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ABSTRACT
Gene expression profiling provides comprehensive characterization
of cellular states under different experimental conditions, thus con-
tributes to the prosperity of many fields of biomedical research. Al-
though the rapid development of gene expression profiling has been
observed, genome-wide profiling of large libraries is still expensive
and difficult. Due to the fact that there are significant correlations
between gene expression patterns, previous studies introduced re-
gression models for predicting the target gene expressions from the
landmark gene profiles. These models formulate the gene expres-
sion inference in a completely supervised manner, which require a
large labeled dataset (i.e. paired landmark and target gene expres-
sions). However, collecting the whole gene expressions is much
more expensive than the landmark genes. In order to address this
issue and take advantage of cheap unlabeled data (i.e. landmark
genes), we propose a novel semi-supervised deep generative model
for target gene expression inference. Our model is based on the
generative adversarial network (GAN) to approximate the joint
distribution of landmark and target genes, and an inference net-
work to learn the conditional distribution of target genes given
the landmark genes. We employ the reliable generated data by our
GAN model as the extra training pairs to improve the training of
our inference model, and utilize the trustworthy predictions of the
inference network to enhance the adversarial training of our GAN
network. We evaluate our model on the prediction of two types
of gene expression data and identify obvious advantage over the
counterparts.
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1 INTRODUCTION
In the field of molecular biology, gene expression profiling is a
powerful tool for measuring the expression pattern of tens of
thousands of genes in a given cell or tissue. The rapid growth
in high-throughput techniques has substantially reduced the cost
of genome-wide profiling and enabled the profiling of gene ex-
pression in various biological states. Several data repositories have
been constructed to store the gene expression profiles in versatile
cellular conditions. For example, Gene Expression Omnibus (GEO)
[10] is a functional genomics repository that collects curated gene
expression profiles under different circumstances. ArrayExpress [4]
archives well-annotated arrays and sequences based gene expres-
sion data from various species. The construction of these public
gene expression databases provides a wealth of data resources that
largely support global biomedical research.

Gene expression profiling provides a comprehensive view of cel-
lular status and is therefore the basis for functional gene expression
pattern characterization. The availability of rich gene expression
data has contributed to the prosperity in many areas. In cancer
classification, [40] analyzed the gene expression pattern among
different breast cancer patients and detected important genes as-
sociated with clinical behavior. Recent landscape studies [12, 39]
looked into gene expression data from different tumor types to
reveal the cross-tissue cancer cluster structure, which enhanced
the understanding of relations between and within different cancer
types. Moreover, by looking into the gene expression levels in a post
mortem brain tissue data, Richiardi et al. [31] analyzed the relations
between genetic information and functional brain networks and
identified genes linked with ion channels and synaptic function.
Gene expression data has also been widely applied in drug-target
network construction [43] and drug discovery [30], in which the
characterization of different gene expression patterns in response
to distinct perturbation of small molecules facilitates the analysis
of drug mechanism and effect.
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Despite the fast development and widespread application of gene
expression analysis, profiling of large libraries in different chemical
conditions is still difficult and expensive [26]. How to effectively
measure the expression level of more than 20,000 genes in the hu-
man genome for large-scale profiles still remains a key issue. Based
on previous findings [16, 27, 35], there is a common observation
that similarity patterns exist in the expression profile of different
genes, such that genes with similar functions indicate similar mech-
anisms in response to various experimental conditions. As it is
pointed in the clustering analysis on single cell RNA-seq in [27, 35],
genes in the same clusters exhibit similar expression pattern across
different cellular states. Given such correlation structure among
gene expression profiles, it is reasonable to assume that even a small
number of genes can be informative to approximate the message
in the entire genome. To identify such subset of informative genes,
researchers from the Library of Integrated Network-Based Cellular
Signatures (LINCS) Program (http://www.lincsproject.org/) picked
∼1000 genes from the entire genome, which contain ∼80% of mes-
sage delivered in the whole transcriptome. These set of genes with
correlation information and predictive power are referred to as
landmark genes.

Based on the above findings, one feasible and cost-effective strat-
egy for large-scale gene expression profiling is to measure the
expression profile of only landmark genes and then estimate the re-
maining target gene expression through an appropriate predictive
model. Therefore, it is essential to construct effective computa-
tional methods to infer the target gene expression profiles from
the landmark genes. One most straightforward model is multi-task
linear regression, where the estimation of one target gene from the
landmark gene expression is formulated as one task. The linear re-
gression model has been applied in the LINCS program. The LINCS
program generated the landmark gene expression of ∼1.3 million
profiles using L1000 technology, and adopt the linear regression
model to infer the expression of the remaining target genes.

