Acta Materialia 155 (2018) 104—116

journal homepage: www.elsevier.com/locate/actamat

Contents lists available at ScienceDirect
ACtd MATERIALIA

Acta Materialia

Full length article

Dislocation-type evolution in quasi-statically compressed N

polycrystalline nickel

Check for
updates

Chaoyi Zhu ?, Tyler Harrington °, George T. Gray III °, Kenneth S. Vecchio *”

2 Department of NanoEngineering, UC San Diego, La Jolla, CA, 92131, United States
b Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, NM, 87545, United States

ARTICLE INFO

Article history:

Received 17 November 2017
Received in revised form

29 April 2018

Accepted 10 May 2018
Available online 30 May 2018

Keywords:

Geometrically necessary dislocations
Electron backscattered diffraction
Ashby dislocation theory
Statistically stored dislocations

ABSTRACT

The nature of dislocation generation as a function of applied plastic strain in quasi-statically compressed
polycrystalline pure nickel has been studied experimentally at ambient temperature. First, to ensure
representative datasets of the geometrically-necessary dislocation densities (pgnp) associated with non-
uniform plastic deformation, measurements over large (several millimeter square) areas were made
using Hough-based EBSD methods. In addition, the total dislocation density (pr) responsible for the
overall work hardening is estimated from the measured flow stress based on Taylor's hardening model.
Next, the statistically stored dislocation (SSD) density (pssp) is calculated by subtracting the GND density
from the total dislocation density. The results demonstrate that in quasi-statically deformed nickel: i) the
measured GND density varies linearly as a function of plastic strain in the range between 0.05 and 0.46;
although Ashby's model predicts linearity for GND density evolution over entire range of strains, this
study does not cover strains below 0.05; ii) the SSD density increases at a rate much faster than GND
density; and iii) the SSD density exceeds the GND density at above 0.09 plastic strain. Both i) and ii) are in
agreement with Ashby's prediction, while the magnitudes of GND density (iii) differ from Ashby's model
prediction, particularly at large applied strains. Overall, this study enables the interplay of GNDs and SSDs
in the hardening of nickel to be gleaned in a quantitative sense. This study illustrates that GNDs are the
more important for the strength of polycrystalline metals in the early stages of work hardening, whereas
SSDs contribute more to the strength at larger strains. Over the range of strain in this study, work
hardening is predominantly through rapid multiplication of SSDs; whereas the GND density is initially
higher than SSD density at 0.05 probably due to non-linear evolution of GNDs at low strains (<0.05),
which will be the subject of future investigation.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

activates secondary slip and produces orientation gradients in
terms of lattice rotation [6—8]. Due to different numbers of active

The generation and storage of defects, such as dislocations, play
an important role in work hardening of metals and alloys [1-3].
Due to the presence of deformation gradients that arise through
pile-up of geometrically necessary dislocations (GNDs), work
hardening of polycrystalline or multi-phase alloys is faster than
single crystal or single-phase alloys [4]. Hence, these materials are
described as being ‘plastically non-homogeneous’ [5]. For instance,
compressive or tensile tests of polycrystalline samples produces
slip on the primary slip system within the interior of the grains,
whereas the deformation in the near grain boundary regions
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slip systems or different magnitudes of plastic slip within different
regions of a grain, geometrically necessary boundaries (GNBs) are
formed, which divide the grain into cell blocks [7,9—11]. GNDs can
also reduce their free energy through formation of stable low angle
tilt boundaries, which are free of long-range strains and stresses, if
Frank's formula is satisfied [12,13]. According to the formulation of
Nye, the orientation gradients are accommodated through arrays of
GNDs, which generate a lattice curvature K equivalent to the
geometrically necessary dislocation density multiplied by the
Burgers vector: p_, +b [14].

In contrast, homogeneous deformation (i.e. tensile) of pure high
stacking fault energy (SFE) face centered cubic (FCC) single crystal
metals, where dislocation slip is dominant, does not produce
geometrically necessary dislocations, though dislocations do
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Nomenclature

g Plastic distortion tensor

ﬁel Elastic distortion tensor

o Nye dislocation tensor

B Local Burgers vector

g Lattice orientation tensor

Vilr,) Misorientation matrix

Vile) Lattice orientation gradient in the direction |
b Burgers vector for slip

1 Dislocation line vector

Pen Geometrically necessary dislocation density
Pess Statistically stored dislocation density

0, Total dislocation density

Y Plastic shear strain

A Average slip distance
C Empirical coefficient
G Shear modulus

T Lattice frictional stress
T Shear stress

T o Flow stress

m Taylor's factor

o

accumulate and contribute to the overall work hardening [14,15]. In
this case, these non-geometric dislocations, often present as di-
poles or multipoles, are called statically stored dislocations (SSDs),
and are generated through a random mutual trapping process [16].
At small scale, on the order of a few micrometers, SSDs organize
into heterogeneous mosaic patterns, which consist of dislocation
tangles, low-density cells and high-density walls (i.e. incidental
dislocation boundaries or IDBs) and microbands [11,17—20].
Moreover, statistically stored dislocations are generated in both
plastically homogeneous and non-homogeneous materials during
deformation, making an additional contribution to work hardening.
In reality, the type of dislocation, either SSD or GND, is a matter of
the window size of the measurement. For a small enough window
size, every dislocation can be regarded as a GND. The appropriate
choice of window size is therefore critical to the determination of
an accurate GND density. Jiang et al. [21] point out that a
compromise has to be made in order to reduce noise from a win-
dow size being too small and avoid GNDs being counted as SSDs
when the window size is too large. The reasonable range of step
size for GND density characterization is given by Kysar et al. [22].

