
PittGrub: A Frustration-Free System to Reduce Food Waste
by Notifying Hungry College Students

Mark Silvis
Department of Computer Science

School of Computing & Information
University of Pittsburgh
marksilvis@pitt.edu

Anthony Sicilia
Department of Computer Science

School of Computing & Information
University of Pittsburgh
anthonysicilia@pitt.edu

Alexandros Labrinidis
Department of Computer Science

School of Computing & Information
University of Pittsburgh
labrinid@cs.pitt.edu

ABSTRACT
The amount of food waste generated by the U.S. is staggering, both
expensive in economic cost and environmental side effects. Surplus
food, which could be used to feed people facing food insecurity, is
instead discarded and placed in landfills. Institutions, universities,
and non-profits have noticed this issue and are beginning to take ac-
tion to reduce surplus food waste, typically by redirecting it to food
banks and other organizations or having students transport or eat
the food. These approaches present challenges such as transporta-
tion, volunteer availability, and lack of prioritization of those in
need. In this paper, we introduce PittGrub, a notification system to
intelligently select users to invite to events that have leftover food.
PittGrub was invented to help reduce food waste at the University
of Pittsburgh. We use reinforcement learning to determine how
many notifications to send out and a valuation model to determine
whom to prioritize in the notifications. Our goal is to produce a
system that prioritizes feeding students in need while simultane-
ously eliminating food waste and maintaining a fair distribution
of notifications. As far as we are aware, PittGrub is unique in its
approach to eliminating surplus food waste while striving for social
good. We compare our proposed techniques to multiple baselines
on simulated datasets to demonstrate effectiveness. Experimental
results among various algorithms show promise in eliminating food
waste while helping those facing food insecurity and treating users
fairly. Our prototype is currently in beta and coming soon to the
Apple App Store.

CCS CONCEPTS
• Information systems → Data mining; • Human-centered
computing →Mobile devices;

KEYWORDS
Reinforcement learning; Q-Learning; Data mining; Food waste

ACM Reference Format:
Mark Silvis, Anthony Sicilia, and Alexandros Labrinidis. 2018. PittGrub:
A Frustration-Free System to Reduce Food Waste by Notifying Hungry

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD 2018, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219836

College Students. In KDD 2018: 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, August 19–23, 2018, London, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3219819.3219836

1 INTRODUCTION
Every year, nearly 400 billion pounds of food is circulated through
the U.S. food supply chain. It travels from farms to distribution
centers to retailers until finally food service managers and gro-
cery stores supply our institutions and homes. Much of this food,
however, never makes it to the plate. Approximately 40%, or 160
billion pounds, of this food is left uneaten, sent to landfills where it
makes up 21% of held waste, the largest contributor [3]. Wasting
such a large portion of our food is an enormous resource sink — we
exhaust 19% of all farming fertilizer, 18% of all U.S. cropland, and
21% of U.S. agricultural water usage on the waste alone, totaling
$218 billion (1.3% of the GDP) [14]. Reducing the amount of food
waste is just as much a humanitarian problem as it is an economic
one. Reclaiming the wasted food could feed all of the 42 million
Americans facing food insecurity three times over [3].

Of the various stages of the food supply chain, restaurants and
food service institutions generate a whopping 26% of waste, the
second highest behind households [14]. Oftentimes, this waste
consists of scraps that, although not fit for human consumption,
can be used for animal feed or be composted rather than sent to a
landfill; however, a large portion of wasted food is edible, yet simply
discarded. An audit by Sodexo Dining Services at the University of
Pittsburgh discovered that, of the 338.8 pounds of waste generated
daily at their dining hall “The Perch”, 92 pounds was recoverable
surplus food [6]. There are four more dining halls just like that
one on Pitt’s campus. This is food that could be repurposed to
feed those in need, one of the EPA’s highest recommend actions to
reduce food waste [1]. Fortunately, there are many organizations
determined to recover the surplus and help feed the hungry. 412
Food Rescue is a Pittsburgh-based operation that recovers surplus
food from institutions and redirects it to local non-profits that
benefit from the donation but do not have the resources to recover
the food themselves [15]. Food Recovery Network is another non-
profit which organizes student volunteers to collect and transport
surplus food to food banks [10]. Collecting food surplus in such a
way comes with a set of challenges. It requires active volunteers
with adequate transportation, safely storing the food before and
during transportation, and a food bank or organization willing
to accept the food. Additionally, these food pickups are usually
organized ahead-of-time, thus making it more difficult to recover
food impromptu, such as after a catered event or a conference.

https://doi.org/10.1145/3219819.3219836
https://doi.org/10.1145/3219819.3219836
https://doi.org/10.1145/3219819.3219836

KDD 2018, August 19–23, 2018, London, United Kingdom M. Silvis et al.

500 1000 2000 3000 5000 7000 10000 15000 20000 25000 30000
Population Size

10
1

10
2

10
3

Lo
g

S
im

ul
at

ed
 A

tte
nd

an
ce

University of Pittsburgh Undergrad Population
Event with 100 servings
20.0 %
15.0 %
10.0 %
5.0 %
2.5 %
1.0 %

Figure 1: Logarithm of simulated attendance for user pop-
ulations with varying size and varying average percentage
of attendance. Here, the entire user base is notified of an
event. For populations which are on par with PittGrub’s po-
tential audience of 19,326 undergraduates [11], simulations
with very conservative choice of average percentage of atten-
dance still lead to high user frustration due to over-booking.

