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Abstract We propose a model of inter-bank lending and borrowing which takes into
account clearing debt obligations. The evolution of log-monetary reserves of banks is
described by coupled diffusions driven by controls with delay in their drifts. Banks are
minimizing their finite-horizon objective functionswhich take into account a quadratic
cost for lending or borrowing and a linear incentive to borrow if the reserve is low or
lend if the reserve is high relative to the average capitalization of the system. As such,
our problem is a finite-player linear–quadratic stochastic differential game with delay.
An open-loop Nash equilibrium is obtained using a system of fully coupled forward
and advanced-backward stochastic differential equations. We then describe how the
delay affects liquidity and systemic risk characterized by a large number of defaults.
We also derive a closed-loop Nash equilibrium using a Hamilton–Jacobi–Bellman
partial differential equation approach.
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1 Introduction

In [1], we proposed a stochastic game model of inter-bank lending and borrowing,
where banks borrow from or lend to a central bank with no obligation to pay back
their loans and no gain from lending. The main finding was that in equilibrium, the
central bank is acting as a clearing house, and liquidity is created, thus leading to a
more stable system. Systemic risk was analyzed as in [2] in the case of a linear model
without control. Systemic risk being characterized as the rare event of a large number
of defaults occurring, when the average capitalization reaches a prescribed level, the
conclusion was that inter-bank lending and borrowing leads to stability through a
flocking effect. For this type of interaction without control, we also refer to [3–5].

In order to make the toy model of [1] more realistic, we introduce delay in the
controls. This forces banks to take responsibility for past lending and borrowing. In
this paper, the evolution of the log-monetary reserves of the banks is described by a
system of delayed stochastic differential equations, and banks try to minimize their
costs or maximize their profits by controlling the rate of borrowing or lending. They
interact via the average capitalization meaning that banks consider this average as a
critical level to determine borrowing from or lending to the central bank.

We identify open-loop Nash equilibria by solving fully coupled forward and
advanced-backward stochastic differential equations (FABSDEs) introduced by [6].
Our conclusion is that the new effect, created by the need to pay back or receive refunds
due to the presence of the delay in the controls, reduces the liquidity observed in the
case without delay. However, despite these quantitative differences, the central bank is
still acting as a clearing house. A closed-loop Nash equilibrium to this stochastic game
with delay is derived from the Hamilton–Jacobi–Bellman (HJB) equation approach
using the results in [7], and we provide a verification theorem.

For a general introduction to BSDEs, stochastic control and stochastic differential
gameswithout delay,we refer to the recentmonograph [8]. Stochastic control problems
with delay have been studied from various points of view.When the delay only appears
in the state variable, solutions to delayed optimal control problems were derived from
variants of the Pontryagin–Bismut–Bensoussan stochastic maximum principle. See,
for instance, [9,10]. Alternatively, in order to use dynamic programming, [11,12]
reduce the system with delay to a finite-dimension problem, but still the delay does
not appear in the control like in the case we want to study.

The general case of stochastic optimal control of stochastic differential equations
with delay both in the state and the control is studied using an infinite-dimensional
HJB equation in [7,13]. The case with pointwise delayed control is studied in [14].
The general stochastic control problem in the case of delayed states and controls, both
appearing in the forward equation. is studied in [15–17] by using the forward and
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advanced-backward stochastic equations. Linear–quadratic mean field Stackelberg
games with delay and with a major player and many small players are studied in [18].

2 Setup of the Problem

The typical problem studied in this paper can be described as follows. The dynamics of
the log-monetary reserves of N banks are given by the following diffusion processes
Xi
t , i = 1, . . . , N ,

dXi
t =

(
αi
t − αi

t−τ

)
dt + σdWi

t , 0 ≤ t ≤ T, (1)

where Wi
t , i = 1, . . . , N are independent standard Brownian motions, and the rate

of borrowing or lending αi
t represents the control exerted by bank i on the system.

In this example, we use the simplest possible form of delay, the delayed control αi
t−τ

corresponding to repayments after a fixed time τ such that 0 ≤ τ ≤ T . We shall use
deterministic initial conditions given by

Xi
0 = ξ i , and αi

t = 0, t ∈ [−τ, 0[. (2)

For simplicity, we assume that the banks have the same volatility σ > 0. In what fol-
lows we use the notations X = (X1, . . . , XN ), x = (x1, . . . , xN ), α = (α1, . . . , αN ),
and x = 1

N

∑N
i=1 x

i .
Before concentrating on the specific case (1), we prove a dedicated version of the

sufficient condition of the Pontryagin stochasticmaximumprinciple for amore general
class of models for which the dynamics of the states are given by stochastic differential
equations of the form:

dXi
t =

(∫ τ

0
αi
t−sθ(ds)

)
dt + σdWi

t , 0 ≤ t ≤ T, (3)

where θ is a nonnegative measure on [0, τ ]. The special case (1) corresponds to
θ = δ0 − δτ .

Bank i chooses its own strategy αi in order to minimize its objective function of
the form:

J i (α−i , αi ) = E

{∫ T

0
fi (Xt , α

i
t )dt + gi (XT )

}
, (4)

where the strategy α is denoted by (α−i , αi ) to single out the control of bank i while
J i still depends on the strategies α−i of the other banks through Xt . In this paper, we
concentrate on the running and terminal cost functions used in [1], namely:

fi (x, α
i ) = (αi )2

2
− qαi (x − xi ) + ε

2
(x − xi )2, q ≥ 0, ε > 0, (5)
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and

gi (x) = c

2

(
x − xi

)2
, c ≥ 0, (6)

with q2 < ε so that fi (x, α) is convex in (x, α). Note that the case τ > T corresponds
to no repayment and therefore no delay in the equations,. The case τ = 0 corresponds
to the casewith no control and therefore no lending or borrowing. The term qαi (x−xi )
in the objective function (5) is an incentive to lend or borrow from a central bankwhich
in this model does not make any decision and simply provides liquidity. However, we
know that in the case with no delay [1], in equilibrium, the central bank acts as a
clearing house. We will see in Sect. 7 that this is still the case with delay.

The paper is organized as follows. In Sect. 3, we briefly review the model without
delay presented in [1]. The analysis of the stochastic differential games with delay is
presented in Sect. 4 where we derive an exact open-loop Nash equilibrium using the
FABSDE approach. In the process, we derive the clearing house role of the central
bank in Remark 4.1. Section 5 is devoted to the derivation of a closed-loop equilibrium
using an infinite-dimensional HJB equation approach with pointwise delayed control
presented in [14]. In Sect. 6, we provide a verification theorem. The effect of delay
in terms of financial implication is discussed in Sect. 7 where the main finding is that
the introduction of delay in the model does not change the fact that in equilibrium, the
central bank acts as a clearing house. However, liquidity is affected by the delay time.

3 Stochastic Games and Systemic Risk

The aimof this section is to briefly review themodel of inter-bank lending or borrowing
without delay studied in [1]. It is described by the model presented in the previous
section, but with τ > T , so that the delay term αi

t−τ in (1) is simply zero (note that

in the model in [1], there is an additional drift term of the form a
N

∑N
j=1(X

j
t − Xi

t ),
which does not play a crucial role and that we ignore here by setting a = 0). The setup
(4)–(6) of the stochastic game remains the same.

The open-loop problem consists in searching for an equilibrium among strategies
{αi

t , i = 1, . . . , N } which are adapted processes satisfying an integrability condition

such as E
(∫ T

0 |αi
t |2dt

)
< ∞. The Hamiltonian for bank i is given by

Hi (x, yi , α) =
N∑

k=1

αk yi,k + (αi )2

2
− qαi (x − xi ) + ε

2
(x − xi )2, (7)

where yi = (yi,1, . . . , yi,N ), i = 1, . . . , N are the adjoint variables.
For a given α = (αi )i=1,...,n , the controlled forward dynamics of the states Xi

t
are given by (1) without the delay term and with initial conditions Xi

0 = ξ i . The

adjoint processes Y i
t = (Y i, j

t ; j = 1, . . . , N ) and Zi
t = (Zi, j,k

t ; j = 1, . . . , N , k =
1, . . . , N ) for i = 1, . . . , N are defined as the solutions of the backward stochastic
differential equations (BSDEs):

123



J Optim Theory Appl

dY i, j
t = −∂x j Hi (Xt ,Y

i
t , αt )dt +

N∑
k=1

Zi, j,k
t dWk

t (8)

with terminal conditions Y i, j
T = ∂x j gi (XT ) for i, j = 1, . . . , N where gi is given

by (6). For each admissible strategy profile α = (αi )i=1,...,n , standard existence and
uniqueness results for BSDEs apply and the existence of the adjoint processes is
guaranteed. Note that from (7), we have

∂x j Hi = −qαi
(
1

N
− δi, j

)
+ ε(x − xi )

(
1

N
− δi, j

)
.

The necessary condition of the Pontryagin stochastic maximum principle suggests that
one minimizes the Hamiltonian Hi with respect to αi which gives:

α̂i = −yi,i + q(x − xi ). (9)

With this choice for the controls αi , the forward equation becomes coupled with the
backward equation (8) to form a forward–backward coupled system. In the present
linear–quadratic case, we make the ansatz

Y i, j
t = φt

(
1

N
− δi, j

)
(Xt − Xi

t ), (10)

for some deterministic scalar functions φt satisfying the terminal condition φT = c.
Using this ansatz, the backward equations (8) become

dY i, j
t =

(
1

N
− δi, j

)
(Xt − Xi

t )

[
q

(
1 − 1

N

)
φt − (ε − q2)

]
dt +

N∑
k=1

Zi, j,k
t dWk

t .

