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We introduce a novel divide-and-conquer approach for 3D printing, which provides automatic decomposition
and configuration of an input object into print-ready components. Our method improves 3D printing by reducing
material consumption, decreasing printing time, and improving fidelity of printed models. An input object is
decomposed into a set of components obtained by a near-convex segmentation that minimizes an energy
function. Then the configuration phase provides a robust algorithm to pack the components for an efficient print
job. Our approach has been tested on both simulated models and real-world printed objects. Our results show

that the framework can reduce print time by up to 65% (fused deposition modeling, or FDM) and 36% (ste-
reolithography, or SLA) on average and diminish material consumption by up to 35% (FDM) and 10% (SLA) on
consumer printers, while also providing more accurate objects.

1. Introduction

Designing and 3D printing objects is a rapidly growing area. It en-
ables experts and casual users to build a large variety of custom objects.
Moreover, manufacturing technologies have progressed tremendously
enabling multi-color, multi-material, and even multi-function printing.
The most common approach for 3D printing is by gradually putting
down thin layers that build up to form the 3D object (e.g., stereo-
lithography (SLA) or fused-deposition modeling (FDM)). However, this
process requires additional support structures for overhangs. Moreover,
at inclined angles the printed surface is irregular and not smooth (i.e.,
the stair-stepping effect). Also, the size of the object and the printing
speed are limited by the characteristics of the printer.

3D printers have both limitations and advantages depending on the
coherency between the printer features and the model geometry.
Instead of relying only on improvements of the 3D printing technology,
we provide a solution that optimizes the model in order to maximize
that coherence by segmenting the model into easily printable compo-
nents.

In addition to the previous work on converting synthetic models to
3D printable objects [1-5], researchers pursue developing 3D manu-
facturing approaches based on segmenting the to-be-printed objects
(e.g., [6-11]), and on using clever support structure methods (e.g.,
[12,13]). Our key idea is to simultaneously reduce printing time, de-
crease material consumption, and increase fidelity by decomposing an
object into homogeneous material components each of which obeys a
set of shape criteria and by configuring them on a printing layer
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(Fig. 1).

Our input is a polygonal model as shown in the overview in Fig. 2.
During the decomposition phase, our parameterized approximate convex
decomposition algorithm partitions the initial clusters into an optimal
set of components. Our method seeks a low number of near-convex
components with no near-horizontal faces (i.e., faces are either hor-
izontal or have an angle more than a printer-defined threshold from the
horizontal). Firstly, imposing exact convexity makes the problem NP-
hard and creates unnecessarily many pieces (see Section 2 and Figs. 4f
and 5b). Instead we pursue near-convex components which relaxes the
convexity constraint and results in fewer components that are still self-
supporting. Further, it reduces the consumption of support material.
Secondly, having faces as either horizontal or exceeding the threshold
angle enables the printer to create smooth exterior surfaces for the
given object. Moreover, making the faces to be coherent with the
printing directions improves the quality of segments. After the de-
composition, we prepare the components for printing in a configuration
phase. The components are laid out for 3D printing using as little ver-
tical printer head displacement as possible. Since significant amount of
the printing time is spent for moving the printing bed down (or the
printer head up) and given that multiple components can be printed
simultaneously, this configuration step reduces the total printing time.

We demonstrate the results of our automatic method on a variety of
objects. An example in Fig. 1 (also used in [8,11]) shows the overall
quality improvement by 15% on near-horizontal surfaces. For that
model, our approach conserves 49.4% of the material and reduces the
printing time by 50.3%. We also applied our method to different objects
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Fig. 1. Decomposition for 3D printing: Input model (a), our automatic near-convex decomposition (b), configuration that will be printed (c), individual printed

components (d), and the final printed and assembled object (e).

and Table 2 shows the resulting time and material reductions.
Our main contributions include:

a near-convex decomposition method for 3D models that improves
the quality of a printing process by increasing smoothness of angled
surfaces, reducing material consumption, and decreasing the
printing time,

an automatic configuration method to pack a number of printable
components on the printing surface so as to reduce print time and
support consumption, and

an implementation of a fully automatic pipeline that processes an
input 3D model for an optimal printing process by segmenting the
model and creating a configuration of the segmented parts.

2. Previous work

Divide-and-conquer has been an important approach in fabrication
for decades. Many designs are composed of parts with different mate-
rials and/or colors that are manufactured separately and then as-
sembled with different techniques (welding, gluing, riveting, bolts and
nuts, etc.). This is also the case in recent studies on 3D printing of
complex designs [5].

