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The impact of longitudinal electric fields that are present in intense focusing and defocusing

electromagnetic pulses on electron acceleration is investigated. These fields are typically much

weaker than the transverse fields, but it is shown that they can have a profound effect on electron

energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed

backward along the trajectory of an accelerated electron, which leads to a continuous net energy

gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is

to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction

with a plane wave, the electron is able to retain a substantial amount of energy following its interac-

tion with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed

in a focusing pulse, which leads to a reduction in the energy retention. The present analysis under-

scores the importance of relatively weak oscillating electric fields in focusing and defocusing

pulses. Published by AIP Publishing. https://doi.org/10.1063/1.5024049

I. INTRODUCTION

The foundational status that fast electrons have in ultra-

intense laser-plasma interactions has made the subject of fast

electron generation an on-going relevance. One mechanism

which continues to be discussed is “Direct Laser Acceleration”

(DLA), which is generally understood to mean the acceleration

of electrons in underdense plasma when the electron experience

both the laser field and some self-consistently generated

“plasma” fields.1–4 The specific case of acceleration of elec-

trons in a ponderomotively evacuated ion channel has been a

major topic of study.5–11

Plasma fields are often held to be necessary in order to

ensure net energy gain from the interaction, and the Lawson-

Woodward Theorem is usually cited to support this argu-

ment. The Lawson-Woodward (L-W) Theorem is usually

stated in different ways by different authors. Esarey et al.12

state that the L-W theorem ensures that a charged particle

cannot gain energy from an electromagnetic field in vacuum,

provided that a number of conditions apply. Others13 state

the L-W theorem as follows: a charged particle cannot be

accelerated by a plane electromagnetic wave alone. The lat-

ter statement of the L-W theorem is probably the better way

to state the theorem. However, this statement of the L-W the-

orem also changes its relevance to laser-plasma interactions,

as plane waves will not always be good approximations to

strongly focussed laser pulses, even though plane waves are

often used in analyses of DLA.

The question of net energy gain from strongly diffract-

ing electromagnetic pulses was addressed by Troha et al.13

who used an exact solution to Maxwell’s equations corre-

sponding to a coherent pulse emitted from an electric dipole.

Troha et al. employed numerical integration of the equations

of motion to show that an electron gained net energy from

this pulse when the radius of curvature of the wavefronts

was small, with the energy gain vanishing as the radius of

curvature became increasingly large (i.e., in the limit that the

L-W theorem applies). Clearly, the results of Troha et al.

show that “plasma fields” are not absolutely essential for net

energy gain, provided that one does not employ plane waves.

This raises a number of questions, including (i) Does it

matter whether a coherent pulse of radiation is focussing or

defocussing? and (ii) what role “plasma fields” play in inter-

actions with strongly diffracting pulses? The role of “plasma

fields” in interactions with plane waves has been the subject

of a number of investigations. One important aspect of elec-

tric fields in plane wave interactions is that electric fields can

alter the dephasing rate of the electron, which can lead to

electrons achieving “superponderomotive” energies when

the dephasing rate is strongly reduced. In the case of a

strongly diffracting pulse, does this mean that superpondero-

motive net energy gain is possible?

In this paper, we show that (i) the net energy gain is highly

dependent on whether the pulse is focussing or de-focussing,

with de-focussing required for high net energy gain, and (ii)

superponderomotive energy gain is indeed possible when a dif-

fracting radiation pulse interacts with a pre-accelerated electron.

We also employ a coherent dipole radiation pulse for the elec-

tromagnetic pulse. We examine the interaction in greater detail

than Troha et al., and we show that the net energy gain is due

to the radial component of the electric field.

In terms of the organization of this paper, we have

adopted the following structure: In Sec. II, we present argu-

ments for why a defocussing pulse is necessary for high net

energy gain. In Sec. III, we first provide a very brief recap of

the key results of electron motion in a plane EM wave and

how anti-dephasing can produce trajectories which achieve

superponderomotive energies. In Sec. IVA, we provide the

details of the electromagnetic field that we use in our

1070-664X/2018/25(5)/053107/7/$30.00 Published by AIP Publishing.25, 053107-1

PHYSICS OF PLASMAS 25, 053107 (2018)



numerical calculations. In Sec. IVB, we describe the numeri-

cal method employed. In Sec. V, we present the results of

our calculations and proceed to analyze and discuss these

results. The conclusions of this paper are then summarized in

Sec. VI.

