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ABSTRACT
Semi-supervised learning is especially important in data mining

applications because it can make use of plentiful unlabeled data to

train the high-quality learning models. Semi-Supervised Support

Vector Machine (S
3
VM) is a powerful semi-supervised learning

model. However, the high computational cost and non-convexity

severely impede the S
3
VM method in large-scale applications. Al-

though several learning algorithms were proposed for S
3
VM, scal-

ing up S
3
VM is still an open problem. To address this challenging

problem, in this paper, we propose a new incremental learning

algorithm to scale up S
3
VM (IL-S

3
VM) based on the path following

technique in the framework of Difference of Convex (DC) program-

ming. The traditional DC programming based algorithms need

multiple outer loops and are not suitable for incremental learning,

and traditional path following algorithms are limited to convex

problems. Our new IL-S
3
VM algorithm based on the path-following

technique can directly update the solution of S
3
VM to converge to

a local minimum within one outer loop so that the efficient incre-

mental learning can be achieved. More importantly, we provide the

finite convergence analysis for our new algorithm. To the best of our

knowledge, our new IL-S
3
VM algorithm is the first efficient path fol-

lowing algorithm for a non-convex problem (i.e., S3VM) with local

minimum convergence guarantee. Experimental results on a variety

of benchmark datasets not only confirm the finite convergence of

IL-S
3
VM, but also show a huge reduction of computational time

compared with existing batch and incremental learning algorithms,

while retaining the similar generalization performance.
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1 INTRODUCTION
In real-world data mining applications, labeling samples is an expen-

sive task because it usually needs a skilled or professional human

agent. For example, medical image analysis [9] usually needs an

experienced radiologist to label a large number of medical images

which is quite expansive. However, many applications have plenti-

ful unlabeled data, but limited labeled samples such that supervised

learning models cannot achieve satisfied performance. To address

this issue, many semi-supervised learning methods, including semi-

supervised support vector machine (S
3
VM) [6], were proposed to

utilize both labeled and unlabeled data to train the high-quality

learning models.

Among the semi-supervised learning methods, S
3
VM is one

of the most powerful ones. S
3
VM targets to learn a low-density

separator by maximizing the margin over the labeled and unla-

beled samples. Given the training dataset constituted with a la-

beled dataset L = {(x1,y1), · · · , (xl ,yl )} and an unlabeled dataset

U = {xl+1, · · · ,xl+u }, where xi ∈ Rd and yi ∈ {+1,−1}. Let

f (xi ) = ⟨w,ϕ(xi )⟩ + b 1
denote the discrimination hyperplane,

S
3
VM [8] solves the following problem:

min

w,b

1

2

⟨w,w⟩ +C
l∑
i=1

h1(yi f (xi )) +C
∗

l+u∑
i=l+1

h1(| f (xi )|) (1)

where ht (·) = max(0, t −·) is the hinge loss, ht (| · |) is the symmetric

hinge loss, and C and C∗
are predefined parameters. Especially, for

1ϕ(·) is a transformation function from an input space to a high-dimensional repro-

ducing kernel Hilbert space.
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C∗ = 0, Eq. (1) degenerates to the standard SVM which is convex.

For C∗ > 0, Eq. (1) is non-convex because of the symmetric hinge

loss penalizing the unlabeled data inside the margin. Essentially,

S
3
VM solves a non-convex optimization problem which is more

difficult than solving a convex problem like standard SVM.

As an important semi-supervised learning model, S
3
VM has at-

tracted a lot of interest from the data mining and machine learning

communities. Multiple learning algorithms were proposed to solve

S
3
VM which can be divided into two groups, i.e., the Difference of

Convex (DC) programming based and gradient-based algorithms.

Specifically, Fung and Mangasarian [12], Collobert et al. [8], and

Wang et al. [27] applied the CCCP to solve S
3
VM based on the

framework of DC programming. Note that, traditional DC program-

ming based algorithms only work in batch learning mode, because

these methods have to update the solution via multiple outer loops

as shown in Fig. 1(a). Chapelle and Zien [7], Chapelle et al. [4],

and Chapelle [3] used smooth optimization to approach the orig-

inal formulation (1), and then applied gradient descent approach

or Newton approach to solve the smooth optimization problems.

Because directly solving the problem (1), the CCCP algorithm is the

most popular one for solving S
3
VM. However, all above algorithms

are with high computational cost due to batch learning algorithms.

To sum up, the high computational cost and non-convexity severely

impede the S
3
VM method in large-scale applications. As pointed

out in [6], scaling up S
3
VM is still an open problem.

Incremental (also called on-line) learning is an important large-

scale learning approach [20]. Several incremental learning algo-

rithms have been proposed to solve SVM related models, such as

[16, 21, 23]. Essentially these algorithms update the solutions based

on the path following algorithms [17, 26] by maintaining the KKT

conditions [18]. Besides the path following algorithms, Ertekin

et al. [11] proposed an on-line algorithm for a non-convex problem.

However, there is no theoretical guarantee for the convergence

of the solution. Emara et al. [10] proposed an incremental S
3
VM

algorithm based on branch and bound technique [5]. However, the

method of [10] needs to train the model multiple times, which is not

efficient. In this paper, we focus on the path following technique

due to its efficiency and convergence guarantee.