2.1. Decomposition, conversion, and support

Segmentation is commonly used to print heterogeneous objects with
conventional 3D printers. Prevost et al. [2] carve inside objects to
modify the position of the center of gravity. To print them, they divide
the objects into small sections depending on the number of voids inside
the objects. Considering the layer-by-layer printing approach, some
objects, depending on their structural properties [14], cannot be
printed without support material. To overcome this limitation, Hu et al.
[8] decompose shapes into pyramidal parts to eliminate usage of sup-
port material and to decrease printing time. Zhou et al. [9] also segment
into primitives, but use cylindrical assumptions. In another study,
Dumas et al. [15] decrease the amount of support material by printing
scaffolds composed of bridges and columns instead of printing sup-
porting volumes with lower densities. The approach of Vanek et al. [12]
generates automatic support structures for a 3D object. In a different
approach, Wang et al. [3] convert the mesh into skin-frame structures
to reduce the cost of printing.

2.2. Puzzles and packing

In recent years, segmentation and 3D printing have been frequently
employed to generate customized 3D puzzles. Lo et al. [16] propose a
design approach to create puzzles from given shapes composed of 3D
polyominoes and Xin et al. [17] follow a similar approach to create Burr
puzzles. In another study, Song et al. [18] focus on the recursive
property of interlocking puzzles. Although these methods focus on 3D
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printing, their segmentation does not consider printing time nor ma-
terial consumption. Rather, the focus is on creating an assembly pro-
cedure that follows a specific order of increasing difficulty. Recently,
Attene [13] proposes a disassemble and pack approach for 3D printing.
However, this approach only considers convex objects.

2.3. Segment and pack

Luo et al. [6] segment real-world objects for easy manufacturability.
Close to our approach is the work of Vanek et al. [7] who also segment
and pack, employing an optimization for the packing stage. Their
method first converts the input to shells and then uses a closed loop of
merging and packing to obtain a maximum tightness. In contrast, our
method works with the full volume of the input, employs no assump-
tions about the mesh, and eliminates the support material. In a follow-
up work, Yao et al. [10] also segment and pack the components to re-
duce the support structure used, but they do not consider angled sur-
faces (i.e., rotation) as a part of their optimization. Also, their packed
form may still need support structures due to thin and overhanging
structures. Finally, their number of partitions is fixed during the opti-
mization, which limits the quality of segments. Recently, Chen et al.
[11] also come up with a coupled optimization approach that segments
and packs. However, they assume pyramidal structures as well, which
restricts the possible improvements. Also, their voxelization de-
pendency impacts the appearance of surface details and overall fidelity.
Ezair et al. [19] analyze the orientation of pieces for 3D printing and
Zhou et al [20] transform the models into boxes and looks for a con-
tinuous folding sequence. While the latter reduces the required printing
volume, fidelity is lost.

2.4. Convex decomposition

It is the problem of computing a decomposition of a 3D model T by
partitioning it into a minimal set of convex sub-surfaces [21]. Chazelle
et al. [22] prove that computing such a decomposition is an NP-hard
problem and propose various heuristics to solve it practically. Later,
Lien et al. [23] point out that the proposed algorithms are impractical
due to the high number of clusters. In order to provide a tractable so-
lution, they propose to relax the exact convexity constraint and con-
sider instead the problem of computing an approximate convex de-
composition of T. They alter algorithm parameters so as to generate a
partitioning 171 = {1, o, ..., 7} of T with a minimal number of clusters
K and verifying that each cluster has concavity lower than a threshold e.

The approximate convex decomposition problem, as addressed in
the previous paper, requires a sophisticated analysis of the model fea-
tures, and uses plane-based bisections leading to poor decompositions.
In order to improve such decompositions, Mamou and Ghorbel [24]
show a volumetric solution as a novel hierarchical segmentation ap-
proach for 3D meshes. The approach starts with computing a dual graph
of the mesh and clustering its vertices iteratively by successively
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applying topological decimation operations, while minimizing a cost
function related to the concavity and the aspect ratio of the produced
clusters.

Overall, convex models are more printing-friendly, however exact
convex decomposition is NP-hard, divides the model into many tiny
little pieces, and thus it is inappropriate for printing. Concave packing
solutions create complex structures that may be difficult to assemble.
On one hand, there are solutions that require convex objects and do not
provide tight packing [11,13]. On the other hand there is a solution that
provides concave packing [7], but it requires converting the input ob-
ject into shells. Thus, we provide a middle-ground solution as a near-
convex decomposition optimization.

Unlike previous work, we guide our decomposition for less resource
consumption and for less surface deviation error even when using low
resolution printing. We use a near-convex decomposition of the input
model followed by a reconfiguration of the parts that collectively re-
duces print time, improves quality, and diminishes material waste. The
Approximate Convex Decomposition (ACD) [23] builds an approxima-
tion of the original shape using near-convex decomposition but it also
introduces a significant deformation of the input object. Pyramidal
Decomposition (PD) [8] creates a particular type of near-convex de-
composition (e.g., vertical convexity), putting emphasis on base
polygon selection, which is not optimized. This may still cause some
wasted material in pyramidal deficit regions. Also, it is not suitable for
all objects such as those with thin structures, hollow objects, and ball-
and-stick figures. We highlight that ACD and PD will not yield results of
similar quality to ours even with parameter tuning. Segmentation re-
sults from different approaches are demonstrated later in Fig. 5. Our
approach follows the intentions of Hu et al. [8] and Zhou et al. [9],
however takes into consideration accuracy of angled surfaces, flexes the
constraints of pyramidal/cylindrical structures, and reduces printing
resources.

