
Self-Paced Network Embedding
Hongchang Gao

Department of Electrical and Computer Engineering
University of Pittsburgh

Pittsburgh, USA
hongchanggao@gmail.com

Heng Huang∗
Department of Electrical and Computer Engineering

University of Pittsburgh
Pittsburgh, USA

heng.huang@pitt.edu

ABSTRACT
Network embedding has attracted increasing attention in recent
data mining research with many real-world applications. Network
embedding is to learn low-dimensional representations for nodes
in a network. A popular kind of existing methods, such as Deep-
Walk, Node2Vec, and LINE, learn node representations by pushing
positive context node to the anchor node while pushing negative
context nodes away from it in the low-dimensional vector space.
When sampling the negative context nodes, they usually employ
a predefined sampling distribution based on the node popularity.
However, this sampling distribution often fails to capture the real
informativeness of each node and cannot reflect the training state.
To address these important problems, in this paper, we propose
a novel self-paced network embedding method. Specifically, our
method can adaptively capture the informativeness of each node
based on the current training state, and sample negative context
nodes in terms of their informativeness. The proposed self-paced
sampling strategy can gradually select difficult negative context
nodes with training process going on to learn better node repre-
sentations. Moreover, to better capture the node informativeness
for learning node representations, we extend our method to the
generative adversarial network framework, which has the larger
capacity to discover node informativeness. The extensive experi-
ments have been conducted on the benchmark network datasets to
validate the effectiveness of our proposed methods.
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1 INTRODUCTION
In recent years, network embedding has attracted a surge of at-
tention because it is a fundamental tool for network data analysis.
Network embedding aims at learning a low-dimensional represen-
tation for nodes in a network such that the downstream tasks, such
as node classification, link prediction, and network visualization,
can benefit from it. The essential idea to learn the low-dimensional
representations is to preserve the proximity in the topological struc-
ture of a network. By preserving such proximities, nodes with large
proximity will have similar low-dimensional representations, bene-
fiting downstream tasks.

To obtain the effective low-dimensional representation, a wide
variety of approaches have been proposed in recent years. They
aim at capturing various proximities in a network. For example, the
seminal DeepWalk model [21] employs random walk to obtain the
node sequences and then reformulates network embedding as word
embedding by regarding node sequences as word sequences. In this
way, the proximity between nodes can be captured by Skip-gram
[20] model. Afterwards, Node2Vec [6] was proposed based on the
similar idea but with a novel random walk algorithm. Addition-
ally, LINE [25] was introduced to preserve the first and second
order proximity when learning the low-dimensional representation.
GraRep [4] aims at preserving high order proximity during repre-
sentation learning. Struc2Vec [22] targets to preserve to structural
proximity by identifying structure identities.

Among these existing methods, the methods based on Skip-gram
[20] model, such as DeepWalk [21], Node2Vec [6], and LINE [25]
have attracted much attention. Their basic idea is to push together
similar nodes while pushing away dissimilar nodes. Mathematically,
it is formulated as a binary classification problem which classifies
two similar nodes as a positive pair while classifying two dissimilar
nodes as a negative pair. Although these approaches have shown
good performance in many tasks, yet it has a drawback. Specifically,
to train this binary classification problem, we should feed both
positive and negative pairs to the model. For each node, its paired
positive node can be easily obtained according to edges of the
network [25] or the result of random walk [6, 21]. But how to
obtain the negative nodes is not obvious. Some negative nodes
are more informative while some are not. If employing random
sampling method, we cannot discriminate the informativeness of
different nodes.

Therefore, existing methods, such as DeepWalk [21], Node2Vec
[6], and LINE [25], propose to sample negative nodes based on a
pre-designed distribution. This distribution depends on the degree
of nodes. The intuition behind this sampling method is that over-
sampling more connected nodes will lead to better performance
because these nodes carry more information than less connected
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ones. Although this strategy has correct intuition, the idea is incom-
plete because this method ignores that the less connected nodes
may also be informative in practice. Thus, we cannot just use the
connection information to determine the informativeness of a node.
How to discover the really informative nodes for training models
is important and also challenging.

Moreover, the sampling distribution employed by the existing
network embedding methods [6, 21, 25] is static, which means
that the sampling distribution does not change during training. As
a result, the informativeness of a node is constant when training
models. However, with the training process going on, some negative
nodes are well pushed away from the anchor node while some are
not. In such a case, we should putmore focus on these difficult nodes.
Therefore, it is better to sample nodes with different probabilities
at different training phases. On the other hand, we cannot always
focus on the difficult nodes, ignoring the easy ones. According to
the learning process of human beings, we should start with easy
samples when learning a newmodel and then learn difficult samples
gradually [2, 13]. The reason is that we can learn a draft model by
using easy samples and then refine it by taking difficult samples.
In our case, if we always select difficult negative nodes to train
our model, the easy ones cannot be fully utilized, and it is easy to
disturb the low-dimensional representations by too much focus on
the difficult nodes.