According to Ashby's dislocation evolution model [3], the
contribution of GNDs to strength dominates over SSDs in the early
stage of work hardening, where the plastic strain is small, but SSDs
prevail in the later stages where the strain is large. However, to the
knowledge of the present authors, no quantitative experimental
evidence has been provided so far to support this statement, which
is likely due to a lack of an experimentally viable and quantitative
approach that has been developed to estimate the SSD density in
the material. Quantitative analysis of SSD density remains chal-
lenging since the measurement of dislocations requires a large
amount of data across many grains, as well as the spatial gradient in
dislocation density within grains, which can be time-consuming
and statistically challenging in transmission electron microscopy
(TEM)-based techniques. Additionally, it is difficult to isolate SSDs
from GNDs unless a fast and reliable method is available for
measuring GND density.

Fortunately, with recent advances in the development of the
EBSD technique, it is now possible to automate orientation

measurement over large regions of interest at a fast frame rate
[23—25] and post-process the data to extract the GND density. This
technique probes the orientation information from a section/sur-
face of bulk samples at a minimum spatial resolution of 30 nm,
which is sufficient to resolve details of dislocation cells/dislocation
substructure. For higher resolution of the GND density spatial
mapping, transmission Kikuchi diffraction [26] or TEM based pre-
cession electron diffraction [27] are typically used. The actual step
size of EBSD used for GND calculation is typically greater than the
spatial resolution, in order to reduce noise in the measurement, and
less than or equal to the size of the dislocation cells [21]. In addition,
the degree of pattern binning ranging from 1 x 1 to 8 x 8 gives
relatively constant average GND density, meaning that the pattern
binning is a way of speeding up the data acquisition without
compromising the data quality [21]. Due to the nature of EBSD
being an in-plane measurement, the full Nye tensor is inaccessible
if only 2D EBSD measurements are available, and the necessary
assumption has to be made that the lattice orientation gradients in
the out-of-plane direction are equal to zero [28]. From the surface
misorientation data, the GND density can be calculated using the
in-plane Nye tensor. Several methods have been established to
obtain the full Nye tensor based on 3D EBSD data using FIB serial
cross-sectioning [29—31], neutron diffraction or X-ray micro-
diffraction [32,33]. Such measurements are however critical for
quantifying GND density in crystallographically or morphologically
anisotropic materials [34,35]. For Hough-based EBSD, the noise
floor of the calculated GND density is significantly higher compared
to HR-EBSD due to poor angular resolution [36]. HR-EBSD is also
capable of residual stress and strain measurement, often relative to
a chosen reference point within each grain [37]. For GND density
measurement, HR-EBSD is a more sensitive technique for small
deformations, but the Hough-based method is in general suitable
for large deformation cases.

These EBSD-based methods are widely used to extract the part
of the dislocation density associated with non-uniform plastic
deformation [30,34,35,38,39]. They can also be coupled with digital
image correlation and crystal plasticity finite element, shedding
light on many aspects of deformation mechanics [40,41]. The pre-
sent study provides an opportunity to develop a method for
determining the SSD density. First, from Taylor's work hardening
model, it is assumed that GNDs and SSDs both contribute equally to
flow stress. Hence, we are able to estimate, given the flow stress,
the total dislocation density (pr) stored in the material due to
deformation under quasi-static loading conditions at ambient
temperature. Second, the average GND density (pgnp) can be
quantified from EBSD derived orientation data. The difference be-
tween the total dislocation density (pr) and GND density (pcnp) is
the SSD density (pssp). It has been shown in this study that we
could quantify the SSD density for quasi-statically compressed
nickel, and that the attained value is comparable to the measured
SSD density in a similar FCC single crystal pure copper from the
work of Basinski and Basinski [42].

2. Experimental

The original pure nickel sample was sintered from nickel pow-
der through spark plasma sintering at 1200°C under a 50 MPa
uniaxial load for a 5-min hold. Density was determined via Archi-
medes in distilled water and shown to be greater than 99% relative
density, and no porosity is visible in the microstructure as is evident
in Fig. 1b. The sample was characterized with EBSD to reveal the
initial microstructure and texture. Six cylindrical compression test
samples were electric discharge machined from the sintered piece
of pure nickel with dimensions of 3 mm (diameter) by 3 mm
(height). Five samples were quasi-statically compressed to various
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(a)

