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ABSTRACT

Semi-supervised learning is especially important in data mining
applications because it can make use of plentiful unlabeled data to
train the high-quality learning models. Semi-Supervised Support
Vector Machine (S*VM) is a powerful semi-supervised learning
model. However, the high computational cost and non-convexity
severely impede the S*VM method in large-scale applications. Al-
though several learning algorithms were proposed for S*VM, scal-
ing up S*VM is still an open problem. To address this challenging
problem, in this paper, we propose a new incremental learning
algorithm to scale up S3VM (IL-S3*VM) based on the path following
technique in the framework of Difference of Convex (DC) program-
ming. The traditional DC programming based algorithms need
multiple outer loops and are not suitable for incremental learning,
and traditional path following algorithms are limited to convex
problems. Our new IL-S*VM algorithm based on the path-following
technique can directly update the solution of S*VM to converge to
a local minimum within one outer loop so that the efficient incre-
mental learning can be achieved. More importantly, we provide the
finite convergence analysis for our new algorithm. To the best of our
knowledge, our new IL-S3*VM algorithm is the first efficient path fol-
lowing algorithm for a non-convex problem (i.e., S*VM) with local
minimum convergence guarantee. Experimental results on a variety
of benchmark datasets not only confirm the finite convergence of
IL-S3VM, but also show a huge reduction of computational time
compared with existing batch and incremental learning algorithms,
while retaining the similar generalization performance.
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1 INTRODUCTION

In real-world data mining applications, labeling samples is an expen-
sive task because it usually needs a skilled or professional human
agent. For example, medical image analysis [9] usually needs an
experienced radiologist to label a large number of medical images
which is quite expansive. However, many applications have plenti-
ful unlabeled data, but limited labeled samples such that supervised
learning models cannot achieve satisfied performance. To address
this issue, many semi-supervised learning methods, including semi-
supervised support vector machine (S°VM) [6], were proposed to
utilize both labeled and unlabeled data to train the high-quality
learning models.

Among the semi-supervised learning methods, S*VM is one
of the most powerful ones. S*VM targets to learn a low-density
separator by maximizing the margin over the labeled and unla-
beled samples. Given the training dataset constituted with a la-
beled dataset L = {(x1,y1),-- - , (x7,y;)} and an unlabeled dataset
U = {xp41, -, X4}, where x; € R? and y; € {+1,-1}. Let
f(xi) = (w,d(x;)) + b 1 denote the discrimination hyperplane,
S3VM [8] solves the following problem:

1 l+u
min 2 (wow) + C Y @i f) +C° Y, mllfe)) )
i i=1 i=l+1

where h;(-) = max(0, t —-) is the hinge loss, h(|-|) is the symmetric
hinge loss, and C and C* are predefined parameters. Especially, for

1#(-) is a transformation function from an input space to a high-dimensional repro-
ducing kernel Hilbert space.
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C* =0, Eq. (1) degenerates to the standard SVM which is convex.
For C* > 0, Eq. (1) is non-convex because of the symmetric hinge
loss penalizing the unlabeled data inside the margin. Essentially,
S3VM solves a non-convex optimization problem which is more
difficult than solving a convex problem like standard SVM.

As an important semi-supervised learning model, SVM has at-
tracted a lot of interest from the data mining and machine learning
communities. Multiple learning algorithms were proposed to solve
S3VM which can be divided into two groups, ie., the Difference of
Convex (DC) programming based and gradient-based algorithms.
Specifically, Fung and Mangasarian [12], Collobert et al. [8], and
Wang et al. [27] applied the CCCP to solve S3VM based on the
framework of DC programming. Note that, traditional DC program-
ming based algorithms only work in batch learning mode, because
these methods have to update the solution via multiple outer loops
as shown in Fig. 1(a). Chapelle and Zien [7], Chapelle et al. [4],
and Chapelle [3] used smooth optimization to approach the orig-
inal formulation (1), and then applied gradient descent approach
or Newton approach to solve the smooth optimization problems.
Because directly solving the problem (1), the CCCP algorithm is the
most popular one for solving SVM. However, all above algorithms
are with high computational cost due to batch learning algorithms.
To sum up, the high computational cost and non-convexity severely
impede the S>VM method in large-scale applications. As pointed
out in [6], scaling up S*VM is still an open problem.

Incremental (also called on-line) learning is an important large-
scale learning approach [20]. Several incremental learning algo-
rithms have been proposed to solve SVM related models, such as
[16, 21, 23]. Essentially these algorithms update the solutions based
on the path following algorithms [17, 26] by maintaining the KKT
conditions [18]. Besides the path following algorithms, Ertekin
et al. [11] proposed an on-line algorithm for a non-convex problem.
However, there is no theoretical guarantee for the convergence
of the solution. Emara et al. [10] proposed an incremental S*VM
algorithm based on branch and bound technique [5]. However, the
method of [10] needs to train the model multiple times, which is not
efficient. In this paper, we focus on the path following technique
due to its efficiency and convergence guarantee.

However, as far as we know, all the existing incremental SVM
algorithms based on the path following technique [16, 21, 23] are
limited to convex optimization. As discussed previously, S*VM
essentially solves a non-convex problem. For non-convex problems,
the solution satisfying the KKT conditions can only guarantee to
be a saddle point, and cannot guarantee to be a local or global
minimum [1]. Thus, it is not trivial to extend the existing path
following algorithms [16, 21, 23] to a non-convex problem and
guarantee the solution to be a local or global minimum.