II. FOCUSSING VERSUS DE-FOCUSSING OF THE

DIPOLAR PULSE

As already mentioned, the analysis of DLA is often sim-

plified by treating the laser pulse as a plane electromagnetic

wave. This simplification is frequently used in semi-

analytical models to make the problem tractable. The ratio-

nale for neglecting focusing or defocusing of the laser pulse

is the well-known stabilizing effect of the plasma on laser

beam propagation where the plasma effectively functions as

an optical waveguide. However, full elimination of focusing

and defocusing requires a precise match of laser and plasma

parameters. It is therefore worth examining the role that

these effects can play in electron dynamics.

The goal of this section is to examine the role of focus-

ing and defocusing by examining dynamics of a single elec-

tron irradiated in a vacuum by an electromagnetic wave. In

order to make the analysis easier, we assume that both focus-

ing and defocusing are relatively weak.

Our basic setup is shown in Fig. 1. We are considering a

linearly polarized laser pulse propagating along the x-axis in

the positive direction. We assume that the laser pulse has a

limited width R along the z-axis, while the laser magnetic

field is polarized along the y-axis. This implies that the laser

electric field has a longitudinal component Ex in addition to

the transverse component Ez.

Here, we are only interested in the local field structure.

Neglecting corrections introduced by the finite width of the

pulse, we have the following structure for the transverse

electric and magnetic fields

Ez ¼ E0 sin ð2px=k# xtþ wÞ; (1)

By ¼ #Ez; (2)

where E0 is the amplitude, w is a phase, k is the wavelength,

and x & 2pc=k is the frequency of the laser pulse.

A longitudinal electric field must also be present. Its

structure is set by the condition r ' E ¼ 0, which yields

@Ex

@x
¼ #

@Ez

@z
: (3)

Since the transverse spatial scale is R, the amplitude of the

longitudinal electric field is relatively small

jExj ( E0k=R ) E0: (4)

We assume that the (x, y)-plane is the plane of symmetry for

the transverse fields, which implies that the amplitude of the

transverse fields peaks at z¼ 0. It is then evident from Eq.

(3) that Ex is asymmetric, with Ex¼ 0 at z¼ 0.

The sign of Ex is determined by the Poynting vector,

S ¼ ðc=4pÞE* B. If the laser pulse is focusing, then the trans-

verse component of the Poynting vector, Sz ¼ ðc=4pÞExBy,

should be directed towards the (x, y)-plane. This means that

ExEz > 0 for z > 0; (5)

ExEz < 0 for z < 0; (6)

where we took into account that By ¼ #Ez. On the other

hand, the Poynting vector should be directed away from the

(x, y)-plane if the laser pulse is defocusing. This then leads

to the following conditions:

ExEz < 0 for z > 0; (7)

ExEz > 0 for z < 0: (8)

Figure 1 schematically illustrates both cases.

In order to determine how the longitudinal field of the

pulse impacts electron energetics, we examine the shape of

the electron trajectory. We do this by neglecting corrections

associated with focusing and defocusing. This means that we

are considering an electron trajectory in a plane wave of rela-

tivistic amplitude. Such a wave pushes the electron forward,

while inducing transverse oscillations. Transverse stopping

points that we denote for convenience as z ¼ z+ correspond

to the peak amplitude of the transverse electric field (see

Sec. 3 of Ref. 6 for illustrations). Since the electron is nega-

tively charged, its upward motion along the z axis is stopped

by a positive transverse electric field, whereas its downward

motion is stopped by a negative transverse electric field (see

Fig. 1). The sign of the transverse electric field at each stop-

ping point can then be determined by the following simple

condition:

FIG. 1. Electric field structure in focusing and defocusing laser pulses. Both

pulses are propagating to the right. Circles indicate the positions of the turn-

ing points along the electron trajectory that is schematically indicated by

dotted lines.
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z+Ez > 0: (9)

As evident from Fig. 1, the sign of the longitudinal electric

field at each turning point is uniquely defined by the sign of

the transverse electric field. It follows directly from Eqs. (5),

(6), and (9) that the longitudinal electric field of a focusing

laser pulse is always positive at a turning point. In contrast to

that, the longitudinal electric field of a defocusing laser pulse

is always negative at a turning point. Since the electron is

moving forward along the electron trajectory, a negative lon-

gitudinal field would increase the energy of the electron,

whereas a positive longitudinal field would decrease the

energy. We therefore arrive to an important conclusion: lon-

gitudinal electric fields of a focusing laser pulse decrease the

total electron energy, while longitudinal electric fields of a

defocusing laser pulse increase the total electron energy.

This observation allows us to readily estimate how

much energy the electron would lose or gain from the longi-

tudinal electric field after each laser period depending on the

focusing or defocusing pulse configuration. The electron is

moving in the forward direction with a velocity close to the

speed of light c if the normalized laser amplitude a0
& jejE0=mexc is highly relativistic, i.e., a0 , 1. We can

then estimate the change in energy induced by a longitudinal

electric field as

D! - #jejExcDt; (10)

where Dt is the time it takes to perform one transverse oscil-

lation. In a co-moving frame of reference, the period of one

oscillation is 2p=x. Taking into account that the electron is

moving forward with a relativistic factor c, we find that in

the laboratory frame of reference, the period of oscillations

is longer by a factor of c, with Dt ( cc=x. We use the esti-

mate for Ex given by Eq. (4) to obtain a relative change in

the electron energy because of the longitudinal electric field

jD!j

cmec2
- a0k=R: (11)

As already stated, this change is negative if the pulse is

focusing and positive if it is defocusing.

It is worth pointing out that R is the characteristic scale

over which the fields are changing in the transverse direction.

There are two characteristic scales: the width of the beam and

the radius of curvature of its wavefronts. The parameter R rep-

resents the smallest of the two. In the case of a Gaussian

beam, R represents the width of the beam over longitudinal

distances less than the Rayleigh length from the focal spot.

Finally, we can employ the qualitative picture that has

been developed in this section to also gain insight into the

role of focusing and defocusing in the work performed by

transverse electric fields. Let us consider a part of the trajec-

tory where the electron begins its upward motion at z¼ 0

and then returns to z¼ 0 after being turned around at a stop-

ping point. In a plane wave, this motion is symmetric, with

the electron gaining the same amount of energy from Ez as it

lost traveling to the stopping point. This energy exchange

takes place in a positive field. We now recall that the elec-

tron is moving forward while performing this transverse

oscillation. In a focusing laser pulse, the transverse electric

field increases as the electron returns to the z¼ 0 location,

whereas the field decreases in a defocusing pulse. We there-

fore conjecture that the work done by the transverse electric

field of a defocusing laser pulse gradually reduces electron

energy. In contrast to that, a focusing laser pulse should

gradually increase the electron energy.

We now summarize our qualitative findings in Table I

that shows how the electron energy changes as a result of the

interaction with different components of the electric field in

focusing and defocusing laser pulses.

It must be emphasized that these are relatively small

energy changes that occur with each oscillation as compared

to the primary energy oscillations of the order of D!

- a20mec
2 that occur due to the oscillations of the transverse

electric field at the electron location.