(11)
Using (9) and (10), the forward equation becomes

dXi
t =

[
q +

(
1 − 1

N

)
φt

]
(Xt − Xi

t )dt + σdWi
t . (12)

Differentiating the ansatz (10) and identifying with the Ito’s representation (11), one
obtains from the martingale terms the deterministic adjoint variables

Zi, j,k
t = φtσ

(
1

N
− δi, j

)(
1

N
− δi,k

)
for k = 1, . . . , N ,

and from the drift terms that the function φt must satisfy the scalar Riccati equation

φ̇t = 2q

(
1 − 1

2N

)
φt +

(
1 − 1

N

)
φ2
t − (ε − q2), (13)

123



J Optim Theory Appl

with the terminal condition φT = c. The explicit solution is given in [1]. Note that the
form (9) of the control αi

t and the ansatz (10) combine to give:

αi
t =

[
q +

(
1 − 1

N

)
φt

]
(Xt − Xi

t ), (14)

so that, in this equilibrium, the forward equations become

dXi
t =

(
q +

(
1 − 1

N

)
φt

)
(Xt − Xi

t )dt + σdWi
t . (15)

Rewriting (Xt − Xi
t ) as

1
N

∑N
j=1(X

j
t − Xi

t ), we see that the central bank is simply

acting as a clearing house. From the form (15), we observe that the Xi ’s are mean
reverting to the average capitalization given by

dXt = σ

N

N∑
j=1

dW j
t , X0 = 1

N

N∑
j=1

ξ j .

In [2], we identified the systemic event as

{
min

0≤t≤T
(Xt − X0) ≤ D

}

and we computed its probability

P

{
min

0≤t≤T
(Xt − X0) ≤ D

}
= 2Φ

(
D

√
N

σ
√
T

)
, (16)

where Φ is the N (0, 1)-cdf. This systemic risk probability is exponentially small of
order exp(−D2N/(2σ 2T )) as in the large deviation estimate.

4 Stochastic Games with Delay

Most often, a tailor-made version of the stochastic maximum principle is used as a
workhorse to construct open-loop Nash equilibria for stochastic differential games.
Here, we provide such a tool in a more general setup than used in the paper because
we believe that this result is of independent interest on its own. We then specialize it
to the model considered for systemic risk in Sect. 4.3.1.

4.1 The Model

Wework with a finite horizon T > 0. Recall that we denote by τ > 0 the delay length.
As explained in the introduction, the delay is implemented with a (signed) measure
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θ on [0, τ ], and in the case of interest, we shall use the particular case θ = δ0 − δτ .
All the stochastic processes are defined on a probability space (�,F ,P) equipped
with a right continuous filtration F = (Ft )0≤t≤T . The state and control processes are
denoted by X = (Xt )0≤t≤T and α = (αt )0≤t≤T . They are progressively measurable
processes with values in (Rd)N and a closed convex subset A of (Rd)N , respectively.
They are linked by the dynamical equation:

dXt = 〈α[t], θ〉dt + σdWt (17)

where W = (Wt )0≤t≤T is a (d × N )-dimensional F-Brownian motion, σ is a positive
constant or a matrix. We use the notation α[t] = α[t−τ,t] for the restriction of the path
of α to the interval [t−τ, t]. By convention, and unless specified otherwise, we extend
functions defined on the interval [0, T ] to functions on [−τ, T + τ ] by setting them
equal to 0 outside the interval [0, T ]. Also, we use the bracket notation < f, θ > to
denote the integral

∫ τ

0 f (s)θ(ds).
We assume that the dynamics of the state Xt of the system are given by a stochastic

differential equation (17) which we can rewrite in coordinate form if we denote by
Xi
t the N components of Xt , in which case we can interpret Xi

t as the private state of
player i :

dXi
t =

(∫ τ

0
αi
t−sθ(ds)

)
dt + σdWi

t , 0 ≤ t ≤ T, (18)

where the components Wi
t , i = 1, . . . , N of Wt are independent standard Wiener

processes, and the component processes (αi
t )t≥0 can be interpreted as the strategies

used by the individual players. As explained in the introduction, θ is a nonnegative
measure on [0, τ ] implementing the impact of the delay on the dynamics. Recall
that the special case of interest corresponds to θ = δ0 − δτ . We assume the initial
conditions:

Xi
0 = ξ i , and αi

t = 0, t ∈ [−τ, 0[. (19)

The assumptions that the various states have the same volatility σ > 0 and the delay
measure θ is the same for all the players are onlymade for convenience. These symme-
try properties are important to derive mean field limits, but they are not really needed
when we deal with finitely many players. The objective function of player i is given
by (4) which we repeat here:

J i (α) = E

{∫ T

0
fi (Xt , α

i
t )dt + gi (XT )

}
.

For the sake of simplicity, we assume that the cost fi to player i depends only upon
the control αi

t of player i , and not on the controls α
j
t for j 	= i of the other players. In

the case of games with mean field interactions, the cost functions are often of the form
fi (x, α) = f (xi , x, α) and gi (x) = g(xi , x), as in the particular case of the systemic
risk model studied in this paper where:
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fi (x, α
i ) = f (xi , x, αi ) = (αi )2

2
− qαi (x − xi ) + ε

2
(x − xi )2,

for q ≥ 0 and ε > 0 as in (5), and:

gi (x) = g(xi , x) = c

2

(
x − xi

)2
, c ≥ 0,

as in (6) and with q2 < ε to make sure that fi (x, α) is convex in (x, α). Next, we
introduce the system of adjoint equations.

4.2 The Adjoint Equations

For each player i and each given admissible control αi = (αi
t )0≤t≤T for player i , we

define the adjoint equation for player i as the backward stochastic differential equation
(BSDE):

dY i
t = −∂x fi (Xt , α

i
t )dt + Zi

t dWt , 0 ≤ t ≤ T (20)

with terminal condition Y i
T = ∂x gi (XT ), and we call the processes Yi = (Y i

t )0≤t≤T

and Zi = (Zi
t )0≤t≤T the adjoint processes corresponding to the strategy αi =

(αi
t )0≤t≤T of player i . Notice that each Yi has the same dimension as X, namely

N × d if d is the dimension of each individual player private state Xi
t , while each Zi

has dimension N 2 × d. Accordingly, we shall use the notation Y i
t = (Y i, j

t ) j=1,...,N

where each Y i, j
t has the same dimension d as each of the private states X j

t , and simi-
larly, Zi

t = (Zi, j,k
t ) j,k=1,...,N . In the application of interest to us in this paper we have

d = 1.
As before, the following notation will turn out to be helpful. If Y = (Yt )0≤t≤T is

a progressively measurable process (scalar or multivariate) with continuous sample
paths, we denote by Ỹ = (Ỹt )0≤t≤T the process defined by:

Ỹt = E

[ ∫ τ

0
Yt+sθ(ds)

∣∣Ft

]
=
∫ τ

0
E[Yt+s |Ft ] θ(ds), 0 ≤ t ≤ T .

Moreover, for each t ∈ [0, T ], x ∈ (Rd)N and y ∈ R
d , we denote by α̂i (x, y) any

α ∈ R
d satisfying:

∂α fi (x, α) = −y. (21)

Under specific assumptions the implicit function theorem will provide existence of
α̂i , and regularity properties of this function with respect to the variables x and y.

4.3 Sufficient Condition for Optimality

Theorem 4.1 Let us assume that the cost functions fi are continuously differentiable
in (x, α) ∈ (Rd)N ×R

d , and gi are continuously differentiable on (Rd)N with partial
derivatives of (at most) linear growth, and that:
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(i) the functions gi are convex;
(ii) the functions (x, α) 
→ fi (x, α) are convex.

If α = (α1
t , . . . , α

N
t )0≤t≤T is an admissible adapted open-loop strategy pro-

file (that is a function of the paths of the Brownian motions), and (X, Y, Z) =(
(X1

t , . . . , X
N
t ), (Y 1

t , . . . ,Y N
t ), (Z1

t , . . . , Z
N
t )
)
are adapted process such that the

dynamical equation (17) and the adjoint equations (20) are satisfied for the controls
αi
t = α̂i (Xt , Ỹ

i,i
t ), then the strategy profile α = (α1

t , . . . , α
N
t )0≤t≤T is an open-loop

Nash equilibrium.

