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ABSTRACT All of these different information represent different types of

The complex relationships in an urban environment can be captured
through multiple inter-related sources of data. These relationships
form multilayer networks, that are also spatially embedded in an
area, could be used to identify latent patterns. In this work, we
propose a low-dimensional representation learning approach that
considers multiple layers of a multiplex network simultaneously
and is able to encode similarities between nodes across different lay-
ers. In particular, we introduce a novel neural network architecture
to jointly learn low-dimensional representations of each network
node from multiple layers of a network. This process simultane-
ously fuses knowledge of various data sources to better capture the
characteristics of the nodes. To showcase the proposed method we
focus on the problem of identifying the functionality of an urban
region. Using a variety of public data sources for New York City, we
design a multilayer network and evaluate our approach. Our results
indicate that our proposed approach can improve the accuracy of
traditional approached in an unsupervised task.
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1 INTRODUCTION

Advancements in sensing technologies have enabled the collection
of a vast and diverse amount of information for our cities. For exam-
ple, the ever-increasing popularity of location-aware social media
like Foursquare, Yelp, Twitter, Instagram etc. provide an excellent
source of data that provide information about the mobility and ac-
tivities of people in the city in the form of check-ins or geo-tagged
user generated content (e.g., text, image, video etc.). In addition
to this human-based urban sensing media other hardware-based
sensing systems such as, GPS-equipped vehicles [17, 29, 30] and
ticketing system of public transportation [32] provide complemen-
tary information for the behavior, mobility [9] and interactions
recorded in a city.
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relations between entities (them being city-dwellers, urban areas
etc.). These relationships essentially form a multi-layer network?,
that is, a network where there are multiple different connections
(i.e., type of edges) between the nodes. For example, considering
as the nodes of a multiplex network being city-dwellers we can
have two different layers, the one representing “who-is-friends-
with-whom” and the other representing “who-has-been-colocated-
with-whom”.

Given the prevalence of networked data there has been an in-
creasing interest in learning a low-dimensional representation of
graphs, which further allows to use traditional machine learning
methods for tackling various problems such as classification and
prediction. The objective of graph embedding techniques is to learn
a low-dimensional representation of the graph nodes such that the
obtained vectors preserve some network property. The latter can re-
fer to the network structure [10, 26] or the attributes of the original
graph [12] to name a few possibilities. As alluded to above, the ben-
efit of having low-dimensional representations is that we can apply
existing state-of-art machine learning algorithms to solve network-
related problems like link prediction [25], community detection [7]
and graph visualization [27]. To the best of our knowledge, existing
graph embedding methods are limited in the sense that they are
mostly focused on learning an embedding space for simple graphs.
In this work, we present a novel neural network architecture that
is able to map nodes based on their relationships in different layers
into a low-dimensional embedding space. While we elaborate on
our approach later, in brief, the high level idea of our approach is
the constraint that the representation we obtain for the same node
from different layers must be close, while the vector representa-
tions of different nodes must be distant to each other. Furthermore,
our architecture is flexible, and can also support a semi-supervised
approach, where we utilize a small portion of node labels available.

In order to introduce and evaluate our multiplex network em-
bedding approach we focus on the problem of identifying the func-
tionality of an urban region. Discovering functional regions is not
a trivial task. Until recently, labor-intensive surveys had been the
primary source of decision making of urban planners. Furthermore,
most of the time, the land use of a region could be a mixture of
diverse functions which may not easily distinguishable [31]. On
the other hand, as aforementioned the variety of sensors available
today allows us to obtain a large and diverse dataset with informa-
tion about activities and interactions of people in urban areas. Thus,
the availability of these data sources provides an opportunity to
fuse them and obtain a holistic view through a multiplex network,
where nodes are urban areas and edges represent relationships

!We will use the terms multi-layer, multiplex and composite network interchangeably
for the rest of the text.
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between the areas. In particular, we collect a number of different
relationships between different areas of New York City including,
mobility (e.g., trips originating/destined from two areas during the
same time), context (e.g., type of venues within the two areas) etc.
We further apply our multiplex network embedding to obtain a
low-dimensional representation of the nodes based on all the layers,
and we finally use this representation for classifying the nodes into
different types of functions.
In summary, the contribution of our work is twofold:

(1) We present a novel neural network framework that jointly
learns low-dimensional node representation from a multi-
layer network.