However, the regulatory network among genes is complicated,
linear models do not have enough capacity to capture the non-linear
relationship of the gene expression profiles [15]. Kernel models pro-
vide a way to introduce flexibility in representing the non-linear
relations among gene expression, but they suffer from high compu-
tational burden thus are not applicable to large-scale problems. In
contrast, deep learning models are scalable and highly flexible, and
have been widely applied to different biological problems, such as
prediction of specificities of RNA-binding proteins in alternative
slicing [1, 23], regulatory mechanism of histone modifications in
gene expression [36], protein structure prediction [38], predicting
the function of non-coding DNA [44] and population stratification
detection [32]. The remarkable predictive power and flexibility of
the deep learningmodel makes it a powerful alternative for effective
prediction large-scale gene expression profiles.

Recently, [5], Chen et al. applied deep learningmodels to the gene
expression inference problem. They used a fully connected multi-
layer perceptron to study the non-linear association among genes
and achieved better results than linear methods, which validates
the effectiveness of deep learning models in the gene expression
inference problem. However, previous methods still suffers from
several problems: 1) traditionally, gene expression inference is for-
mulated as a regression problem, where the computational models

attempt to approximate the conditional probability distribution
of target genes given landmark genes, but do not consider their
joint distribution, thus have limited predictive power; 2) previous
methods formulate the gene expression inference in a totally super-
vised manner, where only profiles with both landmark and target
gene expression measurements (which we call as “labeled” data
according to the notations in previous paper [41]) are involved
in the training process. However, since the measurement of only
landmark genes are much cheaper, there are a lot more profiles
with the measurement of only landmark genes (which we call as
“unlabeled” data according to the notations in [41]) are not used in
the training process.

In order to solve these problems, we propose a novel semi-
supervised generative adversarial network (abbreviated as Semi-
GAN) for gene expression inference. Our model is inspired by the
inpainting problem in computer vision applications, where the goal
is to fill in the missing part in a corrupted image based on the
known image context and the learned distribution over the entire
image. Here we regard the target gene expression as the missing
part in a profile and the goal is to fill in the missing given the land-
mark gene information (i.e., context). We propose to construct a
deep generative model that approximate the joint distribution of
landmark and target genes. By doing this, we analyze the overall
distribution and correlation among genes which improves the in-
ference. Moreover, we formulate our model in a semi-supervised
manner that incorporates the profiles with only landmark genes
into the training process. The use of the unlabeled section of data
can improve the learning of landmark gene distribution and also
strengthens the inference of target gene expression.

• Proposing a novel semi-supervised framework for gene ex-
pression inference;

• Introducing the collaborative training of our GAN and infer-
ence network;

• Outperforming alternative supervised models with signifi-
cant margins on two datasets according to different evalua-
tion metrics.

We organize the remaining part of paper in the following order:
Firstly we review the recent progress in gene expression inference
and deep learning. Then in Section 3 we propose the motivation
of our model and also introduce the architecture details. Next in
Section 4, we present the experiments where we validate our mode
on the inference of two gene expression datasets. In the end we
conclude our paper in Section 5.

2 RELATEDWORK
2.1 Gene Expression Inference
Although rapid progress has been observed in high-throughput
sequencing and analysis techniques, genome-wide expression pro-
filing for large-scale libraries under different disturbance remains
expensive and difficult [26]. Therefore, how to keep a low budget
while the informative measurement in gene expression profiling
remains a key issue. Previous studies have detected a high degree
of correlation among gene expression such that genes with simi-
lar function preserved similar expression patterns under different
experimental circumstances. Due to the correlation structure ex-
isting in gene expression patterns, even a small number of genes
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can provide a wealth of information. Shah et al. [35] found that a
random collection of 20 genes captured ∼50% of the relevant in-
formation throughout the genome. Recent advances in RNA-seq
[16, 27] also support the notion that a small number of genes are
abundant enough to approximately depict the overall information
throughout the transcriptome.
Researchers from the LINCS program assembled GEO data on

the basis of Affymetrix HGU133A microarray to analyze the gene
correlation structure and identify the subset of informative genes
to approximate the overall information in genome. They collected
the expression profiles from a total of 12,063 genes and determined
the maximum percentage of correlation information can be recov-
ered given a specific number of genes. The calculation of recovery
percentage is based on the comparable rank from the Kolmogorov-
Smirnov statistic. According to the LINCS analysis, researchers
found that only 978 genes were capable of restoring 82% of the
observed connections across the entire transcriptome [20]. The set
of 978 genes have been characterized as landmark genes and can
be used to deduce the expression of other target genes in different
cell types under various chemical, genetic and disease conditions.