III. ANTI-DEPHASING IN THE PLANE WAVE CASE

In order to aid the discussion of the main points in this

paper, it is useful to review the main results from the plane

wave case. Suppose that an electron, which initially has

momentum along the x-axis (p0 ¼ p0x̂, where p0 > 0),

undergoes an interaction with a plane wave: A ¼ ½0;A0

ðsÞ cos ðxLsÞ; 0/, where s ¼ t# x=c and A0 is a slowly vary-

ing envelope function. This problem has been dealt with in

detail in various publications. Let tilde denote a momentum

that is normalized by mec and lowercase a denote a normal-

ized vector potential. The results can then be summarized as

follows:

~py ¼ ay; (12)

~px ¼
a2y

2N
þ ~p0; (13)

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2y þ
a2y

2N
þ ~p0

" #2
s

: (14)

In the above equations, the term N is a constant of motion,

namely,

N ¼ c# ~px: (15)

In the case where the electron is initially at rest, N¼ 1, and

we obtain what we might term the “vacuum” or

“ponderomotive” case: c ¼ 1þ
a2y
2
. When p0 > 1, it can be

seen that N < 1 (in the extreme limit N ! 1
2~p0

). Therefore,

when p0 > 0; px >
a2y
2
, which is what we term

“superponderomotive.” The quantity, N, is essentially a

dephasing rate. Pre-acceleration of the electron or interaction

TABLE I. Summary of electron energy changes in focusing and defocusing

cases.

Transverse electric

field Ez

Longitudinal electric

field Ex

Focusing pulse D! > 0 D! < 0

Defocusing pulse D! < 0 D! > 0
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with electric fields during interaction with the laser pulse can

reduce the dephasing rate and produce a superponderomotive

trajectory. Note that since ay ! 0 at some point (assuming a

finite laser pulse), there will be no net energy gain in the

case considered above. This is why the dipole radiation case

is interesting, as it is known that this does lead to net energy

gain. The question is to what extent the role of anti-

dephasing applies to the dipole radiation case.

IV. NUMERICAL METHOD

A. Coherent dipole radiation

Here, we provide a brief description of the dipole radia-

tion field that we use in our calculations and was previously

used by Troha et al. If we adopt the Lorenz gauge condition,

then the vector potential in vacuum is governed by

r2A#
1

c2
@2A

@t2
¼ 0: (16)

Any cartesian component of the vector potential is therefore

governed by a scalar wave equation. We can therefore imme-

diately state that a valid solution is

Az ¼ Cf ðgÞ=r; (17)

where g ¼ r # ct and f ðgÞ is an arbitrary pulse profile. Note

that r is the radius in spherical polar coordinates. As the

Lorenz gauge applies, the corresponding scalar potential is

/ ¼
c2Cz

r2
h

r
þ

f

c

$ %

; (18)

where @h=@t ¼ f . Having obtained a solution (for any f) in

terms of the potentials, we can calculate the cartesian com-

ponents of the E and B fields via B ¼ r* A and

E ¼ #r/# @A=@t. These are

Ez¼
c2C

r

z2

r2
3

r

h

r
þ
f

c

" #

#
1

c

@f

@g

 !

#
1

r

h

r
þ
f

c

" #

#
1

c

@f

@g

 !" #

;

(19)

Ey ¼
c2Cyz

r3
3

r

h

r
þ

f

c

" #

#
1

c

@f

@g

 !

; (20)

Ex ¼
c2Cxz

r3
3

r

h

r
þ

f

c

" #

#
1

c

@f

@g

 !

; (21)

Bz ¼ 0; (22)

Bx ¼ #
yC

r2
f

r
#

@f

@g

$ %

; (23)

By ¼
xC

r2
f

r
#

@f

@g

$ %

: (24)

B. Particle Pusher

The relativistic equations of motion for a single electron

were numerically integrated via the Boris method.14 This

was done using a time step of 0.1 fs for 1.6* 106 time steps

(it was determined that the solution has converged for this

choice). The fields derived in the preceding section treat the

divergent/defocussing case, but the fields can be derived for

the convergent case as well. For the pulse profile, f, we used

f ðgÞ ¼ exp #
ðg# r0Þ

2

2r2

$ %

cos ðxgÞ: (25)

The frequency, x, was set equal to 2p=k, where k ¼ 1lm.