However, as far as we know, all the existing incremental SVM

algorithms based on the path following technique [16, 21, 23] are

limited to convex optimization. As discussed previously, S
3
VM

essentially solves a non-convex problem. For non-convex problems,

the solution satisfying the KKT conditions can only guarantee to

be a saddle point, and cannot guarantee to be a local or global

minimum [1]. Thus, it is not trivial to extend the existing path

following algorithms [16, 21, 23] to a non-convex problem and

guarantee the solution to be a local or global minimum.

To address the above challenging problem, we propose a new effi-

cient incremental learning algorithm for S
3
VM (named as IL-S

3
VM)

based on the path following technique in the framework of DC

programming. As mentioned before, traditional DC programming

based algorithms need multiple outer loops and is not suitable for

incremental learning, and traditional path following algorithms are

limited to convex problems. Our new IL-S
3
VM algorithm based on

the path-following technique can directly update the solution of

S
3
VM to converge to a local minimum within one outer loop (as

shown in Fig. 1(b)) so that the efficient incremental learning can be

Solve CIL and 

update µ 

simultaneously

update

(a) (b)

Batch learning for the i-th loop (i>1)
Incremental learning for the 1-th loop

Figure 1: (a) The traditional DC programming based algo-
rithms for S3VM solve the CIL problem and update µ sep-
arately. (b) Our new incremental S3VM algorithm solves the
CIL problem and updates µ simultaneously.

achieved. More importantly, we provide the finite convergence anal-

ysis for IL-S
3
VM. Experimental results on a variety of benchmark

datasets not only confirm the finite convergence of IL-S
3
VM, but

also show a huge reduction of computational time compared with

existing batch and incremental learning algorithms, while retaining

the similar generalization performance.

Contributions. The main contributions of this paper are summa-

rized as follows:

(1) To the best of our knowledge, our IL-S
3
VM is the first path

following algorithm for a non-convex problem (i.e., S3VM) with

local minimum convergence guarantee.

(2) Our theoretical results show that the energy function of IL-

S
3
VM monotonically decreases even increases in different con-

ditions, which breaks through the theoretical results of tradi-

tional path following algorithms on convex problems, i.e., the
energy function only monotonically decreases [14–16].

Organization.The rest of the paper is organized as follows. Section
2 presents the DC formulation of S

3
VM. In Section 3, we propose

our IL-S
3
VM algorithm. The analysis for IL-S

3
VM is carried out in

Section 4. In Section 5, we show the experimental results. Finally,

in Section 6, we conclude the paper.

2 DC FORMULATION OF S3VM
We first briefly review DC programming and its algorithm for S

3
VM.

After that, we provide the KKT conditions for the dual formulation

of a convex problem derived from S
3
VM.

2.1 DC Programming Revisit
As mentioned in [19], the general formulation of DC programming

is:

min

w
o(w) −v(w) (2)

s .t . ci (w) ≤ 0, i ∈ {1, · · · ,m}; dj (w) = 0, j ∈ {1, · · · ,p}

where o, v , and c j are real-valued convex functions, dj is an affine

function. For the DC programming problem (2), the CCCP algorithm

[28] is an extensively used algorithm for finding a local minimal

turning point.

Suppose the gradient of v(w) is denoted as ∇v(w(ℓ)). The idea

of CCCP is to linearize the concave part of (2) around a solution

obtained in the current iteration so thato(w)−wT ∇v(w(l )) is convex



in w . The CCCP algorithm iteratively solves a sequence of the

convex program (3) defined by linearizing the concave part, until

w converges. In this paper, we call the formulation (3) as convex

inner loop (CIL) problem:

w(ℓ+1) ∈ argmin

w
o(w) −wT ∇v(w(ℓ)) (3)

s .t . ci (w) ≤ 0, i ∈ {1, · · · ,m};

dj (w) = 0, j ∈ {1, · · · ,p}

2.2 DC Programming of S3VM
To reformulate the S

3
VM (1) as the DC programming (2), we double

the unlabeled datasetU , and create an artificial labeled dataset Ũ =
{(xl+1,+1), · · · , (xl+u ,+1), (xl+u+1,−1), · · · , (xl+2×u ,−1)}. Thus,
the original S

3
VM formulation (1) can be rewritten as (4) according

to the DC formulation in (2). It must be pointed out that the problem

(4) is definitely equivalent to the original problem (1) as proved in

[8].

min

w,b

1

2

⟨w,w⟩ +C
l∑

i=1
h1(yi f (xi )) +C

∗
l+2×u∑
i=l+1

h1(yi f (xi ))︸                                                               ︷︷                                                               ︸
o(w,b)

−C∗
l+2×u∑
i=l+1

h0(yi f (xi ))︸                    ︷︷                    ︸
v(w,b)

(4)

In order to derive the CIL problem for (4), we compute [w,b]∇v(w,b)
as follows:

[w,b]∇v(w,b) = −

l+2×u∑
i=l+1

µiyi f (xi ) (5)

where µi =

{
C∗

if yi f (xi ) < 0, i ≥ l + 1
0 otherwise

Thus, we can obtain the primal CIL problem for (4) based on the

formulation (3) which is skipped here. We directly show the corre-

sponding dual CIL problem as follows [8]:

min

α

1

2

αTHα − yT α (6)

s .t .
l+2×u∑
i=1

αi = 0; Ci ≤ αi ≤ Ci , i = 1, · · · , l + 2 × u

where H is a positive semidefinite matrix with Hi j = K(xi ,x j ) =
⟨ϕ(xi ),ϕ(x j )⟩ for all 1 ≤ i, j ≤ l + 2 × u, K(xi ,x j ) is the kernel

function, and Ci and Ci are defined as follows:

Ci =


−µi if yi = +1
µi −C if yi = −1, i = 1, · · · , l
µi −C∗

if yi = −1, i ≥ l + 1
; (7)

Ci =


C − µi if yi = +1, i = 1, · · · , l
−µi if yi = +1, i ≥ l + 1
µi if yi = −1

(8)

Remark 1. For an unlabeled sample xl+i with the correspond-
ing artificial labeled samples (xl+i ,+1) and (xl+u+i ,−1). Accord-

ing to (5) and (7)-(8), we have that
[
Cl+i ,Cl+i

]
= [−C∗, 0] and

[
Cl+u+i ,Cl+u+i

]
= [−C∗, 0], if f (xi ) < 0. Correspondingly, if f (xi ) >

0, we have that
[
Cl+i ,Cl+i

]
= [0,C∗] and

[
Cl+u+i ,Cl+u+i

]
=

[0,C∗].

2.3 KKT Conditions for Dual CIL Problem of
S3VM

According to the convex optimization theory [1], the solution of

the dual CIL problem (6) can be obtained by the following min-max

problem:

min

C≤α ≤C
max

b′∈R
W =

1

2

αTHα − yT α + b ′

(l+2×u∑
i=1

αi

)
(9)

where b ′ is the Lagrangian multiplier. Further, from the KKT the-

orem [18], the first-order derivative of W leads to the following

KKT conditions:

∂W

∂b ′
=

l+2×u∑
i=1

αi = 0 (10)

дi
def

=
∂W

∂αi
=

l+2×u∑
j=1

α jHi j + b
′ − yi (11)


> 0 then αi = Ci
= 0 then Ci ≤ αi ≤ Ci
< 0 then αi = Ci

Thus, according to the value of дi in Eq. (11), the extended training

sample set L ∪ Ũ can be partitioned as π = (M, E,O), where

(1) M = {i ∈ L ∪ Ũ : дi = 0, Ci ≤ αi ≤ Ci },

(2) E = {i ∈ L ∪ Ũ : дi < 0, αi = Ci },

(3) and O = {i ∈ L ∪ Ũ : дi > 0, αi = Ci }.

3 NEW INCREMENTAL LEARNING
ALGORITHM

In this section, we first present the principle of our incremental

S
3
VM algorithm (i.e., IL-S3VM), then give the details of IL-S

3
VM

algorithm. Finally, we discuss the difference between our IL-S
3
VM

and the existing incremental SVM algorithms.

3.1 Principle of our IL-S3VM Algorithm
Multiple DC programming based algorithms have been proposed to

solve S
3
VM, but these methods can only do batch learning. Specifi-

cally, when these algorithms are applied to solve S
3
VM, according

to the CCCP algorithm discussed before, the algorithms generally

solve the CIL problem and update µ individually, i.e., the algorithms

need multiple outer loops until µ converges (see Fig. 1(a)). We can

use incremental learning algorithms for the 1-th loop. However, for

the i-th loop with i > 1, only batch solvers can be used, which is

known to be inefficient for on-line scenario. Therefore, it is highly

desirable to design an incremental learning algorithm with solv-

ing the CIL problem and updating µ simultaneously (see Fig. 1(b)).

Note that, although the method of [11] was designed to handle

on-line learning for a non-convex problem, they fixed µ during the

whole adjustments. Thus, there is no theoretical guarantee for the

convergence of the solution to a local minimum.



In this paper, we will solve the CIL problem and update μ simul-
taneously while guaranteeing the convergence of the solution to

a local minimum. During the incremental learning for S3VM, the

values of μi may change from 0 to C∗ or from C∗ to 0 as discussed
in Section 2.2, which leads the change of the dual CIL problem

(6) and makes the corresponding samples violate the KKT condi-

tions. To handle this complexity, we define a KKT-violating set A

in Definition 1.

Definition 1 (KKT-violating setA). The KKT-violating setA

is defined as a subset of an union of Ũ and an added sample (xc ,yc ),
such that all the samples violating the KKT conditions are included

in A .

Our fundamental principle for IL-S3VM is to detect the new sam-

ples violating the KKT conditions and add these samples into the

KKT-violating set A, while pushing the samples in A to satisfy the

KKT conditions (see Fig. 2). Note that, during the adjustments, the

sample in O ∪ E moving into A (drawn by blue arrow lines in

Fig. 2) corresponds to the change of the value of μi in (5), which is
unique in IL-S3VM and totally different to the existing incremental

SVM algorithms.

 

 

Figure 2: The fundamental principle of IL-S3VM. The move-

ments drawn by blue arrow lines are different to the existing

incremental SVM algorithms.

3.2 IL-S3VM Algorithm

When a labeled sample (xnew ,ynew ) or an unlabeled sample xnew
is added into the labeled dataset L or the unlabeled dataset Ũ , there
correspondingly exist additions in L or Ũ . We define the additions in

L and Ũ as Lnew and Ũnew respectively. We use ΔαA to represent

the changes of the weights of A, and set the direction to ΔαA as

dA = C̃A−αA , where C̃i = Ci ifyi = +1, otherwise C̃i = Ci . Thus,
we have ΔαA = η · dA , where η is a parameter with 0 ≤ η ≤ 1 to

control the adjustment qualities of αA . Correspondingly, we use

Δα to represent the changes of the weights of samples in L∪Ũ −A.