(2) We tackle the important problem of discovering the function-
ality of urban regions by using multiple human-generated
data sources and our multilayer network embedding.

The remainder of this paper is organized as follows: In the follow-
ing section we review relevant to our study literature. In section 3,
we present our proposed architecture in more details, while Section
4 is dedicated to the evaluation of our method. Finally, Section 4.3
we present conclusions and future directions of our research.

2 RELATED WORK

In this section, we briefly describe several notable existing method-
ologies addressing the methodological problem of learning graph
representation as well as our application of land use detection in
an urban area.

2.1 Network embedding

A network embedding learns a low-dimensional representations of
nodes in a graph, that is, nodes can be represented through a latent
vector space. There are different objectives used to learn a network
embedding. The most widely used ones force the representation to
be learned to accurately preserve the graph structure [10, 26], and
its attributes[12]. These embeddings allow us to apply traditional
machine learning techniques, such as clustering [7] and classifica-
tion [16] on complex networks.

In recent years, numerous approaches have been proposed to solve
this task. Among the first works we can refer to [24] in which
the authors propose a node embedding framework named Deep
Walk. The framework is similar to what was presented as word
embedding model in [21]. Considering a node as word, and each
sentence as a sequence of nodes that a random walker visits dur-
ing its walk, one can learn representation of a node based on its
local neighbors that frequently appear before or after visiting it.
Furthermore, Leskovec et al. [10] design a more flexible notion of a
node’s network neighborhood, named node2vec, by introducing a
biased node sampling strategy, which allows the random walker to
traverse various neighborhood to learn richer representations of
nodes. More recently, Chang et al. [6] propose and examine a graph
embedding method on heterogeneous networks. They use a deep
neural network architecture to learn representations of nodes of
different types, while in [28] the authors highlight the importance
of using a joint latent space to embed nodes of two different but
related networks into a common low-dimensional space.
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2.2 Multilayer network

Many real-world systems are characterized by different views and
properties that can not be modeled by single network. Ignoring
these characteristics or aggregating them into a single layered net-
work usually ends up losing valuable information [1]. Therefore,
to model these systems, multilayer (or multiplex) networks are
introduced. Multilayer networks are designed as more advanced
network structures to capture various existing interactions or re-
lationship between entities in a complex system. In a multilayer
network, each type of relationship between nodes is represented
through set of edges connecting nodes in a layer. These layers can
be interconnected, thus, capturing interdependencies between the
different layers. It is worth mentioning that multiplex network is
a well-known structure to model temporal complex networks in a
way that snapshots of the network taken in a specific time-window
is considered as layers of the multilayer network [4, 13].

2.3 Spatial network

In a spatial network its nodes and edges are embedded in the geo-
graphical space. Typically nodes correspond to fixed regions, while
(weighted) edges reflect connections between these regions, usually
based on some underlying process (e.g., mobility) [3]. Complex
spatial network representations and frameworks have helped re-
searchers to devise realistic models and tackle various problems
in transportation [14], navigation [5] and human mobility pattern
modeling [2, 19].

As an example, in [15] the authors record the average number of
phone calls made in each tower cell during different time of a day
and construct a spatial network where nodes represents cell towers
and the edges represent the (thresholded) correlation between the
cell phone connections observed in the corresponding pair of cell
towers. They further used this network to identify communities
of regions that represent similar land use. As another example,
Liu et al. [18] built a spatially-embedded network using taxi trip
data from Shanghai. Every region corresponds to a node in the
network, and the origin-destination pairs observed in the taxi trips
correspond to the network edges. Using this network the authors
further divide the urban area into several clusters, where regions
with high intra-city flows are highlighted. This can potentially help
urban planners to redefine administrative boundaries based on daily
human mobility patterns.