Fig. 1. (a) Schematic diagram showing the mount of the sample with respect to the loading direction (blue arrows) and region of interest (red box); (b) optical micrograph of the
polished surface of nickel following 0.33 plastic strain. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

degrees of deformation using a screw-driven load frame, and their
height measured pre- and post-compression via a micrometer. True
plastic strain values were calculated from the measured change of
height in the samples to be approximately 0.05, 0.11, 0.20, 0.33, and
0.46, respectively for each sample. In addition, the corresponding
true flow stress was determined based on the maximum load and
current cross-sectional area of the sample to be 289 MPa, 368 MPa,
524 MPa, 651 MPa and 679 MPa, respectively. All the samples were
thereafter mounted in conductive resin, and first mechanically
ground to the center of the cross section of the sample, as illus-
trated in Fig. 1a. Next, the samples were polished with 3 um and
1 um diamond paste and final polished using a vibratory polisher
with 0.05 um colloidal silica. EBSD was conducted on a Thermo-
Fisher (formerly FEI) Apreo SEM at 20 kV equipped with a Sym-
metry EBSD detector from Oxford Instruments at a working dis-
tance of ~15 mm. The Oxford Symmetry EBSD detector is a new
CMOS-based electron backscatter diffraction detector capable of
acquiring and indexing greater than 3000 patterns per second. The
step size used for the EBSD scan was 500 nm to reveal dislocation
cell structures with no binning (1 x 1). It has been verified in Fig. 12
that 500 nm is a reasonable length scale to characterize GND
density, which results in a spread of GND data (green) between the
upper and lower limits [22].

Fig. 2 shows the results of the grain size analysis carried out using
the number fraction distribution data obtained directly from the
Oxford AZtec software. The frequency distribution plot was then
fitted with a log-normal distribution and the average grain size,

including twins, was calculated to be ~30 pm. Typically, grain size
determination does not include twins, as the geometry of twins
skew the grain size distribution to the lower end. However, what is of
interest in dislocation evolution studies is not the grain size specif-
ically, but the slip distance for dislocations. Twin boundaries can
restrict the slip distance for dislocations in a similar manner as grain
boundaries and are therefore included in the size analysis. As such,
for the remainder of this study, grain size and slip distance can be
used interchangeably. In other words, slip distance is defined as the
average spacing incorporating both the twin and grain boundaries.

3. Methodology
3.1. GND density calculation based on orientation gradients

The GND density calculation technique utilizes the Nye tensor,
computed from the orientation data measured in EBSD. The Nye
tensor contains lattice curvature terms that quantify the net
dislocation flux through a unit area. In Fig. 3, the surface S enclosed
by curve C contains three dislocation lines of the same sign piercing
through the surface.

Using the Stokes' theorem, the line integral of the plastic
distortion in the closed surface S can be related to the surface
integral of the Nye tensor to obtain the local Burgers vector B.
This effectively means that the Nye tensor a is a dislocation field
tensor.

400 . . . : : .
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Fig. 2. (a) EBSD image of the undeformed nickel sample plotted with MTEX [58]; (b) Frequency distribution of grain size (blue) including twins fitted with log-normal probability
distribution curve (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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1

Fig. 3. Schematic of the concept of Nye tensor as dislocation flux through a surface S
enclosed by curve C (Adapted from Ref. [31]).
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In order to calculate the Nye tensor, the lattice orientation gra-
dients are computed based on the misorientation matrix, 4, i.e.
Ag = gsgil. Az is a tensor that orients the reference point
orientation g, to a point of interest with the orientation matrix g,.
The lattice orientation gradients 4¢,| are related to 4% according to
Eq. (2), in which d; is the step size in the direction, [ [34]. A detailed
derivation of Eq. (2) is given in Appendix A. Symmetry operators are
needed in this case to determine the minimum misorientation
angle or the disorientation angle |4g| in order to find the more
physically plausible misorientation matrix.

Ag —1
42 :T (2)

The EBSD technique is employed to measure the lattice orien-
tation gradients and then populate the Nye tensor using Eq. (3).
According to Wheeler et al. [57], the Nye dislocation tensor can be
represented in different reference frames. Due to small disorien-
tation angles, the error is relatively insignificant, see Appendix B.
Additionally, the Nye tensor can also be related to various config-
urations of dislocations through the Frank's loop construction [12],
where 1 is the dislocation line vector (unit vector), and slip direc-
tion is the Burgers vector b. This allows computation of the dislo-
cation density of screw and edge dislocations separately. For FCC
crystals, there are 6 screw and 12 edge dislocation configurations
on the (110){111} slip systems (N = 18) [38].

el

i = 8jlkaixul:9jlk4‘®ij4l (3)
N ~
o= penpbl'lj (4)
n=1

From Eq. (3) and Eq. (4), the Nye tensor can be rewritten and
vectorized as Eq. (5) for the sake of computational simplicity [43].
To solve for the underdetermined system of equations, an appro-
priate minimization scheme must be chosen. For example, the L!
energy minimization scheme solves for the dislocation density, i.e.
second column of Eq. (5), which minimizes the total elastic energy
stored by the dislocations, while still accommodating the measured
lattice curvature.
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3.2. GND density prediction —Ashby's model

The general form of Ashby's model for GND density, derived
from a three-dimensional plate model of a pure polycrystalline or
two-phase material is given in Eq. (6) [5]. This expression implies
that work hardening due to the presence of GNDs is inversely
related to the slip distance.