To address the above challenging problems, in this paper, we
propose a novel self-paced network embedding method. With this
method, we can dynamically sample the informative negative nodes
for training models. Specifically, we propose a self-paced node
sampling strategy. This strategy can discover the informativeness
of each node based on current model parameters and then sample
negative nodes according to their informativeness. In addition, this
self-paced strategy can sample difficult negative nodes gradually
with the training process going on. Moreover, we extend this self-
paced sampling strategy to the generative adversarial network
framework. The extensive experiments are conducted on seven
benchmark network datasets to validate the effectiveness of our
proposed methods.

2 RELATED WORK
2.1 Network Embedding
Network embedding has become a popular data mining research
topic in recent years due to its important role in network data
analysis. It is to learn a low-dimensional representation for each
node in a network while preserving proximity. Recently, there
has been much progress towards effective network embedding
algorithms. For example, DeepWalk [21] was proposed to utilize
randomwalk to get node sequences as word sentences, then employ
Skip-gram [20] model to learn node embedding, which is essential
to predict the context of each anchor node by maximizing the
likelihood function as follows:

max
n∏
i=1

∏
j ∈ci

p(vj |vi ) , (1)

where vi is the anchor node, vj denotes its context node, and ci
denotes the context set of nodevi . p(vj |vi ) is the conditional proba-
bility of nodevj given nodevi . Based on this schema, LINE [25] and

Node2Vec [6] were proposed respectively with different context
constructing approaches. In addition, some other kinds of methods
also make much progress. For example, GraRep [4] aims at preserv-
ing high order proximity during representation learning. Struc2Vec
[22] aims to preserve structural proximity by identifying structure
identities. M-NMF [29] captures community structure when learn-
ing the low-dimensional representation. TADW [30] and ANE [8]
target to integrate the topological structure and node attributes to
learn node representations. A dynamic network embedding method
[15] was proposed to handle the dynamic networks. SDNE [27] em-
ploys deep autoencoder to capture the high non-linearity in the
network. In [12], a semi-supervised network embedding method
was proposed based on the graph convolutional network. Although
these methods are promising in many tasks, in this paper, we will
limit our interest to solve the model related to Eq. (1).

2.2 Sample Selection
Negative Sampling Negative sampling [7, 20] is an efficient ap-
proach for solving multi-class classification problems. In detail, the
multi-class classification problem, such as problem (1), is consider-
ably inefficient when the number of classes is very large. Negative
sampling (or termed as contrastive learning) reformulates it as a
binary classification problem by constructing positive pairs and
negative pairs. The positive pair is usually easy to construct based
on some prior knowledge. For example, positive pairs in a network
can be easily constructed based on the connection between nodes
[25]. The challenge is how to construct negative pairs. In [20], the
authors propose to sample negative pairs based on the word popu-
larity, while [25] considers constructing the sampling distribution
in terms of the degree of nodes. Actually, both of them share a
common intuition that more popular or connected samples should
be selected more frequently since they are more informative. Un-
der the context of recommender systems, [31] proposes a dynamic
negative sampling algorithm based on the temporary recommend
result. Recently, IRGAN [28] was proposed to have the same spirit
as negative sampling for information retrieval. Unlike conventional
negative sampling, it employs a generator to generate the negative
samples dynamically.

Self-Paced Learning In machine learning community, how to
select training samples to learn a good model is an important topic.
As we know, human beings usually learn from easy concepts to
complex ones. To mimic this cognitive activity of humans, cur-
riculum learning [2] and self-paced learning [13] have attracted
much attention. Particularly, based on some fixed prior knowledge,
curriculum learning constructs a ranking function to assign dif-
ferent learning priorities to different samples. Self-paced learning
selects training samples voluntarily by measuring the performance
of samples dynamically as follows:

min
vi ,w

n∑
i=1

vi l(yi , f (xi ;w)) − λ
n∑
i=1

vi , (2)

where w is the model parameter, vi ∈ {0, 1} indicates whether
the training sample (xi ,yi ) is selected, and l(·, ·) denotes the loss
function.

Along this line, many works have been proposed for different sit-
uations. For example, [9] proposes a self-paced learning algorithm



to select easy and diverse samples. [16] proposes the self-paced

co-training under the semi-supervised settings. [24] is proposed for

object tracking. [10] is proposed for combining curriculum learning

and self-paced learning. However, as far as we know, there are

no existing works for our settings. Thus, inspired by self-paced

learning, we will focus on how to perform negative sampling from

easy samples to difficult ones dynamically to solve Eq. (1).

3 NEW SELF-PACED NETWORK EMBEDDING

3.1 Problem Definition

Given a network G = {V,E} where V = {vi }
n
i=1 denotes a set

of n nodes and E = [ei j ] ∈ �
n×n denotes the adjacency matrix, if

there exists an edge between node vi and vj , ei j = 1. Otherwise,
ei j = 0. The embedding of each node vi is a low-dimension vector

ui ∈ �
d .