2.4 Discovering urban land use

Identifying functionality of different regions of a city has been one
the most significant problem in an urban studies. Pei et al. [23]
were one of the first researchers tackled the problem by using mo-
bile phone data collected in the city of Singapore. They claim that
pervasive usage of mobile phones provides a valuable human gen-
erated data source that could be leveraged to reveal social function
of urban land use. They cluster regions based on feature vector
created on the relative calling pattern and the total calling volume
of each region. Similar to [23] but with more publicly available
dataset, Frias-Martinez et al. [8] represent each region of a city by
tweeting activity patterns. Assuming regions with similar function-
ality have similar tweeting activity patterns during weekdays and
weekends, they apply spectral clustering to assemble those regions
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having similar land use together. Addressing the importance of
using multiple data sources to infer functionality of region, Yuan
et al. [30][29] employ topic-based inference model based on both
type of venues located in each region and human mobility pattern
between regions. To do so, each region could be considered as a
document made of words generated by a triple of time, volume of
incoming, and volume of outgoing trips to and from the region.
Furthermore, they consider the number of different venues located
in that region as metadata of that document (i.e. region) and ap-
ply Dirichlet Multinomial Regression (DMR )[22].As a result, this
method produces a distribution of topics (i.e. functions). Again re-
gion with similar distribution of functions could be clustered and
be considered having similar land use.

3 PROPOSED METHODOLOGY

In this section, we present our proposed framework. First, we intro-
duce the notations used throughout the paper. Then we describe our
multilayer network feature learning algorithm and the proposed
neural network architecture in more details.

3.1 Notations and Definitions

We model a multilayer network as a set of [ network layers
{g".¢% ....g"}, where gl = (V,E!) denotes a specific layer con-
sisting of V nodes and E! intra-layer edges. Simply put, the set of
nodes are identical in all layers, while the set of intra-layer edges are
different and represent different types of relationships. To reflect
the significance of relationship between entities captured through
edge set E” of layer r, these edges could be weighted.

In this study, our objective is to learn low-dimensional represen-
tations of nodes of each layer. We use notion of wl{ to denote the
learned embedding space of node i on layer I.

3.2 Preliminary

Our frame is based on the the Skip-gram model was introduced by
Mikolov et al. [20, 21]. It was introduced to learn a word embedding
that can effectively predict its context (i.e., surrounding words). In
particular they introduce two models, namely, the Continuous Bag
of Words (CBOW) and the Skip-gram. In the Skip-gram model, the
input is an one-hot vector representing the target word, and the
objective function to be minimized is the log loss of the probability.
Mathematically, the objective function of a Skip-gram model is:

minimize J = —logP(N(w;)|w;; 6) (1)

where 0 are the model parameters that need to be learned and

P(N(w;)) is the probability of the context of the word with em-
bedding w; being N(w;). Considering a Naive assumption that the
probability of words appearing in the context of the target word
are independent of each others, we can rewrite the formula as:

minimize J = —log I_[ P(we|wy; 0) @)

we€N(wy)

Finally, by assuming symmetry in the feature space the conditional
probability can be modeled using the Softmax function. Hence, with
w; and w, being the embedding vectors of the target and context

words of a document with vocabulary set of V' we have:

T
minimize J = —log 1_[ M (3)
ceC, TiY) exp(wl we)

where C; is the set of all words existing in the context window of
the target word w;. With this objective function in hand, one can
simply compute the gradient and update the cost function at each
iteration via Stochastic Gradient Descent.
Simply put, the goal of skip-gram model is to learn a representation
wy for each word such that its inner product with the corresponding
representation of its context words w, will be much higher as
compared to that with words that do not appear in its context.

The Skip-gram model was further used by Perozzi et al. [24] in
Deepwalk to learn node representation in a network. The authors
sample the graph by utilizing random walks on the graph [11] and
consider each node as a word in the Skip-gram mode and each
sentence as a sequence of nodes that a random walker visits.