Proof Wefollow the proof given in [8] in the casewithout delay.Wefix i ∈ {1, . . . , N },
a generic admissible control strategy (βt )0≤t≤T for player i , and for the sake of sim-

plicity, we denote by X ′ the state X (α̂−i ,β)
t controlled by the strategies (α̂−i , β). The

function gi being convex, almost surely, we have:

gi (XT ) − gi (X
′
T )

≤ (XT − X ′
T ) · ∂x gi (XT )

= (XT − X ′
T ) · Y i

T

=
∫ T

0
(Xt − X ′

t ) dY
i
t +

∫ T

0
Y i
t d(Xt − X ′

t )

= −
∫ T

0
(Xt − X ′

t ) · ∂x fi (Xt , α
i
t ) dt

+
∫ T

0
Y i
t · 〈α[t] − (α̂−i , β)[t], θ〉 dt + martingale

= −
∫ T

0
(Xt − X ′

t ) · ∂x fi (Xt , α
i
t ) dt

+
∫ T

0
Y i,i
t · 〈αi[t] − β[t], θ〉 dt + martingale.

Notice that we can use the classical form of integration by parts is due to the fact
that the volatilities of all the states are the same constant σ . Taking expectations of
both sides and plugging the result into

J i (α) − J i ((α−i ,β))=E

{∫ T

0
[ fi (Xt , α

i
t ) − fi (X

′
t , βt )]dt

}
+ E{gi (XT ) − gi (X

′
T )},

we get:

J i (α) − J i ((α−i ,β))

≤ E

{∫ T

0
[ fi (Xt , α

i
t ) − fi (X

′
t , βt )]dt −

∫ T

0
(Xt − X ′

t ) · ∂x fi (Xt , α
i
t ) dt

}

+E

{∫ T

0
Y i,i
t · 〈αi[t] − β[t], θ〉 dt

}
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≤ E

{∫ T

0
[αi

t − βt ]∂α fi (Xt , α
i
t ) + Y i,i

t · 〈αi[t] − β[t], θ〉 dt
}

. (22)

Notice that:

E

[ ∫ T

0
Y i,i
t · 〈αi[t] − β[t], θ〉dt

]
= E

[ ∫ τ

0

(∫ T−s

−s
Y i,i
t+s[αi

t − αi
t ]dt
)

θ(ds)

]

=
∫ τ

0

∫ T

0
E[Y i,i

t+s[αi
t − βt ]dt θ(ds)] =

∫ τ

0

∫ T

0
E[E[Y i,i

t+s |Ft ][αi
t − βt ]dt θ(ds)]

= E

[ ∫ τ

0

∫ T

0

(∫ τ

0
E[Y i,i

t+s |Ft ]θ(ds)

)
[αi

t − βt ]dt
]

= E

[ ∫ T

0
Ỹ i,i
t · [αi

t − βt ]dt
]
.

Consequently:

J i (α) − J i ((α−i ,β)) ≤ E

{∫ T

0

(
[αi

t − βt ]∂α fi (Xt , α
i
t ) + Ỹ i,i

t · [αi
t − βt ]

)
dt

}

= 0

by definition 21 of α̂(t, X̂t , Ỹ
i,i
t ). 
�

4.3.1 Example

We shall use the above result when d = 1, θ = δ0 − δ−τ so that < α[t], θ >=∫ δ

0 αt−τ θ(dτ) = αt − αt−δ , and the cost functions are given by (5) and (6), namely:

fi (x, α) = 1

2
α2 − qα(x − xi ) + ε

2
(x − xi )2

for some positive constants q and ε satisfying q < ε2 which guarantees that the
functions fi are convex. Notice that relation (21) gives α̂i (x, y) = −y − q(xi − x).
To derive the adjoint equations, we compute:

∂xi fi (x, α) =
(
1 − 1

N

)
[qα + ε(xi − x)], and ∂x j fi (x, α) = − 1

N
[qα + ε(xi − x)],

for j 	= i . Accordingly, the system of forward and advanced-backward equations
identified in the above theorem reads:

dXi
t = −〈Ỹ i,i

[t] + q(Xi[t] − X [t]), θ〉dt + σdWi
t , i = 1, . . . , N

dY i, j
t =

(
δi, j − 1

N

)
[qỸ i, j

t + (q2 − ε)(Xi
t − Xt )]dt

+
N∑

k=1

Zi, j,k
t dWk

t i, j = 1, . . . , N , (23)
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where we used the Kronecker symbol δi, j which is equal to 1 if i = j and 0 if i 	= j . If

we specialize this system to the case θ = δ0 − δτ , we have Ỹ
i, j
t = Y i, j

t −E[Y i, j
t+τ |Ft ],

so that the forward advanced-backward system reads:

dXi
t = (−Y i,i

t + Y i,i
t−τ + E[Y i,i

t+τ |Ft ] − E[Y i,i
t |Ft−τ ]

−q[Xi
t − Xi

t−τ − Xt + Xt−τ ]
)
dt + σdWi

t , i = 1, . . . , N

dY i, j
t =

(
δi, j − 1

N

)
[qY i, j

t − qE[Y i, j
t+τ |Ft ] + (q2 − ε)(X j

t − Xt )]dt +
N∑

k=1

Zi, j,k
t dWk

t

i, j = 1, . . . , N . (24)

The version of the stochastic maximum principle proved in Theorem 4.1 reduces
the problem of the existence of Nash equilibria for the system, to the solution of
forward anticipated-backward stochastic differential equation. The following result
can be used to resolve the existence issue but first we make the following remark
which is key in terms of financial interpretation.

Remark 4.1 (Clearing House Property) In the present situation, in contrast with the
case without delay presented in Sect. 3, we will not be able to derive explicit formulas
for the equilibrium optimal strategies such as (14). However, it is remarkable to see
that the clearing house property

∑
αi = 0 still holds. Indeed, setting i = j in

(23) and summing over N to derive an equation for Y t = 1
N

∑N
i=1 Y

i,i
t and Z

k
t =

1
N

∑N
i=1 Z

i,i,k
t , we find:

dY t = −
(
1

N
− 1

)
qỸ tdt +

N∑
k=1

Z
k
t dW

k
t , t ∈ [0, T ],

with terminal condition Y t = 0 for t ∈ [T, T + τ ]. This equation admits the unique
solution:

Y t = 0, t ∈ [0, T + τ ], and Z
k
t = 0, k = 1, . . . , N , t ∈ [0, T ].

and as a result,
α̂t = −Ỹ t = 0. (25)

In what follows, on the top of q2 < ε, we further assume that

q2
(
1 − 1

2N

)2

≤ ε

(
1 − 1

N

)
, (26)

which is satisfied for N large enough, or q small enough.

Theorem 4.2 The FABSDE (24) has a unique solution.
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Remark 4.2 While this theorem gives existence of open-loop Nash equilibria for the
model, it is unlikely that uniqueness holds. However, the cost functions fi and gi
depending only upon xi and x , one could consider the mean field game problem
corresponding to the limit N → ∞, and in this limiting regime, it is likely that the
strict convexity of the cost functions could be used to prove some form of uniqueness
of the solution of the equilibrium problem.

Proof We first solve the system considering only the case j = i . Once this is done, we
should be able to inject the process Xt = (X1

t , . . . , X
N
t ) so obtained into the equation

for dY i, j
t for j 	= i , and solve this advanced equation with random coefficients.

Summing over i = 1, . . . , N the equations for Xi in (23), using the clearing house
property of Remark 4.1, and denoting ξ = 1

N

∑N
i=1 ξ i give

Xt = ξ + σ

N

N∑
i=1

Wi
t , t ∈ [0, T ]. (27)

Therefore,without loss of generality,we canworkwith the “centered” variables Xi,c
t =

Xi
t − Xt , Y

i,i,c
t = Y i,i

t − Y t = Y i,i
t , and Zi,i,k,c

t = Zi,i,k
t − Z

k
t = Zi,i,k

t which must
satisfy the system:

dXi,c
t = −〈Ỹ i,i

[t] + qXi,c
[t] , θ〉dt + σ

N∑
k=1

(
δi,k − 1

N

)
dWk

t ,

dY i,i
t =

(
1 − 1

N

)
[qỸ i,i

t + (q2 − ε)Xi,c
t ]dt +

N∑
k=1

Zi,i,k
t dWk

t (28)

with Xi,c
0 = ξ i,c := ξ i − ξ , Y i,i

T = −c
( 1
N − 1

)
Xi,c
T , and Y i,i

t = 0 for t ∈]T, T + τ ]
for i = 1, . . . , N . We solve this system by extending the continuation method (see for
example [19] and [6]) to the case of stochastic games. We consider a system which
is written as a perturbation of the previous one without delay. Since we now work
with i ∈ {1, . . . , N } fixed, we drop the exponent i from the notation for the sake of
readability of the formulas.

dXλ
t = [−(1 − λ)Y λ

t − λ〈Ỹ λ[t] + qXλ[t], θ〉 + φt
]
dt

+
N∑

k=1

[
−(1 − λ)Zk,λ

t + λσ

(
δi,k − 1

N

)
+ ψk

t

]
dWk

t ,

dY λ
t =

[
−(1 − λ)Xλ

t + λ

(
1 − 1

N

)
[qỸ λ

t + (q2 − ε)Xλ
t ] + rt

]
dt

+
N∑

k=1

Zk,λ
t dWk

t (29)
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with initial condition Xλ
0 = ξ i,c and terminal condition Y λ

T = (1 − λ)Xλ
T −

λc
( 1
N − 1

)
Xλ
T + ζ i,i and Y λ

t = 0 for t ∈]T, T + τ ] in the case of c > 0, and
Y λ
T = ζ i,i and Y λ

t = 0 for t ∈]T, T + τ ] in the case of c = 0.
Here (recall that i is now fixed), φt , ψk

t , rt are for k = 1, . . . , N , square integrable
processes whichwill be chosen at each single step of the induction procedure. Also ζ is
a L2(�,FT ) randomvariable.Observe that ifλ = 0, the system (29) is a particular case
of the system in Lemma 2.5 in [19] for which existence and uniqueness is established,
and it becomes the system (28) when setting λ = 1, ζ i,i = 0, φi

t = 0, ψ
i,i,k
t = 0,

r i,it = 0, i = 1, . . . , N and k = 1, . . . , N , for 0 ≤ t ≤ T . We only give the proof of
existence and uniqueness for the solution of the system (28) in the case of c = 0. The
same arguments can be used to treat the case c > 0.