Thus, the following two issues need to be addressed for designing

the incremental S3VM algorithm:

i What is the direction of Δα with respect to η, with keeping
all the samples inM, E and O satisfying the KKT conditions

during the adjustment?

ii What is the maximum adjustment quantity ηmax of η, such
that if η exceeds Δηmax : 1) a sample migrates among the sets

M, E and O; 2) the KKT conditions for one sample inA will be

satisfied; 3) or the samples in O∪E violate the KKT conditions,

i.e., we need to update the values of μi in Eq. (5)?

After finding the maximum adjustment quantity ηmax , we can

update the αc , α , b
′, C , C , A,M, E, and O correspondingly. Re-

peating the above procedures until the set A becomes an empty

set derives our IL-S3VM algorithm, which is summarized in Alg. 1.

In the following, we provide the detailed descriptions for address-

ing the above two issues. The detailed procedure for updating αA ,

α , b ′, д, C , C , A, M, E and O can be found in our Appendix at

http://www.pitt.edu/%7eheh45/appendix.pdf.

Algorithm 1 IL-S3VM

Input: α , b ′, C , C ,M, E, O and Lnew ∪ Ũnew .

Output: α , b ′, C , C ,M, E and O.

1: while Lnew ∪ Ũnew � ∅ do
2: Read a new sample (xc ,yc ) from Lnew ∪ Ũnew .

3: Remove (xc ,yc ) from Lnew ∪ Ũnew .

4: Initialize αc = 0 and compute Cc , Cc and дc .
5: Add (xc ,yc ) intoM, E, O or A according to дc .
6: while A � ∅ do
7: Compute βb , and βM , o and γ (see Section 3.2.1).
8: Compute the maximal quantity ηmax (see Section 3.2.2).

9: Update αA , α , b
′, д, C , C , A,M, E and O.

10: end while

11: end while

3.2.1 Compute the Direction of Δα . As mentioned before, one
solution of (6) corresponds a partition π . Conversely, given a parti-
tion π and a KKT-violating set A, we can define a set of parameter

η which shares the given partition π and the given A. We give a

formal definition of this set of parameter η in Definition 2.

Definition 2. Given a partition π and a KKT-violating set A,

we define I(π ,A) = {η | π (η) = π (0),A(η) = A(0)}2, such that

I(π ,A) shares the given partition π and the given KKT-violating set

A.

Theorem 1 shows that I(π ,A) is a closed interval such that
I(π ,A) = [0,ηmax ]. Further, α and b ′ are linear w.r.t. η in the
interval I(π ,A). The proof to Theorem 1 can be found in our

Appendix at http://www.pitt.edu/%7eheh45/appendix.pdf.

Theorem 1. Given a partition π and a KKT-violating set A.

We have that I(π ,A) is a closed interval as I(π ,A) = [0,ηmax ].[
b ′

α

]
is linear w.r.t. η in the interval I(π ,A) with the directions

β =

⎡⎢⎢⎢⎢⎣
βb′
βM
βO∪E

⎤⎥⎥⎥⎥⎦ , where βO∪E = 0, and

[
βb′
βM

]
is obtained by

solving the following linear system[
0 1T

M
1M HMM

]
︸�����������������︷︷�����������������︸

H̃

[
βb′
βM

]
= −

[
1T
A

HMA

]
dA (12)

2In this paper, π (0) and A(0) defaultly denote the given partition π and the given
KKT-violating set A, respectively.



Remark 2. According to Theorem 1, we know the direction of ∆α
for all η ∈ I(π ,A), which can be obtained by solving Eq. (12). The
Traditional way for solving Eq. (12) is the direct matrix inverse of
H̃ [17, 26]. As mentioned in [15, 22], the training samples may be
linearly dependent in the reproducing kernel Hilbert space, which
make the key matrix H̃ singular. Thus, we cannot solve Eq. (12) by
directly computing the inverse of the matrix H̃ . To make IL-S3VM
run in a more robust way, we compute βb′ and βM in Eq. (12) based
on the QR decomposition with column pivoting [24], without directly
computing the inverse of H̃ .

After obtaining the direction of ∆α , we can further obtain the

linear relationship between ∆дi and η as shown in Corollary 1.

Corollary 1. Given a direction of ∆α as β , the linear relationship
between ∆дi (∀i ∈ L ∪ Ũ ∪ A) and η can be obtained as:

γi
def

=
∑
j ∈A

Hi jdj +
∑
j ∈M

Hi jβj + βb′ (13)

Remark 3. According to Eq. (11), we have γi = 0 for all i ∈ M.
For an unlabeled sample xl+i with the corresponding artificial labeled
samples (xl+i ,+1) and (xl+u+i ,−1), we haveγl+i = γl+u+i according
to Eq. (13). In addition, dl+i and dl+u+i have the same sign.

3.2.2 Compute the Maximal Quantity ηmax . As mentioned in

Theorem 1, given a partition π and a KKT-violating set A, we have

that I(π ,A) is a closed interval as I(π ,A) = [0,ηmax ], where

ηmax
is the maximal quantity of η. Corollary 2 answers the value of

the maximum adjustment ηmax
. Corollary 2 provides a theoretical

result to compute ηmax
. We provide a detail procedure to compute

ηmax
in our Appendix at http://www.pitt.edu/%7eheh45/appendix.pdf.