2.2 Deep Neural Networks

In recent years, deep learning has shown remarkable results in
wide range of applications, such as computer vision [22], natural
language processing [7], speech recognition [17], and even biologi-
cal science[9]. The impressive capability of deep models is due to
efficient and scalable leaning of discriminative features from raw
data via multi-layer networks. Among different models, Goodfel-
low et. al. proposed a powerful generative model, called generative
adversarial networks (GAN) [14], especially in computer vision
tasks. In particular, GAN consists of two sub-networks, a generator
and a discriminator, and aims to play minimax game between these
networks. While the generator’s goal is to fool the discriminator by
synthesizing realistic images from arbitrary distribution (i.e. ran-
dom noise), the discriminator tries to distinguish between the real
and synthesized (i.e. fake) images. GANmodel is applied to different
tasks, including image generation [8, 19], image translation [45],
semi-supervised image classification [33], image inpainting [29, 42],
also speech enhancement [28] and drug discovery [3].
We also adopt GAN architecture in our model in order to learn

the joint distribution of landmark and target genes. In one view,
our model on inferring the target genes from landmark genes is
similar to image inpainting methods [29, 42], in which the goal is
to deduce the missing part in a corrupted image. Pathak et al. [29]
employed the autoencoder architecture, where the encoder maps
the corrupted image to a latent variable, and the decoder recovers
the original image without damage. The framework attempted
to reduce the reconstruction loss as well as the adversarial loss
such that the recovered images followed similar distribution as real
images. In another view, our work is similar to the semi-supervised
image classification methods [6, 33], in which the task is to predict
categorical labels of input image data. For instance in [6], GAN is
utilized to learn the joint distribution of image and categorical labels
in order to improve the classification task by the synthesized image-
label pairs. However, our proposed model has major differences
compared to the previous works. First, our task is semi-supervised

regression on non-structured gene data, which is different from
supervised inpainting and structured image data. Moreover, our
generative model is unique in comparison with other models, since
we train it using adversarial, reconstruction and translation loss
functions.

3 GENERATIVE NETWORK FOR
SEMI-SUPERVISED LEARNING

3.1 Problem Definition

In the gene expression inference problem, we use vector x to denote
the landmark gene expression profile and vector y for the target
gene expression. Ωl = {(xli ,y

l
i )}

nl
i=1 collects the labeled profiles

where the measurement for both landmark and target genes are
available, whileΩu = {xuj }

nu
j=1 corresponds to the unlabeled profiles

with the expression of only landmark genes measured. Usually we
have nu � nl , since the measurement of only landmark genes
is much cheaper than all the genes in the entire transcriptome.
Our goal is to construct a model, which appropriately predicts the
target gene expression using a small set of labeled genes (i.e. paired
landmark and target genes) and a large set of unlabeled genes (i.e.
landmark genes).

3.2 Motivation

In previous works, the inference of target gene expression is formu-
lated as a multi-task regression, where predicting the expression of
each target gene in y via landmark genes x is one regression task.
The regression framework is usually formulated in a fully super-
vised manner, such that a large set of labeled data is required to
efficiently train the regression model. However in our problem, col-
lecting the whole gene expression profiles (i.e. paired landmark and
target genes (x,y)) is much more expensive than the the landmark
genes x alone. In order to address this issue and benefit from the
plentiful unlabeled profiles, we propose a semi-supervised learn-
ing framework to take advantage of both labeled and unlabeled
profiles and use the unlabeled data to strengthen the learning. Our
proposed model consists of an inference network and a GAN sub-
model. Generally, we consider the GAN sub-model to learn the
joint distribution p(x,y), and the inference network to learn the
conditional distribution p(y|x). We provide a collaboration frame-
work between the GAN and inference networks, such that the
GAN generates the approximated paired samples (x̂z , ŷz ) as reli-
able extra labeled data for training the inference network, and the
approximated pairs (xu , ŷu ) by the inference network improves
the adversarial training of the GAN network.

In particular, our GAN network includes two generatorsGx and
Gy to synthesize both landmark genes x̂z and target genes ŷz from
a shared random input z respectively, and three discriminators
Dx , Dy , Dxy to distinguish between the real and fake data xu vs.

x̂z , yl vs. ŷz , and (xl ,yl ) vs. (x̂z , ŷz ) respectively. In addition to
adversarial loss, we use a reconstruction and a translation loss
functions to help training of our generators. To do so, we consider
a network to learn the inverse mapping of Gx , where the input
is the landmark genes and the output has the same dimension
of z. Using this inverse network Ix , we define a reconstruction
loss function for unlabeled data xu through Ix → Gx pathway,



Figure 1: Illustration of the SemiGAN architecture for gene expression inference. SemiGAN consists of two sub-models, a