The proof relies on the following technical result which we prove in appendix. 
�

Lemma 4.1 If there exists λ0 ∈ [0, 1[ such that for any ζ and φt , rt ,ψk
t , k = 1, . . . , N

for 0 ≤ t ≤ T the system (29) admits a unique solution for λ = λ0, then there
exists κ0 > 0, such that for all κ ∈ [0, κ0[, (29) admits a unique solution for any
λ ∈ [λ0, λ0 + κ[.

Taking for granted the result of this lemma, we can prove existence and uniqueness
for (29). Indeed, for λ = 0, the result is known. Using Lemma 4.1, there exists κ0 > 0
such that (29) admits a unique solution for λ = 0 + κ where κ ∈ [0, κ0[. Repeating
the inductive argument n times for 1 ≤ nκ0 < 1 + κ0 gives the result for λ = 1
and, therefore, the existence of the unique solution for (28). Since Xi,c

t = Xi
t − Xt ,

Y i,i,c
t = Y i,i

t and Zi,i,k,c
t = Zi,i,k

t , and Xt is given by (27), we obtain a unique solution
(Xi

t ,Y
i,i
t , Zi,i,k

t ) to the system (23). 
�

5 Hamilton–Jacobi–Bellman (HJB) Approach

In this section, we return to the particular case θ = δ0 − δτ of the drift given by the
delayed control αt − αt−τ . The HJB approach for delayed systems has been applied
by [20] to a deterministic linear–quadratic control problem. Later, [21] followed a
similar approach for stochastic control problems. Here, we generalize the approach
[21] based on an infinite-dimensional representation and functional derivatives. We
extend this approach to our stochastic game model with delay in order to identify a
closed-loop Nash equilibrium.

Note that two specific features of our discussion require additional work for our
argument to be fully rigorous at the mathematical level. First, the delayed control in
the state equation appears as a mass at time t − τ and a smoothing argument as in
[14] is needed. Second, we are using functional derivatives and proper function spaces
should be introduced for our computations to be fully justified. However, since most
of the functions we manipulate are linear or quadratic, we refrain from giving the
details. In that sense, and for these two reasons, what follows is merely heuristic. A
rigorous proof of the fact that the equilibrium identified in this section is actually a
Nash equilibrium will be given in Sect. 6.
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5.1 Infinite-Dimensional Representation

Let HN be the Hilbert space defined by

H
N = R

N × L2([−τ, 0];RN ),

with the inner product

〈z, z̃〉 = z0 z̃0 +
∫ 0

−τ

z1(ξ)z̃1(ξ) dξ,

where z, z̃ ∈ H
N , and z0 and z1(.) correspond, respectively, to the R

N -valued and
L2([−τ, 0];RN )-valued components.

By reformulating the system of coupled diffusions (1) in the Hilbert space H
N ,

the system of coupled abstract stochastic differential equations (ASDE) for Z =
(Z1, . . . , ZN ) ∈ H

N appears as

dZt = (AZt + Bαt ) dt + GdWt , 0 ≤ t ≤ T,

Z0 = (ξ, 0) ∈ H
N . (30)

where Wt = (W 1
t , . . . ,WN

t ) is a standard N -dimensional Brownian motion and ξ =
(ξ1, . . . , ξ N ).

Here Zt = (Z0,t , Z1,t,r ), r ∈ [−τ, 0] corresponds to (Xt , αt−τ−r ) in the system of
diffusions (1). In other words, for each time t , in order to find the dynamics of the states
Xt , it is necessary to have Xt itself, and the past of the control αt−τ−r , r ∈ [−τ, 0].

The operator A : D(A) ⊂ H
N → H

N is defined as

A : (z0, z1(r)) →
(
z1(0),−dz1(r)

dr

)
a.e., r ∈ [−τ, 0],

and its domain is

D(A) = {(z0, z1(.)) ∈ H
N : z1(.) ∈ W1,2([−τ, 0];RN ), z1(−τ) = 0}.

The adjoint operator of A is A∗ : D(A∗) ⊂ H
N → H

N and is defined by

A∗ : (z0, z1(r)) →
(
0,

dz1(r)

dr

)
a.e., r ∈ [−τ, 0],

with domain

D(A∗) = {(w0,w1(.)) ∈ H
N : w1(.) ∈ W1,2([−τ, 0]);RN ),w0 = w1(0)}.

The operator B : RN → R
N × C∗([−τ, 0],RN ) is defined by

B : u → (u,−δ−τ (r)u), r ∈ [−τ, 0],
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where δ−τ (.) is the Dirac measure at −τ .

Remark 5.1 Note that in [21], the case of pointwise delay is not considered as the
above operator B becomes unbounded because of the dirac measure. Here, we still
use the unbounded operator B (in a heuristic sense!) and for a rigorous treatment, we
refer to [14] where they use partial smoothing.

Finally, the operator G : RN → H
N is defined by

G : z0 → (σ z0, 0).

Remark 5.2 Let Zt be a weak solution of the system of coupled ASDEs (30) and Xt

be a continuous solution of the system of diffusions (1), and then, with a similar line
of reasoning as in Proposition 2 in [21], it can be proved that Xt = Z0,t , a.s. for
all t ∈ [0, T ] (for the infinite-dimensional representation of problems with pointwise
delay in the control, see also [22]).

5.2 System of Coupled HJB Equations

In order to use the dynamic programming principle for stochastic games (we refer to
[8]) in search of closed-loop Nash equilibrium, the initial time is varied (closed-loop
means that the control at time t is a function of the state at time t and of the past of the
control). At time t ∈ [0, T ], given initial state Zt = z (whose second component is the
past of the control), bank i chooses the control αi to minimize its objective function
J i (t, z, α).

J i (t, z, α) = E

{∫ T

t
fi (Z0,s, α

i
s)dt + gi (Z0,T ) | Zt = z

}
. (31)

A Nash equilibrium α∗ is such that for any i and any admissible αi in feedback form,
one has J i (α∗) ≤ J i (α∗−i , αi ). In equilibrium, that is all other banks j 	= i have
optimized their objective function, bank i’s value function V i (t, z) is

V i (t, z) = inf
αi

J i (t, z, α). (32)

The set of value functions V i (t, z), i = 1, . . . , N is a classical solution in the sense of
Definition (5.1) of the following system of coupled HJB equations (we refer to [23]
Chapter 2, for further discussion in this regard):

∂t V
i + 1

2
Tr(Q∂zzV

i ) + 〈Az, ∂zV i 〉 + Hi
0(∂zV

i ) = 0,

V i (T ) = gi , (33)

where Q = G∗G, and the Hamiltonian function Hi
0(p

i ) : HN → R is defined by

Hi
0(p

i ) = inf
αi

[〈Bα, pi 〉 + fi (z0, α
i )]. (34)
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Definition 5.1 (Classical Solution) A set of functions V i : [0, T ] × H
N → R,

i = 1, . . . N is a classical solution of coupled equations (33) if for i = 1, . . . , N ,
V i ∈ C

{1,2}([0, T ),HN )∩C([0, T ),HN ); ∂zV i : [0, T ]×H
N → D(A∗); A∗(∂zV i ) ∈

C([0, T ),HN ); and V i satisfies (33) pointwise.

Here, pi ∈ H
N and can be written as pi = (pi,1, . . . , pi,N ) where pi,k ∈ H

1,
k = 1, . . . , N . Given that fi (z0, αi ) is convex in (z0, αi ),

α̂i = −〈B, pi,i 〉 − q(zi0 − z̄0). (35)

Therefore,

Hi
0(p) = 〈Bα̂, pi 〉 + fi (z0, α̂

i ),

=
N∑

k=1

〈B, pi,k〉
(
−〈B, pk,k〉 − q(zk0 − z̄0)

)

+1

2
〈B, pi,i 〉2 + 1

2
(ε − q2)(z̄0 − zi0)

2. (36)

We then make the ansatz

V i (t, z) = E0(t)(z̄0 − zi0)
2 − 2(z̄0 − zi0)

0∫

−τ

E1(t,−τ − s)(z̄1,s − zi1,s)ds

+
0∫

−τ

0∫

−τ

E2(t,−τ − s,−τ − r)(z̄1,s − zi1,s)(z̄1,r − zi1,r )dsdr + E3(t),

(37)

where E0(t), E1(t, s), E2(t, s, r) and E3(t) are some deterministic functions to be
determined. It is assumed that E2(t, s, r) = E2(t, r, s).

Remark 5.3 Note that the ansatz (37) depends on z ∈ H
N whose second component

is the past of all banks’ controls α. In other words, the value function V i (t, z) is an
explicit function of the past of all banks’ controls αt−τ−r , r ∈ [−τ, 0].

The derivatives of the ansatz (37) are as follows

∂t V
i = dE0(t)

dt
(z̄0 − zi0)

2 − 2(z̄0 − zi0)

0∫

−τ

∂E1(t,−τ − s)

∂t
(z̄1,s − zi1,s)ds

+
0∫

−τ

0∫

−τ

∂E2(t,−τ − s,−τ − r)

∂t
(z̄1,s − zi1,s)(z̄1,r − zi1,r )dsdr + dE3(t)

dt
,

(38)
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∂z j V
i

=

⎡
⎢⎢⎢⎢⎢⎣

2E0(t)(z̄0 − zi0) − 2
0∫

−τ

E1(t,−τ − s)(z̄1,s − zi1,s)ds

−2(z̄0 − zi0)E1(t,−τ − s)+
2

0∫
−τ

E2(t,−τ − s,−τ − r)(z̄1,r − zi1,r )dr

⎤
⎥⎥⎥⎥⎥⎦

(
1

N
− δi, j

)
,

(39)

∂z j zk V
i

=
[

2E0(t) −2E1(t,−τ − s)
−2E1(t,−τ − s) 2E2(t,−τ − s,−τ − r)

](
1

N
− δi, j

)(
1

N
− δi,k

)
.

