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a b s t r a c t

The Windows Subsystem for Linux (WSL) was first included in the Anniversary Update of Microsoft's

Windows 10 operating system and supports execution of native Linux applications within the host

operating system. This integrated support of Linux executables in a Windows environment presents

challenges to existing memory forensics frameworks, such as Volatility, that are designed to only support

one operating system type per analysis task (e.g., execution of a single framework plugin). WSL breaks this

analysis model as Linux forensic artifacts, such as ELF executables, are active in a sample of physical

memory from a system runningWindows. Furthermore, WSL integrates Linux-specific data structures into

existing Windows data structures, such as those used to track per-process metadata as well as userland

runtime data. This integration results in existing analysis plugins producing inconsistent results when

analyzing native Windows processes compared to WSL processes. Further complicating this situation is

the fact that much of the WSL subsystem internals are completely undocumented. To remedy the current

deficiencies related to WSL analysis, a research effort was undertaken to understand which existing

Volatility plugins are affected by the introduction of WSL as well as what updates are necessary to fully

support memory forensics of WSL. This paper describes these efforts, including our study of the operating

systems data structures relevant to WSL as well as the development of new Volatility analysis plugins.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Windows Subsystem for Linux (WSL) (The Windows

Subsystem for Linux, 2017) is a significant new feature that was

introduced in the Anniversary Update of Microsoft's Windows 10

operating system. WSL provides the first truly native support for

Linux applications on a Windows operating system by imple-

menting loading and execution of ELF applications and libraries.

The ability to run native ELF files brings a large and diverse set of

existing Linux applications to Windows users, such as web, email,

FTP, and SSH servers, as well as a full suite of end-user applications.

Along with providing a simple method for transitioning existing

applications from Linux to Windows, Microsoft has also pledged a

long-term commitment to WSL as reflected in its documentation

(MSDN, 2017) and in the large set of updates and new features that

were included in the Fall Creators Update (Raj, 2017). The combined

effect of these actions suggests that WSL will be present and

supported for many years and that defensive security practices

must account for its existence.

Unfortunately, the introduction of a new executable file format

into Microsoft Windows, along with a very large number of new

Linux applications, provides an immense challenge for endpoint

software security vendors, such as anti-virus companies (Ionescu,

2016a). While these companies have dedicated nearly two de-

cades of research to understanding and detecting threats from

Portable Executable (PE) format files, the native Windows execut-

able file format, the very recent introduction of ELF requires an

entirely new set of detection capabilities and algorithms. As

described in Section 3, not only does the file new format provide

challenges, but the architecture that supports ELF files also in-

troduces many new data structures that make traditional malware

detection techniques inadequate.

This gap in traditional Windows analysis techniques affects not

only runtime software security vendors, but also memory forensics

frameworks, since these frameworks are very sensitive to the

location and layout of data structures populated by the operating

system. Specifically, the ability to correctly locate and parse these
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data structures is a fundamental design component of memory

forensics tools and similarly, the ability to locate all relevant

memory-resident artifacts is a requirement for thorough malware

and anomaly detection. The introduction of new data structures

and algorithms by WSL breaks many existing algorithms imple-

mented by current analysis frameworks. Furthermore, a class of

malware known as bashware can programatically enable WSL and

execute malicious code while taking advantage of the obfuscation

provided by WSL (Elbaz and Atias, 2017).

To close the detection gaps currently available to attackers

throughWSL, we conducted research to document the new sources

of forensics artifacts produced by WSL as well as creating new

memory forensics algorithms that provide better coverage of the

WSL subsystem. This paper describes this research and its out-

comes, including discussion of the relevant WSL architectural

components, the deficiencies in existing memory forensic algo-

rithms, and the new algorithms we created to recover WSL-related

memory artifacts. Our research was conducted through reverse

engineering of the WSL userland and kernel components as well as

testing and creation of Volatility (The Volatility Framework, 2017)

plugins. Volatility was chosen as our target memory analysis

framework because of its widespread use throughout the digital

forensics community combined with its ample documentation. All

of our newly created Volatility plugins, along with our patches to

existing plugins, will be contributed to the upstream project upon

publication of this paper.

2. Related work

2.1. WSL architecture memory analysis research

Internal components of the WSL architecture are closed source

and sparsely documented by Microsoft. While Microsoft's MSDN

and Windows Internals 7th Edition (Yosifovich et al., 2017) docu-

ment the high-level design ideas and exported APIs, these refer-

ences do not describe data structures or algorithms utilized byWSL.