14
PaND = 3 % (6)

The term A defines the average slip distance of dislocations, i.e.
grain size (potentially including twins) or phase separation. In this
experiment, the pure nickel sample contains a large fraction of
twins due to sintering conditions. Therefore, as previously dis-
cussed, grain size here is calculated to include twin boundaries,
which also impede the motion of dislocations, in addition to the
grain boundaries. To avoid confusion, the term slip distance is used
to more accurately reflect the plastic response of the material. v is
the shear strain in the material, which depends on the specific type
of active slip system and the grain orientation. For a polycrystalline
material, the plastic shear strain in Ashby's model corresponds
approximately to 3.06 times the tensile or compressive strain,
where 3.06 is the Taylor factor [4]. Using this simple conversion, the
original X axis (shear strain) in Ashby's paper has been adapted to
plastic strain in Fig. 4.

The average slip distance, 4. is only dependent on the micro-
structure of the material. It is generally assumed to be independent
of the imposed plastic strain for incompressible materials like
metals. Since g, i.e. slip distance, is equivalent to the grain size for
an un-twinned, single phase, polycrystalline material, the predicted
GND density implies a Hall-Petch type strengthening. On the other
hand, the slip distance for SSDs, A, is significantly greater than A,
and is dependent on the amount of plastic strain, ranging from
10 um to 100 um. According to Ashby's model, GND density varies
linearly with respect to the change in the shear strain, v, but the
SSD density increases approximately to the square of shear strain.
For materials with a small slip distance (below 100 pm), GND
density initially dominates over SSD density for small plastic
strains. As plastic strain increases, the slip distance As; decreases as
work-hardening progresses from Stage I to Stage Il. Hence, the
density of SSDs increases more dramatically than GNDs, nearly
proportional to y2. At large deformation, the SSDs overwhelm the
GNDs at roughly 0.1 plastic strain according to Ashby's prediction
for polycrystalline copper, for a slip distance of approximately
30 um, see Fig. 4. The yellow region is plotted based on results from
Basinski and Basinski [42] for single crystal copper. Since nickel is
also an FCC crystal with a lattice parameter nominally similar to
that of copper, Fig. 4 should in theory nominally approximate the
predicted GND and SSD density for nickel used in this study.
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Fig. 4. The predicted GND density and estimated SSD density plotted against plastic
strain in polycrystalline pure copper (¢ is the slip distance with unit of pm) {Adapted
from Ashby [5]}. The red dotted arrow points at the predicted plastic strain, at which
the SSD density surpasses the GND density for the copper. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

3.3. Taylor's hardening model

The shear flow stress is related to the dislocation density
through Taylor's dislocation model [44]:

T = Tg + aGb./pyr=cGb\/pcnp + Pssp (7)

where the friction stress g is the resistance to shear when p, =0,
which is negligibly small in an FCC crystal [45—47]. The parameter
‘c’ is the empirical coefficient taken to be ~0.3 [5,48], G is the shear
modulus [49] and b is the Burgers vector. Theoretically, ¢ for FCC
crystal varies from 0.16 to 1.1 depending on the dislocation type and
the type of interaction [48]. However, it is almost impossible to
systematically verify the exact degree of contribution of different c
values, which also might evolve as dislocations accumulate.
Experimentally, the value of c is determined from fitting flow stress
and total dislocation density data. In this study, the total dislocation
density is unknown. Assuming all the dislocation types and in-
teractions contribute to the hardening listed in Ref. [48], the
theoretical contribution of c is estimated to be around 0.3 as well,
despite the wide range of variation. The flow stress can then be
calculated by multiplying the shear stress by the Taylor factor m
(m = 3.06 for FCC crystal), which is an isotropic interpretation of
the crystalline anisotropy [4].

Ofow = M7 = McGb,/pr (8)

The flow stress can be readily measured during the quasi-static
compression test. Having obtained the flow stress, it is possible to
calculate the total dislocation density using Eq. (9). Since the p,

can be estimated from the Nye tensor, an estimate of the p. can be
obtained through Eq. (10).

2

o

flow

pr =T (9)
T (cGh)?

Pssp = PT — PGND (10)

4. Results
4.1. GND density of quasi-statically compressed nickel

The samples were fabricated to be small so that EBSD scans close
to the center of the cross section of sample could approximately
characterize the global deformation state. If the sample is too large,
the EBSD scan is only a small fraction of the cross section, which
may reflect only the local deformation state (non-ideal material
deforms more heterogeneously). The samples were made suffi-
ciently small to facilitate characterization of the largest possible
area fraction of the compressed material close to the center of the
cross-sectional area shown in Fig. 1(a), necessary to extract the
majority of GNDs associated with the plastic deformation at the
same magnification in the SEM [50]. On the other hand, if the
sample is too small, the number of grains may be too limited to
achieve statistically valid macroscopic deformation conditions. The
EBSD window size in the SEM will be limited by the most deformed
sample with 0.46 plastic strain in the compression direction,
therefore the final dimension of this compressed sample was used
to define the EBSD scan area for all samples, with each scan region
centered within the sample height. In Fig. 5, it can be seen that the
samples for plastic strains less than 0.2 have been indexed suc-
cessfully without much loss of orientation data. Above 0.2 plastic
strain, the pattern degradation due to deformation lowers the
fraction of indexed pixels in some regions [51]. Nevertheless, for the
most challenging case at 0.46 plastic strain, this sample still has a
significant fraction of pixels indexed (~85%), sufficient to carry out
the GND density calculation. The Ni microstructure contains
annealing twins in the undeformed state, and no evidence of
deformation twin activation in the deformed samples, so that all of
the plastic strain can be logically attributed principally to disloca-
tion motion and dislocation density evolution.