(40)

By plugging the ansatz (37) into the HJB equation (33), and collecting all the cor-
responding terms, the following set of equations is derived for t ∈ [0, T ] and
s, r ∈ [−τ, 0].

The equation corresponding to the constant terms is

dE3(t)

dt
+
(
1 − 1

N

)
σ 2E0(t) = 0, (41)

The equation corresponding to the (z̄0 − zi0)
2 terms is

dE0(t)

dt
+ ε

2
= 2

(
1 − 1

N 2

)
(E1(t, 0) + E0(t))

2 + 2q(E1(t, 0) + E0(t)) + q2

2
.

(42)

The equation corresponding to the (z̄0 − zi0)(z̄1 − zi1) terms is

∂E1(t, s)

∂t
− ∂E1(t, s)

∂s

= 2

(
1 − 1

N 2

)(
E1(t, 0) + E0(t) + q

2(1 − 1
N2 )

)
(E2(t, s, 0) + E1(t, s)) .

(43)

The equation corresponding to the (z̄1 − zi1)(z̄1 − zi1) terms is

∂E2(t, s, r)

∂t
− ∂E2(t, s, r)

∂s
− ∂E2(t, s, r)

∂r

= 2

(
1 − 1

N 2

)
(E2(t, s, 0) + E1(t, s)) (E2(t, r, 0) + E1(t, r)) . (44)
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The boundary conditions are

E0(T ) = c

2
, E1(T, s) = 0, E2(T, s, r) = 0, E2(t, s, r) = E2(t, r, s),

E1(t,−τ) = −E0(t), ∀t ∈ [0, T [, E2(t, s,−τ) = −E1(t, s), ∀t ∈ [0, T [,
E3(T ) = 0. (45)

Note that with these boundary conditions (at t = T ), we have V i (T, z) = gi (z0) =
c
2 (z̄0 − zi0)

2, as desired.
Define Dθ = {(t, s, r) : θ ≤ t ≤ T,−τ ≤ s ≤ 0,−τ ≤ r ≤ 0}, and D =
∪0≤θ≤T Dθ .

Remark 5.4 The set of equations (41–44) with boundary conditions (45) has a unique
solution in the domain D.

Proof Here we just provide a sketch of the proof, which involves several steps. We
refer to [24] for full details of each step.
Step 1 The system of equations (41–44) is rewritten in integral form.

E3(t) = E3(0) −
t∫

0

(
1 − 1

N

)
σ 2E0(θ)dθ,

E0(t) = E0(0) +
t∫

0

[
−ε

2
+ 2

(
1 − 1

N 2

)
(E1(θ, 0) + E0(θ))2

+2q(E1(θ, 0) + E0(θ)) + q2

2

]
dθ,

E1(t, s) = −E0(min (T, t + s + τ)) + E0(T )1{t=T }

+
t∫

min (T,t+s+τ)

[
(1 − 1

N 2 )

(
E1(θ, 0) + E0(θ) + q

2(1 − 1
N2 )

)

× (E2(θ,−θ + t + s, 0) + E1(θ,−θ + t + s))

]
dθ.

E2(t, s, r) = −E1(min (T, t + s + τ), r)

+
t∫

min (T,t+s+τ)

[
2(1 − 1

N 2 ) (E2(θ,−θ + t + s, 0) + E1(θ,−θ + t + s))

× (E2(θ, r, 0) + E1(θ, r))

]
dθ, s ≤ r,

E2(t, s, r) = E2(t, r, s). (46)

Step 2 There exists a γ > 0 such that the system (46) has a unique solution for
γ ≤ t ≤ T and −τ ≤ s, r ≤ 0. The idea of the proof is to define B as the Banach
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space of the quadruples of continuous functionsβ = (E0(.), E1(., .), E2(., ., .), E3(.))

on Dγ with the norm ||β||= max
t,s,r

[|E0(t)|+ |E1(t, s)|+ |E2(t, s, r)|+ |E3(t)|]. Then,
we find a γ > 0 such that the operator J = (J0,J1,J2,J3), defined as follows,
becomes a contraction of the unit ball of B into itself, so by fixed point theorem, there
exists a unique solution.

(J3β)(t) = E3(0) −
t∫

0

(
1 − 1

N

)
σ 2E0(θ)dθ,

(J0β)(t) = E0(0) +
t∫

0

[
−ε

2
+ 2

(
1 − 1

N 2

)
(E1(θ, 0) + E0(θ))2

+2q(E1(θ, 0) + E0(θ)) + q2

2

]
dθ,

(J1β)(t, s) = −(J0β)(min (T, t + s + τ)) + E0(T )1{t=T }

+
t∫

min (T,t+s+τ)

(
1 − 1

N 2

)
⎛
⎜⎜⎜⎝E1(θ, 0) + E0(θ) + q

2

(
1 − 1

N2

)

⎞
⎟⎟⎟⎠

× (E2(θ,−θ + t + s, 0) + E1(θ,−θ + t + s))

]
dθ.

(J2β)(t, s, r) = −(J1β)(min (T, t + s + τ), r)

+
t∫

min (T,t+s+τ)

[
2

(
1 − 1

N 2

)

(E2(θ,−θ + t + s, 0) + E1(θ,−θ + t + s))

× (E2(θ, r, 0) + E1(θ, r))

]
dθ, s ≤ r,

(J2β)(t, s, r) = (J2β)(t, r, s). (47)

Step 3 The solution is extended beyond γ . 
�
Theorem 5.1 Theansatz V i (t, z) in (37) is a classical solutionof the systemof coupled
HJB equations (33).

Proof Given the functions E0 − E3 defined in (41)–(44) with boundary conditions
(45), it is straightforward to check that the ansatz V i (t, z) satisfy all the conditions set
forth in Definition (5.1). 
�

If all the other banks choose their candidate optimal controls, then the bank i’s
candidate optimal strategy α̂i , i = 1, . . . , N follows

α̂i
t = −〈B, ∂zi V

i 〉 − q(zi0 − z̄0),
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= 2

(
1 − 1

N

)[(
E1(t, 0) + E0(t) + q

2
(
1 − 1

N

)
)

(z̄0 − zi0)

−
∫ 0

−τ

(E2(t,−τ − s, 0) + E1(t,−τ − s)) (z̄1,s − zi1,s)ds

]
. (48)

In terms of the original system of coupled diffusions (1), the candidate closed-loop
Nash equilibrium corresponds to

α̂i
t = 2

(
1 − 1

N

)[(
E1(t, 0) + E0(t) + q

2
(
1 − 1

N

)
)

(X̄t − Xi
t )

+
∫ t

t−τ

[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂i
s)ds

]
, i = 1, . . . , N .

(49)

In the next Sect. 6, we provide a verification theorem which proves that the candidate
optimal controls in (48) and (49) are indeed the optimal controls corresponding to the
closed-loop Nash equilibrium.

Remark 5.5 As pointed out in Remark 4.1 of Sect. 4, in the present situation we still
have

∑N
i=1 α̂i

t = 0 as can be seen by summing (49) and using
∑N

i=1(X̄t − Xi
t ) = 0

and
∑N

i=1(
¯̂αs − α̂i

s) = 0. Therefore, in this equilibrium, the central bank serves as a
clearing house (see also Sect. 7).

6 A Verification Theorem

In this section, we provide a verification theorem establishing that the strategies given
by (49) correspond to a Nash equilibrium. Our solution is only almost explicit because
the equilibrium strategies are given by the solution of a system of integral equations.
This approach has been used by [24] to find the optimal control in a deterministic
delayed linear–quadratic control problem. Recently, [15] and [25] have applied this
approach to delayed linear–quadratic stochastic control problems. In this section, we
generalize it to delayed linear–quadratic stochastic differential games.

We recall that at time t ∈ [0, T ], given x = (x1, . . . , xN ), which should be viewed
as the state of the N banks at time t , and an A-valued function α on [0, τ [, which
should be viewed as their collective controls over the time interval [t − τ, t[, bank i
chooses the strategy αi to minimize its objective function

J i (t, x, α, (αi,t , α−i,t ))

= E

{∫ T

t
fi (Xs, α

i
s)ds + gi (XT ) | Xt = x, α[t) = α

}
. (50)

Here α[t) is defined as the restriction of the path s 
→ αs to the interval [t − τ, t[ and
αt is an admissible control strategy for the N banks over the time interval [t, T ]. We
denote by At this set of admissible strategies.

123



J Optim Theory Appl

In the search for Nash equilibria, for each bank i , we assume that the banks
j 	= i chose their strategies α−i,t for the future [t, T ], in which case, bank i’s
should choose a strategy αi,t ∈ A

i,t in order to try to minimize its objective function
J i (t, x, α, (αi,t , α−i,t )). As a result, we define the value function V i (t, x, α, α−i,t ) of
bank i by:

V i (t, x, α, α−i,t ) = inf
αi,t∈Ai,t

J i (t, x, α, (αi,t , α−i,t )). (51)

Because of the linear nature of the dynamics of the states, together with the quadratic
nature of the costs, we expect that in equilibrium, the functions J i and V i to be
quadratic functions of the state x and the past α of the control. This is consistent with
the choices we made in the previous section. Accordingly, we write the functions V i

as

V i (t, x, α) = E0(t)(x̄ − xi )2 + 2(x̄ − xi )

t∫

t−τ

E1(t, s − t)(ᾱs − αi
s)ds

+
t∫

t−τ

t∫

t−τ

E2(t, s − t, r − t)(ᾱs − αi
s)(ᾱr − αi

r )dsdr + E3(t),(52)

where we dropped the dependence of V i upon its fourth parameter α−i,t because
the right-hand side of (52) does not depend upon α−i,t . The deterministic functions
Ei (i = 0, . . . , 3) are the solutions of the system (41–44) with the boundary conditions
(45).