The pulse envelope width parameter, r, was set to r ¼ 5lm

throughout. The amplitude fixing constant, C, was set to

C ¼ r0meca0=e, where the normalized vector potential was

set to a0 ¼ 10. The electron was initially placed at

xðt ¼ 0Þ ¼ ½x0; 0; 0/, with initial momentum given by

p ¼ ½p0; 0; 0/. We denote the initial Lorentz factor of the

electron by c0. The value of r0 was set to r0 ¼ x0 # 20lm. In

this set-up, the equivalent plane-wave calculation would

result in a maximum c of 51, which we denote as cpl.

V. RESULTS AND DISCUSSION

A. Overview of results

The first set (set A) of calculations was done for the case

where the electron was initially at rest. The initial position

along the x-axis was varied. The Lorentz factor of the elec-

tron at the end of each calculation for this set is plotted in

Fig. 2.

In the second set (set B) of calculations, the electron ini-

tially had a Lorentz factor of 2.23 with its momentum

directed along theþx-axis. The initial position along the x-

axis was varied. The Lorentz factor of the electron at the end

of each calculation for this set is plotted in Fig. 3. Note that

sets A and B only consider a divergent/defocussing pulse.

In the third and fourth sets of calculations, we examined

the effect of a focussing or convergent pulse (in which the

pulse is travelling inwards towards the origin). This involved

amending the field equations appropriately and setting the

pulse to be at a larger radius than the electron (via

FIG. 2. The final value of the Lorentz factor of the electron at the end of the

calculation for a set of calculations with c0¼1 (Set A).
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r0 ¼ x0 þ 20lm.). In the third set (set C), the electron was

initially at rest and x0 was varied, and in the fourth set (set

D), the electron initially had a Lorentz factor of 2.23 with its

velocity directed toward the origin. The results of set C are

presented in Fig. 4 where they are plotted along with those

from set A. The results of set D are plotted in Fig. 5 where

they are plotted along with those from set B.

B. Net energy gain

The Lorentz factors observed at the end of the calcula-

tions do indeed represent (where c > 1) a net energy gain.

An example of the evolution of c with time is shown in Fig.

6. This is a calculation from set B: c0 ¼ 2:23 and

x0 ¼ 700lm. This clearly shows that the electron undergoes

net energy gain in this calculation and the same is true for all

the other calculations reported in Figs. 2 and 3. What Fig. 6

also shows is that the final energy of the electron is generally

less than the peak energy that the electron will achieve dur-

ing its interaction with the pulse.

The work done on the electron can, however, be decom-

posed into two components: work done by the longitudinal

(i.e., parallel to the local wave-vector) component of the

electric field (Ex for sets A and B) and work done by the Ez

component of the field. The contributions as a function of

time for the same case are shown in Fig. 7. The results

shown in Fig. 7 are representative of the calculations in sets

A and B: the net work done on the electron is done by the Ex

component of the field, i.e., the longitudinal component of

the field. Interestingly the Ez components act to counteract

the radial acceleration, by removing a portion of energy

from the electron. This is a point that was not really dis-

cussed by Troha et al.

C. Effect of anti-dephasing on net energy gain

From the calculations done in set B, it is clear that pre-

acceleration has an effect that is similar to anti-dephasing

FIG. 3. The final value of the Lorentz factor of the electron at the end of the

calculation for a set of calculations with c0¼2.23 (Set B).

FIG. 4. The final value of the Lorentz factor of the electron at the end of the

calculation for a set of calculations with c0¼1 in which the pulse is diverg-

ing (divergent, set A) and converging (convergent, set C).

FIG. 5. The final value of the Lorentz factor of the electron at the end of the

calculation for a set of calculations with c0¼2.23 in which the pulse is

diverging (divergent, set B) and converging (convergent, set D).

FIG. 6. Evolution of c in time for the case of c0 ¼ 2:23; x0 ¼ 700lm (set B).
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in the plane wave case. Not only does this lead to net

energy gains that are higher at most values of x0 than that is

achieved for c0¼ 1, but also we see in Fig. 3 that cf > 51

over a range of values of x0. This means that

superpondermotive net energy gain is clearly observed in

these calculations.