Another approach to surplus food recovery is to have the people
come to the food. An app called Titan Bites, developed by Auxil-
iary Services Corp.’s Campus Dining Services, allows students at
California State University at Fullerton to opt-in to notifications of
leftover food events so that they can finish the surplus. In addition
to reducing waste, Titan Bites aims to provide students facing food
insecurity a simple way to receive free meals [17]. However, Titan
Bites notifies their entire user base of leftover food events, with
no way of prioritizing students currently interested in free food or
those in need. Besides a lack of prioritization of food-insecure users,
notifying the entire user base can lead to increased user frustration
due to over-booking as the population scales. Figure 1 displays
simulated attendance of users over varying population sizes with
varying average percentage of attendance (1% - 20%). As the user
base grows, mass notification can lead to poor user satisfaction,
even under conservative assumptions of percentage of attendance.

To address the challenges faced by other services recovering
surplus food, we developed PittGrub, a mobile application that
intelligently notifies students when there are catered events at the
University of Pittsburgh with leftover food. We use reinforcement
learning techniques to adjust the number of notifications sent out
relative to the number of leftover servings and our user-base’s
probability of attending. In addition, we prioritize sending out
notifications to students in need while also considering fairness of
our selection, so that a significant portion of our users receive a
notification over a large enough number of events.

This paper’s key contributions are as follows:
• DevelopedPittGrub, a practical systemof reducing food
waste: We developed a practical system to reduce surplus
food waste at the University of Pittsburgh by notifying stu-
dents to attend events with leftover food. We avoid the prob-
lems of transportation and volunteer availability by having

hungry students travel to the location of the food instead of
the other way around. Additionally, we promote the human-
itarian issues of food waste by prioritizing students in need,
while also aiming for a fair notification spread across the
user population. Although our app has a name specific to
our university, the solution is trivially generalizable to other
institutions.
• Solved twodifficult problems ofmanaging leftover food
after events: PittGrub solves two difficult problems with
managing events with leftover food: whom to invite and
how many to invite. PittGrub uses reinforcement learning
to determine a booking factor, which is an adjustment to
the number of leftover servings to attain a precise level of
attendance, avoiding frustrating users by overbooking and
wasting food by underbooking. Additionally, PittGrub values
users based on three factors: 1) their likelihood of attending
an arbitrary event, 2) whether they face food insecurity, and
3) how fair it is to invite them (i.e., they have not been invited
for a while).
• Defined metrics for evaluating notification selection
performance: We defined three metrics for evaluating our
selection of notification candidates that ensure quality can-
didate selection while assisting those facing food insecurity.
• Experimentally evaluated our proposed systemagainst
multiple baselines:We compared our proposed method to
multiple baseline approaches that maximize a subset of the
metrics defined. These experiments determine the effective-
ness of the approaches relative to their trade-offs.

2 PROTOTYPE
Although the sophisticated notifications part of our system is still
under development, we have a working prototype of PittGrub avail-
able on iOS and (soon) Android [2]. Pitt students can create an
account using their Pitt email address and set their food prefer-
ences (gluten-free, dairy-free, vegetarian, and vegan). Certain users,
approved by us, can post events with details like the number of
servings, date and time, location, food preferences, and a photo-
graph. All users whose food preferences match the characteristics
of a given event receive a notification once it is posted; for example,
vegetarians will not receive notifications for events that are not
categorized as vegetarian friendly, but non-vegetarians, barring
other restrictions, will be notified. Figure 2 comprises screenshots
of most of the current functionality.

PittGrub is available via Expo, a developer tool that runs apps
built with the React Native framework on a local device without
requiring Apple App Store distribution [5, 9]. As we are still in beta
testing, distribution with Expo provides a fast and convenient way
to send app updates to users. Our future plans for this project are
to: 1) incorporate the methods from this paper into production, 2)
finalize PittGrub’s availability on the iOS App Store, and 3) aggres-
sively promote PittGrub in order to gain traction; to that end, we
have had multiple discussions with University Dining Services, the
Student Office of Sustainability, and multiple student groups. At
the time of the camera-ready, we have nearly 200 users signed up
for the beta and a prototype on Test Flight at the iOS App Store. For

PittGrub: A Frustration-Free System to Reduce Food Waste
by Notifying Hungry College Students KDD 2018, August 19–23, 2018, London, United Kingdom

Figure 2: An overview of the current functionality of the PittGrub app. A user can log-in and view events, and approved users
can post events. Users whose food preferences match those of a posted event will receive a notification (e.g., vegetarians will
never receive notifications for non-vegetarian-friendly events).

the most up to date status, visit the PittGrub website [12] which
includes news and installation instructions.

3 BACKGROUND
For the experimental evaluation of this paper, our codebase was
written in Python 3, using NumPy for most of our computation and
Scikit-learn for other convenience methods. Seaborn and Matplotlib
were both essential in generating plots to visualize and learn from
the data.

3.1 Pitt Pantry
The University of Pittsburgh has a program through the Student
Office of Sustainability called Pitt Pantry, which helps to ensure
that food-insecure students have regular access to healthy food
options [13]. For the remainder of this paper, we will often refer to
students facing food insecurity as members of the Pitt Pantry, or
Pantry students for short.