Themain result of this section is Proposition 6.1 belowwhich says that any solution
of the system (49) of integral equations provides a Nash equilibrium. For that reason,
we first prove existence and uniqueness of solutions of these integral equations when
they are recast as a fixed point problem in classical spaces of adapted processes. This
is done in Lemma 6.1 below. We simplify the notation and we rewrite equation (49)
for the purpose of the proof of the lemma. We set:

ϕ(t) = 2

(
1 − 1

N

)(
E1(t, 0) + E0(t) + q

2
(
1 − 1

N

)
)

and

ψ̄(t, s) = [E2(t, s − t, 0) + E1(t, s − t)]1[t−τ,t](s)

so that equation (49) can be rewritten as:

α̂i
t = ϕ(t)(X̄t − Xi

t ) +
∫ t

0
ψ̄(t, s)( ¯̂αs − α̂i

s)ds

= ϕ(t)

(
(ξ̄ − ξ i ) −

∫ t

0
[( ¯̂αs − α̂i

s) − ( ¯̂αs−τ − α̂i
s−τ )]ds + σ [W̄t − Wi

t ]
)
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+
∫ t

0
ψ̄(t, s)( ¯̂αs − α̂i

s)ds. (53)

Summing these equations for i = 1, . . . , N ,we see that any solution should necessarily
satisfy

∑
1≤i≤N α̂i = 0, so that if we look for a solution of the system (49), we might

as well restrict our search to processes satisfying ¯̂αt = 0 for all t ∈ [0, T ].
So we denote by R

N
0 the set of elements x = (x1, . . . , xN ) of R

N satisfy-

ing
∑

1≤i≤N xi = 0, and by H2,N
0 the space of R

N
0 -valued adapted processes

a = (at )0≤t≤T satisfying

‖a‖20 := E

[ ∫ T

0
|at |2dt

]
< ∞.

Clearly,H2,N
0 is a real separable Hilbert space for the scalar product derived from the

norm ‖ · ‖0 by polarization. For a ∈ H2,N
0 we define theRN

0 -valued process Ψ (a) by:

Ψ (a)it = ϕ(t)(ξ̄−ξ i )+σϕ(t)[W̄t−Wi
t ]+
∫ t

0
ψ(t, s)aisds, 0 ≤ t ≤ T, i = 1, . . . , N .

(54)
where the function ψ is defined by ψ(t, s) = 1 − 1[0,0∨(t−τ)](s) − ψ̄(t, s). We shall
use the fact that the functions ϕ and ψ are bounded.

Given the above setup, existence and uniqueness of a solution to (49) is given by the
following lemmawhose proof mimics the standard proofs of existence and uniqueness
of solutions of stochastic differential equations.

Lemma 6.1 The map Ψ defined by (54) has a unique fixed point inH2,N
0 .

Sketch of Proof We first check that Ψ maps H2,N
0 into itself. Indeed, if a ∈ H2,N

0 ,

‖Ψ (a)‖20 = E

∫ T

0
|Ψ (a)t |2dt

≤ C
N∑
i=1

[
E[|ξ̄ − ξ i |2]

∫ T

0
ϕ(t)2dt + σ 2

∫ T

0
ϕ(t)2E[|W̄t − Wi

t |2]dt

+
∫ T

0
E

[( ∫ t

0
ψ(t, s)aisds

)2] dt
]

≤ C ′ + C ′′
∫ T

0
E[|as |2]ds < ∞, (55)

where we have used that the functions ϕ and ψ are bounded. That proves that Ψ (a) ∈
H2,N

0 . Existence and uniqueness of a fixed point is obtained by proving that Ψ is a

strict contraction for a norm equivalent to the original norm ‖ · ‖0 ofH2,N
0 . One can
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use the equivalent norm ‖ · ‖ε defined by:

‖a‖2ε = E

[ ∫ T

0
e−εt |at |2dt

]

for a positive number ε > 0 to be chosen appropriately (we omit the remaining details).

�

We now prove existence of Nash equilibria for the system.

Proposition 6.1 The strategies (α̂i
t )0≤t≤T, i=1,...,N given by the solution of the system

of integral equations (49) form a Nash equilibrium, and the corresponding value
functions are given by (52).

In other words, we prove that

V i (0, ξ i , α[0)) ≤ J i (0, ξ i , α[0), (αi , α̂−i )),

for any αi , and choosing αi = α̂i gives:

V i (0, ξ i , α[0)) = J i (0, ξ i , α[0), (α̂i , α̂−i )).

Notice that the equilibrium strategies, which we identified, are in feedback form in
the sense that each α̂i

t is a deterministic function of the trajectory X[0,t] of the past
of the state. Notice also that there is absolutely nothing special with the time t = 0
and the initial condition X0 = ξ, α[0) = 0. Indeed, for any t ∈ [0, T ] and R

N -
valued square integrable random variable ζ , the same proof can be used to construct
a Nash equilibrium for the game over the interval [t, T ] and any initial condition
(Xt = ζ, α[t)).

Proof We fix an arbitrary i ∈ {1, . . . , N }, an admissible control αi ∈ A
−i for player

i , and we assume that the state process (Xt )0≤t≤T for the N banks is controlled by
(αi

t , α̂
i
t )0≤t≤T where (α̂k

t )0≤t≤T, k=1,...,N solves the system of integral equations (49).
Next, we apply Itô’s formula to V i (t, Xt , α[t)) where the function V i is defined by
(52) (see [26] Section 4.4 for infinite dimensional Itô’s formula, and note that here V i

is differentiable in t and quadratic in (x, α[t))). We obtain

dV i (t, Xt , α[t))

=
{
dE0(t)

dt
(X̄t − Xi

t )
2 + 2E0(t)(X̄t − Xi

t )
(
ᾱt − αi

t − (ᾱt−τ − αi
t−τ )

)

+
N∑
j=1

σ 2E0(t)

(
1

N
− δi, j

)2

+ 2
(
ᾱt − αi

t − (ᾱt−τ − αi
t−τ )

)

×
t∫

t−τ

E1(t, s − t)(ᾱs − αi
s)ds
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+2(X̄t − Xi
t )

t∫

t−τ

[
∂E1(t, s − t)

∂t
− ∂E1(t, s − t)

∂s

]
(ᾱs − αi

s)ds

+2(X̄t − Xi
t )E1(t, 0)(ᾱt − αi

t ) − 2(X̄t − Xi
t )E1(t,−τ)(ᾱt−τ − αi

t−τ )

+
t∫

t−τ

t∫

t−τ

[
∂E2(t, s − t, r − t)

∂t
− ∂E2(t, s − t, r − t)

∂s

−∂E2(t, s − t, r − t)

∂r

]
(ᾱs − αi

s)(ᾱr − αi
r )dsdr

+(ᾱt − αi
t )

( t∫

t−τ

E2(t, s − t, 0)(ᾱs − αi
s)ds

+
t∫

t−τ

E2(t, 0, r − t)(ᾱr − αi
r )dr

)

−(ᾱt−τ − αi
t−τ )

( t∫

t−τ

E2(t, s − t,−τ)(ᾱs − αi
s)ds

+
t∫

t−τ

E2(t,−τ, r − t)(ᾱr − αi
r )dr

)
+ dE3(t)

dt

}
dt

+2
N∑
j=1

(
1

N
− δi, j )

{
E0(t)(X̄t − Xi

t ) +
t∫

t−τ

E1(t, s − t)(ᾱs − αi
s)ds

}
σdW j

t .

(56)

Then, integrating between 0 and T , using V i (T, XT ) = gi (XT ) (ensured by the
boundary conditions at t = T for Ek, k = 0, 1, 2, 3), taking expectation, using the
differential equations (41–44), using the short notation A1 = 1 − 1

N , A2 = 1 − 1
N2 ,

and adding E

T∫
0

fi (Xs, α
i
s)dt on both sides, one obtains:

−V i (0, ξ i , α[0)) + E(gi (XT )) + E

T∫

0

fi (Xs , α
i
s)dt

= −V i (0, ξ i , α[0)) + J i (0, ξ i , α[0), α)

= E

T∫

0

{[
− ε

2
+ 2A2(E1(t, 0) + E0(t))

2 + 2q(E1(t, 0) + E0(t)) + q2

2

]
(X̄t − Xi

t )
2

+2E0(t)(X̄t − Xi
t )
(
(ᾱt − αit ) − (ᾱt−τ − αit−τ )

)
+ σ 2E0(t)

N∑
j=1

(
1

N
− δi, j

)2
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+2
(
ᾱt − αit − (ᾱt−τ − αit−τ )

) t∫

t−τ

E1(t, s − t)(ᾱs − αis)ds

+2(X̄t − Xi
t )

t∫

t−τ

[
2A2

(
E1(t, 0) + E0(t) + q

2A2

)

× (E2(t, s − t, 0) + E1(t, s − t))

]
(ᾱs − αis)ds

+2(X̄t − Xi
t )E1(t, 0)(ᾱt − αit ) − 2(X̄t − Xi

t )E1(t,−τ)(ᾱt−τ − αit−τ )

+
t∫

t−τ

t∫

t−τ

[
2A2 (E2(t, s − t, 0) + E1(t, s − t)) (E2(t, r − t, 0) + E1(t, r − t))

]

×(ᾱs − αis)(ᾱr − αir )dsdr

+(ᾱt − αit )

⎛
⎝

t∫

t−τ

E2(t, s − t, 0)(ᾱs − αis)ds +
t∫

t−τ

E2(t, 0, r − t)(ᾱr − αir )dr

⎞
⎠

−(ᾱt−τ − αit−τ )

( t∫

t−τ

E2(t, s − t, −τ)(ᾱs − αis)ds

+
t∫

t−τ

E2(t,−τ, r − t)(ᾱr − αir )dr

)

−A1σ
2E0(t) + 1

2
(αit )

2 − qαit (X̄t − Xi
t ) + ε

2
(X̄t − Xi

t )
2
}
dt. (57)

Observe that the terms in ε cancel, the terms in σ 2 cancel, and the terms involv-
ing delayed controls cancel using symmetries and boundary conditions (45) for the
functions Ek’s.