GAN network and an inference network. x and y denote the profile for landmark and target gene expression. z is a random

variable drawn from a prior distribution p(z), working as the input for generators. The labeled profiles (xl ,yl ) are drawn from

the joint distribution p(x,y) while the unlabeled profiles xu come from the distribution p(x). Our GAN network includes two

generators,Gx andGy , generating x̂z and ŷz to fool three discriminators, Dx , Dy and Dxy . These networks are mainly trained

by adversarial loss functions (bottom). We also construct an inverse network Ix to encode x in the generators latent space, and

use the reconstruction and translation losses to help the training of generators and the inverse network (top left). Finally, we

build an inference network F to estimate the the output y given x.We useLs tomeasure the loss between the ground truth and

the predictions (top right). The inference and GAN networks have collaborative relation, such that predictions of F enhances

the training of generators, and the generated data is utilized to improve the learning of the inference network.

and a translation loss function for labeled data (xl ,yl ) through
Ix → Gy pathway. Note that theses two loss functions are helpful in
adversarial training of our generator networks, and aid generating
large-dimension and unstructured gene data by avoiding mode

collapse issue and using side information. Furthermore, we employ
the inference network F to map the landmark gene expressions to
the target gene expressions. For clarification purpose, we plot the



architecture of our model, called SemiGAN, along with the applied
loss functions in Fig. 1.

3.3 Semi-Supervised GAN Model

As mentioned, SemiGAN has two generators and three discrimi-
nator networks. Following we show the adversarial loss functions
corresponding to the pairs of generator and discriminator networks.
The min-max adversarial loss for training the generator network
Gx and discriminator network Dx is formulated as:

min
Gx

max
Dx

Ex∼p(x)

[
log(Dx (x))

]
+ Ez∼p(z)

[
log(1 − Dx (Gx (z))

]
(1)

where the goal is to learn the distribution of p(x) via Gx , and gen-
erate realistic fake landmark gene samples.
The adversarial loss for training the generator network Gy and

discriminator network Dy is formulated as:

min
Gy

max
Dy

Ey∼p(y)

[
log(Dy (y))

]
+ Ez∼p(z)

[
log(1 − Dy (Gy (z))

]

(2)

where the goal is to learn the distribution of p(y) using Gy , and
generate realistic fake target gene samples.

The min-max adversarial loss for training the networks Dxy ,Gx ,
Gy is formulated as:

min
Gx ,Gy

max
Dxy

E(x,y)∼p(x,y)

[
log(Dxy (x,y))

]

+ Ez∼p(z)
[
log(1 − Dxy (Gx (z),Gy (z))

] (3)

where the goal is to learn the corresponding relationship between
the paired landmark and target gene expressions. Note that we
consider the shared random input z for both generators to learn
the joint distribution of landmark and target genes as p(x,y|z). In
addition to the labeled data (xl ,yl ), we suppose (xu , F (xu )) as the
real paired data in the above loss function, when the predictions of
inference network are good enough after a few training epochs.
The auxiliary reconstruction loss function for training the in-

verse network Ix and the generator network Gx is:

min
Ix ,Gx

E(x)∼p(x)

[
‖x −Gx (Ix (x))‖1

]
(4)

The auxiliary translation loss function for training Ix and Gy is:

min
Ix ,Gy

E(x,y)∼p(x,y)

[
‖y −Gy (Ix (x))‖1

]
(5)

We also help training of the inverse network with the following
loss:

min
Ix
E(z)∼p(z)

[
‖Ix (Gx (z)) − z)‖1

]
(6)

The loss function for training the inference network F is:

min
F

E(x,y)∼p(x,y)

[
‖y − F (x)‖1

]
+ E(z)∼p(z)

[
‖Gy (z) − F (Gx (z))‖1

]

+ Ex∼p(x)
[
‖F (x ⊕ e) − F (x ⊕ e′)‖2

]

(7)

where the first term is the �1-norm loss using the original labeled
data (xl ,yl ), the second term is the �1-norm loss using the pseudo-
labeled data (x̂z , ŷz ) synthesized by the generators, and the last
term is the consistency loss that requires similar outputs for an
input with different added noises e and e′. It is worth mentioning
that we empirically get better results using the �1-norm loss for

Algorithm 1 Optimization of SemiGAN via mini-batch SGD
method.