3. Overview

The input to our method is an unlabeled triangle soup model and
the output is a printable configuration of the model components
(Fig. 2). We define a metric to evaluate how well a set of properties for
3D printing is achieved; those properties include a tight volumetric
approximation, small number of components, no support material,
faster print time, and less angled-surfaces leading to higher quality.
Then, we describe and demonstrate an optimization process that yields
a careful balance of the desired properties. After we obtain the com-
ponents, we find a configuration to layer them for efficient fabrication.

3.1. Decomposition

Our algorithm takes the input triangle set T = {t,, ..., t,} and par-
titions the set into disjoint triangle clusters Z = {zo, ...,2n,}, Where
UN%,z, = T. We call each triangle cluster a search subspace because we
found it much more efficient to subsequently decompose each subspace
into printable components.

We define and formulate several properties in order to segment each
subspace into printing-friendly components (Section 4.2.1). We ap-
proach segmentation as an energy minimization E(C) over the compo-
nents C = {c, ...,cn} that seeks segmentation parameters x best sa-
tisfying the component properties. After the optimization, the model is
placed into a grid of voxels and the computed parameters are fed to a
volumetric decomposition algorithm in order to separate the model into
components.

3.2. Configuration

The segmented components are oriented and positioned for efficient
3D printing. We implement a greedy approach to lay the components on
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the printing rack on their largest faces and separated just far enough to
prevent being printed as a single piece.

4. Decomposition

Our decomposition algorithm has two steps: search subspace crea-
tion and segmentation.

4.1. Search subspace creation

A naive implementation to find the aforementioned component set
C would iterate through all possible cuts of the voxelized volume and
possibly merge unrelated parts. Such a solution would be very time
demanding and would possibly diverge from a good solution in terms of
fidelity. Instead, we use heuristics to compute a set of triangle clusters
that contain partially similar parts of the model, if any (i.e., considering
relative granularity and inter-similarity of parts, see Fig. 2 clusters).
Then, finding optimum printing components within each search sub-
spaces is a much simpler task. This partitioning does not reduce the
amount of geometry. Rather, it diminishes the size of the search space
by eliminating the combination of components spanning unrelated
parts. In addition to benefiting our minimization, the identified clusters
define a grouping beneficial for assigning color and material properties
to partially similar structures within the model for multi-color/multi-
material printing.

The first step of search subspace creation is to define an initial set of
clusters containing similarly-shaped triangles. Inspired by [25], the
dissimilarity of triangles is defined by a shape dissimilarity metric Sy,
consisting of the differences of their areas, edges and normals. If
Sy < Ts, the triangles are included in the same cluster. Based on initial
experiments, we found zg = 0.6 to work well for all of our models.

The second step of search subspace creation is to iteratively merge
and split the clusters from the previous step so as to balance spatial
similarity with shape similarity. For this objective, we define a spatial
similarity metric between clusters z, and 2. If two clusters have enough
(=15 = 0.5) neighboring triangles, those clusters are merged, and non-
neighboring triangles are split into a new cluster. Intuitively, the spatial
similarity metric tells us the percentage of triangles in cluster z, having
neighbors in cluster z,. During each iteration of this step, we compare
cluster-by-cluster, mark similar clusters, and merge-split at the end of
each iteration, until convergence. We also highlight that our method
uses the same threshold parameter values for all models.

4.2. Segmentation

After we obtain the search subspaces Z = {z,, ...,zn,}, We segment
each subspace z; into components C = {c,, ...,cn.}. We start this section
by formulating a set of component properties to minimize and then we
define the optimization's energy function.

4.2.1. Component properties

To improve printing, the components should exhibit the following
properties. We formulate these properties so that a minimization over
the possible segmentations reveals components that satisfy the prop-
erties. The motivation behind each desired property is shown in Fig. 3.

® Concavity: To guide the optimization to produce near-convex, or
convex, components, we define a concavity measure V(T-) for any
triangle set T- that uses a function P(x) which projects triangle
vertices onto the set's convex hull. We wish to minimize this mea-
sure because such components tend to use less (or no) support
material and they are easier to print [8] (Fig. 3a).

V(T,) = argmax,erllx — P(x)ll 1)

® Surface angles: We seek components that have faces (i.e., triangles)
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Components
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Fig. 2. System pipeline: A 3D mesh is first decomposed into clusters and then optimized for optimal components. Afterwards, the components are configured for an

efficient layout. Finally, printed and assembled to produce the final physical object.

that are parallel to a base plane or angled more than a threshold
from the base plane. Without loss of generality, we generally assume
the base plane to be horizontal because most printers provide higher
resolution in the X-Y (horizontal) axes versus in the Z (up) axis.
Avoiding faces that are “near horizontal” improves the surface fi-
delity by reducing the stair stepping effect (see Figs. 13 and 3b) that
results from the resolution characteristics of typical printers.