Network embedding is to learn low-dimensional representations

{ui }
n
i=1 of nodes. The essential idea is to push similar nodes to-

gether while pushing dissimilar nodes away to each other in the

low-dimensional vector space. Thus, DeepWalk [21], LINE [25],

and Node2Vec [6] propose to optimize Eq. (1). By optimizing this

model, the context node vj of the anchor node vi will have a high
probability p(vj |vi ), while other nodes have a small p(vj |vi ). Thus,
Eq. (1) can push positive context nodes vj to the anchor node vi
while pushing negative context nodes away from the anchor node.

However, Eq. (1) actually is a multi-class classification problem

in which the number of classes equals the number of nodes. When

n is very large, it is inefficient. Therefore, DeepWalk [21], LINE [25],

and Node2Vec [6] reformulate Eq. (1) as an equivalent problem and

employ negative sampling method to accelerate it as follows:

max logp(vp |vi ) +
∑

j ∈Nvi

log(1 − p(vj |vi )) , (3)

where vp denotes the positive context of node vi while vj denotes
the negative context, Nvi denotes the sampled negative context

node set and |Nvi | = k . By using this effective negative sampling
method, the complexity is reduced to O(km) while the original
complexity is O(nm) where O(m) is the complexity of computing
the loss of each sample and k � n. Now, a natural question is

how to select the negative context samples Nvi effectively? In

existing works [6, 21, 25], they use a predefined distribution, which

reflects the popularity of nodes, to sample them. Specifically, LINE

[25] constructs the sampling distribution based on the number of

degrees of nodes such that a more connected node will be selected

in a large probability. However, it has some drawbacks in practice

as follows:

• The popularity-based sampling method cannot really reflect

the informativeness of a node. Some less connected nodes

can also be much informative in practice.

• The informativeness of a node is usually changing with

the training process going on. But the predefined sampling

method fails to reflect this change.

Therefore, in this paper, we will focus on developing effective neg-

ative sampling algorithms to address these problems.

3.2 Self-Paced Network Embedding

In this section, we will introduce a novel dynamic sampling method

for network embedding: self-paced network embedding. At first, to

fully capture the informativeness of nodes and reflect the training

state, we propose a dynamic negative sampling method. Based on

this method, we further propose a self-paced sampling method to

feed difficult samples gradually with the training process going on

to learn a better embedding result. At last, we extend the proposed

self-paced sampling method to the generative adversarial network

framework.

3.2.1 Informativeness of Nodes. Formally, the conditional prob-

ability in Eq. (1) and Eq. (3) is defined as follows:

p(vj |vi ) = σ (uTj ui ) =
1

1 + exp(−uTj ui )
, (4)

where ui and uj are the low-dimensional representation of node
vi and vj respectively. Here, we call vi anchor node. As we can see
from this formulation, a large inner product between ui and uj de-
notes a high probability of vj given vi . For all the negative context
nodes Nvi of the anchor node vi , they will have different condi-
tional probabilities based on the currently learned low-dimensional

representation. Moreover, as for a negative context node, if its con-

ditional probability is high, it should be a difficult negative context

node since it is close to the anchor point based on the inner product

but we should push it away from the anchor node. Otherwise, it is

an easy negative context node because it is far away from the anchor

point. Thus, it is natural to use Eq. (4) to denote the informativeness

of a negative context node given the anchor node. If p(vj |vi ) is
large, vj is more informative to the anchor node vi . Otherwise, it is
less informative since it has already been far away from the anchor

point.

On the other hand, the essentiality of network embedding is to

push away negative context nodes from the anchor point. Thus,

to learn a good low-dimensional representation such that similar

nodes are clustered while dissimilar nodes are separated, it is bet-

ter to put more focus on difficult negative context nodes to push

them away from the anchor node. Based on this intuition, it is

natural to construct the negative sampling distribution based on

the informativeness of nodes between the currently learned low-

dimensional representation at each iteration. Mathematically, we

define the informativeness-aware negative sampling distribution

as follows:

pi j =
exp (uTj ui )∑

j ∈Nvi
exp (uTj ui )

, (5)

where Nvi is the negative context node set of node vi . As shown
in this formulation, if a negative context node is close to the anchor

node, the inner product between them will be large so that the

probability pi j is large. As a result, the difficult negative context
node has a large chance to be selected. Then, it will be updated

more frequently than the easy ones so that it is pushed away from

the anchor point. Thus, our method can always select the more

informative nodes to update model parameters. On the contrary,

the conventional sampling distribution used in [6, 21, 25] only

focuses on the more connected nodes. With such a connection-

based sampling method, even when a more connected node has



already been well separated from the anchor node, it still has a

large chance to be updated. While a less connected node which is

close to the anchor node has small chance to be pushed away from

the anchor node. Thus, their result is not satisfactory. As for our

method, we put more focus on the difficult negative context node.

As a result, even though a negative context node is less connected,

it still has a large chance to be selected if it has a large inner product

with the anchor node. All in all, our proposedmethod can effectively

select the more informative negative context node.

