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Abstract—This paper proposes a data-driven method to pin-
point the source of a new emerging dynamical phenomenon in
the power grid, referred to “forced oscillations” in the difficult
but highly risky case where there is a resonance phenomenon. By
exploiting the low-rank and sparse properties of synchrophasor
measurements, the localization problem is formulated as a
matrix decomposition problem, which can be efficiently solved by
the exact augmented Lagrange multiplier algorithm. An online
detection scheme is developed based on the problem formulation.
The data-driven nature of the proposed method allows for a very
efficient implementation. The efficacy of the proposed method is
illustrated in a 68-bus power system. The proposed method may
possibly be more broadly useful in other situations for identifying
the source of forced oscillations in resonant systems.

Index Terms—Forced oscillations, resonant systems, phasor
measurement unit (PMU), robust principal component analysis
(RPCA), Big Data.

I. INTRODUCTION

The ever-growing coverage of modern power systems by
Phasor Measurement Units (PMUs) provides large volumes
of data that can be leveraged by system operators. For exam-
ple, detecting forced oscillations, i.e., sustained oscillations
driven by periodic perturbations, has become an emerging
concern worldwide. Reference [1] lists 27 forced oscillation
events since 1966, which were exacerbated by the increasing
level of variable generation resources. The impact of forced
oscillations in power systems is multifaceted. For instance,
they may interact with protection relays, thereby triggering
potential cascading outages [2]. Forced oscillations may also
lead to undesirable mechanical vibrations in electric devices,
potentially increasing the probability of equipment failure
and maintenance costs, as well as reducing of equipment
lifespan [2]. Therefore, it has become highly desirable for
system operators to detect, locate, and mitigate potential forced
oscillations in a nearly real-time fashion.

Forced oscillations are typically introduced by malfunction-
ing devices in power systems [3], such as low speed diesel
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generators [4] or poorly tunned control systems of generators
[5], [6]. In addition, cyclic loads, such as aluminum plants,
are also likely to cause forced oscillations [7]. One effective
way to suppress forced oscillations is by temporarily reshaping
the output of the generation at the source of the oscillation.
However, it is still a practically challenging task to pinpoint
in real-time the exact source of forced oscillation [8], [9].
Intuitively one may expect that source of a forced oscillation
should be close to the measurements associated with the most
significant oscillations. Nevertheless, it still possible that the
source of forced oscillation might be far away from where the
most severe oscillations are observed, [1], [9]. Compounding
the challenge, it is impractical to rely on a planning model to
locate the source of forced oscillations, since a planning model
can only approximately describe the system behavior at some
typical operating conditions, whereas forced oscillations can
present at any operating conditions. It is highly desirable to
develop an online mechanism to pinpoint sources of forced
oscillations in variable scenarios, preferably without resorting
to the underlying physical model.

The main approaches for locating the sources of forced os-
cillations can be taxonomized in two categories. The first one
features methods that utilize information from both the system
dynamic model as well as from field measurements. The
mode shape estimation method [9] and the hybrid-simulation-
based method [10] fall into this category. As mentioned above,
the unavailability of accurate model information renders the
online application of these model-based approaches practically
infeasible. Consequently, it is useful to consider approaches
that solely use field measurements directly, cf. as in the
damping torque method [11] and the energy-based method [6],
[12]. In these methods, various indicators such as the damping
torque [11] and the dissipating energy [6], [12] are calculated
based on field measurements, in order to identify the sources
of forced oscillation. However, the existing measurement-
based methods have some limitations [13]. For example, some
required measurements, e.g., the rotor angle, might not be
available for the direct calculation of damping torque [13];
the effectiveness of the energy-based method may be limited
to specific scenarios owing to major assumptions on loads
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and system topology [13]. Finally, the efficacy of the existing
methods under a resonance condition has not been fully
investigated.

In this paper, we propose a data-driven method to locate
forced oscillation sources during real-time operation of power
systems. By exploring the low-rank and sparsity properties
of the PMU measurements, the problem of locating forced
oscillation sources is formulated as a matrix decomposition
problem, which can be efficiently solved by state-of-the-art
signal processing algorithms. We develop an online algorithm
with the following chief advantages: 1) it does not require any
information pertaining to the system dynamic model; 2) it can
accurately identify the source of the forced oscillation when
resonance is triggered.