Input: Labeled gene expression dataset Ωl = {(xli ,y
l
i )}

nl
i=1 which

corresponds to the profiles with the measurement of both land-
mark and target genes; and Ωu = {xuj }

nu
j=1 representing the

profiles with only landmark gene expression measurement
available. Hyper-parameter λDx

, λDy
, λDxy

, λGx
, λGy

, λGxy
,

λtra , λr ec , λinv , λsyn and λcon .
1: Initialize parameter θDx

, θDy
and θDxy

for discriminators, pa-
rameter θGx

, θGy
for generators, parameter θIx for the inverse

network Ix and parameter θF for the inference network F .
2: for number of training iterations do
3: for t = 1,. . . , T do

4: Randomly choose mini-batch Ωt
l
⊂ {1, . . . ,nl } of size

b and mini-batch Ωtu ⊂ {1, . . . ,ni } of size b.
5: Update the parameters θDx

, θDy
and θDxy

by ascending
along the stochastic gradient w.r.t. the following adversarial
loss.

max
Dx ,Dy,Dxy

1

b

b∑

i=1

λDx
log(Dx (x

u
i )) + λGx

log(1 − Dx (Gx (zi )))

+ λDy
log(Dy (y

l
i )) + λGy

log(1 − Dy (Gy (zi )))

+ λDxy
log(Dxy (x

l
i ,y

l
i ))

+ λGxy
log(1 − Dxy (Gx (zi ),Gy (zi )))

6: Update the parameters θGx
and θGy

by descending
along the stochastic gradient w.r.t. the following loss.

min
Gx ,Gy

1

b

b∑

i=1

λGx
log(1 − Dx (Gx (zi ))) + λGy

log(1 − Dy (Gy (zi )))

+ λGxy
log(1 − Dxy (Gx (zi ),Gy (zi )))

+ λr ec | |Gx (Ix (x
u
i )) − xui | |1

+ λtra | |y
l
i −Gy (Ix (x

l
i ))| |1

7: Update the parameters θIx by descending along its sto-
chastic gradient w.r.t. the following loss.

min
Ix

1

b

b∑

i=1

λr ec | |Gx (Ix (x
u
i )) − xui | |1 + λtra | |y

l
i −Gy (Ix (x

l
i ))| |1

+ λinv ‖Ix (Gx (z)) − z)‖1
8: Update the parameters θF by descending along its sto-
chastic gradient w.r.t. the following loss.

min
F

1

b

b∑

i=1

| |Gy (zi ) − F (Gx (zi ))| |1 + λsyn | |y
l
i − F (xli )| |1

+ λcon ‖F (x
u
i ⊕ e) − F (xui ⊕ e′)‖2

the first two terms compared to the �2-norm loss, which shows the
advantages of robust �1-norm loss in the gene expression problem.
In our gene expression completion problem, we adopt a vari-

ant of mini-batch SGD methods to update the parameters in the
networks for an efficient and stable update. We summarize the
optimization steps of SemiGAN in Algorithm 1 by considering the
empirical approximation of the expectations in the aforementioned
loss functions.



4 EXPERIMENTS
4.1 Experimental Setup

4.1.1 Datasets. We download three different publicly available
datasets from https://cbcl.ics.uci.edu/public_data/D-GEX/ for this
analysis, which includes: the microarray-based GEO dataset, the
RNA-Seq-based GTEx dataset data and the 1000 Genomes (1000G)
RNA-Seq expression data.

The original GEO dataset consists of 129158 gene expression pro-
files corresponding to 22268 probes (978 landmark genes and 21290
target genes) that are collected from the Affymetrix microarray
platform. The original GTEx dataset is composed of 2921 profiles
from the Illumina RNA-Seq platform in the format of Reads Per
Kilobase per Million (RPKM). While the original 1000G dataset
includes 2921 profiles from the Illumina RNA-Seq platform in the
format of RPKM.

We follow the pre-processing steps in [5] for duplicate samples re-
moval, joint quantile normalization and cross-platform data match-
ing. In the joint quantile normalization, we map the expression
values in the GTEx and 1000G datasets according to the quantile
computed in the GEO data. The expression value has been quantile
normalized to the range between 4.11 and 14.97. Finally, the expres-
sion value of each gene has been normalized to zero mean and unit
variance. After pre-processing, there are a total of 111009 profiles
in the GEO dataset, 2921 profiles in the GTEx dataset while 462
profiles in the 1000G dataset. All the profiles correspond to 10463
genes (943 landmark genes and 9520 target genes).

4.1.2 Evaluation Criterion. In the experiments, we use two dif-
ferent evaluation metrics, including mean absolute error (MAE) and
concordance correlation (CC). Given a set of testing data {(xi ,yi )}ni=1,
for a certain model we denote the predicted expression set as
{ŷi }

n
i=1. The definition of MAE is:

MAEt =
1
n

n∑
i=1

|ŷjt − yjt |,

where yit represents the expression value for the t-th target gene
in the i-th testing profile, and ŷit indicates the corresponding pre-
dicted value.MAEt is the MAE value for the t-th target gene.

The following equation shows the definition of CC:

CCt =
2ρσyt σŷt

σ 2
yt + σ

2
ŷt
+ (µyt − µŷt )

2 ,

whereCCt indicates the concordance correlation for the t-th target
gene. ρ is the Pearson correlation, while µyt , µŷt , and σyt , σŷt are
the mean and standard deviation of yt and ŷt respectively.

