72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Memory Forensics and the Windows Subsystem for Linux

By
Nathan Lewis, Andrew Case, Aisha Ali-Gombe, Golden G.
Richard Ill

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2018 USA
Providence, Rl (July 15" - 18t)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and forensic challenges to help drive the direction of research
and development.

https:/dfrws.org

Digital Investigation 26 (2018) S3—S11

ocde=F E)
ELSEVI

Digital Investigation

ER journal homepage: www.elsevier.com/locate/diin

Contents lists available at ScienceDirect 2.l
DFRWS 2018

DFRWS 2018 USA — Proceedings of the Eighteenth Annual DFRWS USA

Memory forensics and the Windows Subsystem for Linux "

Nathan Lewis €, Andrew Case 2, Aisha Ali-Gombe 9, Golden G. Richard III ® ¢ *

2 Volatility Foundation, USA

b Center for Computation and Technology, Louisiana State University, USA

€ School of Electrical Engineering & Computer Science, Louisiana State University, USA
d Department of Computer and Information Sciences, Towson University, USA

Check for
updates

ABSTRACT

Keywords:

Memory forensics
Computer forensics
Memory analysis

The Windows Subsystem for Linux (WSL) was first included in the Anniversary Update of Microsoft's
Windows 10 operating system and supports execution of native Linux applications within the host
operating system. This integrated support of Linux executables in a Windows environment presents
Windows 10 challenges to existing memory forensics frameworks, such as Volatility, that are designed to only support
Linux one operating system type per analysis task (e.g., execution of a single framework plugin). WSL breaks this
WSL analysis model as Linux forensic artifacts, such as ELF executables, are active in a sample of physical
memory from a system running Windows. Furthermore, WSL integrates Linux-specific data structures into
existing Windows data structures, such as those used to track per-process metadata as well as userland
runtime data. This integration results in existing analysis plugins producing inconsistent results when
analyzing native Windows processes compared to WSL processes. Further complicating this situation is
the fact that much of the WSL subsystem internals are completely undocumented. To remedy the current
deficiencies related to WSL analysis, a research effort was undertaken to understand which existing
Volatility plugins are affected by the introduction of WSL as well as what updates are necessary to fully
support memory forensics of WSL. This paper describes these efforts, including our study of the operating
systems data structures relevant to WSL as well as the development of new Volatility analysis plugins.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Windows Subsystem for Linux (WSL) (The Windows
Subsystem for Linux, 2017) is a significant new feature that was
introduced in the Anniversary Update of Microsoft's Windows 10
operating system. WSL provides the first truly native support for
Linux applications on a Windows operating system by imple-
menting loading and execution of ELF applications and libraries.
The ability to run native ELF files brings a large and diverse set of
existing Linux applications to Windows users, such as web, email,
FTP, and SSH servers, as well as a full suite of end-user applications.
Along with providing a simple method for transitioning existing
applications from Linux to Windows, Microsoft has also pledged a
long-term commitment to WSL as reflected in its documentation
(MSDN, 2017) and in the large set of updates and new features that
were included in the Fall Creators Update (Raj, 2017). The combined
effect of these actions suggests that WSL will be present and

* Corresponding author.
E-mail addresses: nplewis@lsu.edu (N. Lewis), andrew@dfir.org (A. Case),
aaligombe@towson.edu (A. Ali-Gombe), golden@cct.Isu.edu (G.G. Richard).

https://doi.org/10.1016/j.diin.2018.04.018

supported for many years and that defensive security practices
must account for its existence.

Unfortunately, the introduction of a new executable file format
into Microsoft Windows, along with a very large number of new
Linux applications, provides an immense challenge for endpoint
software security vendors, such as anti-virus companies (lonescu,
2016a). While these companies have dedicated nearly two de-
cades of research to understanding and detecting threats from
Portable Executable (PE) format files, the native Windows execut-
able file format, the very recent introduction of ELF requires an
entirely new set of detection capabilities and algorithms. As
described in Section 3, not only does the file new format provide
challenges, but the architecture that supports ELF files also in-
troduces many new data structures that make traditional malware
detection techniques inadequate.

This gap in traditional Windows analysis techniques affects not
only runtime software security vendors, but also memory forensics
frameworks, since these frameworks are very sensitive to the
location and layout of data structures populated by the operating
system. Specifically, the ability to correctly locate and parse these

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

S4 N. Lewis et al. / Digital Investigation 26 (2018) S3—S11

data structures is a fundamental design component of memory
forensics tools and similarly, the ability to locate all relevant
memory-resident artifacts is a requirement for thorough malware
and anomaly detection. The introduction of new data structures
and algorithms by WSL breaks many existing algorithms imple-
mented by current analysis frameworks. Furthermore, a class of
malware known as bashware can programatically enable WSL and
execute malicious code while taking advantage of the obfuscation
provided by WSL (Elbaz and Atias, 2017).

To close the detection gaps currently available to attackers
through WSL, we conducted research to document the new sources
of forensics artifacts produced by WSL as well as creating new
memory forensics algorithms that provide better coverage of the
WSL subsystem. This paper describes this research and its out-
comes, including discussion of the relevant WSL architectural
components, the deficiencies in existing memory forensic algo-
rithms, and the new algorithms we created to recover WSL-related
memory artifacts. Our research was conducted through reverse
engineering of the WSL userland and kernel components as well as
testing and creation of Volatility (The Volatility Framework, 2017)
plugins. Volatility was chosen as our target memory analysis
framework because of its widespread use throughout the digital
forensics community combined with its ample documentation. All
of our newly created Volatility plugins, along with our patches to
existing plugins, will be contributed to the upstream project upon
publication of this paper.

2. Related work
2.1. WSL architecture memory analysis research

Internal components of the WSL architecture are closed source
and sparsely documented by Microsoft. While Microsoft's MSDN
and Windows Internals 7th Edition (Yosifovich et al., 2017) docu-
ment the high-level design ideas and exported APIs, these refer-
ences do not describe data structures or algorithms utilized by WSL.
Microsoft also does not provide full Visual Studio debugging files
(generally referred to as PDB files) for the WSL subsystem.