The rest of this paper is organized as follows: Section
II explains the forced oscillation phenomenon and defines
relevant concepts from a linear control perspective; Section
III demonstrates the low-rank and sparsity properties of PMU
measurements, and also introduces the proposed method; the
efficacy of proposed method is validated in Section IV; Section
V concludes the paper and discusses future research directions.

II. MATHEMATICAL INTERPRETATION OF LOCALIZATION
OF A FORCED OSCILLATION SOURCE

The small-signal behavior of a power system around an
operating condition can be captured by a continuous-time
linear state-space model [14], [15]:

ẋ(t) = Ax(t) +Bu(t) (1a)
y(t) = Cx(t) (1b)

For a given time t, vector x(t) ∈ Rl collects all state variables
in the power system; input vector u(t) ∈ Rr denotes control
setpoint changes of generators and load fluctuation; vector
y(t) ∈ Rn characterizes the PMU measurements; all vectors
are taken as column vectors; matrices A, B and C denote the
system matrix, input matrix, and output matrix, respectively, of
appropriate dimensions. We denote by Λ = {λ1, λ2, . . . , λl}
the set of all eigenvalues of matrix A. We assume the system
is stable, i.e., Re{λi} < 0 for all i ∈ {1, 2, . . . , l}.

For convenience, the input vector u(t) can be written as

u(t) = [u1(t), u2(t), . . . , ur(t)]T . (2)

A forced oscillation is formally defined next. Let input i∗

denote the source of forced oscillation in the system. Such
input varies periodically, i.e., it can be considered as the
superposition of f distinct frequency components. The ampli-
tudes, frequencies and phase displacements of these frequency
components comprise the sets A = {ak}, Ω = {ωk} and
Φ = {φk} 1, respectively, for all k ∈ {1, 2, . . . , f}. Therefore,
we can write the i∗ − th input with periodical injection as

ui∗(t) =

f∑
k=1

ak sin(ωkt+ φk). (3)

1The reference of the phase displacements can be any frequency component
with frequency in Ω

As a result, sustained oscillations will be then triggered over
the grid. We term the measurements near input i∗ as source
measurements, and the generator/load associated with input i∗

as the forced oscillation source. In particular, suppose that ωk

is near the frequency of a poorly-damped mode, i.e. ∃k′ ∈
{1, 2, . . . , l},

ωk ≈ Im{λk′}, Re{λk′}/|λk′ | ≈ 0. (4)

In such case, oscillations with growing amplitude, i.e., reso-
nance, may be observed [9].

Since the measurement vector y(t) is recorded by PMUs
at discrete times, the time evolution of measurements can be
represented by a measurement matrix Y , defined as follows.
Suppose that the sampling rate of PMUs is fs, and let 0
indicate when the forced oscillation (FO) starts. Then the
measurement matrix Y up to time T is defined by a column
concatenation

Y :=
[
y(0) y(1/fs) . . . y(n/fs) . . . y(N ′/fs),

]
(5)

where N ′ = bTfsc and b·c is the floor operation. The (n+1)-
th column of Y in (5) denotes the “snapshot” of all PMU
measurements at the time n/fs.

The problem of locating FO sources amounts to the problem
of identifying the source from the measurement matrix Y . It
is worth noting that the parameters of the state-space model
in (1) may be unknown due to frequent changes in operating
conditions in power systems. Hence, the measurement matrix
Y is assumed to be the only available information for the
purpose of source localization in this paper.

III. PROBLEM FORMULATION AND PROPOSED
METHODOLOGY

A. Two Properties of PMU Measurements

1) Low-rank Property: Due to the redundant deployment
of PMUs and tight coupling between different measurements
over power grids, PMU measurements are highly correlated
with one another. Therefore, the measurement matrix Y in
(5) manifests a low-rank structure. In other word, even in the
presence of forced oscillation, there is a low-rank component
of the measurement matrix, which we denote by Z. The
low-rank matrix Z can be intuitively considered to reflect a
“general trend” of all measurements over time.