Corollary 2. The maximum adjustment quantity ηmax can be
obtained by solving the following system of linear inequalities.

Ci ≤ αi + βiη ≤ Ci , ∀i ∈ M (14)

дi + γiη > 0, ∀i ∈ O (15)

дi + γiη < 0, ∀i ∈ E (16)

yiдi + 1 + yiγiη ≥ 0, ∀i ∈ Ũ&µi = 0 (17)

yiдi + 1 + yiγiη < 0, ∀i ∈ Ũ&µi = C
∗

(18)

αi + βiη ≤ Ci , ∀i ∈ A&yi = +1 (19)

αi + βiη ≥ Ci , ∀i ∈ A&yi = −1 (20)

дi + γiη ≥ 0, ∀i ∈ A&yi = +1 (21)

дi + γiη ≤ 0, ∀i ∈ A&yi = −1 (22)

Remark 4. The system of linear inequalities (14)-(22) gives an
interval of η. The right endpoint of this interval is the value of ηmax .
Specifically, there are three cases for computing the maximum ad-
justment quantity ηmax : 1) Eqs. (14)-(16) correspond that a sample
migrates among the sets M, E and O (shown in the 2nd column of
Fig. 2). 2) Eqs. (18)-(19) correspond that the KKT conditions for one
sample in A will be satisfied (shown by the black arrow lines in the
3rd column of Fig. 2). 3) Eqs. (20)-(22) correspond that the samples in
O∪E violate the KKT conditions, i.e., we need to update the values of
µi in Eq. (5) (drawn by blue arrow lines in the 3rd column of Fig. 2).

3.3 Differences Compared with existing
algorithms

The main differences between our IL-S
3
VM and the existing incre-

mental SVM algorithms [16, 21, 23] are summarized as follows.

(1) The key difference is that our IL-S
3
VM can handle a non-convex

problem with a convergence guarantee, however, the existing

incremental SVM algorithms [16, 21, 23] cannot. Our IL-S
3
VM

is a big step forward compared with the existing incremental

SVM algorithms.

(2) Technically, during the adjustments of the existing incremental

SVM algorithms, the samples can only migrate from A into

M ∪ E ∪ O (see the black arrow lines in the 3rd column of Fig.

2). However, we define a new setA for all samples violating the

KKT conditions, which is the key to handle the non-convexity

in S
3
VM. For IL-S

3
VM, the samples can migrate bidirectionally

between A andM ∪ E ∪ O (see the 3rd column in Fig. 2).

(3) Theoretically, the energy function of existing incremental SVM

algorithms is monotonically decreasing [14–16]. However, the

energy function of our IL-S
3
VM is monotonically decreasing

even increasing in different conditions (cf. Theorem 3), which

will be discussed in detail below.

4 ANALYSIS AND DISUCSSION
In this section, we first prove the finite convergence of IL-S

3
VM,

and then provide the time complexity analysis of IL-S
3
VM.

4.1 Finite Convergence of IL-S3VM
In this section, we prove the finite convergence of IL-S

3
VM, which

guarantees that IL-S
3
VM converges to a local minimum in a finite

number of iterations. All the proofs can be found in our Appendix at

http://www.pitt.edu/%7eheh45/appendix.pdf. Existing theoretical

results related to the path following algorithms focus on convex

problems [14–16]. To the best of our knowledge, this is the first

theoretical result for the path following algorithm on a non-convex

problem (i.e., S3VM) with local minimum convergence guarantee.

Before proving the finite convergence of IL-S
3
VM, we first prove

that a sample cannot migrate back and forth in successive adjust-

ment steps among the sets A,M, E, and O in Theorem 2.

Theorem 2. During the adjustments of IL-S3VM, a sample cannot
migrate back and forth in successive adjustment steps among the sets
A,M, E, and O.

To prove Theorem 2, we prove the following four sub-conclusions:

1) if a sample (xt ,yt ) is added into the set M, (xt ,yt ) will not be
removed fromM in the immediate next adjustment. 2) If (xt ,yt )
is removed from the set M, then (xt ,yt ) will not be added into M

in the immediate next adjustment. 3) If (xt ,yt ) is removed from

the set E or O and added into the set A, then (xt ,yt ) will not be
removed from A in the immediate next adjustment. 4) If (xt ,yt ) is
removed from the set A and added into the set E, M or O, then

(xt ,yt )will not be removed from E,M or O, in the immediate next

adjustment. Based on Theorem 2, we have that ηmax > 0 for each

adjustment (Corollary 3).

Corollary 3. For each adjustment of IL-S3VM, the maximum
adjustment ηmax is greater than zero.



Based on Corollary 3, we prove that the functionW is strictly

monotonically decreasing and increasing under different conditions

(Theorem 3).

Theorem 3. During the adjustments of IL-S3VM, the the function
W has the following properties:

(1) If A only includes the added sample, i.e., A = {(xc ,yc )},W is
strictly monotonically decreasing.

(2) If A dos not include the added sample (xc ,yc ) and A , ∅,W is
strictly monotonically increasing.

Finally, based on Theorem 3 and Corollary 3, we can prove the

finite convergence of IL-S
3
VM in Theorem 4.

Theorem 4. IL-S3VM converges to a local minimal of (4) in a finite
number of steps.