The only substantial existing memory analysis research for WSL
was undertaken by Alex Ionescu and appeared in Blackhat 2016
(Ionescu, 2016a). Code, in the form of WinDbg scripts, related to
this effort is publicly available in a Github repository (lonescu,
2016b). A complete comparison between our research effort and
his is provided in Section 4.

Concurrently with our research effort, a member of the Vola-
tility development team, Michael Ligh, published a set of patches
that enabled correct reporting of WSL process names (Ligh, 2017).
Our team had performed the same research, as discussed in
Section 5.

2.1.1. Cygwin for Linux on Windows

Executing Linux programs on Windows systems was possible
before the release of WSL. Cygwin is a software project that allows
users to execute Linux programs in Windows environments. The
Cygwin terminal provides a shell environment from which users
can interact with a virtual filesystem, execute supported programs,
and issue POSIX system calls (Cygwin, 2017). The Cygwin design is
similar to WSL in that both bring lightweight virtualization of Linux
environments to Windows systems. However, the ways in which
this functionality is provided are significantly different. Cygwin
compiles Linux source code into standard PE-formatted execut-
ables, which are then linked against a library that provides POSIX
compatibility by translating between Unix and Windows system
calls. Notably, Cygwin does not introduce ELF files into Windows
and operates entirely in userspace, without kernel components. In

contrast, WSL is more tightly integrated, introduces support for
executing ELF files, and has both userland and kernel space
components.

3. WSL background

Microsoft's Drawbridge project team focused its research efforts
on application sandboxing, a method for lightweight virtualization.
The project's goal was to introduce a library operating system
model into a commercial version of Windows that relocated
operating system dependencies of sandboxed applications into
their process' address spaces (Baumann et al., 2016). Drawbridge
first produced a prototype version of Windows 7 using a library OS
architecture in 2011 (Porter et al., 2011).

Drawbridge proposed two new process types - minimal and pico
- while retaining support for Microsoft's traditional NT processes.
Unlike NT processes, minimal processes lack key Window compo-
nents that tie NT processes directly to the kernel. Fig. 1 depicts
these components. Minimal processes have empty userland
memory and are unmanaged by the kernel in many respects. Pico
processes are minimal processes that are also associated with a
corresponding kernel driver. A pico process' kernel driver is
responsible for managing the process' userland memory, threads,
scheduling, file handles, and sockets (Hammons, 2016a; Hron,
2017). This driver is commonly referred to as the pico provider.

WSL, the most prominent application of pico processes in
Windows, was released in 2017 with the 64-bit version of the
Windows 10 Fall Creators Update after more than one year of beta
testing (Turner, 2017). It enables users to directly execute userland
Linux programs in Windows 10 by associating each executing Linux
application with a pico process. This allows users to execute ELF
binaries without the need for a virtual machine, source code
modification, or an intermediate application. Furthermore, users
can download an app for each of the five currently supported Linux
distributions from the Microsoft Store (Cooley et al., 2017): Ubuntu,
Debian GNU/Linux, openSUSE Leap 42, SUSE Linux Enterprise
Server 12, and Kali Linux. The following processes are components
of WSL's implementation and are illustrated in Fig. 2:

e wslexe or bash.exe: A userland command line process through
which users interact with WSL. This program can be instantiated
more than once.

e LxssManager: AWindows service that facilitates communication
between wsl.exe/bash.exe processes and the WSL pico provider.

e Ixss: A Windows system service that serves as the WSL pico
provider.

e /init: ALinux pico process that facilitates communication between
Windows processes and its descendants. Ixss creates one /init
process per instantiated Linux distribution.

e /bin/bash: A Linux pico process that supports the WSL shell
program. Each wslexe and bash.exe process is paired with a
matching /bin/bash process.

To start WSL, a user executes the < distro>.exe program corre-
sponding to a desired Linux distribution, which creates a wslexe
process. A user can also access the system's default distribution by
executing bash.exe or wsl.exe directly. Each execution is isolated by
Windows in its own Linux instance. The WSL NT services and an/init
pico process will be created for the user's Linux instance if they don't
already exist. The Ixss service registers itself as the pico provider
with the Windows kernel through the PsRegisterPicoProvider
system call. This instructs the kernel to allow Ixss to manage system
calls, exceptions, and resources on behalf of WSL pico processes
(Hammons, 2016a). A Linux shell GUI will be created if wsl.exe is
executed either from within cmd.exe or from the Windows GUL.

N. Lewis et al. / Digital Investigation 26 (2018) S3—S11 S5

Process
Environment
Block (PEB)

Thread
Environment
Block (TEB)

Shared
User Data

NTDLL.DLL

User Mode

4 \
NT Process Minimal Process Pico Process

Kernel Mode

syscall

v

Pico Provider
LXSS / LXCore

syscall

T
v svs'call

NT Kernel

Fig. 1. A comparison of Drawbridge's process types. Each of the components associated with NT processes are left out of minimal and pico processes (Hammons, 2016a).

. Win32 process
Linux Instance

LXSS Session
wsl.exe > N
Manager Service
User Mode |

I
|
|
Kernel Mode | .
v |

[I

LXCore/LXSS

/init —-—> /bin/bash Pico
process
A |
i -------------- » COM
| I — — — —> joctl
. v
————— > Bus
—-—-—> fork
—— — —»syscall

Fig. 2. Communication between components of WSL (Hammons, 2016b).

Alternatively, users can execute wsl.exe with the -C <command>
argument to execute an ELF binary and immediately return to the
calling process without spawning a /bin/bash GUI (Cooley, 2017).
4. Deficiencies in WSL memory analysis

4.1. Identifying deficiencies

Our research effort began by testing existing memory analysis
algorithms, through the use of Volatility plugins, to determine

which were affected by the data structure and algorithm changes
introduced by WSL. Through this testing, many deficiencies were
noted.