3.2 Metrics & Baselines
The purpose of our work is to develop a user selection algorithm
that determines which users should be notified of leftover food.
The primary property we wish to achieve is minimization of food
waste. In addition, we define three user-specific qualities that an
ideal selection algorithm would be able to maximize:

(1) Average probability of user attendance per event
(2) Total notification fairness over a number of events
(3) Percentage of Pantry students notified per event
To evaluate the performance of a user selection algorithm on

each of the ideal qualities, we define the following metrics:
(1) Waste: de = Se −we where Se is the number of servings for

event e andwe is the number of notified users that showed
up to event e

(a) Frustration: defined as negative waste, i.e., we invite
more users than there are servings; see Figure 1

(2) Average Probability:
∑ne
i=1 pi,e
ne where ne is the number of

notified users for event e and pi,e is the probability of atten-
dance for user i and event e

(3) Total Fairness: 1 −
∑n
i=1

M−xi
M∗n where xi is the number of

notifications received by user i over some subset of events E
andM is the maximum number of notifications received by
any user over this subset of events

(4) Percent Pantry:
∑ne
i=1 yi,e
ne where ne is the total number of

notified users for event e and yi,e ∈ {0, 1} is 1 for user i
notified of event e if i is a Pantry student and 0 otherwise

Note that each metric which is specific to some event e in a subset of
events E can be generalized to an aggregate metric over the subset
of events E by simple averaging. For our later experimentation we
focus on the use of aggregate metrics.

Using capacity to refer to the number of servings for an event,
each of the previously described user metrics can be maximized
using a specific baseline algorithm as follows:

(1) Frequent-First: select the users most probable to show up
in-order until reaching capacity. This algorithm is expected
to maximize Average Probability.

(2) Round-Robin: select users in a queued fashion, never noti-
fying a user again prior to all others receiving a notification,
until reaching capacity; performed over multiple events. This
algorithm is expected to maximize Total Fairness.

(3) Pantry-First: select the Pantry students first, followed by
non-Pantry students arbitrarily, until reaching capacity. This
algorithm is expected to maximize Percent Pantry.

The baseline algorithms are used in the Experiments section
for comparison. There is no baseline for wasted food.

4 PROPOSED METHOD
In this section, we introduce our approach to solving both of the
problems in managing leftovers: whom to invite and how many
to invite. In the ideal scenario, we would maximize the portion of

KDD 2018, August 19–23, 2018, London, United Kingdom M. Silvis et al.

notifications sent to food-insecure students while maintaining a
fair distribution and never wasting food. However, improving some
metrics results in trade-offs with respect to the others; therefore,
we must make compromises in our parameters and improvements.

4.1 Whom To Invite
To solve the whom to invite problem, we assume that we have a
black box probability estimator that generates a probability score for
each user. This estimator could take as input various user parame-
ters, such as distance from the event and current user availability,
to produce some likelihood of attending a given event. The prob-
ability score vector with components as user probabilities could
be calculated as: p = P (Z) where Z is a matrix with rows as users
and columns as arbitrary user/event properties, and P is our black-
box estimator. Through the remainder of this paper, we assume
that we are provided a vector of probability scores comprising the
probability for each user to attend an event.

A user’s probability of attendance, while crucial in estimating
the total number of users to invite, does not capture the social
value of inviting said user: namely, whether they are food-insecure
or if it is fair to invite them. To select users by their social value,
in addition to probability of attending an event, we introduce our
method of valuing users: Fair (food)Insecure Probability Score value
model, or FIPS. FIPS valuates users by their social value in addition
to their general probability score. The FIPS model accepts a user’s
probability score, fairness score, and pantry value (0 or 1), along
with a set of weights to scale the magnitude of each input, and
produces a value for said user. The FIPS valuation procedure can
be calculated as: v = V (U) = Uw, where U is a matrix with rows
ui = (pi , fi ,yi) for each user; here pi represents the aformentioned
probability score, fi represents a user’s fairness score, and yi their
Pantry status withw, a vector of weights used to scale the influence
per property. This matrix multiplication yields v a column vector
of user values.

We remark that fi , a user’s fairness score, is a value between 0
and 1 that represents how fair it is to send them a notification. This
is generated by receiving a binary string of 1’s and 0’s defining a
user’s notification history for an equal length set of events with
the most recent event on the left. Using the history string as h and
number of events n, we calculate a user’s fairness score as:

fi = 1 −
h10

2n − 1

which produces a fairness score that decreases as a user is invited to
more recent events and increases as they are omitted. Since we are
aiming for a fair distribution, we update every user’s notification
history per event; users receiving a notification have a 1 prepended
to their history, and other’s receive a 0. The history is then pruned
to the 10 most recent events.

FIPS produces a linear valuation for each user given said user’s
properties. This allows us to select a set of users for any arbitrary
event using their probability of attendance, food insecurity status,
and fairness. Additionally, by providing a set of weights, we can
choose to scale some properties to have a greater effect on the
generated value than the others. The generalized model, which we
call FIPS+, can valuate users with arbitrary properties.

The next challenge is selecting a set of users for an event using
the user values as the selection criteria, which we do by framing
the problem as the knapsack problem.

4.2 The Knapsack Problem
The knapsack problem is a classic combinatorial optimization prob-
lem of attempting to select a subset of items, each with a value
and a weight, such that the total value of the subset is maximized
while constraining the total weight to some capacity. In our ap-
proach, we treat our user population as the set of items to select
from, using their probability scores as the item weights and FIPS
values as item value. The subset is selected such that the sum of the
subset weights reaches some capacity, which is set to the number
of servings for the event in question. This version of the knapsack
problem is known as the 0-1 knapsack problem, as we can only
select 0 or 1 of each item, i.e., whether or not to notify the user. For
a set of n users, with each user i having a probability score of pi
and FIPS value of vi , each being selected (xi = 1) or not selected
(xi = 0), and an event with S servings, we want to:

max xTv s.t: xTp ≤ S

where v = (vi)
n
i=1, x = (xi)

n
i=1, and p = (pi)

n
i=1 (i).