Furthermore, unlike the predefined sampling distribution em-

ployed in [6, 21, 25], our proposed sampling distribution can reflect

the training state since the low-dimensional representation is up-

dated at each iteration. In particular, the sampling distribution

changes dynamically according to the current state. An easy nega-

tive context node may become a difficult one after updating model

parameters, then it will have a large chance to be selected. As a con-

clusion, our proposed method can automatically and dynamically

select the informative negative context node based on the training

state.

3.2.2 Self-Paced Negative Sampling. Although the proposed sam-

pling distribution in Eq. (5) can always select the more informative

nodes at each iteration, yet it fails to utilize all nodes. Specifically, at

each iteration, it always selects the difficult negative context node,

the easy one almost has no chance to be pushed away from the

anchor node. Although the easy negative context node may already

be separated with the anchor node, yet it still needs to refine so

that we can get a better result.

On the other hand, according to self-paced learning [2, 13], like

human beings learning from easy samples to complex ones, we

should feed easy samples at early training stage and gradually pro-

vide difficult samples with the training process going on. However,

the sampling distribution in Eq. (5) always feed difficult samples at

any training stage. Therefore, to fully utilize all nodes and gradually

select difficult nodes, we propose the self-paced network embedding

(SeedNE) model as follows:

max logp(vp |vi ) +
∑

j
p′
i j
∼ Nvi

log(1 − p(vj |vi )) + l(μ)

s .t . p′i j =

{
pi j , pi j < l(μ)

0, otherwise ,

(6)

where Nvi is the negative context node set of node vi , l(μ) is a
threshold function parameterized by μ, which acts as a threshold to
the sampling probability. In detail, for the probability pi j obtained
from Eq. (5), if it is larger than the threshold l(μ), we set it as
zero as shown in Eq. (6). Actually, it is to set the probability of

difficult negative context nodes to zero such that the easy ones have

larger chance to be selected at the early training stage. With the

training process going on, l(μ) is increasing so that difficult negative
context nodes will be included gradually. This is consistent with

our motivation. The concrete threshold function l(μ) is deferred to
Section 4.

By optimizing problem (6) for each anchor node vi , we can
gradually sample difficult negative context nodes based on the

training performance to learn low-dimensional representations of

Algorithm 1 Self-Paced Network Embedding (SeedNE)

1: for each node vi do
2: Sample positive context nodes vp .
3: Sample negative context nodes vj according to p

′
i j .

4: Update node representations ui , up , uj and the parameter μ
by SGD.

5: Update the sampling probability p′i j as Eq. (5) and Eq. (6).

6: end for

nodes. At last, we summarize the self-paced network embedding

(SeedNE) method in Algorithm 1.

3.2.3 Extension: Adversarial Self-Paced Network Embedding. In

recent years, Generative Adversarial Network (GAN) [5] has at-

tracted a surge of attention due to its flexibility to simulate distri-

butions. The GAN framework includes a generator and a discrimi-

nator. The generator is to approximate the data distribution while

the discriminator is to discriminate the approximated and true data

distribution. Mathematically, the GAN framework is to optimize

the following problem:

min
θ

max
ϕ

Ex∼p(x ) log[D(x)] + Ex∼G(z),z∼p(z)[log(1 − D(x))] , (7)

where D(·) denotes the discriminator parameterized by ϕ, G(·) de-
notes the generator parameterized by θ , p(x) denotes the data dis-
tribution, and p(z) denotes a prior distribution. Here, the generator
G(·) tries to use a deep neural network to map a simple prior distri-
bution p(z) to the complicated data distribution. By optimizing this
objective function, the generator is expected to generate similar

samples with true ones as well as possible.

Inspired by the GAN framework, we can use a generator to

generate negative samples for Eq. (3). Specifically, for each anchor

node vi , it is defined as follows:

min
θ

max
ϕ

Evj∼pd (vj |vi ) logpϕ (vj |vi )

+ Evj∼Gθ (vj |vi )[log(1 − pϕ (vj |vi ))] ,
(8)

where pϕ (vj |vi ) is identical with Eq. (4) in which ϕ = {ui ,uj },
pd (vj |vi ) denotes the sampling distribution for the positive context
node of node vi , Gθ (vj |vi ) denotes the sampling distribution for
the negative context node, which is constructed from the generator.

This model includes two components: discriminator and genera-

tor. The discriminator has the same functionality as Eq. (3), which

pushes similar nodes together while pushing away different nodes

in the low-dimensional vector space. The generator is to generate

negative context nodes by constructing the sampling distribution

Gθ (vj |vi ). More details are explained in the following.
Discriminator Specifically, the discriminator is to solve the

following problem:

max
ϕ

Evj∼pd (vj |vi ) logpϕ (vj |vi )+Evj∼Gθ (vj |vi )[log(1−pϕ (vj |vi ))] ,

(9)

which is actually identical with Eq. (3). The only difference is how

to obtain negative context nodes. The negative context node of this

model is generated from the generatorGθ (vj |vi )while Eq. (3) uses a
predefined distribution for sampling them. Similarly, the difference

between this discriminator and Eq. (6) is also the sampling method.