To address the above challenging problem, we propose a new effi-
cient incremental learning algorithm for SVM (named as IL-S*VM)
based on the path following technique in the framework of DC
programming. As mentioned before, traditional DC programming
based algorithms need multiple outer loops and is not suitable for
incremental learning, and traditional path following algorithms are
limited to convex problems. Our new IL-S>VM algorithm based on
the path-following technique can directly update the solution of
S3VM to converge to a local minimum within one outer loop (as
shown in Fig. 1(b)) so that the efficient incremental learning can be
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Figure 1: (a) The traditional DC programming based algo-
rithms for S3VM solve the CIL problem and update y sep-
arately. (b) Our new incremental S*VM algorithm solves the
CIL problem and updates p simultaneously.

achieved. More importantly, we provide the finite convergence anal-
ysis for IL-S*VM. Experimental results on a variety of benchmark
datasets not only confirm the finite convergence of IL-S*VM, but
also show a huge reduction of computational time compared with
existing batch and incremental learning algorithms, while retaining
the similar generalization performance.

Contributions. The main contributions of this paper are summa-
rized as follows:

(1) To the best of our knowledge, our IL-S*VM is the first path
following algorithm for a non-convex problem (i.e., S*VM) with
local minimum convergence guarantee.

(2) Our theoretical results show that the energy function of IL-
S3VM monotonically decreases even increases in different con-
ditions, which breaks through the theoretical results of tradi-
tional path following algorithms on convex problems, i.e., the
energy function only monotonically decreases [14-16].

Organization. The rest of the paper is organized as follows. Section

2 presents the DC formulation of S*VM. In Section 3, we propose

our IL-S*VM algorithm. The analysis for IL-S*VM is carried out in

Section 4. In Section 5, we show the experimental results. Finally,

in Section 6, we conclude the paper.

2 DC FORMULATION OF $3VM

We first briefly review DC programming and its algorithm for S*VM.
After that, we provide the KKT conditions for the dual formulation
of a convex problem derived from S3VM.

2.1 DC Programming Revisit

As mentioned in [19], the general formulation of DC programming
is:

mhi)n o(w) — v(w) (2)
s.t. cilw) <0,ie{1,---,m}; dj(w)=0,je{1,---,p}

where o, v, and c; are real-valued convex functions, d; is an affine
function. For the DC programming problem (2), the CCCP algorithm
[28] is an extensively used algorithm for finding a local minimal
turning point.

Suppose the gradient of v(w) is denoted as Vo(w(©)). The idea
of CCCP is to linearize the concave part of (2) around a solution
obtained in the current iteration so that o(w)—w’ Vo(w()) is convex



in w. The CCCP algorithm iteratively solves a sequence of the
convex program (3) defined by linearizing the concave part, until
w converges. In this paper, we call the formulation (3) as convex
inner loop (CIL) problem:
o(w) — wl Vo(w(®) 3)
s.t. cilw) <0, ie{l,---,m};

dj(w) =0, je{l,---.p}

wlf* ¢ arg min
w

2.2 DC Programming of S°VM

To reformulate the S*VM (1) as the DC programming (2), we double
the unlabeled dataset U, and create an artificial labeled dataset U=
{Ceer, +1) s (g +1), (w1, —1), -+ 5 (12w, 1)} Thus,
the original $*VM formulation (1) can be rewritten as (4) according
to the DC formulation in (2). It must be pointed out that the problem
(4) is definitely equivalent to the original problem (1) as proved in
(8].
1 1 X [+2xu

min 5 (w.w) + C Z; (i f () +C* " hi(yif (xi)

i=l+1

o(w,b)
1+2Xu

=€ ) ho(yifx) @)

i=l+1

v(w,b)
In order to derive the CIL problem for (4), we compute [w, b]Vou(w, b)
as follows:
1+2Xu
[w,b]Vo(w,b) = = > piyif(xi) &)
i=l+1
C* if yif(xi) <0, i>21+1
0  otherwise

where y; = {

Thus, we can obtain the primal CIL problem for (4) based on the
formulation (3) which is skipped here. We directly show the corre-
sponding dual CIL problem as follows [8]:

1
min —aTHa - yTa 6)
o 2
1+2Xu
s.t. Zaizo; QiSaiSCi,i=1,~--,l+2><u
i=1

where H is a positive semidefinite matrix with H;; = K(x;,x;j) =
(p(xi), P(xj)) for all 1 < i,j < I+ 2 X u, K(xj,xj) is the kernel
function, and C; and C; are defined as follows:

—Hi if y;=+1

ui—C if yi=-1,i=1,---,1 ; (7)
lli—c* if yi=-1,i>1+1

C—pi if yi=+l,i=1,--~,l
C; = —li if yi=+1,i>21+1 8)
pioif yi=-1
REMARK 1. For an unlabeled sample x;,; with the correspond-
ing artificial labeled samples (x,;,+1) and (x14y4;, —1). Accord-

ing to (5) and (7)-(8), we have that [glﬂ.fm] = [-C*,0] and

|Clvueis Crauss | = 1-C, 0L i f i) < 0. Correspondingly, if f(xi) >
0, we have that [Qlﬂ,aﬂ] = [0,C*] and [Ql+u+i’61+u+i =
[0, C*].