First, the name of a pico process is not stored in the traditional
ImageFileName member of the _EPROCESS kernel structure. This
causes pslist, as well as the numerous other Volatility plugins
that print the names of processes, to incorrectly report an empty
string as the name of each WSL pico process.

The parent/child relationship between processes is also broken,
which affects the pstree plugin. With the exception of/init, the

S6 N. Lewis et al. / Digital Investigation 26 (2018) S3—S11

usual _EPROCESS structure member for a process' parent is not
populated. Furthermore, there is a unique set of process IDs (PIDs)
used by the Linux subsystem versus the normal Windows PIDs. This
makes it impossible to match process identifiers from Volatility's
process listing plugins with those found in WSL log files, such as/
var/log/syslog or/var/log/messages, within the Linux filesystem.

As discussed in Ionescu's Black Hat presentation as well as
Windows Internals 7th Edition, pico processes do not have an
associated process environment block (PEB). For native NT pro-
cesses, this data structure tracks a number of crucial userland
memory artifacts, all of which are missing from WSL pico processes.
These missing artifacts and the corresponding Volatility analysis
plugins that rely on them are:

Affected Plugin Missing Artifact

dlllist List of loaded DLLs
ldrmodules List of loaded DLLs

cmdline Command line arguments
envars Environment variables
procdump Application base address
dlldump Base addresses of loaded DLLs
impscan Location of exported APIs

Along with a missing PEB, WSL pico processes also do not have a
traditional handles table. This breaks Volatility's handles plugin as
it is unable to track which resources, such as files, that a process is
utilizing. Tracking threads of execution is also broken since some of
the traditional _ETHREAD fields are not populated for threads of
WSL pico processes. This affects the thrdscan and threads
plugins.

For non-pico consoles, such as cmd.exe and powershell.exe, the
cmdscan and consoles plugins enumerate all remnant input and
output generated on the consoles. These plugins operate by focusing
on data structures inside of the server components of these client
consoles (Stevens and Casey, 2010), which stay active even after a
particular console exits. Unfortunately, wsl.exe does not leverage the
same subsystem and therefore does not populate the data structures
targeted by existing memory forensics algorithms.

4.2. Deficiencies targeted by existing research
To ensure that our research did not overlap with existing work,

we compared the deficiencies found through our analysis with the
code and works published by others.

>>> dt ("_EPROCESS")

As mentioned in section 2 the two main previous research ef-
forts against WSL are the work done by Alex lonescu and Michael
Ligh. Combined, these covered the following deficiencies:

e The missing process names of WSL pico processes

e Recovery of command line arguments

e Locating the handle table of WSL pico processes, but not parsing
the related file descriptors or referenced file paths and resources

e Enumeration of threads for WSL pico processes

The remaining deficiencies became the focus of our research
effort.

5. Analyzing WSL memory artifacts

The primary focus of this section is the presentation of algo-
rithms to recover forensic artifacts created by WSL application ac-
tivity. The goal is to provide automated recovery, through the
implementation of Volatility plugins, of userland and kernel space
data structures utilized by WSL components.

For analysis, we collected memory samples from the Windows
10 x64 Version 1703 operating system with developers mode
enabled and the Ubuntu WSL distribution installed. Volatility 2.6
was used for both initial memory analysis and plugin development.
The win1064x_15063 Volatility profile already existed in Vola-
tility 2.6 and matched the system version used for testing and
research. Memory samples generated included instantiations of
common Linux programs such as top, man, ifconfig, iperf, python,
and /bin/bash that were either currently running or that had
terminated before collection.

We disabled developers mode and upgraded our system to the
Fall Creators Update after it was released, then performed similar
analysis on each Linux distribution using the Win1064x_16299
Volatility profile. Our results are similar between versions except
where noted in later subsections. The Linux distributions share a
common pico provider, allowing our plugins to be distribution-
agnostic.

5.1. Memory artifacts of a pico process

To determine if a process is a full NT process or a pico process,
several members of the process structure (_EPROCESS) can be uti-
lized. The following type information, derived from Volatility's
volshell plugin, illustrates the relevant members:

’_EPROCESS’ (2104 bytes)

0x300 :
{’end_bit’:

PicoCreated [’BitField’,

’start_bit’: O,

'native_type’: ’unsigned long’}]

6iécc : Minimal
{’end_bit’:

[’BitField’,

’start_bit’: O,

‘native_type’: ’unsigned long’}]

0x710 :

PicoContext [’pointer64’,[’void’]]

N. Lewis et al. / Digital Investigation 26 (2018) S3—S11 S7

For each pico process, the Minimal flag will be set as all pico
processes are also minimal processes by definition. The PicoCreated
flag will also be set for all pico processes and cleared for all NT
processes.

The PicoContext pointer is cast as void because the structure of
its corresponding object is defined by its process’ pico provider,
allowing the data structure to support the specific needs of each
pico provider. Microsoft has not published any information
regarding the structure of WSL PicoContext objects. Therefore, this
structure must be reverse engineered in order to determine its
layout before useful information can be extracted.

5.2. Initial binary analysis

The pico provider is the process that manipulates the Pico-
Context object. Therefore, reverse engineering the pico provider's
executable can yield additional insight into the PicoContext's
structure. Our effort began with static analysis using IDA Pro (Hex-
Rays.). First, we analyzed Ixcore.sys, which is the executable that
provides most of Ixss's functionality, to locate references to and
within PicoContext objects. The Ixcore.sys executable contains 2355
subroutines, of which about 3% are listed in Ixcore.sys's export table.
The remaining subroutines are internal functions, which are
unnamed.