Eq. (6) constructs the basic sampling distribution according to the

current training state as shown in Eq. (5). This discriminator also

sample negative nodes based on the current training state, but it

uses a generator to construct such a distribution in a more flexible

way, which will be shown in the following. By optimizing this

model, we can obtain the embedding result ϕ = {ui }
n
i=1.

Generator On the other hand, the generator is to solve the

following problem:

min
θ

Evj∼Gθ (vj |vi )[log(1 − pϕ (vj |vi ))] , (10)

where the generator model Gθ (vj |vi ) constructs a sampling distri-
bution as follows:

Gθ (vj |vi ) =
exp(u

′T
j u ′i )∑

j exp(u
′T
j u ′i )

, (11)

where θ = {u ′i }
n
i=1 is the model parameter of the generator. Specif-

ically, u ′i denotes the low-dimensional representation of node vi
in the generator. At first glance, Eq. (11) has no difference with

Eq. (5). However, Eq. (5) uses the current embedding result {ui }
n
i=1

to construct the sampling distribution while Eq. (11) employs a

more flexible way to construct the sampling distribution to find

the underlying informative negative context nodes. In particular,

it constructs the sampling distribution by training another model

parameterized by new parameters θ = {u ′i }
n
i=1. With these new

parameters, the sampling distribution will have more capacity to

discover the informative nodes. Furthermore, similar with Eq. (5),

these new parameters can also reflect the current embedding re-

sult. Specifically, the loss function in Eq. (10) is computed based

on the current embedding result. Thus, when updating new model

parameters θ = {u ′i }
n
i=1 by gradient descent method, the current

embedding result can directly affect θ through the gradient infor-
mation.

With this flexible distribution, we can sample vj as the negative
context node of node vi to train this model. However, there is a
challenge to optimize Eq. (10). In particular, to use gradient descent

method to update model parameter θ , the model should be contin-
uous. However, the sample vj that the loss function depends on
is not the direct output of the generator Gθ (vj |vi ). Instead, vj is
sampled from a node set according to Gθ (vj |vi ), which is discrete.
Thus, we cannot use gradient descent method directly to update

model parameter θ . A practical way is to employ the policy gradient

[23] to update model parameter θ , which is defined as follows:

∇θEvj∼Gθ (vj |vi )[log(1 − pϕ (vj |vi ))]

=

K∑
j=1

∇θGθ (vj |vi ) log(1 − pϕ (vj |vi ))

=

K∑
j=1

Gθ (vj |vi )∇θ log[Gθ (vj |vi )] log(1 − pϕ (vj |vi ))

= Evj∼Gθ (vj |vi )∇θ log[Gθ (vj |vi )] log(1 − pϕ (vj |vi )) .

(12)

However, take a look at the sampling distribution Eq. (11) defined

in the generator, we can find that this distribution has the same spirit

as Eq. (5), which always selects the difficult negative context node.

Thus, it potentially ignores the easy negative context node and

cannot gradually select difficult oneswith the training process going

on. To alleviate these problems, we further propose the adversarial

self-paced network embedding (ASeedNE) method as follows:

min
θ

max
ϕ

Evj∼pd (vj |vi ) logpϕ (vj |vi ) + l(μ)

+ Evj∼G′
θ
(vj |vi )[log(1 − pϕ (vj |vi ))]

s .t . G ′
θ
(vj |vi ) =

{
Gθ (vj |vi ), Gθ (vj |vi ) < l(μ)

0, otherwise .

(13)

There are still two components in this novel model. Specifically,

the discriminator is to optimize the following problem:

max
ϕ

Evj∼pd (vj |vi ) logpϕ (vj |vi ) + l(μ)

+ Evj∼G′
θ
(vj |vi )[log(1 − pϕ (vj |vi ))]

s .t . G ′
θ
(vj |vi ) =

{
Gθ (vj |vi ), Gθ (vj |vi ) < l(μ)

0, otherwise .

(14)

The difference between this discriminator and that in Eq. (9) is

that here we employ a self-paced sampling strategy such that the

difficult negative context node is gradually utilized to train this

model. While the model in Eq. (9) always choose the most difficult

negative context nodes to train modal parameters.

Additionally, the generator is to optimize the following problem:

min
θ

Evj∼G′
θ
(vj |vi )[log(1 − pϕ (vj |vi ))]

s .t . G ′
θ
(vj |vi ) =

{
Gθ (vj |vi ), Gθ (vj |vi ) < l(μ)

0, otherwise .

(15)

For this generator, after sampling vj according to the self-pace

sampling strategy, we can still use the policy gradient defined in

Eq. (12) to update model parameters.

At last, our adversarial self-paced network embedding method

is summarized in Algorithm 2.

Algorithm 2 Adversarial Self-Paced Network Embedding

(ASeedNE)

1: repeat

2: Sampling positive and negative context nodes according to

pd andG
′
θ
respectively to update the discriminator in Eq. (14).

3: Sampling negative context nodes according to G ′
θ
to update

the generator in Eq. (15).

4: Update the sampling probability G ′
θ
according to Eq. (11)

and Eq. (15).