Following the standard routine for calculating the GND density
based on the Nye tensor, it is possible to obtain GND density maps
that contain valid GND density data. Several filters have been applied
tofilter out data: i) below the noise floor of our technique (2.8 x 1013
m~2), ii) overestimated data points sitting on the grain boundary,
and iii) data points with disorientation angle below the angular
resolution (0.2°) of the instrument. A detailed explanation of the
methods used to obtain the noise floor and angular resolution can be
found in resource [25]. Following previous works on misorientation
distribution measurement [52,53], which describes very similar
physical quantities, the GND density data have been fitted with alog-
normal probability density function for each sample to evaluate the
geometric mean of GND density for each sample.

The log-normal probability density function is:

f(x| M, 0) =

1 —(Inx—p)?
xa\/ﬁem{ 202 } (1

where e* is the geometric mean and e’ is the geometric standard
deviation of the distribution. The geometric standard deviation is
then used to plot the error bars for the geometric mean of measured
GND density as a measure of dispersion [54]. The upper limit of the
error bar is equal to e**?, which represents the spread of high
density GND structures. The spread of low density GND structure is
indicated by the lower limit of the error bar e#~?. From Fig. 6, the
distribution curves start at roughly the same position. It is not sur-
prising to see that the distribution curves shift to higher dislocation
densities with increasing plastic strain values and spreads out as the
degree of deformation increases the heterogeneity and magnitude of
the GND density. Hence, the geometric mean and geometric stan-
dard deviation of the GND density both increase with increasing



C. Zhu et al. / Acta Materialia 155 (2018) 104—116 109

UNDEFORMED%

Fig. 5. EBSD images generated from Oxford AZtec software for undeformed nickel and quasi-statically compressed nickel samples at room temperature with plastic strains of 0.05,

0.11, 0.20, 0.33, and 0.46. The 200 um scale bar applies for all figure segments.

degree of deformation. This agrees well with actual GND density
data fitted with lognormal curves in Appendix C. A comparison of the
geometric mean value of measured GND density with the predicted
result from Ashby's model, shows that they are in good agreement at
lower strains, but differ at higher strains. This is demonstrated by the
increasing ratio between the GND density predicted by Ashby to the
GND density measured by EBSD [3] at increasing strain in Fig. 7a.
Fig. 7b shows the measured GND density, represented by the blue
line, which varies almost linearly with plastic strain, as does the
Ashby's model prediction of GNDs represented by the green line. The
magnitude of predicted GND density is within the range of the
measured GND density's error bars, but in general slightly higher
compared to the measured data. This does not mean that the
measured GND density agrees with Ashby's model between 0 and
0.05 strain, which is outside the fitted range in this study. Interpo-
lation of the measured GND density data does not intercept with the
origin like Ashby's model prediction, which suggests a rapid multi-
plication of GNDs below 0.05 strain. Moreover, unlike the predicted

25 ‘
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Fig. 6. Log-normal probability distribution of GND density for increasing compressive
plastic strain 0.05, 0.11, 0.20, 0.33, and 0.46 for nickel samples.

result, which monotonically increases with plastic strain, the
measured GND density will gradually plateau at higher strain values
(>0.5), because significant lattice distortion degrades the pattern
quality [51] and eventually results in grain fragmentation. Two
further issues regarding the determination of these GND densities
should be addressed. The first issue is the choice of calculating the
geometric mean versus the arithmetic mean for the GND density.
The choice of using the geometric mean is based on the established
literature by Jiang et al. [47]. In addition, as shown in Fig. 13a of
Appendix D, no significant difference exists between the geometric
mean and the arithmetic mean for the data set examined here.
Second, the value of the geometric mean reported here was deter-
mined ignoring those measurements that fell below the noise floor.
The typical measurement of the EBSD data resulted in ~0.1% of the
data falling below the noise floor. One might argue that eliminating
these undetermined points artificially raises the GND values. How-
ever, if these data points are replaced by GND values even 5 orders of
magnitude below the noise floor, the values for the geometric mean
are statistically unchanged due to the very small fraction of these
data points: see Figure 13b in Appendix D for illustration.