2) Sparse Property: The disturbance shown in (3) at input
i∗ obscures the low-rank structure by making the source
measurements deviate from the “general trend”. The deviation
can be quantified by a matrix X , which is the difference
between the measurement matrix Y and the low-rank matrix
Z, i.e., X = Y − Z. Note that it is reasonable to assume a
linear decomposition under the linear state-space dynamical
system (1). Due to the limited number of the FO sources
as well as the source measurements, the number of non-zero
elements in X is expected to be small. Therefore, matrix X
is a sparse matrix. The sparsity property of FOs in the PMU
measurements manifests itself in matrix X .
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B. Problem Formulation

The above two properties of PMU measurements inspire us
to pinpoint the FO source by finding the largest entries of the
sparse component of the data matrix, with the measurements
associated with these entries being the source measurements.
Formally the problem of FO source localization described in
Section II becomes one of finding appropriate X and Z such
that the following constrains are satisfied:

Y = Z +X (6a)
rankZ ≤ r (6b)
‖X‖0 ≤ p, (6c)

where matrices Y , Z, and X are the measurement, low-rank,
and sparse matrices, respectively, as defined in Sections II and
III-A; ‖·‖0 is the l0 (pseudo) norm which counts the number
of non-zero entries of a matrix; r denotes an upper bound of
the low-rank matrix Z, and p denotes the upper bound for the
number of non-zero entries of the (sparse) matrix X . In an
ideal setting, when r and p are known and a decomposition
that satisfies (6) actually exists, one way to numerically tackle
the problem is by means of alternating projections reported
in Appendix A.

However, the alternating projection algorithm is not guar-
anteed to converge, or it may converge to a local minimum,
since both constraint sets in (6) are not convex. Besides,
r and p should be provided to the alternating projection
algorithm, which are typically unknown beforehand when
the measurement matrix Y is the only available information.
Although the formulation shown in (6) is appealing, it is
rendered impractical by the above limitations for locating
forced oscillation sources in an online fashion.

The formulation shown in (6) can be replaced by a convex
relaxation

min
X

‖Y −X‖? + η‖X‖1 (7)

where ‖·‖? denotes nuclear norm (the sum of singular values);
‖·‖1 denotes l1 norm (the sum of absolute values of all entries);
η is a tunable parameter usually called regularizer. It is proven
that the low-rank matrix Z and the sparse matrix X can
be exactly reconstructed from the formulation shown in (7)
under certain technical assumptions [16]; this formulation is
termed as Robust Principal Component Analysis (RPCA) in
[16]. Besides, the optimization problem (7) can be efficiently
solved by various algorithms, and a brief comparison between
these algorithms is reported in [17]. In this paper, the exact
augmented Lagrange multiplier (ALM) method [18] is applied
to (approximately) decompose a measurement matrix Y into
a low-rank Z and a sparse X .

C. Forced Oscillation Source Localization Procedure

Based on (5) and (7), the overall procedure of locating FO
source is summarized as follows:

1) Let 0 be the time instant when a forced oscillation starts;
such instant can be accurately estimated based on an

early event detection algorithms, such as described in
[19].

2) Construct the measurement matrix Y based on (5) up to
time T .

3) Solve (7) and obtain X = [xi,j ] by the exact ALM
method.

4) The source measurement index i∗m can be obtained by

[i∗m, j
∗
m]T = arg max

i,j
xi,j . (8)

5) The forced oscillation source is the generator/load near
the source measurement i∗m.

IV. CASE STUDY

In this section, the effectiveness of the RPCA-based algo-
rithm for locating the FO source is validated by a study of a 68-
bus benchmark power system [20]. We begin by introducing
the specifics of the test system along with the initial setting of
the algorithm. Subsequently, we adopt the test system as an
illustrative example to describe resonance phenomena can be
triggered by forced oscillations. As will be shown at the end
of this section, the proposed method can pinpoint the source
of forced oscillation, even when resonance is triggered.

A. System Description and Context for the Proposed Algo-
rithm

Fig. 1. IEEE 68-bus benchmark power system [14]

The raw parameters of the test system are reported in the
Power System Toolbox (PST) [20], while its topology is shown
in Figure 1. In order to create the poorly-damped oscillatory
modes, we remove all power system stabilizers (PSS) except
for the one installed at Generator 9. Afterwards the linearized
model (A,B,C) in (1) is extracted by PST, resulting in 25
oscillatory modes with frequencies from 0.1 Hz to 2 Hz in the
test system.