2.3 KKT Conditions for Dual CIL Problem of
VM

According to the convex optimization theory [1], the solution of

the dual CIL problem (6) can be obtained by the following min-max

problem:

1 I+2Xu
min max W =-a’Ha-yla+b’ Z a; 9)
Q%/ SEb,ER 2 o1

where b’ is the Lagrangian multiplier. Further, from the KKT the-
orem [18], the first-order derivative of W leads to the following
KKT conditions:

[+2Xu
ow Z
— = ;=0 (10)
b i=1
[+2Xu
def OW
i = — = aiH;i + b’ —y; (11)
9gi da; ; i Yi
>0 then a;=C;
=0 then C;<a; <C;
<0 then a; =C;

Thus, according to the value of g; in Eq. (11), the extended training
sample set L U U can be partitioned as = = (M, &, O), where

(1)M={i€LU(7: gi=O,QiS(xiSEi},
(2)8={i€LUﬁ: gi <0, 0(1'=E[},
(3)andO ={i€eLUU: g; >0, a; =C;}.

3 NEW INCREMENTAL LEARNING
ALGORITHM

In this section, we first present the principle of our incremental
S3vM algorithm (i.e., IL—S3VM), then give the details of IL-S’VM
algorithm. Finally, we discuss the difference between our IL-S*VM
and the existing incremental SVM algorithms.

3.1 Principle of our IL-S*VM Algorithm

Multiple DC programming based algorithms have been proposed to
solve S3VM, but these methods can only do batch learning. Specifi-
cally, when these algorithms are applied to solve S*VM, according
to the CCCP algorithm discussed before, the algorithms generally
solve the CIL problem and update y individually, i.e., the algorithms
need multiple outer loops until i converges (see Fig. 1(a)). We can
use incremental learning algorithms for the 1-th loop. However, for
the i-th loop with i > 1, only batch solvers can be used, which is
known to be inefficient for on-line scenario. Therefore, it is highly
desirable to design an incremental learning algorithm with solv-
ing the CIL problem and updating p simultaneously (see Fig. 1(b)).
Note that, although the method of [11] was designed to handle
on-line learning for a non-convex problem, they fixed y during the
whole adjustments. Thus, there is no theoretical guarantee for the
convergence of the solution to a local minimum.



In this paper, we will solve the CIL problem and update y simul-
taneously while guaranteeing the convergence of the solution to
a local minimum. During the incremental learning for S*VM, the
values of y; may change from 0 to C* or from C* to 0 as discussed
in Section 2.2, which leads the change of the dual CIL problem
(6) and makes the corresponding samples violate the KKT condi-
tions. To handle this complexity, we define a KKT-violating set A
in Definition 1.

DEFINITION 1 (KKT-VIOLATING SET A). The KKT-violating set A
is defined as a subset of an union of U and an added sample (x., y.),
such that all the samples violating the KKT conditions are included
inA.

Our fundamental principle for IL-S3VM is to detect the new sam-
ples violating the KKT conditions and add these samples into the
KKT-violating set A, while pushing the samples in A to satisfy the
KKT conditions (see Fig. 2). Note that, during the adjustments, the
sample in O U & moving into A (drawn by blue arrow lines in
Fig. 2) corresponds to the change of the value of y; in (5), which is
unique in IL-S*VM and totally different to the existing incremental

Conditions

SVM algorithms.
v >(’
x ([ ] \- / ........ > [a2 ]

Figure 2: The fundamental principle of IL-S*VM. The move-
ments drawn by blue arrow lines are different to the existing
incremental SVM algorithms.
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3.2 IL-S’VM Algorithm

When a labeled sample (xXpew, Ynew) Or an unlabeled sample xp e
is added into the labeled dataset L or the unlabeled dataset l~] there
correspondingly exist additions in L or U. We define the additions in
Land U as Lpesw and Uper respectively. We use A7 to represent
the changes of the weights of A, and set the direction to Aa.z as
dg = Cy{ a#, where Ci =C; ify; = +1, otherwise C; = C;. Thus,
we have Aa.g = - d#z, where 1 is a parameter with 0 < < 1 to
control the adjustment qualities of & #. Correspondingly, we use
Aa to represent the changes of the weights of samples in LU U-A.
Thus, the following two issues need to be addressed for designing
the incremental S>VM algorithm:

i What is the direction of Aa with respect to n, with keeping
all the samples in M, & and O satisfying the KKT conditions
during the adjustment?

ii What is the maximum adjustment quantity 7 of 1, such
that if n exceeds Ap™?*: 1) a sample migrates among the sets
M, & and O; 2) the KKT conditions for one sample in A will be

max

satisfied; 3) or the samples in O U & violate the KKT conditions,

i.e., we need to update the values of y; in Eq. (5)?
After finding the maximum adjustment quantity n™%*, we can
update the a., a, b’, C, C, A M, E and O correspondingly. Re-
peating the above procedures until the set A becomes an empty
set derives our IL-S*VM algorithm, which is summarized in Alg. 1.
In the following, we provide the detailed descriptions for address-
ing the above two issues. The detailed procedure for updating a 7,
a, b, g C, C, A, M, & and O can be found in our Appendix at
http://www.pitt.edu/%7eheh45/appendix.pdf.

Algorithm 1IL-S’VM

Input: «,b’,C, C, M, 8,0 and Lyer U Upery.
Output: a,b’,C, C, M, & and O.
1: while Ly U Upew # 0 do
2. Read a new sample (x¢, y¢) from Ly ey U Unpew-
3. Remove (xc, yc) from Lyeyy U Unew-
4 Initialize @ = 0 and compute C o Ec and gc.
5: Add (x¢, yc) into M, 8, O or A according to ge.
6:  while A # 0 do
7 Compute fp, and f z, 0 and y (see Section 3.2.1).
8 Compute the maximal quantity n™* (see Section 3.2.2).
9 Update a.g, a, b’, g, C, C, A, M, E and O.
10:  end while
11: end while

3.2.1 Compute the Direction of Aa. As mentioned before, one
solution of (6) corresponds a partition 7. Conversely, given a parti-
tion 7 and a KKT-violating set A, we can define a set of parameter
n which shares the given partition 7 and the given A. We give a
formal definition of this set of parameter 7 in Definition 2.