Although only a small percentage of functions are purposely
exported, we determined that the names of many internal sub-
routines can be extracted from the executable through cross-
referencing the exported LxpTraceLoggingBreakPoint func-
tion, which is called when an exception occurs within the WSL pico
provider. Among other tasks, it displays a name and a status string
with details about the breakpoint. The status string often contains
the name and return code of a recently-returned subroutine whose
failure triggers the exception. Over 600 subroutines can be named
by relying on this method. Fig. 3 shows an example of such a
subroutine.

The names of subroutines often provide enough context to un-
derstand the general tasks the subroutines perform. Many relate to
the virtual filesystem, networking stack, and threading support
responsibilities of the pico provider. One design choice indicated by
the naming scheme is the ownership of threads by the WSL pico
provider, which is responsible for requesting resources from the
kernel on behalf of the threads it supports. Threads that belong to a
common pico process are organized into a thread group as indicated
by the LxpThreadGroup prefix.

5.3. Structured enumeration of WSL pico processes

In his WinDbg scripts, lonescu enumerates processes by
following data structures linked from the global list of Linux Sub-
system (LXSS) sessions. In our work, to preserve the existing work
flow of Volatility plugins and avoid reliance on global data struc-
tures, we instead chose to enumerate pico processes by walking the
well-known active process list.

Our picolist plugin, derived from the existing pslist Vola-
tility plugin, enumerates active processes and outputs only the
processes that match the following conditions:

e _EPROCESS.Minimal == 1
e _EPROCESS.PicoCreated == 1
e _EPROCESS.PicoContext + null

This filtering criteria ensures that our plugin 1) provides ana-
lysts with a quick method to determine if pico processes are present
and 2) allows developers to inherit from our plugin to write anal-
ysis plugins targeted specifically at pico processes. Fig. 4 illustrates
the output of the picolist plugin against a memory sample from
our testbed. Each process is listed along with its full path inside of
the Linux filesystem, its Windows and Linux PID, and its creation
and termination time.

5.4. Scanning for WSL pico processes

WSL pico processes can also be identified via pool tag scanning
(Schuster, 2008). The WSL pico provider allocates pool memory
using the tag 0x4c782020 (“Lx” followed by two spaces) for many
of the various types of objects it creates. The pool memory dedi-
cated to PicoContext objects has a fixed size and is allocated in an
unnamed internal function. Our new picoscan plugin uses the
information related to this allocation, including the tag, size, and
type, to locate PicoContext instances within the objects found
through the existing bigpagepools Volatility plugin. Thus
picoscan provides an alternate method of enumerating WSL pico
processes without relying on pslist. Removing the reliance on
pslist allows the potential discovery of processes that are hidden
by malware.

Unfortunately, we have not developed a reliable method for
finding metadata of terminated processes, like the existing Volatility
plugin psscan does for NT processes. psscan successfully recovers
terminated process metadata because the information it reports,

[y
and esi, OFFFh
lea rdx, [rsp+BC8h+var_98]
mouv r8d, esi
lea rcx, [rsp+BC8h+uar_78]
call sub_1CBB7EESS
mou ebx, eax
test eax, eax
jns short loc 1CBB56784
A J Y
Wl ek 3 o s =
lea r9, aBx@8xUfsinodec ; [0x%08x] UfsInodeChangelodeyn™
nov dword ptr [rsp+BC8h+var_A8], eax loc_1CBB5678L4:
mnov r8d, ®Or ebx, ebx
lea rdx, alLxpchmodhelper ; "LxpChmodHelper™
nov ecx,
call LxpTraceLoggingBreakPoint
jmp short loc_1CHB56786

Fig. 3. A sample call to LxpTraceLoggingBreakPoint from the Graph Overview display in IDA Pro for an unnamed subroutine within Ixcore.sys. The rdx register points to the
name of the calling subroutine. The r9 register points to a template that allows the status code and name of a failed subroutine call to be printed.

S8 N. Lewis et al. / Digital Investigation 26 (2018) S3—S11

E:\>python vol.py —f WSL.mem ——profile=Winl10x64_15063 picolist
Volatility Foundation Volatility Framework 2.6

PicoContext (V)

Start Exit

Offset (V) Name Win PID WSL PID Thds
0xffffcd09926567c0 /init 2404 1 1
0xffffcd0990de5080 /bin/bash 4736 2 1
0xffffcd0991cd6240 /bin/cat 4656 25 0
0xffffcd09932f5080 /usr/bin/sudo 2740 49 1
0xffffcd09919e7580 /bin/bash 5176 147 1

0xffffdd8000186000 2018-01-03 19:18:23 UTC+0000
0xffffdd80001d9000 2018-01-03 19:18:23 UTC+0000
0xffffdd8001ac2000 2018—-01-03 19:58:35 UTC+0000 2018-01-03 20:02:21 UTC+0000
0xffffdd8000314000 2018—-01-03 20:03:04 UTC+0000
0xff££dd8000018000 2018-01-04 17:37:21 UTC+0000

Fig. 4. Output of picolist plugin.

including the process' name, PID, parent PID, and starting and exit
time are all stored directly within the _EPROCESS structure of the
terminated process. Recovery of such information for WSL pico
processes is generally much more difficult because instead of storing
data directly within the process structure, much of the information
is referenced through pointers. Once these pointers are freed, the
memory regions they point to can be recycled by the memory
manager. In the case of PicoContext objects, both the process’ name
and its corresponding _EPROCESS instance are stored outside of the
structure. In rare cases, such as when analyzing a system that is very
lightly used or when a sample is taken immediately after a process
has terminated, these pointers may remain valid, but this is less
likely to occur in real incident response scenarios.

5.5. Enumerating threads from WSL pico processes

Threads have also been impacted by Microsoft's implementation
of pico processes. Each _ETHREAD contains a PicoContext pointer,
which is set if the thread is owned by a pico process and null
otherwise. The presence of a non-null value in this field indicates
whether or not the thread is a pico thread. The PicoContext main-
tained by a pico thread is not the same as the PicoContext main-
tained by its owning process, but both contexts include attributes
that identify their relationships with one another. A WSL pico pro-
cess' PicoContext maintains both a list and a counter describing the
PicoContext objects of its pico threads (lonescu, 2016b). Each WSL
pico thread's PicoContext contains a pointer to the PicoContext of its
owning process as well as its corresponding _ETHREAD.