The optimal solution to the 0-1 knapsack problem is a pseudo-
polynomial time dynamic programming algorithm to select the
item subset. This algorithm takes O (nS10d) time, where S is the
number of servings (i.e., capacity), n is the number of weights (i.e.,
user population), and d is our decimal precision. This approach
is impractical for our purposes, as, on a modest machine, it takes
approximately 5 minutes to select from 1000 users for a single event
with 60 extra servings. Extrapolating further, notifying a 1000 user
population of 100 events of various serving sizes would take over 8
hours of computation time. Given the perishable nature of the food
for which we are inviting people, such long computation times are
clearly unreasonable.

An alternative approach to solving the knapsack problem is to
greedily select from the user population sorted by descending value
until reaching capacity, which runs in O (n) time. On the same
machine, this takes just over 1 minute to notify our 1000 user popu-
lation of 100 various sized events. The tradeoff with this algorithm
is that it is sub-optimal, only guaranteeing that the total value of
the subset is at least one-half the optimal [8]. However, given that
we are developing this system for a real application, limitations in
computation require us to use the greedy knapsack algorithm. One
thing to note is that, since we care about maintaining user fairness,
we must re-compute their fairness score and regenerate their FIPS
value per event selection decisions. Since this requires re-sorting
the users by their values for greedy selection, our greedy knapsack
algorithm is actually O (n logn). We remark that the introduction
of the knapsack problem allows us to split our baseline algorithms
into two variants, one that counts users as a single serving, and
one that uses the probabilistic weight constraint of the knapsack
problem, seen in (i).

4.3 How Many To Invite
Now that we can prioritize users by their value, we must consider
the robustness of our constraint in equation (i). In some cases, it is

PittGrub: A Frustration-Free System to Reduce Food Waste
by Notifying Hungry College Students KDD 2018, August 19–23, 2018, London, United Kingdom

Table 1: The rank of the different intervals; i.e. states after discretization. The median interval (11) corresponds to near zero
waste.

Discretized State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Rank -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

possible that our blackbox probability estimator P has some direc-
tional error or bias which may in general over- or under-estimate
the probability scores of our user population. We account for this
possibility via a booking factor which we call ω. This modifies the
0-1 knapsack problem (i) as below

max xTv s.t: xTp ≤ ωS (ii).

Manual selection of ω is not necessarily conceivable because we
have no way of discerning the degree and direction of any potential
bias our probability estimator may have. Our solution is to use
Q-learning, which is a commonly used reinforcement learning algo-
rithm, to determine ω. In general, reinforcement learning consists
of an agent which explores some state space by taking actions and
receiving rewards or punishments. In this way, the agent may learn
the correct actions to take given a particular state. Q-learning, as
a variant, is a model-free approach which learns an action-value
function, Q , mapping state-action pairs to values; the agent can
then decide on some optimal policy for action selection in a given
state by choosing the action with the highest value. In practice, this
decision comes with some level of trade-off between exploration
and exploitation as the agent learns [7, 16].

Our proposed Q-learning algorithm is booQ (pronounced book).
At a high level the algorithm updates the booking constant ω over
time, learning from the aformentioned waste (or negative frus-
tration) metric. The current range of observed average waste is
considered to be our agent’s state space. We discretize the state
space by normalizing an observed waste d through a map

d 7→ d ′ ∈ [0, 1].

The normalized space is then uniformly discretized via a map

d ′ 7→ s ∈ {1, 2, ...,n}

where n is a previously specified number of intervals which must
be odd because computation of the median interval (as an integer)
is a key component to reward calculation – after normalization, the
median interval corresponds to average waste being as discernibly
close to zero as possible. With regards to discernibility, the number
of intervals determines the resolution of booQ after discretization;
more intervals correspond to a higher resolution. For a more de-
tailed analysis of this, see section 5.5. Through composition of the
above, we have a positive integer representation of an observed
average waste

d 7→ s ∈ {1, 2, ...,n} (iii)

The accompanying action space consists simply of incrementing,
decrementing, or leaving the booking constant, ω, unchanged. Re-
spectively, we identify each of these actions a ∈ {−1, 1, 0}. The
magnitude of an increment or decrement is determined by the step
size, η, which is computed via a function of the average waste over

Algorithm 1

procedure booQ :
inputs:

n: odd number of intervals τ : decreasing exploration rate
α : decreasing learning rate ε : exploitation constant ∈ [0, 1]
γ : discount factor ηmax: a maximum step size

initialize:
ω0 ← 1
Q (s,a) ← 0 for all (s,a) ∈ {1, 2, ...,n} × {−1, 0, 1}
select a0 ∈ {−1, 0, 1} randomly
observe all other initial states without updating Q

repeat with timestep t :
perform notifications with booking constant ωt
observe waste dt
M ← max{|d1 |, |d2 |, ..., |dt |}
st ← min{⌊ n (dt+M)

2M ⌋ + 1,n}
if st , n+1

2 :
ρt ← −

���
n+1
2 − st

���
else:

ρt ←
n+1
2

if ρt , ρt−1:
r ← ρt − ρt−1

else:
r ← ρt

Q (st−1,at−1) ← (1−α)Q (st−1,at−1) +α (r +γ max
a

Q (st ,a))

select at by rule:
at ← argmax

a
Q (st ,a) with probability 1 −max {ε,τ }

otherwise:
at ← randomly from {−1, 0, 1} − {argmax

a
Q (st ,a)}

η ← ηmax
(

1
1+e−|dt |

)
ωt+1 ← ωt + atη

end repeat

some series of events

η =
ηmax

1 + e−|d |
where ηmax is a previously specified maximum step size; the use
of a half-sigmoid allows for the step size to dynamically increase
and decrease as average waste moves away from and closer to zero.
The algorithm is thereby responsive to drastic changes in the user
population and can quickly recover from incorrect decisions. As
mentioned, the reward process relies heavily on the discretization
process (iii). A rank, ρ, is assigned to each of {1, 2, ...,n} based on
distance from the median interval with closeness to the median

KDD 2018, August 19–23, 2018, London, United Kingdom M. Silvis et al.

corresponding to larger ρ

ρ = −
����
n + 1
2
− s

���� where s ∈ {1, 2, ...,n} − {
n + 1
2
}

ρ =
n + 1
2

otherwise.