DEFINITION 2. Given a partition & and a KKT-violating set ‘A,
we define I(m, A) = {n | n(n) = 7(0), A(n) = A(0)}?, such that
I (m, A) shares the given partition & and the given KKT-violating set
A.

Theorem 1 shows that 7 (r, A) is a closed interval such that
I(r,A) = [0,n™?*]. Further, @ and b’ are linear w.r.t. 5 in the
interval 7 (r, A). The proof to Theorem 1 can be found in our
Appendix at http://www.pitt.edu/%7eheh45/appendix.pdf.

THEOREM 1. Given a partition n and a KKT-violating set A.
We have that I (r, A) is a closed interval as I (r, A) = [0, n™%*].

b/
o

is linear w.r.t. n in the interval I (r, A) with the directions

By
B = Bm |, where foug = 0, and[ gbl ] is obtained by
Boue M

solving thefollowing linear system

AT FAT
H

HMy{
“In this paper, 77(0) and A(0) defaultly denote the given partition 7 and the given
KKT-violating set A, respectively.




REMARK 2. According to Theorem 1, we know the direction of Ax
foralln € I(n, A), which can be obtained by solving Eq. (12). The
Traditional way for solving Eq. (12) is the direct matrix inverse of
H [17, 26]. As mentioned in [15, 22], the training samples may be
linearly dependent in the reproducing kernel Hilbert space, which
make the key matrix H singular. Thus, we cannot solve Eq. (12) by
directly computing the inverse of the matrix H. To make IL-S* VM
run in a more robust way, we compute B and x4 in Eq. (12) based
on the QR decomposition with column pivoting [24], without directly
computing the inverse ofI-I.

After obtaining the direction of A, we can further obtain the
linear relationship between Ag; and 5 as shown in Corollary 1.

CoROLLARY 1. Given a direction of Aa as f, the linear relationship
between Ag; (Vi € LUU U A) and n can be obtained as:

def
= Z Hijdj + Z Hijpj + P (13)

JjeA JEM

REMARK 3. According to Eq. (11), we have y; = 0 for alli € M.
For an unlabeled sample x;, ; with the corresponding artificial labeled
samples (x4 ;,+1) and (X144, —1), we havey;,; = Y14yu+; according
to Eq. (13). In addition, dj,; and dj,,,; have the same sign.

3.2.2  Compute the Maximal Quantity n™%*. As mentioned in
Theorem 1, given a partition 7 and a KKT-violating set A, we have
that 7 (, A) is a closed interval as I (7, A) = [0, n™%*], where
n™aX is the maximal quantity of . Corollary 2 answers the value of
the maximum adjustment n™%*. Corollary 2 provides a theoretical

result to compute n™%*. We provide a detail procedure to compute
”max 3

COROLLARY 2. The maximum adjustment quantity n™%* can be
obtained by solving the following system of linear inequalities.

C,<ai+Pin < Ci,VieM (14)
gi+yin > 0,VieO (15)
gi+yin < 0,Vie& (16)

yigi +1+yiyin = 0, VieU&u; =0 (17)
yigi + 1+ yiyin < 0, Vie Uy =C* (18)
ai+pfin < Ci, Vie A&ky; = +1 (19)
ai+pin =2 C;, Vie A&y; = -1 (20)
gi+yin = 0,VieA&y; = +1 (21)
gi+yin < 0,VieA&y; =-1 (22)

REMARK 4. The system of linear inequalities (14)-(22) gives an
interval of n. The right endpoint of this interval is the value of n"%*.
Specifically, there are three cases for computing the maximum ad-
Justment quantity n™%*: 1) Egs. (14)-(16) correspond that a sample
migrates among the sets M, & and O (shown in the 2nd column of
Fig. 2). 2) Egs. (18)-(19) correspond that the KKT conditions for one
sample in A will be satisfied (shown by the black arrow lines in the
3rd column of Fig. 2). 3) Egs. (20)-(22) correspond that the samples in
O U & violate the KKT conditions, i.e., we need to update the values of
pi in Eq. (5) (drawn by blue arrow lines in the 3rd column of Fig. 2).

in our Appendix at http://www.pitt.edu/%7eheh45/appendix.pdf.

3.3 Differences Compared with existing
algorithms

The main differences between our IL-S*VM and the existing incre-
mental SVM algorithms [16, 21, 23] are summarized as follows.

(1) The key difference is that our IL-S>VM can handle a non-convex
problem with a convergence guarantee, however, the existing
incremental SVM algorithms [16, 21, 23] cannot. Our IL-S3VM
is a big step forward compared with the existing incremental
SVM algorithms.

(2) Technically, during the adjustments of the existing incremental
SVM algorithms, the samples can only migrate from A into
MU E U O (see the black arrow lines in the 3rd column of Fig.
2). However, we define a new set A for all samples violating the
KKT conditions, which is the key to handle the non-convexity
in S3VM. For IL-S*VM, the samples can migrate bidirectionally
between A and M U E U O (see the 3rd column in Fig. 2).

(3) Theoretically, the energy function of existing incremental SVM
algorithms is monotonically decreasing [14-16]. However, the
energy function of our IL-S*VM is monotonically decreasing
even increasing in different conditions (cf. Theorem 3), which
will be discussed in detail below.

4 ANALYSIS AND DISUCSSION

In this section, we first prove the finite convergence of IL-S*VM,
and then provide the time complexity analysis of IL-S3VM.