Next, motivated by (49), we rearrange the terms left in (57) so that the square of

αi
t − 2A1

[(
E1(t, 0) + E0(t) + q

2A1

)
(X̄t − Xi

t )

+
∫ t

t−τ

[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂i
s)ds

]

appears first. We obtain

−V i (0, ξ i , α[0)) + J i (0, ξ i , α[0), α)

= E

T∫

0

{
1

2

(
αi
t − 2A1

[(
E1(t, 0) + E0(t) + q

2A1

)
(X̄t − Xi

t )

123



J Optim Theory Appl

+
∫ t

t−τ

[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂i
s)ds

])2

+(X̄t − Xi
t )
2
[

− 2[A1(E1(t, 0) + E0(t) + q

2

]2

+2A2(E1(t, 0) + E0(t))
2 + 2q(E1(t, 0) + E0(t)) + q2

2

]

+(X̄t − Xi
t )
[
2αi

t [A1(E1(t, 0) + E0(t)] + 2(E1(t, 0) + E0(t))(ᾱt − αi
t )
]

+(X̄t − Xi
t )

(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)

×
[
−4A1

(
A1(E1(t, 0) + E0(t) + q

2

)
+ 4A2

(
E1(t, 0) + E0(t) + q

2A2

)]

+
(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)[
2A1α

i
t + 2(ᾱt − αi

t )
]

+
(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)2 [
−2A2

1 + 2A2

] }
dt.

(58)

Using A2 = A2
1 + 2

N A1 and the relation ᾱt − αi
t = 1

N

∑
j 	=i

α
j
t − A1α

i
t , we simplify

(58) to obtain:

−V i (0, ξ i , α[0)) + J i (0, ξ i , α[0), α)

= E

T∫

0

{
1

2

(
αi
t − 2A1

[(
E1(t, 0) + E0(t) + q

2A1

)
(X̄t − Xi

t )

+
∫ t

t−τ

[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂i
s)ds

])2

+(X̄t − Xi
t )
2
[
4

N
A1(E1(t, 0) + E0(t))

2 + 2q

N
(E1(t, 0) + E0(t))

]

+(X̄t − Xi
t )

⎡
⎣ 2

N

∑
j 	=i

α
j
t (E1(t, 0) + E0(t))

⎤
⎦

+(X̄t − Xi
t )

(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)

×
[
8

N
A1(E1(t, 0) + E0(t)) + 2q

N

]

+
(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)⎡
⎣ 2

N

∑
j 	=i

α
j
t

⎤
⎦
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+
(∫ t

t−τ

(E2(t, s − t, 0) + E1(t, s − t)(ᾱs − αi
s)ds

)2 [ 4

N
A1

]}
dt. (59)

Now, assuming that the players j 	= i are using the strategies α̂
j
t given by (49), the

quantity
∑
j 	=i

α
j
t becomes

∑
j 	=i

α̂
j
t = −2A1

[(
E1(t, 0) + E0(t) + q

2A1

)
(X̄t − Xi

t )

+
∫ t

t−τ

[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂i
s)ds

]
.

Plugging this last expression in (59), one sees that the terms after the square cancel
and we get

−V i (0, ξ i , α[0)) + J i (0, ξ i , α[0), (αi , α̂−i ))

= E

T∫

0

{
1

2

(
αit − 2A1

[(
E1(t, 0) + E0(t) + q

2A1

)
(X̄t − Xi

t )

+
∫ t

t−τ
[E2(t, s − t, 0) + E1(t, s − t)] ( ¯̂αs − α̂is)ds

])2 }
dt.

(60)

Consequently V i (0, ξ i , α[0)) ≤ J i (0, ξ i , α[0), (αi , α̂−i )), and choosingαi = α̂i leads
to V i (0, ξ i , α[0)) = J i (0, ξ i , α[0), (α̂i , α̂−i )). 
�
Remark 6.1 While we obtained the existence of a closed-loop Nash equilibrium for
the model, it is unlikely that uniqueness holds. However, like in Remark 4.2 for open-
loop Nash equilibria, one could consider the mean field game problem corresponding
to the limit N → ∞, and in this limiting regime, it is likely that the strict convexity
of the cost functions could be used to prove some form of uniqueness of the solution
of the equilibrium problem.

7 Financial Implications and Numerical Illustration

The main finding is that taking into account repayment with delay does not change
the fact that the central bank providing liquidity is acting as a clearing house in all the
Nash equilibria we identified (open loop in Sect. 4 or closed loop in Sects. 5 and 6).

The delay time, that is the single repayment maturity τ that we considered in this
paper, controls the liquidity provided by borrowing and lending. The two extreme
cases are:

1. No borrowing/lending: τ = 0:
In that case, no liquidity is provided and the log-reserves Xi

t follow independent
Brownian motions.
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Fig. 1 Liquidity as a function of the delay time τ . The parameters are T = 20, q = 1, ε = 2, and c = 0

2. No repayment: τ ≥ T :
This is the case studied previously in [1] and summarized in Sect. 3. The rate of
liquidity (the speed at which money is flowing through the system) is given by[
q + (1 − 1

N )φt
]
as shown in equation (12).

3. Intermediate regime 0 < τ < T :
We conjecture that in the regime T large and zero terminal condition (c = 0), for
fixed t the rate of liquidity is monotone in τ in a fixed range [0, τmax]. For instance,
in the case of the closed-loop equilibrium obtained in Sect. 6 given by (49), the
rate of liquidity is [2E1(t, 0) + 2E0(t) + q], where the function E1 and E0 are
solutions to the system (41–43). These solutions are not given by closed-form
formulas. We computed them numerically. We show in Fig. 1 that as expected,
liquidity increases as τ increases. This is clear for values of τ which are small
relative to the time horizon T . For values of τ , which are large and comparable
with T , the boundary effect becomes more important as oscillations propagate
backward.

8 Conclusions

We proposed a continuous-time model for inter-bank borrowing and lending which
takes into account clearing debt obligations. By controlling their rate of borrow-
ing/lending, banks minimize an objective function comprising a quadratic cost and
an incentive to stay close to the average capitalization. Our model is a finite-player
linear–quadratic stochastic differential game with delay. The novelty is in the pres-
ence of the delay, and especially delay in the controls. We characterized an open-loop
Nash equilibriumusing a systemof forward advanced-backward stochastic differential
equations (FABSDEs), and a closed-loop Nash equilibrium using a system of infinite-
dimensional Hamilton–Jacobi–Bellman equations and a verification argument. We do
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not expect uniqueness of these equilibria. Still, we show that the equilibria we iden-
tified satisfy the desirable “clearing house condition” which ensures that the overall
sum of lending and borrowing is zero, so that the central bank acts only as a clear-
ing house. The question of the existence of other equilibria satisfying this condition
remains open. Accordingly, the case of more general (nonlinear–quadratic) stochastic
differential games with delay is open for further study.

Our model is solved by a construction of the “mean field” type. Part of our ongoing
research is to derive the master equation for the corresponding mean field game with
delay. Such an equation involves naturally the law of the past of the control and
therefore, falls in the category of the so-called extended mean field games. In our
model, the derivation of the master equation and its solution will offer a practical tool
to approximate the solution of the finite-player games and, hopefully, to derive large
deviation estimates related to systemic risk.
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Appendix: Proof of Lemma 4.1

Proof Assuming that (X̌ , Y̌ , (Ž k)k=1,...,N ) is given as an input, we solve the system
(29) for λ = λ0 and the processes φt , ψk

t , rt and the random variable ζ replaced
according to the prescriptions:

φt ← φt + κ
[
Y̌t − 〈˜̌Y [t] + q X̌[t], θ〉]

ψk
t ← ψk

t + κ
[
Ž k
t + σ

(
1

N
− δi,k

)]
, k = 1, . . . , N

rt ← rt + κ
[
X̌t +

(
1 − 1

N

) [
q˜̌Y t +

(
q2 − ε

)
X̌t
]]

ζ ← ζ + κ
[−X̌T + c

(
1 − 1

N

)
X̌T
]
,

and denote the solution by (X,Y, (Zk)k=1,...,N ). In this way, we defined a mapping

Φ : (X̌ , Y̌ , (Ž k)k=1,...,N ) → Φ(X̌ , Y̌ , (Ž k)k=1,...,N ) = (X,Y, (Zk)k=1,...,N ),

and the proof consists in proving that the latter is a contraction for small enough κ > 0.
Consider (X̂ , Ŷ , (Ẑ k)k=1,...,N ) = (X − X ′,Y − Y ′, (Zk − Zk′)k=1,...,N ) where