The input ui in (2) is the voltage setpoint of generators,
and the measurement vector y(t) incorporates all bus voltage
magnitudes at time instant t; the sampling rate of a PMU
is assumed to be 60 Hz, and T = 10 s. The resulting
measurement matrix Y ∈ R68×601; and the tunable parameter
η in (7) is set to be 0.0408, which is the default setting of the
ALM algorithm [18].
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B. Creation of Resonance Cases in the Test System

As mentioned above, there are 25 oscillatory modes in
the frequency range of interest, and 16 generators in the
test system, use p ∈ {1, 2, . . . , 25} and q ∈ {1, 2, . . . , 16}
to represent a given mode/generator, respectively. We then
select one frequency from the 25 modal frequencies, i.e., the
frequency associated with mode p, and inject it into one of
the generators, i.e., generator q, at time t = 10s. Next, we
conduct a 50-second simulation of the system based on (1),
(2) and (3), in order to get the time response of the system
for a signal with a frequency injected at a specific location.
Finally, we exhaust all combinations of signal frequencies and
injection locations to obtain 400 (25 × 16) forced oscillation
cases. Each forced oscillation case can be represented by an
index pair (p, q).

The time response of each forced oscillation is discretized to
obtain the measurement matrix, using a given sampling rate
fs, cf. (5). Let Y(p,q) = [y

(p,q)
i,j ] be the measurement matrix

of the forced oscillation case (p, q), with Y(p,q) organized in
such a way that the measurements from the generator buses
are stacked in the first 16 rows. Finally, a forced oscillation
case (p, q) is marked as a resonance case if the following
condition holds:

q 6= i∗g, (9)

where
[i∗g, j

∗
g ]T = arg max

i,j
y
(p,q)
i,j . (10)

Equations (9) and (10) suggest that, in a resonance case, the
most severe oscillation should not present at the measurement
from the bus connecting to the generator with the periodic
injection.

Using the above criterion, 44 forced oscillation cases are
marked as resonance cases. Figure 2 shows some typical wave-
forms when resonance is triggered, and Table I summarizes
the corresponding modal frequencies and injection locations.
As shown in Figure 2, the most significant oscillations are
not observed at the buses connected directly to the forced
oscillation sources in the resonance cases.

TABLE I
MODAL FREQUENCIES AND INJECTION LOCATION OF RESONANCE CASES

SHOWN IN FIGURE 2

Figure Freq. (Hz) Gen.
2.a 1.29 12
2.b 0.38 13
2.c 1.15 13
2.d 1.17 13
2.e 1.18 13
2.f 0.38 16

C. Method Performance

The 44 resonance cases are used to test the performance
of the proposed method. In the test cases, we successfully
pinpoint the forced oscillation sources in 40 resonance cases,
hence achieve 90.91% accuracy. One natural question is how
geographically close are the results to the ground truth, in the

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Typical waveforms when resonance is triggered: voltage magnitude
of the generator bus connected with the forced oscillation source (red); the
voltage magnitudes of the remaining buses (black).

cases that localization is incorrect. In Table II, the identified
results alongside the ground truth are listed for the four failed
cases. Based on Table II, we highlight the exact locations in
Figure 1: the generators in solid circle are where the sinusoidal
signals are injected, i.e., the real sources of forced oscillations,
whereas the generators in the dash circles are the sources
identified by the proposed method. As shown in Figure 1,
the identified sources in the failed cases are geographically
close to the actual sources, which means that the proposed
algorithm can effectively narrow down the search scale of the
forced oscillation sources even in the failed cases. This further
solidifies the potential merits of the proposed method.

TABLE II
COMPARISON BETWEEN INACCURATE RESULTS AND GROUND TRUTH

Bus # (Identified) Bus # (Truth) Freq. (Hz)
54 55 1.1033
54 55 1.1504
59 58 1.2855
59 58 1.2892
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V. CONCLUSIONS

In this paper, a model-free, PMU data-driven method to
pinpoint forced oscillation sources is proposed and tested. By
exploiting the low-rank and sparsity properties of PMU data,
we have formulated the localization problem as an instance
of matrix decomposition. We have derived an online detec-
tion and localization method based on convex programming.
Numerical simulations based on a 68-bus system suggests
that the proposed method achieves satisfactory performance
even when resonance happens in the system. Future work
will investigate the theoretical justification of the proposed
method, and explore the possibility of extending the proposed
methodology to a wider class of event localization problems
in power systems.

APPENDIX A
ALTERNATING PROJECTIONS

Algorithm 1 Alternating Projections (AP)

Input: Y ∈ Rn×N ′

Initialize: Select X0 ∈ Rn×N ′

1: for k = 1, 2, . . .K do
2: Set Zk−1 = Y −Xk−1
3: Set Zk =

∏
{rankZ≤r} Zk−1

4: Set Xk =
∏
{‖X‖0≤p}(Y − Zk)

5: end for
6: Output ZK , XK
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