The reward, r , is then computed by observing differences between
the current and previous state’s rank; here, rewards are given so that
our agent is encouraged to take actions that result in a sequence of
states which travel towards, and remain within, the median interval.
As an example, if ρt > ρt−1, for t a time step, the reward r takes
value r = ρt −ρt−1 > 0. But, if ρt < ρt−1 we have that the reward r
becomes a punishment with r = ρt −ρt−1 < 0. If there is no change,
the reward is exactly the current rank r = ρt . The algorithm uses a
standard ε-decaying exploration/exploitation schedule as well as
the standard Q−learning update rule [7, 16]. The specifics of booQ
can be found in Algorithm 1.

For choice of parameters, during experimentation, we took the
discount factor to be γ = 0.9 [4]. A larger discount factor promotes
prioritization of long-term rewards [7], a trait that is helpful in influ-
encing booQ to take actions toward idealω that have been observed,
but which are distant from the current ω. We chose ηmax = 0.1 to
enforce a level of control over the degree which ω was altered at
each iteration. We chose n = 21 to give our agent high-resolution
in determining the optimal booking constant; see section 5.5 for
sensitivity analysis. Table 1 represents the rank-space of booQ with
n = 21. We chose a decreasing learning rate, α , as a function of the
number of times the current state-action pair was seen [4]:

α = α
(
is,a
)
=

1
(is,a)

β
with β = 0.6

where is,a is the number of times booQ took a at s . We chose τ in
our ε−decaying exploration/exploitation scheme as a decreasing
function of the number of times the current state was seen:

τ = τ (is) =
1
√
is

where is is the number of times any action was performed at s . In
this decaying scheme, we took our lower bound ε = 0.15.

5 EXPERIMENTS
In this section, we evaluate the effectiveness of our FIPS linear value
model at judging our users based on their social metrics and the
booQ algorithm at selecting the correct user set for notifications.
In the first experiment, we show the effectiveness of the baseline
algorithms to motivate the importance of selecting users correctly,
particularly with respect to minimizing food waste. In the second
set of experiments, we demonstrate how adjusting various weights
in the value model can improve performance on some metrics while
compromising on others. In the third experiment, we compare the
effectiveness of booQ at correcting user probability score bias to the
baseline algorithms. Finally, we show how booQ learns a booking
factor over time on biased datasets.

5.1 Experimental Setup
Environment:Given that our application is still a work in progress,
we cannot perform experiments with real users. Additionally, a real
environment would not allow us to do true experimentation, given

the large number of different variables, the inability to scale the
number of users or number of servings, etc. Instead, we generated
user and event datasets to run our experiments in a simulated envi-
ronment. The event simulation environment iterates over the set
of events, assigning users to each event with a priority determined
by the chosen selection method (baseline, FIPS, FIPS with booQ,
etc). After estimating user attendance based on a hidden (to the
system) true probability score, it evaluates its performance on the
four metrics (average food waste, average user probability, total
fairness, and average Pantry percentage).

Datasets: A user dataset consists of 1,000 users, each with four
values: 1) a probability score, generated via a truncated normal dis-
tribution between 0.0 and 1.0 centered around 0.50 with a standard
deviation of 0.20; 2) a Pantry value, which is 0 (false) for 90% of the
users, and 1 (true) for a randomly selected 10% of users; 3) a recent
history to represent fairness, which is a random binary string of
10 digits, indicating whether or not they were invited to the last
10 events (e.g., ‘1001111010’, with the leftmost 1 meaning the user
was notified of the most recent event); and, 4) an objective, or true,
probability score, generated by applying slight gaussian noise to
the user probability scores based on desired mean absolute error.

Training Vs. Test: We generate two datasets, one for testing
and one for training, both with a mean absolute error between the
users’ probability score and objective score of around 0.125. We also
create train and test event datasets of 100 events each, which are
represented by a serving size generated using a normal distribution
centered at 40 with a standard deviation of 10 and truncated to a
value between 10 and 70.

Algorithms: Experiments using an algorithm that requires train-
ing, such as booQ, are run for 1,000 iterations over the event and
user training datasets. All algorithms are then tested using 100 iter-
ations over the test datasets to produce a set of final result metrics,
calculated by the mean of the metrics over the test iterations. The
baseline algorithms we use are:

(1) Random Sample: select users at random until reaching
capacity.

(2) Frequent-First: select the users most probable to show up
in-order until reaching capacity. This algorithm is expected
to maximize Average Probability.

(3) Round-Robin: select users in a queued fashion, never noti-
fying a user again prior to all others receiving a notification,
until reaching capacity; performed over multiple events. This
algorithm is expected to maximize Total Fairness.

(4) Pantry-First: select the Pantry students first, followed by
non-Pantry students arbitrarily, until reaching capacity. This
algorithm is expected to maximize Percent Pantry.