3.3 Proposed Framework

In this work, we propose an approach to learn an embedding for a
multilayer network extending/using the Skip-gram model. In par-
ticular, we simultaneously learn a low-dimensional space of nodes
based on their relationships in different layers. As alluded to above,
in order to present and evaluate our approach, we will consider the
application of discovering the land use of an urban region. This
setting is ideal for considering a multilayer network, that is able to
represent urban region (nodes) and different relationships (edges)
between them on different network layers. By learning an embed-
ding space of nodes in this graph, we expect nodes with similar
functionality to obtain similar/closer representation.

For our approach we will also rely on graph sampling through
random walks. Each layer is considered as a regular single network
and thus, we will have multiple sequences of nodes for each layer.

Objective: Our objective is to learn a low-dimensional represen-
tation that not only preserves the structure of each layer, but also
forces similar nodes in different layers have close representation.
To learn the model, our framework optimizes the sum of multiple
loss functions as follows:

L
minimize J = » (J;) +Jp (4)
I=1

where Jj is the loss function from learning the embedding space
of nodes in layer [/ and J, corresponds to objective function of
pairing the same nodes of different layers (it can be thought of as a
type of regularization). Pairing nodes is the process of enforcing
representations of a node on multiple layers be similar. Conversely,
representation of dissimilar nodes on different layers will become
more distant to each other.

3.4 Learning process

To learn the embedding space of each layer, we use the negative
sampling introduced in [21]. Negative sampling is an effective ap-
proach proposed to reduce the computational cost of the inner
product of [V| embedding vectors at each iteration (Eq. 3). Instead
of computing inner products of the embedding of the target node
with every other nodes of the network, we only sample a small set
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Figure 1: The proposed neural network architecture to learn low-dimensional representation of nodes in a multilayer network

of nodes that did not appear in the target’s context. Assuming C;
as a set of visited nodes in the context of the target node V; and Gy
as a set of negative examples. With respect to Negative Sampling
strategy, we can rewrite equation 3 as follows:

argmax l_[ P(1|we, wy, 6) l_[ P(O|we, wt, 6) (5)
0 cec, cel,

Here, we use one and zero for positive and negative samples re-
spectively. With replacing probability with sigmoid function, we

will have
1 1
argmax log(——————) + log(———————
gg Z 9( 1+ exp(—wCth)) Z g(l + exp(wlwy)

ceCy ceC,
(6)

Therefore, the loss function for learning embedding vector of nodes
on layer [ will be:

= —[ Z loga((wi)T.Wi)-!- Z 1090(—(W£)T-W£) ™)

1 ~
ceCy ceCy

So far, the embedding space of each node is learned indepen-
dently. However, as aforementioned, our framework enforces same
nodes on different layers to have similar representations, and like-
wise, different nodes should have distant embedding spaces, through
the pairing nodes process. This essentially allows us to fuse infor-
mation obtained from different sources. We achieve this by setting:

Jp = —[ Z loga((wi)T.W;,) + Z 1090(—(W£)T-“’;r) ®)

t=t’ t#t

This function implies that during the learning process if the selected
nodes of layers i and j are identical, then they are considered
as positive sample between layers. Conversely, for non-identical
nodes, they are considered as a negative sample. To pair nodes of
more than two layers, we need to randomly choose iand jin
the sampling phase which will be discussed in more details in the
following section.

3.5 Framework architecture

Figure 1 illustrates our proposed neural network architecture. The
first layer of the neural network, includes [ modules that correspond
to the number of network layers we have. The input to each module
is a pair of context w’. and target nodes wg. For the softmax layer,
we need to know whether these wll? belongs to Cg (i.e., positive

sample) or Cg (i.e., negative sample). The process of learning the
embedding spaces of this layer is done by minimizing the loss
function introduced in the previous section (Eq. 7). In each layer,
the representation of each node is learned by looking at its context
nodes. The choice of context nodes is defined by the sequence of
nodes that the random-walker visits. If the walker tries to stay in
the neighborhood of the previously visited node, the representation
of each node will preserve the local structure of its neighborhood.
Otherwise, the random-walker can go deeper in the network, and
consequently, the embedding space will capture the richer structure
of the network.