The values of non-pico fields are also affected. First, as shown
in Fig. 1, pico threads do not have Thread Environment Blocks
(TEBs). More importantly, some WSL pico threads maintain null
_ETHREAD.StartAddress pointer values. Volatility's _ETHREAD
class assumes that valid potential thread structures are invalid if
these pointers are null. The thrdscan plugin only reports
threads it considers valid, so many WSL pico threads are omitted
from its output. At this time we do not know why some
WSL pico threads do not have this field populated, but we sus-
pect that it is instead stored somewhere in the thread's
PicoContext.

Our new picothreads plugin enumerates the threads owned
by WSL pico processes. This plugin could have referenced the
thread list at _EPROCESS.ThreadListHead, but we chose to use the
PicoContext list described above as it exposes an alternative method
for discovering WSL pico threads. We also report per-process
thread counters read from WSL pico process' PicoContext objects
instead of their _EPROCESS.ActiveThreads values for similar reasons.
The plugin's output is similar to thrdscan while also reporting
each thread's PicoContext.

5.6. Scanning for WSL pico threads

Scanning for WSL pico threads is similar to scanning for WSL
pico processes. Ixcore.sys's LxpThreadCreate function uses a

fixed-size pool memory allocation with a tag value of 0x4c782020
to create each thread's PicoContext. The function then populates
the new context object with values and updates the process'
PicoContext accordingly. We created a picothrdscan plugin to
search for these objects and produce the same data that is output
by picothreads. The plugin filters the output of bigpools using
the known size and tag to produce a list of potential PicoContext
objects belonging to WSL pico threads. The objects are validated if
their corresponding _ETHREAD objects can be fetched and the
_ETHREAD.PicoContext pointer matches the address of the scanned
object.

Similar to WSL pico process' PicoContext objects, WSL pico
threads' PicoContext memory allocations are susceptible to being
overwritten shortly after being freed, compared to objects with
flat structures. picothrdscan relies on the presence of several
pointers to objects associated with the contexts to validate its
findings. If any of these pointers are overwritten, then the thread
cannot be found with this plugin. In these cases, the _ETHREAD
class’ validation function could be loosened to allow a null
StartAddress pointer when the PicoProcess pointer is set, to in-
crease the likelihood that terminated WSL pico threads are
detected.

5.7. Recovering process names

As stated earlier, the ImageFileName field within _EPROCESS
objects is not populated for WSL pico processes. The same is true for
the SeAuditProcessCreationinfo.ImageFileName field. Given that
these are the fields used to extract the names of NT processes, an
alternative method of discovering WSL pico process names is
required.

Analysis of the LxpThreadGroupSetExecutable function
reveals that the WSL pico provider creates a Unicode string for
each process that includes the full path to the process's
executable. The path is relative to the wuser's AppDa-
ta|Local|Packages| < distro > |LocalState|rootfs directory where
the WSL files are located within the Windows filesystem. A
pointer to this string is then stored in the process's PicoContext
at a fixed offset. The correct process name is included in the
picolist plugin's output and is provided to other WSL-related
plugins.

The missing ImageFileName values likely result from a Windows
kernel bug. A recent system patch to the Fall Creators Update en-
ables the kernel to correctly populate these values (Ionescu, 2018).
Our plugins continue to report WSL pico process names based on
the values managed by the process’ PicoContext objects in case
further discrepancies between these values arise.

5.8. Recovering process IDs
A pico process' PID, as reported by Linux programs, is different

from the PID tracked by Windows programs, such as Task Manager.
This causes discrepancies when analyzing log files and other

N. Lewis et al. / Digital Investigation 26 (2018) S3—S11 S9

runtime data from Linux programs and cross-referencing PIDs re-
ported by Volatility's ps1ist plugin. The same issue would arise if
a live response tool was used to generate a list of running processes
from a Windows program.

Accessing the Linux PID of a WSL pico process first requires
dereferencing a pointer within the process’ PicoContext to an un-
documented object. A uint32_t field at a fixed offset within this
object stores the Linux PID. All of our developed plugins report both
the Windows PID, stored at _EPROCESS.UniqueProcessid as well as
the Linux PID. A full analysis of the undocumented object remains
the subject of future work.

5.9. Building parent/child process mappings

Based on our analysis, the Linux parent PID of a WSL pico pro-
cess does not appear to be stored anywhere within the PicoContext
object. However, the parent/child relationship can still be recon-
structed as each PicoContext contains a pointer to its parent process'
PicoContext object. The lone exception to this rule is/init, which
instead has a correct _EPROCESS.InheritedFromUniqueProcessld
value. Our new picotree plugin is a modified version of Vola-
tility's pstree plugin that uses PicoContext addresses to correctly
create the inheritance tree of WSL pico processes.

5.10. Enumerating environment variables

Whereas NT processes store environment variables in a block of
memory pointed to by their PEBs’ ProcessParameters.Environment
field, WSL pico processes do not have PEBs and instead store
environment variables at addresses tracked by a field at a fixed
offset within their PicoContext objects. The environment variable
names and values are stored in a contiguous set of character strings
whose total length is specified by a size_t field at an adjacent
PicoContext offset. The WSL pico provider writes this information in
one of two internal functions — LxpThreadGroupSetupUser Or
LxpThreadGroupCreate. Automated recovery of WSL pico pro-
cess environment variables is included in the output of our
picoenvars plugin.