5: until Converges

Note that although IRGAN [28] also utilizes the GAN framework

to mimic the negative sampling procedure, yet our method is differ-

ent with IRGAN. In particular, IRGAN always chooses the difficult

negative samples while our method can gradually select difficult

negative context nodes according to the training state. In this way,

our method learns node representations from easy negative context

nodes to get a draft of the embedding and then refine the embedding

result by selecting difficult negative context nodes gradually.



3.2.4 Summarization. Compared with the predefined negative
sampling distribution used in [6, 21, 25], our proposed SeedNE can
effectively capture the informativeness of each node based on the
current embedding result. Based on the informativeness of nodes,
SeedNE can gradually select difficult negative context nodes to
train the model by employing the self-paced sampling strategy. For
the ASeedNE method, it can also discover the informativeness of
each node in a more flexible way by training a generator. Similarly,
the sampling distribution constructed by the generator can also
reflect the current embedding result. All in all, both SeedNE and
ASeedNE gradually select difficult negative context nodes to train
model parameters.

4 EXPERIMENTS
In this section, we will describe our experiments to show the per-
formance of the proposed methods.

4.1 Dataset Descriptions
In this paper, we use 7 benchmark datasets including social net-
works, citation networks, biomedical networks, and so on. The
details about these datasets are shown as follows.

• Wikipedia (Wiki) [18]: This is a co-occurrence network of
words in the Wikipedia database. Here, we employ the pre-
processed version of [6]. Specifically, this network contains
4177 nodes, 184,812 edges. Additionally, there are 40 node
labels which denote the Part-of-Speech tag.

• Protein-Protein Interactions (PPI) [3]: This is a biomedical
network. We utilize the preprocessed network in [6]. The
details about the preprocessing operation can be found in
[6]. In particular, there are 3,890 nodes and 76,584 edges in
this network. The number of node classes is 50. Different
classes denote different biological states.

• Cora [19]: This is an academic citation network, which con-
tains 2,708 machine learning papers. There are 5,429 edges
in this network. These papers are from 7 classes, which rep-
resent the topic of these papers.

• Citeseer [19]: This is another citation network. It has 3,312
publications from 6 classes. The edge between two publica-
tions denotes the citation relationship between them. There
are 4,660 edges totally in this network.

• BlogCatalog [26]: This is a social network from the Blog-
Catalog website. The nodes are bloggers and the edges are
friendship relationships among bloggers. The class is inferred
from bloggers’ interests. Specifically, there are 10,312 nodes,
333,983 edges. The number of classes is 39.

• Facebook [14]: This is a social network where nodes rep-
resent users and edges denote the friendship between two
users. This dataset is used for the link prediction task

• GR-QC [14]: This is a collaboration network where nodes
denote authors and edges represent the collaborative rela-
tionship between two authors. This dataset is also used for
the link prediction task.

we summarize the statistics of these benchmark datasets in Table 1.

Table 1: Description of Benchmark Datasets

Dataset #Nodes #Edges #Labels
Wiki 4,777 184,812 40
PPI 3,890 76,584 50
Cora 2,708 5,278 7
Citeseer 3,312 4,660 6
BlogCatalog 10,312 333,983 39
Facebook 4,039 88,234 -
GR-QC 5,242 14,496 -

4.2 Baseline Methods
To show the performance of our proposed methods, we compare
themwith four state-of-the-artmethods, includingDeepWalk, Node2Vec,
GraRep, LINE. The details about these methods are described as
follows.

• DeepWalk [21]: This method utilizes random walk to get
node sequences. By viewing node sequences as word sen-
tences, DeepWalk formulates network embedding as word
embedding so that it uses Skip-gram [20] model to learn
node representations.

• Node2Vec [6]: Similar with DeepWalk, this method also uses
Skip-gram [20] model to learn node representations. But it
uses a biased random walk algorithm to get node sequences
for constructing node contexts.

• GraRep [4]: This method proposes to preserve high order
proximity by constructing k-step probability transition ma-
trix when learning node representations.

• LINE [25]: This method proposes first and second order prox-
imity among nodes. It learns to represent the node by pre-
serving the first and second order proximity.

4.3 Experiment Settings
In our experiments, we set the window size as 10, the walk length
as 80, and the number of walks as 10 for DeepWalk. For Node2Vec,
it has the same settings as DeepWalk. Additionally, we set the
parameterp = 1 andq = 1 for Node2Vec. For GraRep, the maximum
matrix transition step is set as 5. For LINE, we set the number of
negative samples as 5. To have a fair comparison, the dimension of
node representations is set as 100 for all methods.