4.1 Finite Convergence of IL-S’°VM

In this section, we prove the finite convergence of IL-S*VM, which
guarantees that IL-S*VM converges to a local minimum in a finite
number of iterations. All the proofs can be found in our Appendix at
http://www.pitt.edu/%7eheh45/appendix.pdf. Existing theoretical
results related to the path following algorithms focus on convex
problems [14-16]. To the best of our knowledge, this is the first
theoretical result for the path following algorithm on a non-convex
problem (i.e., S*VM) with local minimum convergence guarantee.

Before proving the finite convergence of IL-S*VM, we first prove
that a sample cannot migrate back and forth in successive adjust-
ment steps among the sets A, M, &, and O in Theorem 2.

THEOREM 2. During the adjustments of IL-S* VM, a sample cannot
migrate back and forth in successive adjustment steps among the sets
A M, E, and O.

To prove Theorem 2, we prove the following four sub-conclusions:
1) if a sample (x;, y;) is added into the set M, (x;,y;) will not be
removed from M in the immediate next adjustment. 2) If (x;, y;)
is removed from the set M, then (x;, y;) will not be added into M
in the immediate next adjustment. 3) If (x;,y;) is removed from
the set & or O and added into the set A, then (x;, y;) will not be
removed from A in the immediate next adjustment. 4) If (x;, y;) is
removed from the set A and added into the set & M or O, then
(x¢,y¢) will not be removed from &, M or O, in the immediate next
adjustment. Based on Theorem 2, we have that n™%* > 0 for each
adjustment (Corollary 3).

COROLLARY 3. For each adjustment of IL-S° VM, the maximum
adjustment n™* is greater than zero.



Based on Corollary 3, we prove that the function ‘W is strictly
monotonically decreasing and increasing under different conditions
(Theorem 3).

THEOREM 3. During the adjustments of IL-S* VM, the the function
‘W has the following properties:

(1) If A only includes the added sample, i.e., A = {(xc,yc)}, W is
strictly monotonically decreasing.

(2) If A dos not include the added sample (xc,yc) and A # 0, W is
strictly monotonically increasing.

Finally, based on Theorem 3 and Corollary 3, we can prove the
finite convergence of IL-S*VM in Theorem 4.

THEOREM 4. IL-S3VM converges to a local minimal of (4) in a finite
number of steps.

4.2 Time Complexity Analysis

As mentioned in Alg. 1, for each iteration, we need to solve the
system of equations (12) of size | M| + 1 to compute f, and Sy,
which mainly involves an QR decomposition. Because the changed
in H is slight (either adding or deleting a row and a column from H),
the QR decomposition can be updated without recomputing the QR
decomposition from scratch [13]. The computational complexity
of the updating is O (|M|2) According to Eq. (13), the computa-
tion of y; requires O (|M|(I + 2 X u)) computations. According to
(14)-(22), the computation of %% requires O (I + 2 X u) computa-
tions. The updates of a4, a, b’, g, C, C, A, M, Eand O require
O (I + 2 X u) computations. Thus, the time complexity of each iter-
ation is O (|M|(I + 2 x u) + |IM|?).

As shown in Theorem 4, IL-S*VM converges to a local minimal
of (4) in a finite number of steps. Our experience shows that the
number of iterations of IL-S3VM is some small number of the ex-
tended sample size [ + 2 X u. Thus, the computational complexity
of IL-S*VM is O (IM|(I + 2 x w)? + [M|2(I + 2 X u)) which is much
cheap compared with the one of batch S*VM algorithm [8].

5 EXPERIMENTS

In this section, we first present the experimental setup, and then
provide the experimental results and discussions.

5.1 Experimental Setup

Design of Experiments: In the experiments, we first verify the
effectiveness of our IL-S*VM, and then demonstrate the advantage
of our IL-S3VM for large-scale semi-supervised learning.

To show the effectiveness of our IL-S3VM, we investigate the
finite convergence of IL-S*VM. Specifically, we count the numbers
of the iterations (denoted as Iterations), and the changing of the
values of y; (denoted as Changing—p) in IL-S*VM. By counting the
Changing—p, we want to verify that the changing of the values of
i can be handled by our IL-S*VM. By counting the Iterations, we
show that IL-S*VM can converge to a local minimum in a finite
number of iterations.

To show the advantage of IL-S*VM for large-scale semi-supervised
learning, we compare the running time of our IL-S*VM with other
batch and incremental S*VM algorithms. Specifically, the compared
algorithms are summarized as follows.

(1) BL-S*VM (also called UniverSVM [25]): the state-of-the art
batch S3VM algorithm based on the CCCP algorithm [8] and
SMO algorithm [2].

(2) NN-BB: an incremental S*VM algorithm based on branch and
bound technique [10].

(3) IL-S*VM: Our proposed incremental S*VM algorithm.

In addition, we compare the unlabeled errors (i.e., training errors
on the unlabeled samples) of different algorithms.
Implementation: We implement our IL-S*VM in MATLAB. Sinz
and Roffilli [25] implemented BL-S*VM based on CCCP algorithm
in C/C++. To compare the run-time at the same platform, we imple-
ment BL-S*VM in MATLAB. We implement NN-BB in MATLAB. For
kernels, the linear kernel, polynomial kernel K(x1, x2) = (x1 -x2+1)d
with d = 2 and Gaussian kernel K(x1, x2) = exp(—«||x1 —x2|%) with
k = 0.1 are used in all the experiments. The parameters C and C*
are fixed at 10 and 5 respectively.