5.11. Locating the process executable

For an NT process, the base address of the application executable
can be found by referencing the ImageBaseAddress member of the
process’ PEB. The ability to determine where an application is
loaded into process memory enables several key memory forensic
capabilities, such as:

e Extraction of the running executable of a process, as imple-
mented in Volatility's procdump plugin

e Extraction of in-memory, unpacked malicious code (Ligh et al.,
2014)

e Detecting process hollowing techniques (Monnappa, 2016)

e Automating Yara and other signature-based scans across
running processes (Case, 2016)

e Reconstructing API usage to aid reverse engineering (Reverse
Engineering Rootkits, 2014)

The inability to access this information for pico processes breaks
all of the capabilities listed above, among others. Fortunately, the
load address can be recovered through analysis of the PicoContext
object. Specifically, by following two undocumented pointers that
are written to the context object in the WSL pico provider's
LxpThreadGroupSetupUser internal function, a pointer to the
application's ELF program headers can be obtained. This metadata
can then be used to determine the initial load address, which is

accessible via our plugin API. Access to the executable load address
can be used to restore all of the previously listed capabilities except
for those related to extraction, which is covered in Section 5.13.

5.12. Locating shared libraries

The lack of a PEB also prevents Volatility's d111ist and
ldrmodules plugins from enumerating shared libraries associated
with a WSL pico process. This presents many of the same issues as
the inability to locate where the application executable resides in
memory.

To recover this information, Volatility's existing algorithm for
enumerating shared libraries from Linux's runtime loader, as
implemented in the existing 1inux_library_ list plugin, was
ported to target WSL pico processes. Fortunately, it appears that
Microsoft did not substantially change the algorithm used by the
runtime loader as the existing algorithm was able to successfully
recover all shared libraries and their metadata. Fig. 5 contrasts the
output of d1111st, which attempts to use a process' PEB, with the
output of our new picosolist plugin. By leveraging our new
picosolist Volatility plugin, analysts can now determine which
shared libraries are loaded by WSL Linux processes.

5.13. Extracting Linux executables

Once a process' executable and shared libraries are located in
process memory, analysts may then want to extract them from
memory. For NT processes, Volatility provides the procdump and
dlldump plugins for this purpose. Unfortunately, neither of these
plugins work properly for WSL pico processes, because they handle
only Windows PE format executables and not Linux's ELF format.

To remedy this issue, we created two new Volatility plugins,
picoelflist and picoelfdump. The picoelflist plugin is
similar to the existing 1inux_elfs plugin, which enumerates all
ELF files mapped into processes on Linux systems. To gather the list
of ELF files in a WSL pico process, picoelflist walks the process’
VAD tree (Dolan-Gavitt, 2007) and focuses on VAD nodes with
PAGE_EXECUTE_WRITECOPY protection and an associated Fil-
eObject pointer. It then verifies that each matching memory region
begins with a valid ELF header. By default, our picoel fdump plu-
gin relies on picoelflist to find and properly extract all loaded

E:\>python vol. py —-f WSL.mem —profile=Winl10x64 15063 dl1list —p 2740
Volatility Foundation Volatility Framework 2.6

/usr/bin/sudo pid: 2740
Unable to read PEB for task.

E:\>python vol.py —-f WSL.mem —profile=Win10x64 15063 picosolist —p 2740
Volatility Foundation Volatility Framework 2.6

Pid: 2740 Neme: /usr/bin/sudo

Base Path

0x00007ffaf2520000 /1ib/x86_64-1inux-gnu/libdl. so. 2

0x00007ffaf3600000 /1ib64/1d-1inux-x86-64. so. 2

0x00007ffaf2300000 /1ib/x86_64-1inux—gnu/libpthread. so. 0

0x00007ffaf1850000 /usr/1ib/sudo/sudoers. so

0x00007ffaf29a0000 /1ib/x86 64-linux—gnu/libc. so.6
0x00007ffaf2d70000 /usr/lib/sudo/libsudo_util. so.0
0x00007ffaf2f90000 /1ib/x86_64-1inux—gnu/libutil. so. 1
0x00007ffaf31a0000 /1ib/x86_64-1inux-gnu/libselinux. so. 1
0x00007ffaf33d0000 /1ib/x86_64-1inux-gnu/libaudit. so. 1

Fig. 5. Output of d111ist compared to output of the new picosolist plugin.

S10 N. Lewis et al. / Digital Investigation 26 (2018) S3—S11

ELF executables. Extraction is performed through Volatility's
existing ELF parsing and extraction APL

To replicate the functionality of Volatility's existing procdump
and dlldump plugins, we also created two new plugins, pico-
procdump and picosodump. These new plugins leverage our
ability to find the load address of a process as well as its associated
libraries to find executables to extract. Furthermore, we combined
the logic of picoelflist, picoscan, and picosolist to imple-
ment a new picoldrmodules plugin. This new plugin replicates
the malware-finding algorithm of the existing 1drmodules plugin,
so WSL pico processes can be scrutinized in the same way.

5.14. Enumerating file system handles

Since the handles tables for WSL pico processes are not main-
tained, the existing Volatility handles plugin is unable to enumerate
which system resources a WSL pico process is currently utilizing. To
address this issue, we created the picolsof plugin to provide
capabilities similar to those of the existing Volatility 1inux_1sof
plugin. Creation of this plugin required careful reverse engineer-
ing of the Ixcore.sys driver to answer several key questions,
including how:

e a process' file descriptor table is linked to its PicoContext

o file descriptors are stored within the table

e to recursively recover the full path of files associated with
descriptors

The most useful functions to analyze for recovering this infor-
mation include LxpThreadCleanup for linking a file descriptor
table to its PicoContext, LxpFileReferenceByDescriptor
for descriptor enumeration, and vVfsDirectoryEn-
tryGetPathHelper for mapping opened file paths. After a thor-
ough analysis of these functions, plus a few related helper
functions, we developed the picolsof plugin, which reports the
opened file descriptors associated with WSL pico processes. Sample
output from this plugin appears in Fig. 6.