For this property, we define a metric A(T-) that accumulates the
difference of angles between face f's and base plane B. A zero value
for the metric implies all faces are parallel to the base plane or are
angled beyond a threshold 7, from the base plane. Otherwise, the
metric provides a measure of how near the triangles are to a base
plane orientation. The metric uses «() to denote the angle of a face
with respect to the horizontal and the binary function NH(") to de-
termine if a face should partake in the metric. The function NH
() =1 only when the face is close to the orientation of the base
plane. Note that we put the largest face as the base polygon, which
the optimization already assumes when calculating the surface
normal angles. «(B) is needed, because the components are not
rotated until the packing phase starts.

A(T) = D, NHE)I(f) — 2(B)!

fieT.

@

1, if 2z(f) <z,
0, otherwise

NH(f) = {

Sizes and numbers: With our decomposition, we also seek for a rea-
sonable and automatically-determined balance between size and
number of components (see the discussion at the end of Section 2),
to prohibit under/over segmentation (Fig. 3c). Also, the components
should be printed in compliance with the size and accuracy of the
printer (i.e., too small parts are not accurately printed, or a
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component with a large size in at least one dimension cannot fit in
the printing bed). As one solution, we want to minimize the inter-
cluster size variance, where s(x) = [height,, width,, depth,] and p is
the mean size of all components in that cluster.

S(T) = lIs(T) — pll 3)

e Deviation: The components should collectively represent the overall
object, thus the deviation from the original model should be as small
as possible to improve the model fidelity (Fig. 3d). For this purpose
we employ a cost function A(Ty, T5), similar to the one in [24]. It
uses the concavity and aspect ratio of the newly computed triangle
set T, relative to the original triangle set T,, which is obtained by
the unification of the vertices of the graph representation. In es-
sence, the metric provides an estimate of the deviation of the new
model from the original model, thus we want this cost to be as small
as possible to preserve fidelity.

4.2.2. Energy function

Our approach treats segmentation as an energy minimization over
the components. Our method defines an objective function E(C) as a
weighted sum of component concavity V(c;) (Eq. (1)), surface angle sum
A(c;) (Eq. (2)), size variance S(c;) (Eq. (3)), and shape deviation A(c;, T)
relative to original model T. It is defined over the components C = {co,
..., €} where each subspace z, € Z contains mutually exclusive com-
ponents(c; C z;) with the aforementioned properties.

Nc
1
B(C) = 1= 2, weA (e T) + WV (@) + wsA(e:) + w5 (c)
C i=o

C)

Then, we minimize the objective function (4) by changing the input
parameters x of our segmentation algorithm Q(-) to solve the following
problem:
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Decomposition

Concavity

Surface Angles

Sizes/numbers

Deviation

(d)

Fig. 3. Component properties: Convex components need less support material
(a). Better surface quality can be achieved by avoiding near-horizontal angles
(b). Balancing convexity and size/number of components prevent over-seg-
menting (c). Minimizing deviation increases model fidelity (d). The red dashed
lines indicate the cut line. The combed area in (a) indicates the support struc-
ture, and the combed areas in (c and d) indicate the model deviation.

x = argmin E(C)
CeQ(x,2)
N; N; N(
suchthatT = X% Q(x, zi) = X2 X2k ¢
and X <x <Xy ®)

The second part of Eq. (5) states that the segmentation algorithm Q uses
input parameters x to decompose each search subspace z; into a set of
non-overlapping components C (e.g., the union of all components
equals T) and the input parameters x are constrained to the range [x;,
Xl

The next section explains our segmentation algorithm £ and Section
5 provides implementation details about input normalization and the
weights in Eq. (4).

(©
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We highlight that balancing the aforementioned component prop-
erties is key for having the most suitable components for printing. Fig. 4
shows a partitioning of the object Fig. 4g into progressively more
components. The partitioning ranges from a few components shaping
the convex hull (Fig. 4a) to an almost exact convex decomposition
(Fig. 4f). Our minimization seeks to minimize all the aforementioned
properties which results in a more desirable solution such as Fig. 4e.
Following those decompositions, Volumetric Hierarchical Approximate
Convex Decomposition (VHACD) [24] creates a solution space ranging
from the convex hull of the object (with maximum object deformation
and minimum number of pieces) to the exact convex decomposition of
the object (with minimum object deformation and maximum number of
pieces) showing that the solution we are searching for lies in between,
which encourages us to use VHACD as a tool to obtain the cuts through
the model.