(X,Y, (Zk)k=1,...,N ) and (X ′,Y ′, (Zk ′
)k=1,...,N ) are the corresponding image using

inputs (X̌ , Y̌ , (Ž k)k=1,...,N ) and (X̌ ′, Y̌ ′, (Ž k′)k=1,...,N ). We obtain

dX̂t = [−(1 − λ0)Ŷt − λ0 < ˜̂Y [t] + q X̂[t], θ > +κ
[̂̌Yt− <

˜̌̂
Y [t] + q̂̌X [t], θ >

]]
dt
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+
N∑

k=1

[−(1 − λ0)Ẑ
k
t + κ

̂̌Zk

t

]
dWk

t

dŶt =
[
−(1 − λ0)X̂t + λ0

(
1 − 1

N

)[
q˜̂Y t + (q2 − ε)X̂t

]

+κ
[̂̌Xt + (1 − 1

N

)[
q
˜̌̂
Y t + (q2 − ε)

̂̌Xt
]]]

dt +
N∑

k=1

Ẑ k
t dW

k
t , (61)

with initial condition X̂0 = 0 and terminal conditions ŶT = (1 − λ0)X̂T +
λ0c

(
1 − 1

N

)
X̂T − κ

̂̌XT + κc(1 − 1
N )
̂̌XT and Ŷt = 0 for t ∈ (T, T + τ ] in the

case of c > 0, and ŶT = 0 and Ŷt = 0 for t ∈ (T, T + τ ] in the case of c = 0. As we
stated in the text, we only give the proof in the case c = 0 to simplify the notation.
The proof of the case c > 0 is a easy modification. Using the form of the terminal
condition and Itô’s formula, we get

0 = E[ŶT X̂T ]
= E

∫ T

0

{
Ŷt

[
− (1 − λ0)Ŷt − λ0〈˜̂Y [t] + q X̂[t], θ〉 + κ

[
̂̌Yt − 〈˜̌̂Y [t] + q̂̌X [t], θ〉

] ]

+X̂t

[
− (1 − λ0)X̂t + λ0

(
1 − 1

N

)[
q˜̂Y t + (q2 − ε)X̂t

]

+κ

[
̂̌Xt +

(
1 − 1

N

)[
q
˜̌̂
Y t + (q2 − ε)

̂̌Xt

]] ]
− (1 − λ0)

N∑
k=1

|Ẑ k
t |2 + κ

N∑
k=1

Ẑ k
t
̂̌Zk
t

}
dt

(62)

= −(1 − λ0)E

∫ T

0
|Ŷt |2dt − λ0E

∫ T

0
Ŷt 〈˜̂Y [t] + q X̂[t], θ〉dt

+κE

∫ T

0
Ŷt

[
̂̌Yt − 〈˜̌̂Y [t] + q̂̌X [t], θ〉

]
dt

−(1 − λ0)E

∫ T

0
|X̂t |2dt + λ0

(
1 − 1

N

)
E

∫ T

0
X̂t

[
q˜̂Y t + (q2 − ε)X̂t

]
dt

+κE

∫ T

0
X̂t

[
̂̌Xt +

(
1 − 1

N

)[
q
˜̌̂
Y t + (q2 − ε)

̂̌Xt

]]
dt

−(1 − λ0)E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt + κ

N∑
k=1

Ẑ k
t
̂̌Zk
t dt (63)

and rearranging the terms we find: and rearranging the terms we find:

(1 − λ0)
[
E

∫ T

0
|X̂t |2dt + E

∫ T

0
|Ŷt |2dt + E

∫ T

0

N∑
k=1

|Ẑ k
t |2 dt

]

= κE

∫ T

0
X̂t
̂̌Xtdt − λ0E

∫ T

0
Ŷt 〈˜̂Y [t] + q X̂[t], θ〉dt
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+κE

∫ T

0
Ŷt
[̂̌Yt − 〈˜̌̂Y [t] + q̂̌X [t], θ〉]dt + λ0

(
1 − 1

N

)
E

∫ T

0
X̂t
[
q˜̂Y t + (q2 − ε)X̂t

]
dt

+κ
(
1 − 1

N

)
E

∫ T

0
X̂t
[
q
˜̌̂
Y t + (q2 − ε)

̂̌Xt
]]
dt + κE

∫ T

0

N∑
k=1

Ẑ k
t
̂̌Zk
t dt

Letting μ = ε(1 − 1
N ) − q2(1 − 1

2N )2 > 0, we obtain:

(1 − λ0 + λ0μ)E

∫ T

0
|X̂t |2dt + (1 − λ0)E

∫ T

0
|Ŷt |2dt + (1 − λ0)E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt

≤ κE

∫ T

0
Ŷt
[̂̌Yt − 〈˜̌̂Y [t] + q̂̌X [t], θ〉]dt

+κ
(
1 − 1

N

)
E

∫ T

0

((
q2 − ε

) ̂̌Xt + q
˜̌̂
Y t
)
X̂tdt + κE

∫ T

0

N∑
k=1

Ẑ k
t
̂̌Zk

t dt,

and a straightforward computation using repeatedly Cauchy–Schwarz and Jensen’s
inequalities leads to the existence of a positive constant K1 such that

(1 − λ0 + λ0μ)E

∫ T

0
|X̂t |2dt + (1 − λ0)E

∫ T

0
|Ŷt |2dt + (1 − λ0)E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt

≤ κK1

{
E

∫ T

0
|X̂t |2dt + E

∫ T

0
|Ŷt |2dt + E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt

+E

∫ T

0
|̂̌Xt |2dt + E

∫ T

0
|̂̌Y t |2dt + E

∫ T

0

N∑
k=1

|̂̌Zk

t |2dt
}
.

Referring to [27], applying Itô’s formula to |X̂t |2 and |Ŷt |2, Gronwall’s inequality, and
again Cauchy–Schwarz and Jensen’s inequalities, owing to 0 ≤ λ0 ≤ 1, we obtain a
constant K2 > 0 independent of λ0 so that

sup
0≤t≤T

E|X̂t |2 ≤ κK2

{
E

∫ T

0
|̂̌Xt |2 + |̂̌Y t |2 +

N∑
k=1

|̂̌Zk

t |2dt
}

+K2

{
E

∫ T

0
|Ŷt |2 +

N∑
k=1

|Ẑ k
t |2dt

}
,

E

∫ T

0
|X̂t |2dt ≤ κK2T

{
E

∫ T

0
|̂̌Xt |2 + |̂̌Y t |2 +

N∑
k=1

|̂̌Zk

t |2dt
}

+K2T

{
E

∫ T

0
|Ŷt |2 +

N∑
k=1

|Ẑ k
t |2dt

}
,
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E

∫ T

0
|Ŷt |2 +

N∑
k=1

|Ẑ k
t |2dt ≤ κK2

{
E

∫ T

0
|̂̌Xt |2 + |̂̌Y t |2 +

N∑
k=1

|̂̌Zk

t |2dt
}

+K2E

∫ T

0
|X̂t |2dt. (64)

By using (64), there exists 0 < μ′ < μ/K2 such that

λ0μ
′K2E

∫ T

0
|X̂t |2dt

≥ λ0μ
′
(
E

∫ T

0
|Ŷt |2 +

N∑
k=1

|Ẑ k
t |2dt

)

−λ0μ
′κK2

{
E

∫ T

0
|̂̌Xt |2 + |̂̌Y t |2 +

N∑
k=1

|̂̌Zk

t |2dt
}

≥ λ0μ
′
(
E

∫ T

0
|Ŷt |2 +

N∑
k=1

|Ẑ k
t |2dt

)

−μ′κK2

{
E

∫ T

0
|̂̌Xt |2 + |̂̌Y t |2 +

N∑
k=1

|̂̌Zk

t |2dt
}

(65)

Therefore, we have

(
1 − λ0 + λ0(μ − K2μ

′)
)
E

∫ T

0
|X̂t |2dt

+(1 − λ0 + λ0μ
′)E
∫ T

0
|Ŷt |2dt + (1 − λ0 + λ0μ

′)E
∫ T

0

N∑
k=1

|Ẑ k
t |2dt

≤ κK1

{
E

∫ T

0
|X̂t |2dt + E

∫ T

0
|Ŷt |2dt + E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt

+E

∫ T

0
|̂̌Xt |2dt + E

∫ T

0
|̂̌Y t |2dt + E

∫ T

0

N∑
k=1

|̂̌Zk

t |2
}

+κK2μ
′
{
E

∫ T

0
|̂̌Xt |2dt + E

∫ T

0
|̂̌Y t |2dt + E

∫ T

0

N∑
k=1

|̂̌Zk

t |2dt
}

. (66)

Note that sinceμ−K2μ
′ andμ′ stay in positive,we have (1−λ0+λ0(μ−K2μ

′)) ≥ μ′′
and (1−λ0+λ0μ

′) ≥ μ′′ where for someμ′′ > 0. Combining the inequalities (64–66),
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we obtain

E

∫ T

0
|X̂t |2dt + E

∫ T

0
|Ŷt |2dt + E

∫ T

0

N∑
k=1

|Ẑ k
t |2dt

≤ κK

(
E

∫ T

0
|̂̌Xt |2dt + E

∫ T

0
|̂̌Y t |2dt + E

∫ T

0

N∑
k=1

|̂̌Zk

t |2dt
)

, (67)

where the constant K depends upon μ′, μ′′, K1, K2, and T . Hence, Φ is a strict
contraction for sufficiently small κ . 
�
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