5.15. Command history recovery - LXSS

Since WSL is largely driven by command line activity through
wsl.exe, a natural artifact of interest is the list of commands entered
into the consoles as well as any resulting console output. For this
reason, we investigated why Volatility's cmdscan and consoles
plugins were unable to produce console input and output related to
WSL wsl.exe sessions. These plugins operate by scanning instances

of the Client/Server Runtime System (Client/Server Runtime
Subsystem, 2017a; Windows 7/Windows Server, 2008 R2, 2017b)
for input and output generated by console programs such as
cmd.exe and powershell.exe.

Our inspection of the parent/child relationship of processes
related to WSL showed that each wslexe instance spawned an
associated conhost.exe, which is the server component of the client/
server runtime system. When testing the plugins against various
memory samples, we noticed that the plugins not only missed ac-
tivity related to wsl.exe, but also the traditional command shell and
PowerShell consoles. At this point, we contacted a Volatility
developer, who informed us that these plugins do not currently
support Windows 8 and Windows 10.

Analysis of conhost.exe from our Windows 10 test system
showed that it was using a new background implementation
contained within conhostV2.dll. This DLL and its implementation
do not appear before Windows 8. Binary analysis of this DLL
showed that several of the structure members and algorithms
expected by the Volatility plugins were drastically changed. We
then updated the cmdscan plugin to support Windows 10. After
our updates, the plugins successfully recovered commands
executed in the traditional consoles, but were still unable to pro-
duce results related to wslexe activity. Next, we performed binary
analysis of wslexe and cmd.exe, to better understand their in-
teractions with conhost.exe. This research was not conclusive, but
our current assessment is that wsl.exe does not leverage the same
APIs as the traditional consoles, which prevents the data structures
from being created and populated on the server side of the activity.
This research is still ongoing.

5.16. Command history recovery - bash

Beyond the interaction between wsl.exe and conhost.exe, we also
investigated recovery of command activity directly from /bin/bash.
This yielded much better results. To investigate this theory, we
created a version of the existing 1inux_bash Volatility plugin
designed to target WSL /bin/bash processes. Fortunately, Microsoft
seems to have leveraged the same code, or at least the same data
structures, as the familiar Linux bash console. This allows use of the
existing bash history recovery algorithm for WSL processes and this
is implemented by our new picobash plugin. As illustrated in
Fig. 7, the plugin successfully recovers executed commands as well
as the execution times for commands entered in the current ses-
sions. Commands from previous sessions that were saved to disk
will have starting times matching the time the shell process was
created.

E:\>python vol.py —f WSL.mem —profile=Winl0x64 15063 handles —p 3232

Volatility Foundation Volatility Framework 2.6
Handle

Offset (V) Pid

Access Type Details

[no output]

E:\>python vol.py —f WSL.mem —profile=Winl0x64_ 15063 picolsof —p 3232

Volatility Foundation Volatility Framework 2.6

Pid: 3232 Name: /tmp/bin
0 > /dev/ttyl
1 -> /dev/ttyl
2 => /dev/ttyl
3 => /tmp/logfile. txt

Fig. 6. Output of the new picolsof plugin, enumerating file handles associated with a pico process.

N. Lewis et al. / Digital Investigation 26 (2018) S3—S11 s11

E:\>python volatility\vol.py -f samples\WSL.vmem --profile=Wini10x64_15063 picobash

Volatility Foundation Volatility Framework 2.6

Win PID WSL PID

Command Time

5472 2 2018-01-05 22:40:00 UTC+0000
5472 2 2018-01-05 22:40:02 UTC+0000
5472 2 2018-01-05 22:40:11 UTC+0000
5472 2 2018-01-05 22:40:21 UTC+0000
5472 2 2018-01-05 22:40:27 UTC+0000
5472 2 2018-01-05 22:40:32 UTC+0000
716 17 2018-01-05 22:40:56 UTC+0000
3160 27 2018-01-05 22:41:01 UTC+0000
3160 27 2018-01-05 22:41:17 UTC+0000
3160 27 2018-01-05 22:41:27 UTC+0000

uname -a

1s -1tr

ifconfig

echo $PATH

which iperf

top

iperf -s

iperf -c 127.0.0.1

wget https://bootstrap.pypa.io/get-pip.py
sudo -H python get-pip.py

Fig. 7. Output of the new picobash plugin. This output indicates that three /bin/bash pico processes were instantiated and displays the commands executed within them.

6. Conclusions and future work

In this paper we have detailed many new memory forensic al-
gorithms and Volatility plugins that enable deep analysis of
Microsoft's Windows Subsystem for Linux. Combined, these plu-
gins fix the many deficiencies we discovered when existing mem-
ory forensic algorithms are applied to WSL pico processes. By using
our new plugins, analysts will now have the same capabilities for
analyzing WSL pico processes as they do for traditional Windows
processes.

While the results of this research led to many new analysis ca-
pabilities for WSL, much remains to be done. For example, our
picohandles plugin can enumerate the WSL-specific file system
cache to match a particular file descriptor, but no other plugin
separately inspects the entire cached file system or fully enumer-
ates it. Furthermore, while the existing Volatility netscan plugin
can recover networking artifacts from WSL application network
activity, our time in reversing Ixcore.sys revealed that there is a
substantial networking stack layer implemented inside of Ixss. So
far, none of the artifacts from this network layer have been exam-
ined in detail. Finally, there are entire capabilities of Ixss, such as IPC
between WSL's pico and NT processes, that remain unexplored.

Beyond simply enumerating artifacts from these undocumented
subsystems, the size of the Ixss executables, along with the sub-
stantial functionality they implement, suggests that there are likely
many new ways for malware to interfere with and hide from in-
spection. Discovering weaknesses in these subsystems that can be
abused by malware will require a larger research effort to uncover
and document. Furthermore, existing Volatility plugins that hunt
for Linux userland malware, such as linux_apihooks and
linux_plthook have yet to be ported to WSL. We are currently
working with the Volatility developers to accomplish this goal in an
efficient manner.