4.1.3 Baseline Methods. In the LINCS program, the gene ex-
pression inference is based on the least square regression (LSR)
model:

min
W ,b

nl∑
i=1

| |WT xli + b − yli | |
2

whereW is the weight matrix and b is the bias term. The learning is
based on the labeled profiles Ωl = {(xli ,y

l
i )}

nl
i=1. The LSR model is

prone to overfit the training model, and therefore has limited predic-
tion power. To deal with the overfitting problem, we also consider
two other linear regression models in the comparison, which are

ridge regression, i.e., LSR with ℓ2-norm regularization (LSR-L2) and
LASSO regression, i.e., LSR with ℓ1-norm regularization (LSR-L1).

Besides the linear regression models, we also compare with the
k nearest neighbor (KNN) method for regression, where the predic-
tion of a given profile is formulated as the average of its k nearest
profiles. Moreover, we compare with a deep learning method for
gene expression inference (D-GEX) [5] to validate the performance
of our SemiGAN model. The D-GEX model use a fully connected
multi-layer perceptron for regression. To the best of our knowledge,
D-GEX is the only model that apply deep learning frameworks to
the gene expression inference problem.

Following the experimental settings in [5], we evaluate the meth-
ods under two different circumstances. Firstly, we use 80% of the
GEO data for training, 10% of the GEO data for validation while the
other 10% of the GEO data for testing. Secondly, we use the same
80% of the GEO data for training, the 1000G data for validation
while the GTEx data for testing. Among the training data, we set
the portion of labeled profiles to be {1%, 3%, 5%, 10%, 20%} respec-
tively and leave the remaining as unlabeled. In the second scenario,
the training, validation and testing comes from different platforms,
which is designed to validate if comparing methods are capable of
capturing the information for cross-platform prediction. We use
the training data to construct the predictive model, validation data
for model selection and parameter setting, while the testing data
to conduct the evaluation. For LSR-L1 and LSR-L2 model, we tune
the hyperparameter λ in the range of {10−2, 10−1, . . . , 103} accord-
ing to the performance on the validation data. For each method,
we follow the experimental protocol in [5] and report the average
performance and standard deviation over all target genes on the
testing data.

4.1.4 Implementation Details. We use networks with similar
architecture for the both datasets, train the networks only using the
training data, tune the hyper-parameters via the validation samples,
and report the results on the test sets. For the inference network,
we utilize a DenseNet [18] architecture with three hidden layers,
each one containing 3, 000 hidden units. For the generators and
discriminators, we use fully connected networks with three and
one hidden layers respectively, where all the hidden layers include
3, 000 hidden units. The similar architecture to the generator is
considered for the inverse network. We consider leaky rectified
linear unit (LReLU) [24] with leakiness ratio 0.2 as the activation
function of all layers except the last layer of generator network,
which has linear function due to the mean-zero and unit-variance
data normalization. Moreover, we set the maximum and minimum
learning rates to 5 × 10−4 and 1 × 10−5 respectively, and linearly
decrease it during training till the maximum epoch 500. Adam
algorithm [21] is adopted as our optimization method with the
default hyper-parameters β1 = 0.9, β2 = 0.999, ϵ = 1e − 08. The
batch size is set to 200. We also utilize weight normalization [34]
as layer normalization to speed up the convergence of training
process. The parameters of all layers are all initialized by Xavier
approach [13]. We use Theano toolbox for writing our code, and
run the algorithm in a machine with one Titan X pascal GPU.

https://cbcl.ics.uci.edu/public_data/D-GEX/


Table 1:MAE comparison on the prediction of GEO datawhen using different portion of labeled data. Better results correspond
to lower MAE value. The best result is marked in bold.

Methods 1% 3% 5% 10% 20% 100%
LSR 1.6789±0.4747 0.4939±0.1100 0.4435±0.0979 0.4080±0.0906 0.3914±0.0872 0.3763±0.0844

LSR-L1 0.4507±0.0924 0.4181±0.0837 0.4119±0.0820 0.4072±0.0809 0.4051±0.0805 0.3756±0.0841
LSR-L2 0.4363±0.0813 0.4072±0.0840 0.3992±0.0849 0.3912±0.0855 0.3849±0.0854 0.3758±0.0842
KNN 0.5299±0.0886 0.4847±0.0898 0.4659±0.0901 0.4407±0.0906 0.4173±0.0918 0.3708±0.0958
D-GEX 0.4542±0.0916 0.4077±0.0822 0.3891±0.0858 0.3735±0.0862 0.3514±0.0862 0.3204±0.0879

SemiGAN 0.4202±0.0876 0.3818±0.0883 0.3651±0.0878 0.3432±0.0873 0.3245±0.0871 0.2997±0.0869

Table 2: CC comparison on the prediction of GEO data when using different portion of labeled data. Better results correspond
to higher CC value. The best result is marked in bold.