(5) Greedy-Knapsack: select the users in order of descending
value until reaching capacity.

All baselines have two variants, one that counts users as a single
serving, and one that uses the probabilistic weight constraint of
the knapsack problem, as in (i).

5.2 Baseline Comparison (Figure 3)
Our first experiment compares the performance of our baseline
algorithms on food waste, percentage of Pantry students, and total
fairness. Figure 3 shows the results of this experiment. As you can

PittGrub: A Frustration-Free System to Reduce Food Waste
by Notifying Hungry College Students KDD 2018, August 19–23, 2018, London, United Kingdom

0 5 10 15 20 25 30
Average Waste (in # Servings) / Negative Frustration (in # People)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

To
ta

l F
ai

rn
es

s

Frequent First (1)
Greedy Knapsack

Frequent First

Pantry First (1)Pantry First

Random Sample (1)

Random Sample

Round Robin (1)
Round Robin

Avg. 33% Pantry Invites

Figure 3: A comparison of the baseline algorithms. A suffix
of (1) means the baseline counts each user as a single seat,
as opposed to counting each user by their probability score.
Each algorithm accumulates users until reaching capacity,
defined as the number of servings S .

see, the baseline algorithms perform as expected with respect to the
metrics that they were proposed to optimize. Namely, both Pantry-
First variants outperform the other algorithms for the Pantry met-
ric, and both Round-Robin variants greatly outperform the others
in fairness. Frequent-First performs poorly on both fairness and
Pantry, and does not provide any benefits otherwise. Both variants
of Random-Sample are relatively more fair than our other baselines
but do not perform well on Pantry.

A telling visual is the large discrepancy in average food waste
between the two variants of a given algorithm. The variation which
counts each user as a single serving wastes significantly more food
than the version which utilizes the constraint from out knapsack
formulation (i), i.e., probability score, as seat size. This speaks
to the efficacy of framing this problem as the knapsack problem,
in particular, using probability score as weight. Although Greedy
Knapsack performed comparably to Pantry First in general, the
versatility allowed by parameter adjustments in the FIPS value
model prompt further experimentation.

Figure 3 also allows us to prune away a few of our selection
algorithms. Clearly, given the large amount of food remaining after
using the single seating variant of the algorithms, these selection
methods were the first to be removed from consideration. Addition-
ally, Frequent-First performed poorly on all of the metrics relative
to the other algorithms, and Random-Sample was unable to select
a reasonable portion of Pantry students; thus, we choose not to
train booQ on these two algorithms in following experiments. This
leaves us with Greedy Knapsack, Round Robin, and Pantry First.

Lastly, Figure 3 illustrates the challenges of this problem: no one
baseline selection method optimizes all of the desired metrics. In
particular, fairness and Pantry are at odds with one another. This
leads to our next experiment, exploration of the sensitivity of the
FIPS value model with the Greedy-Knapsack selection.

5.3 FIPS Value Model Sensitivity (Figures 4 & 5)
This set of experiments shows the flexibility of the FIPS model
by demonstrating its ability to adjust selection performance by

0.5 1.0 1.5 2.0 2.5
Average Waste (in # Servings) / Negative Frustration (in # People)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Av
er

ag
e

To
ta

l F
ai

rn
es

s

Greedy Knap. (1,1,1)

Greedy Knap. (1,1,2)

Greedy Knap. (1,1,3)

Greedy Knap. (1,1,5)
Greedy Knap. (1,1,7)

Greedy Knap. (1,2,1)

Greedy Knap. (2,1,1)
Greedy Knap. (3,1,1)

Greedy Knap. (1,1,9)

Pantry First

Avg. 33% Pantry Invites

Figure 4: Sensitivity of FIPS model: the weights directly in-
fluence the ability of the selection algorithm to improve on
the relevant metric. The order of the weights are as follows:
probability score, Pantry, and fairness.

0.5 1.0 1.5 2.0 2.5 3.0
Average Waste (in # Servings) / Negative Frustration (in # People)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e
To

ta
l F

ai
rn

es
s

Greedy Knapsack (1,1,1)

Greedy Knapsack (1,1,9)

Frequent First
Pantry First

Round Robin

Random Sample

Greedy Knapsack (1,1,50)

Avg. 33% Pantry Invites

Figure 5: Sensitivity of FIPSmodel: various weights are com-
pared to the baseline selection algorithms. This shows the
effect of adjusting the parameters on metric performance.
The order of the weights are as follows: probability score,
Pantry, and fairness.

altering the input weights. As you can see in Figure 4, incremental
adjustments in value weight show a distinct trajectory of move-
ment across the three dimensions of the plot: wasted servings, total
fairness, and Pantry percentage. For example, changing the fairness
weight (the third weight) “moves” the Greedy-Knapsack point up.
This illustrates the sensitivity of the model, again confirming the
suitability of the knapsack problemwith respect to user selection, in
particular, the appropriateness of our FIPS linear valuation model.

Since our metrics have opposing goals, specifically fairness and
Pantry competing with one another, increases in the fairness pa-
rameter result in a slight reduction in the algorithm’s performance
on the Pantry metric. This is sensible, as the prioritization of fair-
ness in a selection algorithm would de-prioritize special users, in
this case, Pantry students. The trajectories seen in Figure 4 give us
control over metric prioritization. This control should generalize
to a higher-dimensional value model, i.e., FIPS+.

KDD 2018, August 19–23, 2018, London, United Kingdom M. Silvis et al.