Two further sets of calculations (E and F) were carried

out to examine how the net energy gain was affected by the

value of c0. In set E, this was done for x0 ¼ 500lm, and in

set F, this was done for x0 ¼ 1000lm. In both sets E and F,

the initial momentum of the electron p0=mec was varied

between 0 and 10. The results of these calculations are

shown in Figs. 8 and 9.

These calculations show that anti-dephasing does not

affect the net energy gain in the dipole radiation case as it

affects the peak energy in the plane wave case. In the lat-

ter case, the peak energy should increase with ~p0 in the

limit that ~p0 is large. In the dipole radiation case, this does

not happen, and Figs. 8 and 9 show that the net energy

gain first increases with ~p0 before declining as ~p0 increases

further.

D. Focussing vs de-focussing

From the calculations done in sets C and D and their

comparison to sets A and B, which are shown in Figs. 4 and

5, respectively, it can be seen that there are very significant

differences between a focussing (or convergent) pulse and a

FIG. 7. Results from the calculation in set B with c0 ¼ 2:23; x0 ¼ 700lm.

Black line: Work done on the electron by the Ex field component. Red line:

Work done on the electron by the Ez field component.

FIG. 8. The final (Left) and peak

(Right) values of the Lorentz factor of

the electron in set E.

FIG. 9. The final (Left) and peak

(Right) values of the Lorentz factor of

the electron in set F.
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de-focussing (or divergent) pulse. This is particularly the

case in set D where the electron has some initial momentum

and the radius of the pulse is rather large in comparison to

the wavelength. As the analysis of Sec. II was carried out

under the assumption of weak focussing or de-focussing, this

analysis is particularly pertinent to this set, and we find that

it correctly predicts that the divergent case yields substantial

net energy gain (from the axial field), whereas the conver-

gent case yields negligible net energy gain.

In the case of set C, this is less pronounced, and this

may be because the radius of the pulse relative to the wave-

length is somewhat larger; however, the net energy gain is

much less for the convergent pulse than for the divergent

pulse. The broad finding of Sec. II therefore still holds.

VI. SUMMARYAND DISCUSSION

In this paper, we have examined two issues related to

the interactions of free electrons with a strong non-planar

electromagnetic wave by examining a spherical wave

although the results apply more generally to focussing and

de-focussing laser pulses. The first issue is the dependence

of net energy gain on whether the pulse is focussing or de-

focussing. We have shown that de-focussing is necessary

(not focussing) both via detailed calculations and via general

theoretical arguments. The second issue is whether super-

ponderomotive net energy gain can occur in these interac-

tions. We have shown that this is indeed possible. In both

issues, the cause of net energy gain was clarified in relation

to earlier work: it arises because of a longitudinal component

of the electromagnetic pulse, which will be absent in the

case of a single plane wave. It is worth pointing out that the

described energy change mechanism is a purely relativistic

effect, whereas the conventional ponderomotive acceleration

caused by a transverse intensity gradient is not.

These findings are interesting in the context of efforts to

further understand direct laser acceleration of electrons irra-

diated by intense laser pulses with relativistic intensity.

Typically, the role of an oscillating longitudinal electric field

is neglected if it is significantly weaker than the transverse

oscillating electric field. What we demonstrated here is that

an oscillating electron trajectory samples the longitudinal

electric field in such a way that the field no longer oscillates

from the point of view of the accelerated electron. This

observation weakens the argument that the longitudinal elec-

tric field can always be safely neglected due to its small

amplitude. Our findings strongly indicate that the mechanism

of direct laser acceleration cannot be seen solely in terms of

interactions with plane waves. In the light of our observa-

tions, it is worth examining whether the discussed effect pro-

foundly changes the energetics in regimes relevant to

experiments with ps and multi-ps laser pulses where elec-

trons are accelerated as they perform numerous transverse

oscillations. In this case, the problem becomes more com-

plex because the oscillating longitudinal field has to compete

with quasi-static longitudinal electric fields that can arise in

a laser irradiated plasma.6,7,15 The presence of the plasma

can also dramatically change the dephasing between the

electron and the laser pulse,16 which can affect how the

energy is transferred from the oscillating longitudinal elec-

tric field of the pulse.
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