4.2 Time Complexity Analysis
As mentioned in Alg. 1, for each iteration, we need to solve the

system of equations (12) of size |M| + 1 to compute βb′ and βM ,

which mainly involves an QR decomposition. Because the changed

in H̃ is slight (either adding or deleting a row and a column from H̃ ),

theQR decomposition can be updated without recomputing theQR
decomposition from scratch [13]. The computational complexity

of the updating is O
(
|M|2

)
. According to Eq. (13), the computa-

tion of γi requires O (|M|(l + 2 × u)) computations. According to

(14)-(22), the computation of ηmax
requires O (l + 2 × u) computa-

tions. The updates of αA , α , b ′, д, C , C , A, M, E and O require

O (l + 2 × u) computations. Thus, the time complexity of each iter-

ation is O
(
|M|(l + 2 × u) + |M|2

)
.

As shown in Theorem 4, IL-S
3
VM converges to a local minimal

of (4) in a finite number of steps. Our experience shows that the

number of iterations of IL-S
3
VM is some small number of the ex-

tended sample size l + 2 × u. Thus, the computational complexity

of IL-S
3
VM isO

(
|M|(l + 2 × u)2 + |M|2(l + 2 × u)

)
which is much

cheap compared with the one of batch S
3
VM algorithm [8].

5 EXPERIMENTS
In this section, we first present the experimental setup, and then

provide the experimental results and discussions.

5.1 Experimental Setup
Design of Experiments: In the experiments, we first verify the

effectiveness of our IL-S
3
VM, and then demonstrate the advantage

of our IL-S
3
VM for large-scale semi-supervised learning.

To show the effectiveness of our IL-S
3
VM, we investigate the

finite convergence of IL-S
3
VM. Specifically, we count the numbers

of the iterations (denoted as Iterations), and the changing of the

values of µi (denoted as Changing−µ) in IL-S
3
VM. By counting the

Changing−µ, we want to verify that the changing of the values of

µi can be handled by our IL-S
3
VM. By counting the Iterations, we

show that IL-S
3
VM can converge to a local minimum in a finite

number of iterations.

To show the advantage of IL-S
3
VM for large-scale semi-supervised

learning, we compare the running time of our IL-S
3
VM with other

batch and incremental S
3
VM algorithms. Specifically, the compared

algorithms are summarized as follows.

(1) BL-S
3
VM (also called UniverSVM [25]): the state-of-the art

batch S
3
VM algorithm based on the CCCP algorithm [8] and

SMO algorithm [2].

(2) NN-BB: an incremental S
3
VM algorithm based on branch and

bound technique [10].

(3) IL-S
3
VM: Our proposed incremental S

3
VM algorithm.

In addition, we compare the unlabeled errors (i.e., training errors
on the unlabeled samples) of different algorithms.

Implementation: We implement our IL-S
3
VM in MATLAB. Sinz

and Roffilli [25] implemented BL-S
3
VM based on CCCP algorithm

in C/C++. To compare the run-time at the same platform, we imple-

ment BL-S
3
VM inMATLAB.We implement NN-BB inMATLAB. For

kernels, the linear kernel, polynomial kernelK(x1,x2) = (x1·x2+1)
d

with d = 2 and Gaussian kernelK(x1,x2) = exp(−κ∥x1−x2∥
2)with

κ = 0.1 are used in all the experiments. The parameters C and C∗

are fixed at 10 and 5 respectively.

For the experiments of verifying the effectiveness of IL-S
3
VM,

we add a label or unlabeled sample into the original training dataset.

For the experiments of comparing the running time of different

algorithms, we add 20 label or unlabeled samples into the orig-

inal training dataset. BL-S
3
VM need recompute a solution from

scratch. NN-BB and our IL-S
3
VM can update the current solution

to incorporate the 20 new (labeled or unlabeled) samples.

Datasets: Table 1 summarizes the eight benchmark datasets (i.e.,
CodRNA, Madelon, IJCNN1, Text, Usps, W6a, A9a and Mushrooms

datasets) used in the experiments. They are from LIBSVM
3
and

Olivier
4
sources. Originally, the Usps dataset has ten classes from 0

to 9.We created a binary version of Usps dataset by classifying digits

0 to 4 versus 5 to 9. Originally, these datasets are used for supervised

learning. To conduct the experiments of semi-supervised learning,

we transfer these fully labeled datasets to the partially labeled

datasets, by randomly dropping the labels of a part of samples

out. The numbers of unlabeled samples are listed in the column

“Unlabeled” of Table 1.

Table 1: The real-world dasetsets used in the experiments.

Dataset Dimensionality Samples Unlabeled Source

CodRNA 8 59,535 59,235 LIBSVM

Madelon 500 2,000 1,800 LIBSVM

IJCNN1 22 49,990 49,790 LIBSVM

Text 7,511 1,946 1,800 Olivier

Usps 256 2,007 1,800 LIBSVM

W6a 300 17,188 17,000 LIBSVM

A9a 123 32,561 32,200 LIBSVM

Mushrooms 112 8,124 7,900 LIBSVM

5.2 Results and Discussions
Table 2 presents the average and standard deviation of the numbers

of Iterations for running IL-S3VM by adding a labeled sample over

20 trials. Table 3 presents the average and standard deviation of

the numbers of Iterations for running IL-S3VM by an unlabeled

sample over 20 trials. The results show that IL-S3VM converges to
3
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

4
http://olivier.chapelle.cc/lds/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://olivier.chapelle.cc/lds/


Table 2: Average results with the standard deviation of IL-S3VM (adding a labeled sample) over 20 trials, where linear, polyno-
mial and Gaussian kernels were used.