4.2. Estimated total dislocation density and statistically stored
dislocation density

During the compression of the nickel samples, the value of flow
stress increases from 289 MPa to 679 MPa with increasing plastic
strain due to work hardening. The measurement uncertainties
associated with flow stress and plastic strain are below 1% and 0.5%,
respectively; error bars are therefore not included in the plot. The
flow stress corresponding to each plastic strain is determined by
dividing the maximum load from the load-displacement curve by
the current cross-sectional area of the compressed sample. The
flow stress is plotted in Fig. 8a, showing significant work hardening
at higher plastic strains and characteristic parabolic shape. Using
Taylor's hardening model, it is straight-forward to estimate the
total dislocation density responsible for the hardening of the ma-
terial (assumes A; = 30um for the current nickel material), plotted
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Fig. 7. (a) Ratio of predicted and measured GND density as a function of plastic strain, and (b) Measured GND density using EBSD based method plotted in blue line and predicted
GND density according to Ashby's model plotted in green line with respect to plastic strain. The error bars plotted on the measured EBSD GND data are defined in the text. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

in Fig. 8b. The total dislocation density present increases from
~2.36 x 10" to ~1.3 x 10'5> m~2 as the imposed strain increases
from 0.05 to 0.46, consistent with the higher flow stress required to
deform it. The uncertainty of the calculated total dislocation den-
sity is around 2%. However, this uncertainty is based on the un-
known error for c in the Taylor's work hardening. More work is
needed to systematically evaluate the value for c in order to un-
derstand the exact contribution of different dislocation types and
interactions, which will provide foundation for a more realistic
estimate of the error of total dislocation density.

The estimated total dislocation density can be plotted together
with the measured GND density, see Fig. 9 (dislocation density data
is listed in Table 1). At 0.05 plastic strain, the GND density and the
total dislocation density are of the same magnitude. However, the
difference between the two, starts to become notable at higher
plastic strains. This suggests that the primary contributor to
strength of nickel is initially the geometrically necessary disloca-
tions at small strains, concentrating near hot spots such as grain
boundaries and triple junctions as shown in Fig. 10 (b, d, f). The GND
distribution is illustrated in Fig. 9, Stage I. As the plastic strain

800

(a)

0 0.1 0.2 0.3 0.4 0.5
Plastic Strain

increases, GND content increases steadily in hot spots and forms
GNDs that divide the grain into differently oriented sub-structures
i.e. kink bands as shown Fig. 10h and transit into the similarly
oriented neighboring grain. At the same time, the fraction of sta-
tistically stored dislocations increases considerably from
~8.37 x 1013 to ~9.27 x 1014 m~2 to form dislocation cell micro-
structures and eventually outnumbers the GNDs, see Fig. 9 for Stage
Il and Stage III. The difference of the total dislocation density and
GND density is an estimate of the SSD density, which is plotted as
the red curve in Fig. 9. The distribution of SSDs in Fig. 9 is plotted
based on the estimated density as well as knowledge of them being
formed randomly into cell structures at higher plastic strains.
Further investigation suggests that the SSD density outnumbers
GND density at approx. 0.09 plastic strain; SSDs becomes the pri-
mary contributor above 0.09 plastic strain (for A = 30um). In Fig. 9,
it can also be found that the SSD density is heavily dependent on
the degree of deformation with a faster rate of change as a function
of plastic strain, whereas GND density is weakly dependent on the
deformation history as indicated by the flat green line. This result is
in accordance with Ashby's prediction that SSD density varies

x10"
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Fig. 8. (a) Compressive flow stress for maintaining the plasticity at different plastic strain for quasi-statically compressed pure nickel; (b) Total dislocation density estimated based

on Taylor's hardening model and plotted against the corresponding plastic strains.
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Fig. 9. Estimated total dislocation density from Taylor's model (blue), EBSD measured
GND density (green) and, the difference of the two, the estimated SSD density (red),
plotted with respect to corresponding plastic strains. Schematic diagrams of three
stages of work hardening are plotted assuming the morphology of grains stay un-
changed for illustration purpose, where the black L represents GND and each pair of
blue and red L represent SSDs. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

nearly proportional to shear strain squared, but the GND density is
linearly proportional to shear strain, therefore the GNDs will
eventually be outnumbered by SSDs at higher plastic strains. The
reason why GND density is higher initially may be due to rapid non-
linear evolution of GNDs from unstrained state, therefore the val-
idity of the Ashby's model at low strains is still unclear and is likely

to be inaccurate. GND density calculation on a fully annealed
sample using Hough based EBSD results in a large fraction of pixels
near and below the noise floor, which implies a statistical average
at least near or below the noise floor. However, data points below
the noise floor are routinely removed to eliminate the measure-
ment noise, which will significantly bias the GND density data
distribution. Statistically robust analysis of unstrained sample is
subject to future work using HR-EBSD.

5. Discussion

The Hough based EBSD technique has been proven to be a
reliable method to extract GND density by many previous studies
[30,34,35,38,39]. In this study, the measured GND density is com-
parable to Ashby's model prediction in Fig. 7b, being linearly
dependent on the plastic strain within the range between 0.05 and
0.46. However, the differences are greatest at larger strains because
Ashby's model is based on a simplified, homogeneous description
of plastic deformation within materials. The nickel sample used in
this study contains annealing twins and a heterogeneous grain size
distribution, which leads to a broad spectrum of GND networks. In
other words, the prediction made by Ashby for GND density,
assuming GNDs are predominantly present along the grain
boundaries, could serve as an estimate for the high density GND
networks measured in EBSD. Nevertheless, Ashby's prediction does
not accurately capture the low-density structures, which reduces
the geometric mean of measured GND density at higher plastic
strains. Work done by Jiang et al. [47] shows that the average GND
density does vary with D~! (D is the grain diameter) due to grain
boundary hardening, but only at small strains (below 0.06), in
agreement with the edge dislocation originated from the grain
boundaries by Li et al. [55]. Values predicted from Ashby's model
may not be valid for high strain samples. Physically, the breakdown
of Ashby's model at higher strains could be attributed to the change
in the aspect ratio of grains due to deformation, which could affect