Figure 6: Left: Selected baseline algorithmswith andwithout booQ in the presence of positive probability estimation bias. booQ
is able to learn and maintain minimal food waste. Right: Visual representation of positive bias introduced to user probability
estimation.

The sensitivity of the value model is further demonstrated in
Figure 5, where a choice of parameters heavily preferring fairness
results in a marked increase in average total fairness. While rela-
tively high fairness is attainable with significant investment in the
fairness parameter, it comes at a cost to performance on the other
metrics, especially waste and Pantry percentage.

5.4 Biased Probability Efficacy (Figures 6 & 7)
A notable benefit of the knapsack formulation is the consideration
of user probabilities as weights, as illustrated in the first experiment.
One question, however, arises: what if the user probability scores
are inaccurate, or highly biased? More-so than fit, a biased prob-
ability estimator is a reasonable concern, as latent variables may
cause significant directional error in probability estimates. This is
a significant concern for our specific use case, because our target
user demographic, being college students, is highly dynamic with
respect to schedule and needs. For example, during the summer
semester, when a majority of college students leave campus for
home, our probability estimations could become critically inflated.
In this experiment, we illustrate how booQ resolves the problem of
over- or under-estimation in user probability, which the baseline
capacity criterion in (i) alone does not accommodate.

We adjust the user dataset by biasing the previously mentioned
user test and train datasets by adjusting user probability scores by
a multiplicative factor. As an example, multiplying the objective
model by 0.5 results in an over-bias of 100% in our probability
estimates. As illustrated by Figures 6 and 7, showing both over-
and under-bias of various sizes, booQ is able to learn the correct
booking factor to drive the food waste close to zero. When the
bias was large, it performed similarly well as when the bias was
modest, indicating robustness. The other algorithms, including the
baselines, were unable to effectively notify the students in these
circumstances, resulting in significantly more food waste (or user
frustration). Figures 6 and 7 show the improvement that booQ
provides over the baseline algorithms. Biases between 33% and
100% are resolved by booQ in an equally effective manner. Note
that, while minimizing waste, booQ avoids any significant user
frustration, maintaining a balance.

5.5 Biased Probability Learning and
Parameters (Figure 8 & 9)

In Figure 8, we illustrate how booQ learns and adjusts ω over 1,000
training iterations using various selection algorithms. The dynamic
step size results in booQ making larger adjustments to the booking

PittGrub: A Frustration-Free System to Reduce Food Waste
by Notifying Hungry College Students KDD 2018, August 19–23, 2018, London, United Kingdom

Figure 7: Left: Selected baseline algorithms with and without booQ in the presence of negative probability estimation bias.
booQ is able to learn and maintain minimal food waste. Right: Visual representation of negative bias introduced to user
probability estimation.

factor when average waste is far away from zero, with a maximum
single adjustment limited to 0.1. This allows booQ to alter subopti-
mal booking factors to an appropriate degree until converging upon
a booking factor resulting in near-zero waste. When the booking
factor is close to the optimal, the dynamic step size is limited to
0.05, precluding drastic jumps and facilitating fine-tuning. Even
in scenarios where a series of bad decisions were made (caused
by exploration and leading to a suboptimal booking factor), the
dynamic step size allows booQ to promptly recover – Figure 8 ex-
emplifies this in the case of Greedy Knapsack and Round Robin.
In these scenarios, the larger discount factor γ = 0.9 may also
contribute, allowing booQ to better account for distant rewards in
its reward-update rule.

As mentioned in section 4.3, we chose the number of intervals
n = 21 to increase booQ’s resolution; Figure 9 demostrates this.
Consistent convergence to an optimal booking factor occurs only
for a larger number of intervals. This is likely due to increased
feedback via reward and punishment during the learning process.
Recall that the number of intervals corresponds to the number of
states after discretization. A larger number of intervals partitions
the state space more finely, allowing for smaller modifications of

the booking constant ω to be recognizable and producing a greater
breadth and diversity of rewards.

6 CONCLUSION
To reduce the amount of surplus food waste generated by insti-
tutions, we developed PittGrub. PittGrub provides a means of no-
tifying University of Pittsburgh students of events with leftover
food, focusing on food insecurity and fairness. This paper describes
PittGrub’s smart notifications, consisting of (1) FIPS Value Model:
a model to valuate users on their probability of attendance, fairness
score, and food insecurity; FIPS includes tunable weights to prior-
itize specific attributes and (2) booQ: a Q-Learning procedure to
account for biased probabilty estimators and adjust user notification
set size accordingly. We formulated the problem as a 0-1 knapsack
problem and used the greedy knapsack algorithm to select a subset
of users to notify based on their probability score (as a weight)
and FIPS value. A comprehensive experimental evaluation shows
the efficacy of FIPS parameter tuning for prioritizing specific user
attributes and the adaptability of booQ with respect to learning
the booking factor that estimates the notification set size in the
presence of probability estimation bias.

KDD 2018, August 19–23, 2018, London, United Kingdom M. Silvis et al.

0 500 1000
1.0

1.5

2.0

2.5

3.0

booQ weight | bias = +100% GK

0 500 1000
1.00

1.25

1.50

1.75

2.00

2.25

2.50
booQ weight | bias = +100% PF

0 500 1000

1.0

1.5

2.0

2.5

booQ weight | bias = +100% RR

0 500 1000
iteration

20

10

0

10

20

avg. waste | bias = +100% GK

0 500 1000
iteration

10

5

0

5

10

15

20
avg. waste | bias = +100% PF

0 500 1000
iteration

10

0

10

20

avg. waste | bias = +100% RR

Figure 8: booQ learning on positive 100% probability bias. From left to right, the selection algorithms are Greedy Knapsack,
Pantry First and Round Robin. The dynamic step size allows booQ to promptly recover from poor decisions caused by explo-
ration.