4.2.3. Near-convex decomposition

Our segmentation method minimizes the energy term (Eq. (4)) over
the components. The model is processed and the volumetric cuts are
realized by VHACD algorithm of Mamou and Ghorbel [24]. Even
though the approach of Mamou and Ghorbel is more robust than pre-
vious work for approximate convex decomposition, it needs a number
of parameters to be tuned per model and per use-case (i.e., resolution,
number of points per convex hull, plane downsampling, etc.). We op-
timize the decomposition by automatically finding a set of parameters
that satisfy the component properties mentioned in Section 4.2.1. We
treat the parameters of VHACD as the input vector of the minimization.
As the solution converges, the parameters produced as an output of the
minimization give an optimum segmentation for the model. Thus, the
user does not need to adjust any parameters or segment manually.

In our problem definition, the objective function is a black box;
thus, we cannot provide explicit first or second derivatives of the energy
function. Hence, we use the BOBYQA algorithm of Powell [26] to ex-
plore the parameter space of VHACD. The algorithm works by guessing
a trust region from the bounded parameter space, and then exploring
different input vectors for the minimization by interpolating the values
within the search space. Since the parameter space of VHACD is well-
bounded by the algorithm itself, this makes it easier to define the en-
ergy function in the implementation of the minimization.

Fig. 5 demonstrates components from different convex decomposi-
tion algorithms on an input model (Fig. 5a). Exact convex decomposi-
tion over-segments the model (Fig. 5b), ACD [23] significantly deviates
from the input model (Fig. 5¢), VHACD [24] over-smooths corners for
convexity (Fig. 5d), and PD [8] creates near-horizontal surfaces that
decreases accuracy of printed surfaces (Fig. 5e). In contrast, our ap-
proach (Fig. 5f) balances convexity, sizes, deviation, and accuracy in
order to obtain the optimum set of components for printing.

4.3. Configuration

Segmentation divides the model into components that follow the
properties from Section 4.2.1. However, the components need to be

@

Fig. 4. Progressive partitioning: An object (g) is partitioned from few (a) to many (f) components. Our method enables to find optimal solutions such as (e) which is

practical for our printing objectives.
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Table 1
Processing times: We compare the pre- and post-processing times of our ap-
proach versus the cleaning time for models printed by an FDM printer.

Model Segmented Original
Computation ~ Assembly Cleaning
Cetv 2.5 <1 6 10 50.3
Block 6.8 2 20 12 19.1
Chair 5.2 2 16 9 34.7
Ball 18 5 20 30 12.6
Inukshuk 3.2 <1 7 8 31.9
Time (min) Time (min) # of parts Time (min) % of material

adequately positioned and oriented on the printing bed, in order to
produce an efficient configuration for printing. The configuration must
be carefully set up because of the following reasons.

e Most of the printers have different accuracies in different axes,
which makes printing efficiency rotationally dependent. Thus, small
angles in low accuracy axes reduce the model fidelity (e.g., the
staircase effect).

The extrusion speed in different axes also vary, and that effects the
time-efficiency of the print job. Thus, the slowest axis should be
used as less frequent as possible.

The components must be as self-supporting as possible to reduce the
amount of support material consumed. Thus, the components should
be placed on their largest face in accordance with other constraints.

We implement a configuration algorithm that places the compo-
nents on the printer tray. For each component, we first find its oriented
bounding box (OBB), and then rotate it so that the smallest dimension
of the bounding box is oriented along the z-axis (i.e., the slowest ex-
trusion speed axis). Then, we orient the object so that the largest face is
lying horizontally on the print bed. We also find the second dominant
axis of each component's OBB, and set that to be placed along the y axis
by further rotating the component to have a better packing. Then, we
use a greedy packing algorithm to place all components close enough to
be efficiently printed, but far enough not to merge the components
while printing. For this purpose, we iterate over the components and do
a pairwise spatial comparison of their OBB's. If they overlap, we set
min,(c) = max,(c;) + d,, where min,(c) and max,(c) denote the
minimum and maximum y values of the OBBs. In other words we

Additive Manufacturing 21 (2018) 383-394

Fig. 5. Comparison: We demonstrate the segmentation
results with other convex decomposition approaches.
The original model (a), and the segmentations of exact
convex decomposition (b), ACD [23] (c), VHACD [24]
(d), PD [8] (e), and our approach (f).

Original Segmented

Fig. 7. Original vs. segmented models: We show the original and segmented
forms of the model, before and after post-processing (removing support mate-
rial and assembling, respectively).

translate component c; to the right of ¢; separated by a threshold of d,.
The use of OBBs for placement is actually a good approximation in our
case, since our components are approximately convex.

The described method produces non-overlapping placement of
components organized in a compact fashion for printing. Because the
minimization algorithm keeps the number of components low, a greedy
approach is not too expensive computationally. If the number of

Fig. 6. Example objects: We show side by side the printed results of the original and the segmented models.
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Fig. 8. Printer comparison: The original and segmented forms of the model,
before and after post-processing, with B9Creator and MakerBot printers.

components would have been a large number, an alternative packing
algorithm, like [7,13], would be needed. Although it is true that simple
packing with OBBs can leave some redundant space, (i) we do not have
many pieces to configure and (ii) the configuration is 2D; thus we leave
the optimization of 3D packing as a future work.