[111]

Fig. 10. (a), (c) and (e) are cropped EBSD images for 0.05 plastic strain sample and (g) is a selected area from 0.1 plastic strain sample; Examples of GND hot spots are found (b) near
triple junction, (d) twin boundary, (f) across the thin tip of a grain and (h) kink band transition across grain boundary. Black bar is a 10 um scale bar.
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the value of ‘actual’ slip distance or potentially storage of energy
due to configurational substructure evolution in the material over
increasing random dislocation tangles [11,18,19]. Moreover, com-
plex dislocation interactions with the deformed microstructure and
other existing dislocations could also significantly influence the
formation of GNDs, which is not included in Ashby's model.
Modification of Ashby's original model is required in order to adapt
it to more realistic microstructures, their evolution with increasing
plastic strain, and higher strain scenarios. Future study is also
required to investigate the evolution of GNDs at extremely low
strain between 0 and 0.05 with advanced technique such as HR-
EBSD. However, the challenge is that the reasonable range of
interrogation length scale and limited angular resolution in mea-
surement of GND density yields an inherent lower bound solution
of the measured GND density [22], which might bias the result. For
heavily deformed samples >0.05 strain, the fraction of pixels
filtered below noise floor is insignificant to have any effect on the
statistical analysis.

From Taylor's hardening model, work hardening is a result of the
complex interaction of stored SSDs and GNDs. In our study, the flow
stress of nickel is used to estimate the total dislocation density
following Taylor's model, given that the friction stress for a high
stacking fault energy FCC crystal, such as Cu and Ni, is negligible.
However, the friction stress for BCC or other lower symmetry crys-
tals is much higher and would, therefore, need to be included. With
the GND density calculated, it is possible to estimate the SSD density
at each plastic strain, enabling direct comparison of GND and SSD
density as a function of plastic strain. Surely, the accuracy of the
estimated SSD density will depend heavily on the accuracy of both
total dislocation density and GND density. The uncertainty for total
dislocation density is below 2% and the GND density is significantly
higher than the noise floor (2.8 x 10!3 m~2), providing high confi-
dence in the accurate determination of SSD density. Moreover, the
parameters for the EBSD scan, such as step size, will also have an
effect on the magnitude and distribution of GND density. An optimal
step size of 500 nm has been chosen in this study, which is known to
be small enough to reveal dislocation cells and large enough to save
scan/computation time. A detailed explanation of the choice of step
size can be found in the review by Wright [25]. Since compression of
materials is non-uniform in the transverse direction, the scanned
areas in our study are chosen to be near the center of the sample,
where most plasticity resides, and away from the top and bottom
surfaces, where deformation may be more constrained. In addition,
the scanned area is almost 1 mm? covering a significant fraction of
the deformed cross-sectional area. This provides robust statistics to
our analysis for measured GND density.

This study has reached the conclusion that both GNDs and SSDs
play an important role in the hardening of nickel, but predominate
at different stages of work hardening. In the early stage of defor-
mation, i.e. below 0.09 plastic strain in this case (A; = 30um), the
dislocations are predominantly GNDs due to presence of grain
boundaries. As the measured GND density slowly increases in the
lattice, the interaction of these dislocations leads to formation of
greater numbers of SSDs. Since the multiplication of SSDs occurs at
a much faster rate, SSDs are present in larger number than GNDs
above 0.09 plastic strain (A = 30um), thus providing a more sig-
nificant contribution to sample hardening. These results are in
accordance with Ashby's theoretical analysis for copper in Fig. 4,
where the yellow region of SSD density intersects the green line
(A¢ = 30um) at around 0.1 plastic strain, similar to what this study
has found (0.09) in Fig. 9 for nickel. Direct comparison of two
different materials is rationalized by the fact that copper and nickel
are similar in terms of crystal structure, friction stress, and lattice
parameter. The agreement between theory and experiment sug-
gests SSD density measured in this study is of some significance.

Although the measurement is an indirect technique, this study
shows that it is a reasonable approach, and provides significant
insight into the mechanisms controlling hardening of nickel. Most
importantly, in addition to providing some experimental validation
of Ashby's theory [3], this approach may serve as a useful tool in the
future to explore many more aspects of deformation mechanisms
for other metals and alloys across different strain rates, stress
states, and temperatures.