3 5 7 9 11 13 15 17 19 21 25 29 33 37 41 45
number of intervals / states

80

60

40

20

0

20

40

w
as

te

mean

Figure 9: Analysis of booQ as the number of intervals, i.e,
states, varies. Shown arewastemeasurements for 10 trials of
each interval count withmean and standard deviation. Here,
Greedy Knapsack is used as the selection algorithm. At a
lower number of intervals, booQ becomes less consistent
and often fails to find the optimal booking factor. booQ’s
consistency and resolution no longer suffer when the num-
ber of intervals is increased to 21 and greater.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
helpful suggestions on additional experimentation. This work was
funded in part by NSF Award CNS-1739413.

REFERENCES
[1] Environmental Protection Agency. 2017. (2017). Retrieved February 09, 2018 from

https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy
[2] PittGrub App. 2018. (2018). Retrieved February 10, 2018 from https://expo.io/

@admtlab/PittGrub
[3] Dana Gunders et al. 2017. Wasted: How America Is Losing Up To 40 Percent

Of Its Food From Farm To Fork To Landfill. Report. Natural Resources Defense
Council (Aug. 2017). Retrieved February 09, 2018 from https://www.nrdc.org/
sites/default/files/wasted-2017-report.pdf

[4] Eyal Even-Dar and Yishay Mansour. 2003. Learning rates for Q-learning. Journal
of Machine Learning Research 5, Dec (2003), 1–25.

[5] Expo. 2018. (2018). Retrieved February 09, 2018 from https://expo.io
[6] Nick Goodfellow. 2016. Perch food waste audit report. Report. (Spring 2016).

Retrieved February 08, 2018 from https://www.pc.pitt.edu/dining/documents/
Perchaudit2016FINAL.pdf

[7] Michael L. Littman Leslie Pack Kaelbling and AndrewW. Moore. 1996. Reinforce-
ment Learning: A Survey. Journal of Artificial Intelligence Research 4, Article 301
(May 1996), 48 pages. https://doi.org/10.1613/jair.301

[8] Silvano Martello and Paolo Toth. 1990. Knapsack Problems. Algorithms and
Computer Implementation (1990).

[9] React Native. 2018. (2018). Retrieved February 09, 2018 from https://facebook.
github.io/react-native/

[10] Food Recovery Network. 2017. (2017). Retrieved February 08, 2018 from www.
foodrecoverynetwork.org

[11] University of Pittsburgh Institutional Research. 2018. (2018). Retrieved May 24,
2018 from https://ir.pitt.edu/facts-publications/fast-facts/

[12] PittGrub. 2018. (2018). Retrieved February 10, 2018 from https://pittgrub.com
[13] PittServes. 2018. (2018). Retrieved February 08, 2018 from https://www.

studentaffairs.pitt.edu/pittserves/sustain/pantry/
[14] ReFED. 2016. A Roadmap To Reduce U.S. Food Waste By 20 Percent. Report.

(2016). Retrieved February 09, 2018 from https://www.refed.com/downloads/
ReFED_Report_2016.pdf

[15] 412 Food Rescue. 2018. (2018). Retrieved February 08, 2018 from https:
//412foodrescue.org

[16] Stuart Russell and Norvig Norvig. 2009. Artificial Intelligence: A Modern Approach
(3rd. ed.). Prentice Hall.

[17] CSUF News Service. 2017. Titan Bites App Helps Students Locate Free Food on
Campus. CSUF News Center (16 Feb. 2017). Retrieved February 08, 2018 from
http://news.fullerton.edu/2017wi/Titan-Bites-App.aspx

https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy
https://expo.io/@admtlab/PittGrub
https://expo.io/@admtlab/PittGrub
https://www.nrdc.org/sites/default/files/wasted-2017-report.pdf
https://www.nrdc.org/sites/default/files/wasted-2017-report.pdf
https://expo.io
https://www.pc.pitt.edu/dining/documents/Perchaudit2016FINAL.pdf
https://www.pc.pitt.edu/dining/documents/Perchaudit2016FINAL.pdf
https://doi.org/10.1613/jair.301
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
www.foodrecoverynetwork.org
www.foodrecoverynetwork.org
https://ir.pitt.edu/facts-publications/fast-facts/
https://pittgrub.com
https://www.studentaffairs.pitt.edu/pittserves/sustain/pantry/
https://www.studentaffairs.pitt.edu/pittserves/sustain/pantry/
https://www.refed.com/downloads/ReFED_Report_2016.pdf
https://www.refed.com/downloads/ReFED_Report_2016.pdf
https://412foodrescue.org
https://412foodrescue.org
http://news.fullerton.edu/2017wi/Titan-Bites-App.aspx

	Abstract
	1 Introduction
	2 Prototype
	3 Background
	3.1 Pitt Pantry
	3.2 Metrics & Baselines

	4 Proposed Method
	4.1 Whom To Invite
	4.2 The Knapsack Problem
	4.3 How Many To Invite

	5 Experiments
	5.1 Experimental Setup
	5.2 Baseline Comparison (Figure 3)
	5.3 FIPS Value Model Sensitivity (Figures 4 & 5)
	5.4 Biased Probability Efficacy (Figures 6 & 7)
	5.5 Biased Probability Learning and Parameters (Figure 8 & 9)

	6 Conclusion
	Acknowledgments
	References