Dataset Size

Iterations Changing−µ
Linear Polynomial Gaussian Linear Polynomial Gaussian

CodRNA

10,000 12.8±10.3 27.1± 17.9 24.4±12.5 12.6±10.0 24.9±17.9 42.6±35.6

20,000 21.6±13.3 36.8±26.0 21.8±15.3 21.3±13.0 36.5±25.8 21.5±15.0

30,000 15.6±12.2 36.0±26.6 27.6±18.3 15.6±12.0 36.8±26.4 27.4±18.1

40,000 24.9±17.3 27±15.9 30.3±16.3 24.8±17.3 24.8±15.5 30.0±16.0

Madelon

400 2.4±5.2 0.6±0.7 0.6±0.9 2.1±4.8 0.1±0.3 0.3±0.5

800 5.6±12.7 0.7±0.6 0.6±1.0 5.2±12.4 0.1±0.3 0.3±0.5

1,200 42.5±68.2 0.6±0.8 0.3±0.7 42±67.9 0.2±0.4 0.2±0.4

1,600 71.3±177.3 1.4±1.7 0.2±0.7 71.1±176.9 0.7±1.5 0.1±0.3

IJCNN1

10,000 54.8±51.6 16.6±25.1 4.8±11.5 54.3±51.1 16.2±24.8 4.5±11.2

20,000 53.6±67.4 63.0±97.8 6.8±12.8 53.2±66.9 62.6±97.8 6.4±12.5

30,000 74.8±69.9 51.8±119.1 13.9±15.1 74.2±69.4 51.5±118.9 13.3±14.8

40,000 85.16±75.5 81.6±89.6 17.1±35.8 81.6±75.0 80.2±89.4 16.6±35.6

Text

400 1.0±1.0 0.8±1.0 0.5±0.9 0.4±0.7 0.4±0.5 0.3±0.4

800 2.6±3.9 0.8±1.0 0.6±0.9 2.2±3.5 0.4±0.5 0.3±0.5

1,200 4.6±5.6 0.9±1.5 0.8±1.0 4±5.2 0.5±1.1 0.4±0.5

1,600 25.1±38.4 1.3±1.8 0.8±1.0 24.5±38.1 0.8±1.4 0.4±0.5

Usps

400 4.2±7.3 1.2±2.9 0.7±0.6 3.8±6.9 1.0±2.5 0.1±0.3

800 22.4±35.6 7.5±16.4 0.6±0.6 22.2±35.5 7.2±16.1 0.0±0.2

1,200 39.4±56.0 8.8±14.7 0.4±0.5 40.5±54.0 8.4±14.3 0±0

1,600 30.0±55.6 11.4±16.1 0.6±0.9 30.0±55.5 11.0±15.8 0.1±0.6

W6a

4,000 20±24 28±12 11±14 18±24 26±28 7±11

8,000 45±40.2 24±12.8 18±3.7 84±40.2 38±32.4 15±23

12,000 56±48 48±30 14±22 65±58 45±38 10±19

16,000 57±43 72±51 34±23 37±64 40±21 22±18

A9a

6,000 33.2±29.5 9.3±14.2 3.3±6.5 26.3±25.3 11.1±16.2 3.2±5.2

12,000 28.1±34 32.0±41.3 13.2±11.3 31.1±36.1 28.4±42.3 5.1±7.5

18,000 34.3±28.3 21.3±39.3 7.8±8.2 34.4±31.1 26.5±49 11.3±13.8

24,000 45.6±35.7 45.2±43.4 9.3±17.2 41.2±45.0 40.1±41.4 9.6±21.3

Mushrooms

1,500 3.1±4.7 4.7±1.2 2.4±1.6 2.3±1.8 1.3±1.6 1.3±1.5

3,000 5.2±7.2 3.2±3.2 1.9±2.3 6.2±7.1 3.4±2.5 2.1±1.7

4,500 13.4±15.6 6.9±5.5 4.1±5.0 13±15.2 5.2±4.1 3.6±4.3

6,000 55.1±68.2 17.2±16.3 5.2±4.0 44.6±57.2 7.2±4.4 4.7±3.5

a local minimal in a finite number of iterations. Tables 2 and
3 also present the average and standard deviation of the numbers of

Changing−µ for running IL-S
3
VM over 20 trials. The results verify

that the changing of the values of µi indeed happens in IL-S
3
VM

with a high probability. Our IL-S3VM can effectively handle
Changing−µ, and guarantee to converge to a local minimal
in a finite number of iterations.

Fig. 3 presents the running time (in seconds) of BL-S
3
VM, NN-

BB and IL-S
3
VM. In the notation (·), the abbreviations L, P and G

stand for the linear, polynomial and Gaussian kernels respectively.

The results clearly demonstrate that our IL-S3VM is much faster
than NN-BB and BL-S3VM. This is because, BL-S

3
VM need re-

build the solution of S
3
VM from scratch by solving multiple DC

programming problems when new samples are added. NN-BB also

need solve multiple SVMs even incremental learning strategy is

used. However, our IL-S
3
VM can directly and efficiently update the

solution to converge to a local minimal.