6. Conclusions

The EBSD based GND density calculation enables us to explore
the SSD density by subtracting the measured GND density from the
estimated total dislocation density according to Taylor's hardening
model. It enables a comprehensive study of the evolution of SSDs
and GNDs for a quasi-statically compressed pure nickel sample at
ambient temperature. In this study on nickel, it has been found
that:

i) The measured GND density varies linearly from
~1.52 x 10 to ~3.76 x 10'* m~2 with respect to plastic
strain values ranging from 0.05 to 0.46. The linearity agrees
with Ashby's model prediction in the strain range between
0.05 and 0.46; however, the magnitude of predicted GND
density is, in general, an upper bound estimate to the high-
density structures of measured GND density.

ii) From Taylor's hardening model, the total dislocation density
for pure nickel has been determined to range from
~2.36 x 1014 to ~1.3 x 10'° m~2, corresponding to a flow
stress of 289 MPa—679 MPa. The significant rise in the total
dislocation density is a result of rapid multiplication of SSDs
from ~8.4 x 1013 to ~9.3 x 1015 m~?, as a function of plastic
strain.

iii) The majority of dislocations are GNDs for nickel (A=30 um)
below 0.09 plastic strain, but GNDs are later outnumbered by
SSDs above 0.09 plastic strain because of rapid non-linear
multiplication of SSDs. Therefore, GNDs are responsible for
the strengthening in nickel or other alloys at small defor-
mation, whereas strength due to work hardening at large
deformation is predominantly due to SSDs.
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Appendix A. Lattice orientation gradient
The formal definition of the Nye tensor includes both the sym-
metric elastic strain distortion and the antisymmetric rotational

distortion. Since the elastic strain is negligibly small, the Nye
tensor' is equated to the curl of lattice rotation tensor.

!
i = ejudbij = gk (A1)

where w represents the small rigid body rotations of the lattice i.e.
lattice rotation tensor.

1 Kréner tensor is the transpose of the original Nye tensor ayqgner = lXEye. which
switches the more commonly used ij subscripts on.3.
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Suppose a finite rotation of 4¢ is a rotation about rotation axis
vector m by angle 0 [56]. This effectively takes the lattice orienta-
tion at one point to the neighboring lattice orientation point.

A@jj = 0j cos 0 — gimy, sin 6 4 (1 — cos 0)m;m; (A2)

Agij= b — ey d (0 is small) (A3)

By definition, the lattice rotation tensor is related to the lattice
rotation vector as:

(A4)

where 6, = m;0. Hence, we can relate the lattice rotation tensor to
the rotation matrix simply as:

(J)ij = _Eijkgk

wijj = A@ij — 51] (AS)

Given the lattice orientation matrices of two neighboring points,
the disorientation matrix can be readily obtained Az =g g,!
considering all the symmetry operators. Therefore, the lattice
orientation gradients can be derived as:

A5 -1_gg' -1

q 4 (A6)

A@J =

Appendix B. Reference frame

According to Wheeler et al., the reference frames of Nye tensor

For instance, if the dislocation tensor relates the sample frame
(subscripted in Greek letters) to the crystal frame (subscripted in
Latin letters), the surface integral of the Nye dislocation tensor in the
sample frame yields the local Burgers vector in the crystal frame.

Bi = #(X,‘ydsy (Bl )

In total, there are four equivalent variants of Nye dislocation
tensors for different reference frames [31]. By pre- and/or post-
multiplication with the (inverse) orientation tensor, the disloca-
tion tensor can be transformed to different set of reference frames.
In this study, the differentiation inside the curl of the disorientation
field in the sample frame conflicts with the varying crystal frame
associated with the disorientation field, which is remedied by
aligning the disorientation field towards the sample frame. The
resultant Nye dislocation tensor then relates the closure failure in
the sample frame to the disorientation gradient in the sample
frame, which could subsequently be transformed back to the crystal
frame. Then, the dislocation configurations in Eq. (4) are in the
same reference frame as the Nye tensor while using the Frank's
loop construction, maintaining the consistency for use of reference
frames. However, the disadvantage of taking the curl of the
disorientation field demands interpolation at an off-grid point,
which is ignored in this study. Fortunately, the error is negligibly
small because only first-neighbors are used for calculating the
disorientation matrix.

can be defined in different ways [57]. It is therefore important to be Appendix C
consistent with what reference frames are used when the Nye
dislocation tensor is decomposed into dislocation configurations.
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Fig. 11. : The actual GND density distribution data in logarithmic scale fitted with lognormal curves.
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Fig. 12. Step size validation for use of GND density characterization.
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Fig. 13a. Plot comparing the GND density as determined by the geometric mean versus the arithmetic mean showing no significant difference in the results. The preference for
using the geometric mean is based on previous work by Jiang et al. [J. Jiang, T. Britton, A. Wilkinson, Evolution of dislocation density distributions in copper during tensile
deformation, Acta Materialia 61(19) (2013) 7227—7239.].
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study.
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Table 1

Dislocation Density Data.
Plastic Strain Ashby GND (m~2) EBSD GND (m?) Total Dislocation (m~2) SSD (m~2)
0.05 8.19x10" 1.52x10' 2.36x10™ 8.37x10"3
0.11 1.64x10' 1.75x10' 3.84x10' 2.09x10'
0.20 2.94x10' 2.40x10" 7.78x10' 5.38x10'4
0.33 4.57x10" 3.10x10™ 1.20x10" 8.87x10'
0.46 6.06x10' 3.76x10™ 1.30x10" 9.27x10™
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