Finally, our current research effort for WSL has focused on two
versions of Windows 10. As shown in Ligh's work on porting the
recovery of WSL process names to all versions of Windows 10, the
offsets inside of key data structures can and likely will change. We
experienced such changes when upgrading from Build 1703 to the
Fall Creators Update. To make porting our many new plugins to new
versions of Windows 10 easier, we have documented the func-
tion(s) inside of the Ixss executables that reference needed offsets.
This allows quickly determining which offsets are appropriate
when the offsets change.

References

Baumann, Z., Zill, B., Galen, H., Lorch, ., Olinsky, R., 2016. Drawbridge. https://www.
microsoft.com/en-us/research/project/drawbridge/.

Case, A., 2016. Automating Detection of Known Malware through Memory Foren-
sics. https://volatility-labs.blogspot.com/2016/08/automating-detection-of-
known-malware.html.

Client/Server Runtime Subsystem, 2017a. https://en.wikipedia.org/wiki/Client/
Server_Runtime_Subsystem.

Cooley, S., 2017. Command Reference. Windows Subsystem for Linux. https://msdn.
microsoft.com/en-us/commandline/wsl/reference/.

Cooley, S., Hanselman, S., McBee, A., Kottmann, R., Nikoli, A., 2017. Windows 10
Installation ~ Guide. https://docs.microsoft.com/en-us/windows/wsl/install-
win10/.

Cygwin, FA.Q., 2017. https://cygwin.com.

Dolan-Gavitt, B., 2007. The VAD tree: a process-eye view of physical memory. In:
Proceedings of the 2007 Digital Forensic Research Workshop.

Elbaz, G., Atias, D., 2017. Beware of the Bashware: a New Method for Any Malware
to Bypass Security Solutions. https://research.checkpoint.com/beware-
bashware-new-method-malware-bypass-security-solutions/.

Hammons, J., 2016a. Pico Process Overview. Windows Subsystem for Linux. In:
https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/.
Hammons, J., 2016b. Windows Subsystem for Linux Overview. https://blogs.msdn.

microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/.

Hex-Rays IDA Pro Disassembler. http://[www.hex-rays.com/products/ida/index.
shtml.

Hron, M., 2017. PICO Processes Toolbox, a Playground for PICO Processes Research.
https://github.com/thinkcz/pico-toolbox/.

lonescu, A., 2016a. The Linux Kernel Hidden inside Windows 10. Blackhat.

Ionescu, A., 2016b. Fun with the Windows Subsystem for Linux (WSL/LXSS). https://
github.com/ionescu007/1xss/.

lonescu, A., 2018. https://twitter.com/aionescu/status/971510784672092161.

Ligh, M., 2017. Patches to Volatility to Correctly Parse Pico Process Names. https://
github.com/volatilityfoundation/volatility/commit/
6d24b05f86ecb854ef0994933d4baa4d68171b24Q.

Ligh, M., Case, A., Levy,]., Walters, A., 2014. The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory. Wiley,
New York.

Monnappa, K.A., 2016. Detecting Deceptive Hollowing Techniques. https://cysinfo.
com/detecting-deceptive-hollowing-techniques/.

MSDN, 2017. Windows Command Line Tools for Developers. https://blogs.msdn.
microsoft.com/commandline/.

Porter, D.E., Boyd-Wickizer, S., Howell, J., Olinsky, R., Hunt, G.C., 2011. Rethinking the
library OS from the top down. ACM SIGPLAN Notices, 46 (3), 291—304.

Raj, T., 2017. Windows 10 Fall Creators Update. https://blogs.msdn.microsoft.com/
commandline/2017/10/11/whats-new-in-wsl-in-windows-10-fall-creators-up-
date/.

Reverse Engineering
v=LV]5mpZZdY4.

Schuster, A., 2008. The impact of microsoft windows pool allocation strategies on
memory forensics. In: Proceedings of the 2008 Digital Forensic Research
Workshop.

Stevens, R.M., Casey, E., 2010. Extracting windows command line details from
physical memory. Digit. Invest. 7, S57—S63.

The Volatility Framework, 2017. Volatile Memory Artifact Extraction Utility
Framework. https://github.com/volatilityfoundation/volatility.

The Windows Subsystem for Linux, 2017. https://en.wikipedia.org/wiki/Windows
Subsystem_for_Linux.

Turner, R., 2017. Windows Subsystem for Linux Out of Beta! Windows Command
Line Tools for Developers. https://blogs.msdn.microsoft.com/commandline/
2017/07/28/windows-subsystem-for-linux-out-of-beta/.

Windows 7/Windows Server 2008 R2, 2017b. Console Host. https://blogs.technet.
microsoft.com/askperf/2009/10/05/windows-7-windows-server-2008-r2-con-
sole-host/.

Yosifovich, P., lonescu, A., Russinovich, M., Solomon, D., 2017. Windows Internals,
Part 1, seventh ed. Microsoft Press.

Rootkits, 2014. https://[www.youtube.com/watch?

	Memory forensics and the Windows Subsystem for Linux
	1. Introduction
	2. Related work
	2.1. WSL architecture memory analysis research
	2.1.1. Cygwin for Linux on Windows

	3. WSL background
	4. Deficiencies in WSL memory analysis
	4.1. Identifying deficiencies
	4.2. Deficiencies targeted by existing research

	5. Analyzing WSL memory artifacts
	5.1. Memory artifacts of a pico process
	5.2. Initial binary analysis
	5.3. Structured enumeration of WSL pico processes
	5.4. Scanning for WSL pico processes
	5.5. Enumerating threads from WSL pico processes
	5.6. Scanning for WSL pico threads
	5.7. Recovering process names
	5.8. Recovering process IDs
	5.9. Building parent/child process mappings
	5.10. Enumerating environment variables
	5.11. Locating the process executable
	5.12. Locating shared libraries
	5.13. Extracting Linux executables
	5.14. Enumerating file system handles
	5.15. Command history recovery - LXSS
	5.16. Command history recovery - bash

	6. Conclusions and future work
	References