For the experiments of verifying the effectiveness of IL-S*VM,
we add a label or unlabeled sample into the original training dataset.
For the experiments of comparing the running time of different
algorithms, we add 20 label or unlabeled samples into the orig-
inal training dataset. BL-S?VM need recompute a solution from
scratch. NN-BB and our IL-S*VM can update the current solution
to incorporate the 20 new (labeled or unlabeled) samples.
Datasets: Table 1 summarizes the eight benchmark datasets (i.e.,
CodRNA, Madelon, IJCNN1, Text, Usps, Wé6a, A9a and Mushrooms
datasets) used in the experiments. They are from LIBSVM 3 and
Olivier 4 sources. Originally, the Usps dataset has ten classes from 0
to 9. We created a binary version of Usps dataset by classifying digits
0 to 4 versus 5 to 9. Originally, these datasets are used for supervised
learning. To conduct the experiments of semi-supervised learning,
we transfer these fully labeled datasets to the partially labeled
datasets, by randomly dropping the labels of a part of samples
out. The numbers of unlabeled samples are listed in the column
“Unlabeled” of Table 1.

Table 1: The real-world dasetsets used in the experiments.

Dataset ~ Dimensionality Samples Unlabeled Source

CodRNA 8 59,535 59,235 LIBSVM
Madelon 500 2,000 1,800 LIBSVM
IJCNN1 22 49,990 49,790 LIBSVM
Text 7,511 1,946 1,800 Olivier
Usps 256 2,007 1,800 LIBSVM
Weéa 300 17,188 17,000 LIBSVM
A9a 123 32,561 32,200 LIBSVM
Mushrooms 112 8,124 7,900 LIBSVM

5.2 Results and Discussions

Table 2 presents the average and standard deviation of the numbers
of Iterations for running IL-S*VM by adding a labeled sample over
20 trials. Table 3 presents the average and standard deviation of
the numbers of Iterations for running IL-S*VM by an unlabeled
sample over 20 trials. The results show that IL-S*VM converges to

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
“http://olivier.chapelle.cc/lds/.
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Table 2: Average results with the standard deviation of IL-S*VM (adding a labeled sample) over 20 trials, where linear, polyno-

mial and Gaussian kernels were used.

Dataset Size Iterations Changing—p
Linear Polynomial Gaussian Linear Polynomial Gaussian
10,000 12.8+10.3 27.1+ 17.9 24.4+12.5 12.6+10.0 24.9+17.9 42.6+35.6
CodRNA 20,000 21.6x13.3 36.8+26.0 21.8+15.3 21.3+13.0 36.5+25.8 21.5+15.0
30,000 15.6+£12.2 36.0+26.6 27.6+18.3 15.6+12.0 36.8+26.4 27.4+18.1
40,000 24.9+17.3 27+15.9 30.3+16.3 24.8+17.3 24.8+15.5 30.0+16.0
400 2.4+5.2 0.6+0.7 0.6+0.9 2.1+4.8 0.1+0.3 0.3+0.5
Madelon 800 5.6+12.7 0.7+0.6 0.6+1.0 5.2+12.4 0.1+0.3 0.3+0.5
1,200 42.5+68.2 0.6+0.8 0.3+0.7 42+67.9 0.2+0.4 0.2+0.4
1,600 71.3+177.3 1.4+1.7 0.2+0.7 71.1+£176.9 0.7£1.5 0.1+0.3
10,000 54.8+51.6 16.6+25.1 4.8+11.5 54.3+51.1 16.2+24.8 45+11.2
JJCNN1 20,000 53.6+67.4 63.0+£97.8 6.8+12.8 53.2+66.9 62.6+£97.8 6.4+12.5
30,000 74.8+69.9 51.8+119.1 13.9+15.1 74.2+69.4 51.5+118.9 13.3+14.8
40,000 85.16%75.5 81.6+89.6 17.1+35.8 81.6+75.0 80.2+89.4 16.6+35.6
400 1.0+1.0 0.8+1.0 0.5+0.9 0.4+0.7 0.4+0.5 0.3+0.4
Text 800 2.6+3.9 0.8+1.0 0.6+0.9 2.2+35 0.4+0.5 0.3+£0.5
1,200 4.6+5.6 0.9£1.5 0.8+1.0 4+5.2 0.5+1.1 0.4+0.5
1,600 25.1+38.4 1.3+1.8 0.8+1.0 24.5+38.1 0.8+1.4 0.4+0.5
400 4.2+7.3 1.2+2.9 0.7+0.6 3.8+6.9 1.0+2.5 0.1+0.3
Usps 800 22.4%35.6 7.5+£16.4 0.6+0.6 22.2+35.5 7.2+16.1 0.0£0.2
1,200 39.4+56.0 8.8+14.7 0.4+0.5 40.5+54.0 8.4+14.3 0+0
1,600 30.0+55.6 11.4+16.1 0.6+0.9 30.0+55.5 11.0£15.8 0.1+0.6
4,000 20+24 28+12 11+14 18+24 26+28 7+11
Wea 8,000 45+40.2 24+12.8 18+3.7 84+40.2 38+32.4 15+23
12,000 56+48 48+30 14+22 65+58 45+38 10£19
16,000 57+43 72451 34423 37+64 40+21 22418
6,000 33.2+29.5 9.3+14.2 3.3+6.5 26.3+25.3 11.1+16.2 3.2+5.2
A%a 12,000 28.1+34 32.0+41.3 13.2+11.3 31.1+36.1 28.4+42.3 5.1£7.5
18,000 34.3+28.3 21.3+39.3 7.8+8.2 34.4+31.1 26.5+49 11.3+13.8
24,000 45.6+35.7 45.2+43.4 9.3+17.2 41.2+45.0 40.1+41.4 9.6+21.3
1,500 3.1+4.7 4.7+1.2 2.4+1.6 2.3+1.8 1.3+1.6 1.3+1.5
Mushrooms 3,000 5.2+£7.2 3.2+£3.2 1.9+2.3 6.2+7.1 3.4+2.5 2.1£1.7
4,500 13.4+15.6 6.9+£5.5 4.1£5.0 13+15.2 5.2+4.1 3.6+4.3
6,000 55.1+68.2 17.2+16.3 5.2+4.0 44.6+57.2 7.2+4.4 4.7+3.5