Methods 1% 3% 5% 10% 20% 100%
LSR 0.2429±0.1208 0.7409±0.1209 0.7774±0.1110 0.8008±0.1035 0.8121±0.0996 0.8227±0.0956

LSR-L1 0.7460±0.1211 0.7737±0.1102 0.7778±0.1089 0.7811±0.1077 0.7817±0.1078 0.8221±0.0960
LSR-L2 0.7403±0.1197 0.7838±0.1091 0.7948±0.1062 0.8058±0.1026 0.8131±0.0998 0.8223±0.0959
KNN 0.6409±0.1352 0.7097±0.1190 0.7314±0.1144 0.7586±0.1098 0.7818±0.1063 0.8218±0.1001
D-GEX 0.7504±0.1202 0.7892±0.1094 0.8012±0.1072 0.8188±0.1028 0.8316±0.0992 0.8514±0.0908

SemiGAN 0.7606±0.1187 0.8013±0.1096 0.8155±0.1069 0.8346±0.1026 0.8503±0.0988 0.8702±0.0927

Table 3: MAE comparison on the prediction of GTEx data when using different portion of labeled data. Better results corre-
spond to lower MAE value. The best result is marked in bold.

Methods 1% 3% 5% 10% 20% 100%
LSR 2.1908±0.6561 0.6307±0.1463 0.5630±0.1338 0.5170±0.1277 0.4936±0.1254 0.4704±0.1235

LSR-L1 0.5431±0.1319 0.4970±0.1269 0.4910±0.1265 0.4844±0.1265 0.4815±0.1267 0.4669±0.1274
LSR-L2 0.5190±0.1183 0.4901±0.1206 0.4868±0.1214 0.4818±0.1227 0.4775±0.1234 0.4682±0.1233
KNN 0.6758±0.1367 0.6530±0.1467 0.6502±0.1454 0.6375±0.1468 0.6324±0.1469 0.6225±0.1469
D-GEX 0.5385±0.1244 0.4847±0.1212 0.4922±0.1224 0.4656±0.1262 0.4505±0.1252 0.4393±0.1239

SemiGAN 0.5105±0.1202 0.4748±0.1233 0.4643±0.1232 0.4470±0.1239 0.4341±0.1250 0.4223±0.1266

Table 4: CC comparison on the prediction of GTEx data when using different portion of labeled data. Better results correspond
to higher CC value. The best result is marked in bold.

Methods 1% 3% 5% 10% 20% 100%
LSR 0.1669±0.1409 0.6265±0.2123 0.6647±0.2112 0.6923±0.2101 0.7050±0.2097 0.7184±0.2072

LSR-L1 0.6259±0.2237 0.6666±0.2154 0.6673±0.2163 0.6703±0.2175 0.6693±0.2188 0.7163±0.2188
LSR-L2 0.6131±0.2203 0.6766±0.2121 0.6867±0.2115 0.6997±0.2110 0.7070±0.2105 0.7181±0.2076
KNN 0.4617±0.2139 0.5210±0.2125 0.5286±0.2111 0.5509±0.2089 0.5597±0.2078 0.5748±0.2052
D-GEX 0.6288±0.2115 0.6818±0.2128 0.6823±0.2120 0.7016±0.2112 0.7189±0.2115 0.7304±0.2072

SemiGAN 0.6389±0.2188 0.6928±0.2135 0.7026±0.2131 0.7205±0.2118 0.7317±0.2113 0.7443±0.2087

4.2 Comparison on the GEO Data
In this subsection, we evaluate the methods on the prediction of
target gene expression in GEO data. From the summarization in
Table 1 and 2, we can notice apparent improvement of our model
over the counterparts. Firstly, we can find deep learning models
(D-GEX and SemiGAN) consistently outperform all linear models
(LSR, LSR-L1 and LSR-L2), since the deep neural network is capable
of interpreting the non-linear association among gene expression
patterns. Deep learning models indicate remarkable representation

power to estimate the latent data distribution thus make better
prediction for the expression of target genes. Besides, KNN shows
worse results than the comparing methods, which is because of
the inconsistence between the nearest neighbors in the training
and testing data. Moreover, our SemiGAN model presents consis-
tent advantage over the comparing deep model, D-GEX, due to the
following two reasons: 1) the semi-supervised framework in our
model enables the integration of unlabeled profiles in the learning,
which strengthens the estimation of the data distribution and also



(a) Relevance score of landmark genes w.r.t. cluster of expression profiles (b) Cleaned version of landmark gene score