For our proposed methods, there is no any preprocess operation
on the network. For each node, we use its connected neighbor nodes
as the positive context nodes while the disconnected ones as the
negative context nodes. When sampling negative context nodes,
we set the number of negative context nodes as 1, that is Nvi = 1.
The implementation is based on Tensorflow [1]. AdamSGD [11]
algorithm is employed to update model parameters. The batch size
is set as 100. Furthermore, the threshold function employed in Eq. (6)
and Eq. (13) is defined as follows:

l(u) = max(au2 + b, 1) , (16)

where a > 0 and b > 0 are set as different values for different
datasets. Additionally, u is initialized as 1 for all datasets. We can
see that this function is always positive and no larger than 1. When



Table 2: Node Classification Result of Wiki

Method 50% 70% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.4720 0.0993 0.4850 0.1047 0.4795 0.0946
Node2Vec 0.4753 0.1058 0.4860 0.1154 0.5015 0.1056
GraRep 0.4729 0.1071 0.4929 0.1213 0.4839 0.1000
LINE 0.4830 0.1082 0.4919 0.1014 0.4868 0.1067
SeedNE 0.5283 0.1207 0.5429 0.1428 0.5367 0.1355
ASeedNE 0.5343 0.1222 0.5449 0.1619 0.5513 0.1445

Table 3: Node Classification Result of PPI

Method 50% 70% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.1915 0.1629 0.2156 0.1853 0.2009 0.1659
Node2Vec 0.1858 0.1590 0.2004 0.1663 0.2040 0.1630
GraRep 0.2035 0.1730 0.1999 0.1712 0.2100 0.1654
LINE 0.2092 0.1812 0.2065 0.1768 0.2040 0.1675
SeedNE 0.2191 0.1825 0.2268 0.1940 0.2131 0.1835
ASeedNE 0.2209 0.1854 0.2293 0.1925 0.2268 0.2010

Table 4: Node Classification Result of Cora

Method 50% 70% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.8111 0.8023 0.8069 0.8018 0.8044 0.7956
Node2Vec 0.8096 0.8034 0.8007 0.7989 0.8081 0.8080
GraRep 0.7749 0.7577 0.7872 0.7721 0.7897 0.7839
LINE 0.8118 0.8016 0.8069 0.7994 0.7970 0.7842
SeedNE 0.8155 0.8066 0.8229 0.8200 0.8413 0.8339
ASeedNE 0.8133 0.8034 0.8167 0.8107 0.8339 0.8234

Table 5: Node Classification Result of Citeseer

Method 50% 70% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.5782 0.5306 0.6036 0.5426 0.6235 0.5426
Node2Vec 0.5763 0.5094 0.5895 0.5237 0.6205 0.5346
GraRep 0.5522 0.4842 0.5503 0.4800 0.5813 0.4994
LINE 0.5534 0.5026 0.5674 0.5137 0.5904 0.5424
SeedNE 0.5890 0.5419 0.5946 0.5463 0.6416 0.5795
ASeedNE 0.5914 0.5440 0.5865 0.5354 0.6295 0.5701

it is less than 1, we have its gradient as follows:

∇l(u) = 2au . (17)

Then, by maximizing Eq. (6) or Eq. (13), we can update u as follows:

ut+1 = ut + 2ηaut , (18)

where η > 0 is the step size. Because a > 0 and u is initialized as 1,
then the second term on the right-hand side is positive. As a result,
u is increasing such that l(u) is increasing. Then, we can gradually
include difficult negative context nodes.

4.4 Results and Analysis
4.4.1 Node Classification. To evaluate the performance of net-

work embedding, node classification is themostwidely usedmethod
[4, 6, 21, 25]. In this paper, we also conduct node classification to
show the performance of our proposed methods. The classifier used
in this paper is Logistic Regression. Specifically, we use all nodes to
train the network embedding method to get node representations.
After that, we conduct node classification on these representations.
To evaluate these network embedding methods comprehensively,



Table 6: Node Classification Result of Blogcatalog

Method 50% 70% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.3927 0.2556 0.4047 0.2689 0.4169 0.2836
Node2Vec 0.3965 0.2582 0.4082 0.2698 0.4149 0.2828
GraRep 0.3674 0.2039 0.3830 0.2278 0.3869 0.2322
LINE 0.3518 0.1786 0.3597 0.1845 0.3597 0.1869
SeedNE 0.4095 0.2646 0.4216 0.2843 0.4312 0.2884
ASeedNE 0.4106 0.2680 0.4243 0.2873 0.4326 0.3037

we randomly select {50%, 70%, 90%} nodes to train the classifier
respectively. Then, the classifier’s performance is evaluated on the
rest nodes. To measure the classification performance, we employ
Micro-F1 and Macro-F1 as metrics. The larger the two metrics are,
the better the classification performance is.

The classification results are shown in Tables 2, 3, 4, 5, 6. In these
tables, the best two results in each case are marked in bold. From
these tables, we can find that both SeedNE andASeedNE outperform
the other state-of-the-art methods significantly. Specifically,

• In Table 2, the best two results are our proposed SeedNE and
ASeedNE. Both of them have achieved significant improve-
ment over the other baseline methods. The reason behind
this improvement is that our methods can effectively dis-
cover informative negative context nodes according to the
current embedding result, and then feed difficult negative
context nodes gradually to train model parameters such that
similar nodes are pushed together while dissimilar nodes are
pushed away.