a local minimal in a finite number of iterations. Tables 2 and
3 also present the average and standard deviation of the numbers of
Changing—p for running IL-S*VM over 20 trials. The results verify
that the changing of the values of y; indeed happens in IL-S*VM
with a high probability. Our IL-S*VM can effectively handle
Changing—p, and guarantee to converge to a local minimal
in a finite number of iterations.

Fig. 3 presents the running time (in seconds) of BL-S*VM, NN-
BB and IL-S*VM. In the notation (-), the abbreviations L, P and G
stand for the linear, polynomial and Gaussian kernels respectively.
The results clearly demonstrate that our IL-SVM is much faster
than NN-BB and BL-S3VM. This is because, BL-S*VM need re-
build the solution of S3VM from scratch by solving multiple DC
programming problems when new samples are added. NN-BB also
need solve multiple SVMs even incremental learning strategy is
used. However, our IL-S>VM can directly and efficiently update the
solution to converge to a local minimal.

Figure 4 shows the unlabeled errors over 10 trials with notched
box plot, when adding 20 labeled and unlabeled samples into the
original dataset and using the Gaussian kernel. The results show
that NN-BB, BL-S*VM and IL-S3VM have the similar accuracies on
the unlabeled dataset. Especially, IL-S3VM and BL-S*VM achieve
the same accuracy at most cases. These results confirm the supe-
riority of our IL-S3VM, because our IL-S*VM is much faster than
existing batch and incremental learning algorithms, while retaining
the similar generalization performance as discussed above.

6 CONCLUSION

In this paper, we propose a new incremental learning algorithm to
scale up S*VM (IL-S3VM) based on the path following algorithm in
the framework of DC programming. The traditional DC program-
ming based algorithms need multiple outer loops and is not suitable
for incremental learning, and traditional path following algorithms
only work for convex problems. Our new IL-S*VM algorithm based



Table 3: Average results with the standard deviation of IL-S*VM (adding an unlabeled sample) over 20 trials, where linear,

polynomial and Gaussian kernels were used.

Dataset Size Iterations Changing—p
Linear Polynomial Gaussian Linear Polynomial Gaussian
10,000 15.8+10.3 24.3+15.4 15.5+10.8 15.6+10.0 24.1+15.2 15.2+10.6
CodRNA 20,000 15.2+13.0 6.3+6.1 15.3£9.4 15.1+£13.0 6.2+5.8 12.9+£9.1
30,000 6.5+8.6 18.6+14.3 9.6+6.7 6.4+8.3 18.5+14.3 9.3+£6.3
40,000 6.2+8.2 6.0+11.3 18.7+11.4 6.1+7.9 9.0+11.3 16.4+11.2
400 4.8+4.9 1.0+£0 0.6+0.5 4.2+4.5 0+0 0+0
800 3.5+6.4 1.2+0.7 0.3+0.5 3.2+6.0 0.2+0.7 0+0
Madelon
1,200 1.7+6.0 1.1£0.5 0.6+0.5 1.6+5.7 0.2+0.5 0+0
1,600 5+12.3 1.4+0.9 0.3+0.5 4.8+12.0 1.4+0.9 0+0
10,000 43.6+48.3 12.5+17.1 2.6+4.3 43.2+47.9 12.1+16.7 2.1+4.0
JJCNN1 20,000 46+55.0 27.7+£33.4 3.5+£5.8 45.6+£54.5 27.2+33.1 3.0£5.5
30,000 73.1+£79.7 39.6+81.4 4.6+6.8 72.6+79.2 39.4+81.1 4.0+6.5
40,000 58.6+72.8 45.4+84.0 5.8+5.1 58.2+72.3 45.1+83.6 7.4+4.8
400 1.4+0.8 1.0+0 1.0+0.4 0.4+0.8 0+0 0.1+0.2
Text 800 3.5+4.1 1.0+0 0.8+0.4 2.5+4.1 0+0 0+0
1,200 5.5+£5.9 1.0+£0 0.9+0.3 4.6+5.8 0+0 0+0
1,600 4.1+4.2 1.1+0.3 0.9+0.3 3.3+4.0 0.1+0.3 0+0
400 3+5.3 2.1+4.3 1.1+1.3 2.7+4.9 1.8+3.9 0.2+1.2
Usps 800 2.4+6.3 1.6+4.7 1.2+1.7 2.2+6.0 1.4+4.5 0.3x+1.6
1,200 7.7+13.8 4.5 +6.5 1.0+0.2 7.4+13.5 3.9+6.2 0.0+0.2
1,600 8.4+21.0 3.9+11.5 1.0+0.9 8.3+20.9 3.6+11.2 0.2+0.8
4,000 8+23 18+16 15+18 7+12 14+23 11£14
Wea 8,000 26+15 17+19 24+33 15+21 15+25 19+23
12,000 42+41 53+35 24+31 21+23 35+39 12+23
16,000 19+26 14+28 25432 18+22 23+25 22+28
6,000 21.3+23.3 7.6£9.2 2.1+4.1 23.1+25.2 6.5+8.2 1.3+2.1
A%a 12,000 24+28.0 15.2+17.3 2.8+3.9 28.3+28.3 17.1+£16.3 2.4+4.1
18,000 36.2+39.3 21.2+41.1 3.5+5.7 28.6+33.1 18.4+31.2 4.1+5.1
24,000 31.3+35.8 25.1+34.0 4.8+4.3 28.2+42 21.2+34.5 4.3+3.4
1,500 5.2+3.3 3.2+1.4 3.1+1.4 1.2+1.5 1.0+0.8 0.4+0.6
Mushrooms 3,000 7.5£6.3 3.1+1.4 2.2+1.2 6.1+4.1 1.4+1.0 0.8+1.0
4,500 15.1+12.9 5.1+2.1 3.4+2.3 12.4+15.3 3.6+£2.6 2.3x1.2
6,000 18.2+14.2 5.2+6.2 3.1+1.3 12.3+£19.0 8.2+4.3 5.3+4.2