(c) Relevance score of landmark genes w.r.t. cluster of target genes (d) Relevance score of landmark gene clusters w.r.t. target genes clusters

Figure 2: Visualization of the relevance score calculated for each landmark gene in the prediction of GEOdata. (a)We divide the
gene expression profiles into 20 clusters using K-means and plot the contribution of each landmark gene to different profile
clusters. (b) For each profile cluster, only the top 20 landmark genes in (a) are kept for a clear illustration. (c) The 9520 target
genes are grouped into 20 clusters via K-means and the cleaned version of landmark gene contribution is presented. (d) The
landmark genes are clustered into 10 groups and the contribution to the prediction of different target gene clusters is plotted.

introduces more data to train the inference network; 2) the estima-
tion of both conditional distribution p(y|x) and joint distribution
p(x,y) provides guidance for each other, such that the training of
both generator and inference framework can be improved.

Moreover, we can notice that the superiority of SemiGAN model
is more obvious with the labeled portion being 10% and 20%. When
the labeled portion is too small, all methods are influenced by the
limited number of labeled profiles. However, with just 10% labeled
profiles available, the generators in our model can approximately
estimate the joint distribution p(x,y) and produce reliable profiles
to improve the learning of inference network. Conversely, the con-
struction of the inference network also guide the generators to
produce realistic gene expression profiles. This result validates that
the SemiGAN can make good prediction of the target gene expres-
sion given very limited number of labeled profiles, which provides
an accurate and cost-effective strategy for reliable genome-wide
expression profiling.

4.3 Comparison on the GTEx Data
Furthermore, we evaluate the comparing methods on the cross-
platform prediction, where we use GEO data for training, 1000G
data for validation while GTEx data for testing. This cross-platform
setting is used to test if the methods can capture appropriate in-
formation for predicting target gene expression from a different
platform. As we can notice from the comparison results in Table 3
and 4, our SemiGAN model maintains significant advantage over
the counterparts. Since the training and testing data come from
different platform (i.e., different data distribution), the performance
on the GTEx data is not as good as the one for GEO data prediction.
In the cross-platform prediction, SemiGAN still performs better,
which validates that our model can take advantage of the learning
of both conditional distribution and joint distribution to strengthen
the cross-platform learning.



4.4 Analysis of Landmark Genes in the
Prediction

In this subsection, we look into the roles of landmark genes in the
prediction of target gene expression. We use the Layer-wise Rele-
vance Propagation (LRP) [2] method to calculate the importance
of each landmark gene and plot the illustration figure in Fig. 2.
The LRP method calculates the relevance score for each landmark
gene, where higher relevance score shows more contribution in the
overall prediction of the target gene expression. Firstly, we analyze
the contribution of each landmark gene for different profiles. Since
there are a large number of profiles, we divide them into 20 groups
and show the accumulated relevance score pattern for each profile
group in Fig. 2 (a) and (b). We can notice that the landmark gene ex-
pression patterns vary for different profile groups, which replicates
the previous findings in cancer clustering analysis that different
group of cancer samples usually exhibit different expression pat-
terns. The breast cancer subtype discovery study indicates different
expression-based prognostic signatures for different subtypes [11].
And cancer landscape study also identified that cross-tissue cancer
clusters can be characterized by different gene expression patterns
[37]. Afterwards, we analyze the relationship between landmark
genes and target genes. We cluster the target genes into 20 groups
and calculate the relevance score for each target gene cluster, where
we plot the overall contribution of each landmark gene across all
profiles. To make a clear illustration, we group the landmark genes
into 10 clusters and display the association between landmark gene
clusters and target gene clusters in Fig. 2 (d). Similar to the results
between profiles and landmark genes, apparent difference in the
relevance patterns can also be observed for different target gene
clusters. This finding has also been validated by previous gene clus-
ter analysis [25], where gene cluster information is related to the
structure of biosynthetic pathways and metabolites.

5 CONCLUSION
In this paper, we put forward a novel deep generative model (Semi-
GAN). We formulated our model in a semi-supervised learning
approach, in which the learning of our inference network involved
not only the labeled profiles but also the generated profiles with no
ground truth label available. The prediction results on both GEO
and GTEx data validated the performance of our SemiGAN model
in gene expression inference. Moreover, by visualizing the role of
different landmark genes in the prediction, we revealed interest-
ing relationship among gene expression patterns that have been
validated in previous literature. It is notable that our SemiGAN is
an effective model in semi-supervised regression tasks, where the
input data in labeled and unlabeled sections share similar distribu-
tion. The semi-supervised learning setting introduced more reliable
profiles to strengthen the training of the inference network. In
addition, the construction of the inference network also improved
the estimation of the joint distribution between the input data and
label.
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