• In Table 2, comparing SeedNE with ASeedNE, we can find
that ASeedNE can outperform SeedNE in most cases. The
reason is that ASeedNE employs a generator to construct
the negative sampling distribution, which has the larger
capacity to capture the informativeness of each node than
SeedNE. Thus, it can select more helpful negative context
nodes to improve model’s performance. Similar results can
also be found in the other tables, which further verify the
effectiveness of our proposed methods.

4.4.2 Network Visualization. Network visualization is another
widely used method to evaluate the performance of network em-
bedding algorithms. It is to project the learned node representations
into a two-dimensional space such that we can visualize them. In
this paper, we employ the well-developed tool t-SNE [17] to visual-
ize node representations. Here, we only visualize the Cora dataset
due to the space limitation. The visualization result is shown in
Figure 1. From this figure, we have the following observations:

• In Figure 1(a), nodes scatter over the entire space such that
these nodes have no a compact group structure, whichmeans
this method fails to push together similar nodes. Similar
results can be found in Figure 1(b).

• In Figure 1(c), nodes from different classes are mixed with
each other, especially for nodes in the center of this figure.
This means that this method fails to push away dissimilar
nodes. Figure 1(d) shows the similar result.

(a) DeepWalk (b) Node2Vec

(c) GraRep (d) LINE

(e) SeedNE (f) ASeedNE

Figure 1: The visualization of Cora dataset.

• In Figure 1(e), we can see that these nodes have compact
group structures and the margin between different groups
is large compared with baseline methods, which means our
proposed SeedNE can push similar nodes together and push
dissimilar nodes away. Thus, our method can achieve a better
result on the node classification task. Our proposed ASeedNE
has similar results, just as shown in Figure 1(f).

In conclusion, our proposed methods can successfully push sim-
ilar nodes together and push dissimilar nodes away by sampling
informative nodes in each iteration so that the embedding result is
better than baseline methods.



Table 7: Link Prediction Accuracy

Method Facebook GR-QC
DeepWalk 0.9050 0.8354
Node2Vec 0.8900 0.7949
GraRep 0.9445 0.8899
LINE 0.9329 0.8847
SeedNE 0.9532 0.9208
ASeedNE 0.9545 0.9230

4.4.3 Link Prediction. In this section, we will evaluate the em-
bedding result by using the link prediction task. The goal of this
task is to predict the existence of an edge between two nodes.
Specifically, Facebook and GR-QC are used in this experiment. We
randomly select 10% edges from the original network as positive
samples of the testing set. The remained network is used for learn-
ing node representation. Additionally, we randomly select the same
number of edges from the undiscovered edges as negative samples
of the testing set.

The link prediction accuracy of these two datasets is shown in
Table 7. From this table, we can observe that our proposed methods
outperform all the other baseline methods. Especially, the improve-
ment of the GR-QC dataset is very significant. Specifically, the
improvement over the best baseline method is around 4%, which
further verifies the effectiveness of our proposed methods.

4.4.4 More Results. To further show the effect of self-paced
sampling strategy, we compare our proposed methods with that
without self-paced sampling strategy. In particular, this baseline
method employs Eq. (5) to sampling negative context nodes at each
iteration. Thus, it always feeds difficult negative nodes to train
models. Here, we only show the result about the Wiki dataset due
to the space limitation. Figure 2 shows node classification results
about SeedNE. From this figure, we can find that our method can
achieve better classification result for most cases based on both
Micro-F1 and Macro-F1. Figure 3 shows node classification results
about ASeedNE. Similarly, we can find that our method can beat
that without self-paced sampling strategy for most cases, which
further verifies the effectiveness of our proposed sampling strategy.

Moreover, in Figure 4, we show the threshold function value
during training models. Here, we only show the result of Cora
dataset due to the space limitation. Additionally, we only show the
first 50 iterations because it is a constant value in the following
iterations. Note that we let the parameter a change in the training
process. Specifically, a is doubled in every 10 iterations. Intuitively,
this operation will accelerate to include difficult negative context
nodes. In practice, if a stays as a small value for a long time such that
the threshold function value is small, only easy negative context
nodes can be included so that the embedding result cannot be
further refined. This is consistent with the cognitive activity of
human beings. In Figure 4, the threshold function value increases
slowly so that only easy negative context nodes are selected to train
models at the beginning phase. With the training process going on,
the threshold value becomes larger and larger. Therefore, more and
more difficult negative context nodes are fed into the model, which
is consistent with the intuition of our proposed methods.
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Figure 2: Node classification result of Wiki dataset from the
SeedNE method.
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Figure 3: Node classification result of Wiki dataset from the
ASeedNE method.
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Figure 4: The threshold function value when training Cora.

5 CONCLUSION
In this paper, we proposed the novel self-paced network embedding
methods. Our proposed methods can effectively capture the infor-
mativeness of each node. Based on the informativeness of nodes, we
introduced a self-paced informativeness-aware sampling strategy.
With this sampling strategy, our proposed methods can gradually
select informative nodes to train model parameters. Extensive ex-
periments on different data mining tasks have demonstrated the
superior performance of our proposed methods.
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