5. Implementation
Our framework is implemented in C+ + using Qt, OpenGL, and

Table 2
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dlib-ml library and is executed on an Intel i7 Desktop PC with NVIDIA
GTX 680 graphics card. The input to our approach is a triangle mesh
model and we use obj file format. We use an extended version of the
glm library to process and store the model information, which includes
pre-computed attributes like triangle size and neighbor information.

5.1. Input

In order to support a general decomposition approach, we choose an
unstructured collection of triangles, or “triangle soup”, as input. The
input may be a well-connected mesh but such is not necessary. If the
input consists of non-triangular polygons, we perform a triangulation.
Our formulation is done based on triangles, and the optimization is
done on the volumetric representation. Hence, it would be trivial to
process non-polygonal models by feeding that representation directly to
a relaxed version of VHACD, to get an initial polygonal model. Note
that this option skips the clustering step.

5.2. Optimization

The optimization of E (Eq. (4)) is implemented using the find min
function in the d1ib library, implemented in c++. The elements in the
energy function are weighted to normalize the effect of all properties.
Based on the approximate intervals of the parameters, we normalize by
using w, = 1.0, w, = 0.2, w,, = 0.0055, and ws = 0.1. Note that these
weights are same for all models and there are no user-specified terms in
any part of our approach.

Although VHACD has a number of parameters to be fine-tuned, we
have concluded by experiment that the crucial parameters are the re-
solution of voxelization during segmentation, the minimum volume per
convex hull estimation, and the maximum number of vertices to be
included in each convex hull. Since the ideal boundaries and step sizes
of VHACD parameters are different, we have normalized resolution by
0.00001, minimum volume per convex hull by 10,000, and maximum
numbers per convex hull by 0.25. After the normalization, the lower
and upper limit vectors become x; = [1.0, 0.0, 1.0] and x, = [200.0,
100.0, 256.0] respectively. Finally, VHACD provides the opportunity to
exploit an adjustable bias towards cutting the model along the domi-
nant axis which gives us the chance to automatically adjust for the best
cut direction for slicing. Thus, having a bias for cuts in the direction of
fabrication (e.g., as in orthogonal slicing directions of [27]), makes it
easier to match and glue the components.

5.3. Printers

For the real-world objects in the results section, we have fabricated
some of the test objects using two different types of printers: a
MakerBot Replicator 2X (an FDM printer) and a B9Creator (an SLA

Evaluation: Comparison of the original and the segmented models, their printing times and material consumption, per model and per printer type.

Model FDM (time: min, material: g) SLA (time: min, material: ml)

Original Segmented Original Segmented

Time Mat Time Mat Time Mat Time Mat
Cetv 130 29.75 64 14.99 70 21.52 21 20.67
Block 100 23.97 89 19.38 36 3.96 11 3.79
Chair 97 21.44 63 14.00 24 3.5 9 3.48
Ball 111 19.48 73 17.02 21 2.00 11 1.79
Cup 125 30.19 84 17.71 20 0.67 6 0.58
Deer 78 11.98 29 5.25 74 4.14 14 3.61
Sledge 182 41.88 112 27.81 65 6.33 7 6.01
Homer 162 37.85 120 27.81 28 8.01 22 8.76
Toy 96 22.40 86 18.62 30 7.38 17 8.04
Inukshuk 148 35.37 98 24.98 52 23.82 14 21.92
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Fig. 9. Improvements: Our results are highlighted within boxes. The avoidance of angled surfaces improves surface fidelity (a and b), having no support material
protects the deterioration of the object (c), convexity gets rid of the support material (and its scars) from the inside and outside of the objects (d).
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Fig. 10. Comparison with Dapper [11]: Our segmentation is more coherent with the printing direction, is able to provide better fidelity on the leg, and eliminates

support material.
Images a—-d courtesy of [11].

printer). In our FDM printer, ABS material is used and printer settings
are: infill: 20%, number of shells: 2, resolution: 0.2 mm. In our SLA
printer, we used the thickness 200 ym with B9R-2-Black resin, to show
that even the fastest configuration produces higher fidelity results than
the printed non-processed models.

5.4. Assembly

For assembling the segmented parts, we color-code the segments in
the layout and glue the corresponding faces of the printed segments.
Overall, the assembly process of our method took much less time than
cleaning the support material from original model (Table 1). We also
show the amount of material to be cleaned (in terms of percentage of
the original mass) and the number of pieces to be assembled per model.
We highlight that having reasonable assembly times implies that the
models are not over-segmented, as one would expect in an exact convex
decomposition case. Table 1 shows computation time to process a
model, assembly time of the printed segmented model, compared to
cleaning time of the printed original model.