on the path-following algorithm can directly update the solution
to converge to a local minimal within one outer loop so that the in-
cremental learning can be achieved. More importantly, we provide
the finite convergence analysis for our new algorithm. To the best
of our knowledge, our new IL-S3VM algorithm is the first efficient
path following algorithm for a non-convex problem (i.e., SVM)
with local minimum convergence guarantee. Experimental results
on benchmark datasets not only confirm the finite convergence of
IL-S3VM, but also show a huge reduction of computational time
compared with existing batch and incremental learning algorithms,
while retaining the similar generalization performance.
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Figure 3: Average running time (in seconds) of BL-S>VM, NN-BB and IL-S*VM over 20 trials.

Unlabeled Accuracy

0.6

0.4

0.2

ot

= BL-S°VM
—— NN-BB
— |L-S3VM

ik,

’.I

0 | | |
CodRNAMadelon IJCNN1

Text

Usps W6a

A9a Mushrooms

Figure 4: Unlabeled errors of BL-S*VM, NN-BB and IL-S*VM.

[12] Glenn Fung and Olvi L Mangasarian. 2001. Semi-superyised support vector
machines for unlabeled data classification. Optimization methods and software
15,1 (2001), 29-44.
[13] Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU

Press.

[14] Bin Gu and Victor S Sheng. 2013. Feasibility and finite convergence analysis for
accurate on-line-support vector machine. IEEE Transactions on Neural Networks
and Learning Systems 24, 8 (2013), 1304-1315.

[15] B. Gu and V. S. Sheng.

2016. A Robust Regularization Path Algorithm for,7-

Support Vector Classification. IEEE Transactions on Neural Networks and Learning



Systems PP, 99 (2016), 1-8. https://doi.org/10.1109/TNNLS.2016.2527796

Bin Gu, Victor S Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. 2015.
Incremental support vector learning for ordinal regression. IEEE Transactions on
Neural networks and learning systems 26, 7 (2015), 1403-1416.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. 2004. The entire
regularization path for the support vector machine. Journal of Machine Learning
Research 5, Oct (2004), 1391-1415.

William Karush. 1939. Minima of functions of several variables with inequalities as
side constraints. Ph.D. Dissertation. Master;s thesis, Dept. of Mathematics, Univ.
of Chicago.

Gert R Lanckriet and Bharath K Sriperumbudur. 2009. On the convergence of the
concave-convex procedure. In Advances in neural information processing systems.
1759-1767.

John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via
truncated gradient. Journal of Machine Learning Research 10, Mar (2009), 777-801.
Mario Martin. 2002. On-line support vector machine regression. In European
Conference on Machine Learning. Springer, 282-294.

Chong-Jin Ong, Shiyun Shao, and Jianbo Yang. 2010. An improved algorithm
for the solution of the regularization path of support vector machine. IEEE
Transactions on Neural Networks 21, 3 (2010), 451-462.

T Poggio and G Cauwenberghs. 2001. Incremental and decremental support
vector machine learning. Advances in neural information processing systems 13
(2001), 409.

David Poole. 2014. Linear algebra: A modern introduction. Cengage Learning.
Fabian Sinz and Matteo Roffilli. 2012. UniverSVM. (2012). http://mloss.org/
software/view/19/.

Gang Wang, Dit-Yan Yeung, and Frederick H Lochovsky. 2008. A new solution
path algorithm in support vector regression. IEEE Transactions on Neural Networks
19, 10 (2008), 1753-1767.

[27] Junhui Wang, Xiaotong Shen, and Wei Pan. 2007. On transductive support vector

machines. Contemp. Math. 443 (2007), 7-20.
Alan L Yuille and Anand Rangarajan. 2003. The concave-convex procedure.
Neural computation 15, 4 (2003), 915-936.


https://doi.org/10.1109/TNNLS.2016.2527796
http://mloss.org/software/view/19/
http://mloss.org/software/view/19/

	Abstract
	1 Introduction
	2 DC Formulation of S3VM
	2.1 DC Programming Revisit
	2.2 DC Programming of S3VM
	2.3 KKT Conditions for Dual CIL Problem of S3VM

	3 New Incremental Learning Algorithm
	3.1 Principle of our IL-S3VM Algorithm
	3.2 IL-S3VM Algorithm
	3.3 Differences Compared with existing algorithms

	4 Analysis and Disucssion
	4.1 Finite Convergence of IL-S3VM
	4.2 Time Complexity Analysis

	5 Experiments 
	5.1 Experimental Setup
	5.2 Results and Discussions

	6 Conclusion
	References

