|-----------------|----------|---------|-------|----------------------|----|
|          | Total           | Bacteria |         | Fungi |                      |    |
|          |                 | Total    | Percent | Total | Percent              |    |
| Type 1   | 175             | 74       | 10.3%   | 101   | 14.2%                | 15 |
| Type 2   | 308             | 113      | 15.8%   | 195   | 27.4%                | 16 |
| Type 3   | 442             | 175      | 24.5%   | 267   | 37.6%                | 11 |
| Type 4   | 463             | 341      | 47.7%   | 122   | 17.2%                | 15 |
| Type 5   | 38              | 12       | 1.7%    | 26    | 3.7%                 | 10 |

**Table 3.** Identification of most protective fungal strains used in greenhouse plant assays.

| Strain ID | ID by full length ITS locus      |
|-----------|----------------------------------|
| 11        | <i>Microdochium bolleyi</i>      |
| 30        | <i>Alternaria tenuissima</i>     |
| 34        | <i>Alternaria</i> sp.            |
| 35        | <i>Talaromyces trachyspermus</i> |
| 36        | <i>Aspergillus niger</i>         |
| 37        | <i>Alternaria tenuissima</i>     |
| 38        | <i>Fusarium solani</i>           |
| 40        | <i>Fusarium</i> sp.              |
| 44        | <i>Fusarium</i> sp.              |
| 45        | <i>Penicillium reticulisorum</i> |
| 51        | <i>Phoma</i> sp.                 |
| 57        | <i>Phoma</i> sp.                 |
| 59        | <i>Fusarium</i> sp.              |
| 70        | <i>Fusarium oxysporum</i>        |
| 88        | <i>Penicillium commune</i>       |