The next hidden layer of the neural network is our node pairing
module. In this module, the target node’s representation of each
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Figure 2: An example of positive and negative pairs of the
node i from layer o and the nodes from the other layers.
Green lines represent positive pairs and red dashed line rep-
resent negative pairs

layer will be stacked over each others. Simply put, for each iteration,
a matrix Sy is constructed where [ is the number of layers, and k
is the dimension of the embedding space. If the number of layers
exceeds two, then at each iteration, two layers i and j are randomly
selected. The target nodes of the selected layers, w;' and wi,, would
be compared in the softmax layer based on the Eq. 8. The key insight
of this module is that if these two target nodes are representing the
same entity (i.e. t = t’) their embedding space need to be close (Fig.
2). Otherwise, if t # ¢’ then the inner product of their embedding
spaces need to be near zero to minimize the objective function. This
leads to learn dissimilar representations of those nodes.

In this work, we use the flexible approach introduced in [10] to
learn representations to preserve a trade-off between local and
global structure of the network. As it is discussed in this paper, the

time-complexity of each sample of a single network is O(m)
in which [ is the length of a random walk and k is the number of
generated samples. In our work, the process of sampling of each
layer is independent of the other layers which could be computed

in parallel.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate our model through its ability to discover
the functionality of urban regions in NYC.

4.1 Datasets

In order to build the spatial multiplex network required we use var-
ious data sources that cover activities in NYC. In particular we use
the following sources: 1) Yellow taxi trip records 2. This dataset
includes latitude and longitude of passenger pick-ups and drop-offs,

Zhttp://www.nyc.gov/

Figure 3: The Land Use of Manhattan. Red, blue, grey, and
green areas respectively represents manufacturing, parks,
residential, and commercial zones.

dates, times, Taxi IDs and trip IDs. After removing trips with miss-
ing pick-up or drop-off coordinates, we have a total of 53,324,684
records collected between May to September 2016. 2) Points of In-
terest (POI). This dataset was collected using the Foursquare API
and includes information about 181,208 POIs located in Manhattan,
New York. Alongside the location of POIs, we have categories of
them which falls into 9 major groups. 3) User-generated content
on Twitter. This dataset includes more than 27 million anonymized
geo-tagged tweets. Each tweet has a unique ID, anonymized user
ID, time and the location of the posted tweet.

For our urban region functionality ground truth we use NYC
ZOLA (the Zoning and Land Use Application)*. Each plot of land
within the city’s jurisdiction has been categorized into 4 major
functions; residence, commercial, or manufacturing and parks (Fig.
3). For each region, we assign the the functionality of a zone that it
has the greatest spatial overlap with. Except some exceptions, each
region entirely falls inside a single zone.

4.2 Building the multilayer network

In our setting, we consider each block as our urban unit that corre-
sponds a network node.
Using the datasets aforementioned we build the following 4 layers.

3https://developer.foursquare.com/
*http://www1.nyc.gov/site/planning/zoning/about-zoning.page
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Figure 4: The comparison of baselines by the measure of Separability

Co-originated layer: We start by creating a feature vector u®
for each node [ (i.e., block). Each element of v represents the av-
erage number of trips that are originated from the block I. To differ-
entiate human mobility pattern on working days and holidays, u®d
is made by concatenation of average number of outgoing trips
happened on weekdays and weekends. In other words, by using
hourly granularity, as we choose to, we would have UD with the

length of 48. Then, we standardize feature vectors U) into U

and calculate cosine similarities between the U()) and UU) for each
pairs of i and j. The obtained cosine similarities are used as the
weights of the link between the corresponding pair of nodes. In our
final network layer we keep the top- k links (based on their weight
value). In our experiments, we set k = 10 for all layers.

Co-destined layer: This layer is built in a similar to previous
layer manner. In this case the feature for each node is based on the
average number of incoming trips to a region.

Social media layer: Similar to the previous layers, the feature
vectors are built based on the average number of geo-tagged tweets
posted in each city block.

Semantic layer: For this layer, the feature vector of each node
captures the distribution of the POI categories from Foursquare.
Edges connect nodes based on the similarity of the feature vectors.
Unlike the previous layers, temporality does not have any effect on
the categories of venues.