Figure 4 shows the unlabeled errors over 10 trials with notched

box plot, when adding 20 labeled and unlabeled samples into the

original dataset and using the Gaussian kernel. The results show

that NN-BB, BL-S
3
VM and IL-S

3
VM have the similar accuracies on

the unlabeled dataset. Especially, IL-S
3
VM and BL-S

3
VM achieve

the same accuracy at most cases. These results confirm the supe-

riority of our IL-S
3
VM, because our IL-S

3
VM is much faster than

existing batch and incremental learning algorithms, while retaining

the similar generalization performance as discussed above.

6 CONCLUSION
In this paper, we propose a new incremental learning algorithm to

scale up S
3
VM (IL-S

3
VM) based on the path following algorithm in

the framework of DC programming. The traditional DC program-

ming based algorithms need multiple outer loops and is not suitable

for incremental learning, and traditional path following algorithms

only work for convex problems. Our new IL-S
3
VM algorithm based



Table 3: Average results with the standard deviation of IL-S3VM (adding an unlabeled sample) over 20 trials, where linear,
polynomial and Gaussian kernels were used.

Dataset Size

Iterations Changing−µ
Linear Polynomial Gaussian Linear Polynomial Gaussian

CodRNA

10,000 15.8±10.3 24.3±15.4 15.5±10.8 15.6±10.0 24.1±15.2 15.2±10.6

20,000 15.2±13.0 6.3±6.1 15.3±9.4 15.1±13.0 6.2±5.8 12.9±9.1

30,000 6.5±8.6 18.6±14.3 9.6±6.7 6.4±8.3 18.5±14.3 9.3±6.3

40,000 6.2±8.2 6.0±11.3 18.7±11.4 6.1±7.9 9.0±11.3 16.4±11.2

Madelon

400 4.8±4.9 1.0±0 0.6±0.5 4.2±4.5 0±0 0±0

800 3.5±6.4 1.2±0.7 0.3±0.5 3.2±6.0 0.2±0.7 0±0

1,200 1.7±6.0 1.1±0.5 0.6±0.5 1.6±5.7 0.2±0.5 0±0

1,600 5±12.3 1.4±0.9 0.3±0.5 4.8±12.0 1.4±0.9 0±0

IJCNN1

10,000 43.6±48.3 12.5±17.1 2.6±4.3 43.2±47.9 12.1±16.7 2.1±4.0

20,000 46±55.0 27.7±33.4 3.5±5.8 45.6±54.5 27.2±33.1 3.0±5.5

30,000 73.1±79.7 39.6±81.4 4.6±6.8 72.6±79.2 39.4±81.1 4.0±6.5

40,000 58.6±72.8 45.4±84.0 5.8±5.1 58.2±72.3 45.1±83.6 7.4±4.8

Text

400 1.4±0.8 1.0±0 1.0±0.4 0.4±0.8 0±0 0.1±0.2

800 3.5±4.1 1.0±0 0.8±0.4 2.5±4.1 0±0 0±0

1,200 5.5±5.9 1.0±0 0.9±0.3 4.6±5.8 0±0 0±0

1,600 4.1±4.2 1.1±0.3 0.9±0.3 3.3±4.0 0.1±0.3 0±0

Usps

400 3±5.3 2.1±4.3 1.1±1.3 2.7±4.9 1.8±3.9 0.2±1.2

800 2.4±6.3 1.6±4.7 1.2±1.7 2.2±6.0 1.4±4.5 0.3±1.6

1,200 7.7±13.8 4.5 ±6.5 1.0±0.2 7.4±13.5 3.9±6.2 0.0±0.2

1,600 8.4±21.0 3.9±11.5 1.0±0.9 8.3±20.9 3.6±11.2 0.2±0.8

W6a

4,000 8±23 18±16 15±18 7±12 14±23 11±14

8,000 26±15 17±19 24±33 15±21 15±25 19±23

12,000 42±41 53±35 24±31 21±23 35±39 12±23

16,000 19±26 14±28 25±32 18±22 23±25 22±28

A9a

6,000 21.3±23.3 7.6±9.2 2.1±4.1 23.1±25.2 6.5±8.2 1.3±2.1

12,000 24±28.0 15.2±17.3 2.8±3.9 28.3±28.3 17.1±16.3 2.4±4.1

18,000 36.2±39.3 21.2±41.1 3.5±5.7 28.6±33.1 18.4±31.2 4.1±5.1

24,000 31.3±35.8 25.1±34.0 4.8±4.3 28.2±42 21.2±34.5 4.3±3.4

Mushrooms

1,500 5.2±3.3 3.2±1.4 3.1±1.4 1.2±1.5 1.0±0.8 0.4±0.6

3,000 7.5±6.3 3.1±1.4 2.2±1.2 6.1±4.1 1.4±1.0 0.8±1.0

4,500 15.1±12.9 5.1±2.1 3.4±2.3 12.4±15.3 3.6±2.6 2.3±1.2

6,000 18.2±14.2 5.2±6.2 3.1±1.3 12.3±19.0 8.2±4.3 5.3±4.2

on the path-following algorithm can directly update the solution

to converge to a local minimal within one outer loop so that the in-

cremental learning can be achieved. More importantly, we provide

the finite convergence analysis for our new algorithm. To the best

of our knowledge, our new IL-S
3
VM algorithm is the first efficient

path following algorithm for a non-convex problem (i.e., S3VM)

with local minimum convergence guarantee. Experimental results

on benchmark datasets not only confirm the finite convergence of

IL-S
3
VM, but also show a huge reduction of computational time

compared with existing batch and incremental learning algorithms,

while retaining the similar generalization performance.
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