390

We also make sure that gluing areas are compatible with each other,
because (i) the convex decomposition does not neglect any volume, and
(ii) the deviation from the original model is minimized by the energy
function. The former ensures that there is no missing volume between
the components (so that the gluing areas are compatible surfaces) and
the latter ensures that the edges of the gluing areas follow the actual
bounding volume of the object. Since the gluing surfaces are known,
another option is to embed interlocking pieces (lego-like structures) to
these areas for assembly. This easy extension is not currently im-
plemented and it is left as future work.

5.5. Simulation

To simulate the layered printing process for our analysis (Fig. 13),
we used MakePrintable services to convert the GCodes produced by our
Makerbot 2X printer device driver into a 3D .stl model. Then, we
computed the Hausdorff distance (in Meshlab) for comparison and vi-
sualization of the 3D simulated printed model and the original model.
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Fig. 11. Comparison with PD [8]: Our segmentation is more coherent with the printing direction, is able to provide better fidelity on the upper surface of the

building, and eliminates support material.
Images b-d courtesy of [8].

6. Results and applications

We applied our framework to 3D models obtained from AIM@
SHAPE and Archive3D, as well as manually modeled objects. The
complexity of our 20+ models varies from 200 polygons to 250K
polygons with 23.9 K polygons on the average. Our approach works on
both solid and shell forms with no assumptions, since we work on
convex hulls of the shapes. We state the time and material consumption
statistics for the two printing machines mentioned above. The typical
preprocessing time to automatically segment and configure a model for
printing is 15min for a medium complexity model. We also demon-
strated some of our results in our supplementary video.

Printed examples. We compare printed versions of the original
models and segmented models in Fig. 6; with better approximated
surfaces, and multi-color support. We also show real-world printed
examples of some models, in their original form before and after re-
moving the support structure, and as a segmented model before and
after assembly (Fig. 7). As seen in those figures, our approach prevents
wasting material, and provides higher fidelity objects, with multi-ma-
terial support. Note that, even if the approximated surface is highly

A

Fig. 12. Comparison with PackMerger [7]: Ready-to-print version of the chair (a) segmented by PackMerger (b) and our method (c). The zoom ins compare the
original model (cropped for visibility), PackMerger (d), and our components (e).

curved (as in Fig. 7, bottom), our decomposition finds segments that
connect well, even after printing with accumulated printing errors.

Printer comparison. We show the results of the same object from
different printers in Fig. 8. Our approach decreases printing time for
both types of printers, but the drops in SLA are considerably higher (see
Table 2). SLA print time reductions are 56.5% for the pyramidal seg-
mentation [8] and 64% for our approach. FDM print time reduction
averages to 34% with our method. Regarding the support material,
when segmentation is employed, support structures not printed in FDM
yield a 32% reduction in material on average. SLA printers do not au-
tomatically calculate the needed support structure. Hence, for our ex-
periments we have manually added minimum estimated support
structure for the original models, ending up in 10% less material for the
segmented models.

Improvements. We show close ups of improved models. Fig. 9a and b
shows the increased fidelity of near-horizontal surfaces (our green and
red colored result in the highlighted boxes is side by side to the original
one). Fig. 9¢ shows overcoming the blending of support structure with
fine details of the object. Fig. 9d shows a better approximation and
printing for interior structures. In all figures, we highlight our
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Error legend:

Fig. 14. Additional comparison: We also calculated the deviation from the
original model of different segmentation approaches: ACD [23] (a), VHACD
[24] (b), our approach (c). As color-coded, our model has the highest fidelity.

improvements with boxes surrounding corresponding areas.

Comparison to previous work. 3D printing research is continually
improving. Dapper [11] is a previous work that uses a prior 3D printing
segmentation approach [8] (i.e., it uses their code; see Section 5 of
Dapper) and improves upon it. Moreover, they compare to PackMerger
[7]. Dapper and PackMerger, in fact, have similar overall segmentation
and packing objectives. Contrary to previous work (Dapper, Pack-
Merger), our work uses a new-to-3D printing volumetric segmentation
method (i.e., VHACD) and furthers such a methodology.

We compare to related work with a similar aim, in particular to the
example model of Dapper [11], pyramidal decomposition [8], and
PackMerger [7], using the same challenging representative objects in
Dapper and Pyramidal Decomposition and similar objects to those in
PackMerger. First, observe that our segmentation results in providing
higher fidelity on the front of the right leg of the Inukshuk model
(Fig. 10 and zoom-in in Fig. 9b) and on the top of the CCTV building
(Fig. 11 and zoom-in in Fig. 9a). Second, a more semantically mean-
ingful decomposition (observe the colors) is obtained. Third, a set of
components coherent with the printing direction as discussed in Section
5.2 is obtained. This improvement can be seen overall for each piece of
the model in Fig. 10, on the slanted cut of the building in Fig. 11, and in
the zoom-ins for the chair model in Fig. 12. Fourth, Dapper and Pack-
Merger require support material and tend to build the volume in the z-
direction that is slower to print. And finally, some of those methods
need topologically clean meshes, however we do not put any assump-
tions on the meshes. Also, even though PackMerger includes the gluing
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Fig. 13. Model fidelity: Printed versions of the original
model (a), a color-coded representation of the
Hausdorff distance between the simulated printed
model and the original model (b), close up of (b) in
point cloud (c) and mesh forms (d), and close up of
simulated printed segmented model in point cloud (e)
and mesh forms (f). Our method can increase the fi-
delity on near-horizontal surfaces.