The multiplex network encodes various relationship aspects of
a region. Regions with similar mobility pattern, social media usage
pattern, and venues are strongly inter connected to each other in
this network. Intuitively connections with such similarities will
have similar land use. Consequently, the learned space of nodes
with similar characteristics needs to be close to each other, so that
we can assert they have similar land use pattern.

4.3 Evaluation metric

The output of our framework is the node representations of differ-
ent layers. In other words, we learn a feature vector representing

each region of the city. To reiterate, the intuition is regions with
close feature space belongs to the same functional zones. For our
evaluations, we define an evaluation metric named separability,
which is independent of any clustering algorithm applied:

Intracluster distances : the average of distances between rep-
resentations of all pair of nodes i and j where they both have
identical labels

Intercluster distances: the average of distances between rep-
resentations of all pair of nodes i and j where they both have
non-identical labels

. Intercluster — Intracluster
Separability = 9)
max(Intercluster, Intracluster)

The intuition behind this metric is that if nodes of the same
labels have close representations and nodes with different labels
have far representations, the separability value would be high.

4.4 Baselines

In order to evaluate the goodness of the proposed framework we
compare its performance with several baselines as follows:

Raw features: For each region [, its corresponding unnormal-
ized feature vector is used (i.e. U(l)).

Normalized features: For each region [, its corresponding nor-

malized feature vector is used (i.e. U().

Independent embedding: After constructing each network
layer based on steps described in section 4.2, we apply node2vec
[10] on each layer to independently learn representations of each
layer’s nodes. The obtained representations will be used for the
evaluation.

4.5 Results

We evaluate the performance of introduced baseline by the measure
of Separability (Fig. 4). As it can be seen, applying single network
embedding on each layer almost outperforms using raw and nor-
malized feature vectors. One reason behind that must be the way
network is built and used for the embedding. As it was described
earlier, nodes (i.e. regions) with similar patterns are closely inter-
connected together and thus, during the sampling process, it is
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Figure 5: The performance of the proposed framework on every pair of layers

more likely the random walker visits densely connected nodes
during its traverse. Using nodes appeared in the same visits as
positive samples for learning phase, their representations would
be learned in close to each others and far from other non-similar
nodes. Therefore, as we expected the Separability value of the node
representations would be higher.

We use our framework to learn node representations of all pos-
sible pair of layers together. Although the proposed framework is
capable of learning node representations of more than two layers,
for the sake of interpretability of the results, we only examine a
pair of layers for each experiment and keep more advanced experi-
ments and analysis for future works. In Fig. 5, we demonstrate the
performance of the proposed framework by the measure of Separa-
bility. As it can be observed, the process of co-learning, enhanced
the goodness of results. This must have come from the fact that
in our framework, the representation of each node on each layer
not only is learned by its context nodes, but also during pairing
process we assure that the embedding space should not be different
to the very same node on the other layer. In other words, this pro-
cess share views between multiple layers to learn richer and more
comprehensive representations for each nodes.

The other observation is the effect of semantic layer on the
improvement of the results. Semantic layer, which is constructed
based on the categories of venues location in each region, implies
the type of activities that could be done in each region. During our
experiments, we observed that this layer has a significant impact on
improving the accuracy of representations of other layers, especially
co-originated and co-destined layers. On the other hand, we can
see that using two layers of co-originated and co-destined together
did not end up a significant increase of the performance. We can
argue that these two layers are sharing similar mobility patterns
and could be combined into one for reducing input data.

5 CONCLUSION AND FUTURE WORK

In this work, we present a novel neural network architecture that
aims to jointly learn from multiple layers of the network to find low-
dimensional representations of each node. We learn low-dimensional
embedding vectors of nodes in a way that the representation of
identical nodes belonging to different layers would be similar, and
embedding spaces of different nodes would be distant to each other.
To measure its effectiveness we map information of publicly avail-
able datasets collected from New York City as a multilayer network
and applied our framework to discover the functionality of its re-
gions. For future direction, we plan to examine the effectiveness
of the framework by adding labels during the learning process to
improve the accuracy of the model. Also, it needs more experiment
and analysis to reveal the hidden interaction of different layers and
the contribution of each one on the result.
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