size during optimization, the glued areas are not smooth (Fig. 12b and
d), thus the printing errors make it harder to match those docking areas.
For the model in Fig. 11, our decomposition provided 6 parts, reduced
the printing time by 50.6%, and material by 49.7%. Note that all of our
“material savings” are 100% as compared to [8], since we eliminate
support material. However the results of [8] actually state that there is
1-44% waste in their printed objects (see Table 1 of the paper) due to
the pyramidal deficit regions. For the model in Fig. 10, our decom-
position provided 70% height reduction, and printed in 33% less time
and with 30% less material. Their paper does not provide all statistics
about that model, but note that their height minimization and packing
is just to reduce the print time, and they do not aim for eliminating
support material. Dapper further reduces height by 17% and support
materials by 34% as compared to PackMerger (with a total reduction of
32% and 53%). Their solution as published requires support material to
hold-in-place their multiple layers of components, which is measured
by “gaps” in their paper (same for PackMerger). Our decomposition
enabled printing in 64.9% of the original time with 65.3% of the ori-
ginal material in Fig. 12, where PackMerger [7] overall reduces
printing time by 18.8% and material by 29.3%. Comparing all those
qualitative and quantitative results, we can conclude that our approach
significantly improves the efficiency of fabrication.

The accuracy of the printed segmented models and printed original
models is compared in Fig. 13. First, we simulate segmented printed
objects and original printed objects, in both cases exporting the re-
sulting objects in a layered form. Then, we compute the distances be-
tween the simulated printed model and the original model, and be-
tween the simulated segmented printed model and the original model.
We encode the error by coloring the point cloud by Hausdorff distance
rendered on the original model. Observe that the printed model does
not approximate the original model (Fig. 13c) as well as our segmented
printed model (Fig. 13e). We also superimpose the printed versions in
wireframe to demonstrate the density and accuracy of our approxima-
tion in Fig. 13f, compared to Fig. 13d, to prove that better approx-
imations are possible with the same printer (the dark triangular area
shows the overlapping surface, instead of the stepping effect). The
coloring in the point cloud version indicates that our algorithm de-
creased the overall error more than 35% based on the Hausdorff dis-
tance of sampled surface points. We have not evaluated based on a
measurement of the real printed models, because parameters con-
tributing to this surface error is more constrained in simulation space
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Fig. 15. Database: A subset of our model database in the segmented form. Some configurations are also depicted in insets.

than the printing-measuring space, ending up in more consistent eva-
luations.

We calculated the deviation of different approximate decomposi-
tions (ACD [23], VHACD [24] with typical parameter values, and our
approach) from the original model. Our result is closer to the original
model by at least an additional 15% accuracy (Fig. 14) over the other
methods.

We summarize the results of our approach on various models in
Table 2. We show the printing time and material consumption reduc-
tions. On average, our approach can reduce the material consumption
by 35% and print time by 64% compared to the original model. We
have also demonstrated a subset of our model database and some ex-
ample corresponding segmentations in Fig. 15.

Limitations. With regard to limitations, if the model is thin and curvy
our algorithm may not provide good results even for the best approx-
imation due to printer limitations. Another limitation is the limited size
of the printing bed. In that case the configuration can have additional
layers instead of one layer, and support material between the layers or
sequential print jobs would be needed.

7. Conclusion and future work

We present an automatic framework for improving printing of 3D
models by a decomposition and configuration approach. The generated
examples are compared to original models by simulations and by
printing, demonstrating that our approach reduces the consumption of
printing resources as well as it improves the printing quality by con-
structing better approximations of the original mesh. We used our ap-
proach on a variety of models and documented the qualitative and
quantitative improvements on the final printed results.

As future work, we believe that our algorithm is flexible to fit any
segmentation target. The approach is adaptive and can be used to ex-
ploit any printer-specific property, or any other segmentation task that
puts some conditions on the desired components. We believe that one
future work is to make this process more computationally efficient and
to carry our implementation to the 3D printer drivers in order to exploit
our automatic divide and print approach. Our implementation uses
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multi-core processing for the segmentation part but we did not optimize
for GPU computing. We also believe that a better minimization im-
plementation that records and stores some previous evaluations would
reduce the processing time. Another improvement is to add connecting
docks (e.g., lego-like keys) to our segments. Finally, while glue-products
today yield extremely strong bonds (e.g., epoxy glues are even used
inside car engines), we leave analyzing the effect of overall object
strength to future work.
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