Microsoft also does not provide full Visual Studio debugging files

(generally referred to as PDB files) for the WSL subsystem.

The only substantial existing memory analysis research for WSL

was undertaken by Alex Ionescu and appeared in Blackhat 2016

(Ionescu, 2016a). Code, in the form of WinDbg scripts, related to

this effort is publicly available in a Github repository (Ionescu,

2016b). A complete comparison between our research effort and

his is provided in Section 4.

Concurrently with our research effort, a member of the Vola-

tility development team, Michael Ligh, published a set of patches

that enabled correct reporting of WSL process names (Ligh, 2017).

Our team had performed the same research, as discussed in

Section 5.

2.1.1. Cygwin for Linux on Windows

Executing Linux programs on Windows systems was possible

before the release of WSL. Cygwin is a software project that allows

users to execute Linux programs in Windows environments. The

Cygwin terminal provides a shell environment from which users

can interact with a virtual filesystem, execute supported programs,

and issue POSIX system calls (Cygwin, 2017). The Cygwin design is

similar toWSL in that both bring lightweight virtualization of Linux

environments to Windows systems. However, the ways in which

this functionality is provided are significantly different. Cygwin

compiles Linux source code into standard PE-formatted execut-

ables, which are then linked against a library that provides POSIX

compatibility by translating between Unix and Windows system

calls. Notably, Cygwin does not introduce ELF files into Windows

and operates entirely in userspace, without kernel components. In

contrast, WSL is more tightly integrated, introduces support for

executing ELF files, and has both userland and kernel space

components.

3. WSL background

Microsoft's Drawbridge project team focused its research efforts

on application sandboxing, a method for lightweight virtualization.

The project's goal was to introduce a library operating system

model into a commercial version of Windows that relocated

operating system dependencies of sandboxed applications into

their process' address spaces (Baumann et al., 2016). Drawbridge

first produced a prototype version of Windows 7 using a library OS

architecture in 2011 (Porter et al., 2011).

Drawbridge proposed two new process types -minimal and pico

- while retaining support for Microsoft's traditional NT processes.

Unlike NT processes, minimal processes lack key Window compo-

nents that tie NT processes directly to the kernel. Fig. 1 depicts

these components. Minimal processes have empty userland

memory and are unmanaged by the kernel in many respects. Pico

processes are minimal processes that are also associated with a

corresponding kernel driver. A pico process' kernel driver is

responsible for managing the process' userland memory, threads,

scheduling, file handles, and sockets (Hammons, 2016a; Hron,

2017). This driver is commonly referred to as the pico provider.

WSL, the most prominent application of pico processes in

Windows, was released in 2017 with the 64-bit version of the

Windows 10 Fall Creators Update after more than one year of beta

testing (Turner, 2017). It enables users to directly execute userland

Linux programs inWindows 10 by associating each executing Linux

application with a pico process. This allows users to execute ELF

binaries without the need for a virtual machine, source code

modification, or an intermediate application. Furthermore, users

can download an app for each of the five currently supported Linux

distributions from the Microsoft Store (Cooley et al., 2017): Ubuntu,

Debian GNU/Linux, openSUSE Leap 42, SUSE Linux Enterprise

Server 12, and Kali Linux. The following processes are components

of WSL's implementation and are illustrated in Fig. 2:

! wsl.exe or bash.exe: A userland command line process through

which users interact withWSL. This program can be instantiated

more than once.

! LxssManager: AWindows service that facilitates communication

between wsl.exe/bash.exe processes and the WSL pico provider.

! lxss: A Windows system service that serves as the WSL pico

provider.

! /init: A Linuxpicoprocess that facilitates communication between

Windows processes and its descendants. lxss creates one /init

process per instantiated Linux distribution.

! /bin/bash: A Linux pico process that supports the WSL shell

program. Each wsl.exe and bash.exe process is paired with a

matching /bin/bash process.

To start WSL, a user executes the <distro> .exe program corre-

sponding to a desired Linux distribution, which creates a wsl.exe

process. A user can also access the system's default distribution by

executing bash.exe or wsl.exe directly. Each execution is isolated by

Windows in its own Linux instance. The WSL NT services and an/init

pico processwill be created for the user's Linux instance if they don't

already exist. The lxss service registers itself as the pico provider

with theWindows kernel through the PsRegisterPicoProvider

system call. This instructs the kernel to allow lxss to manage system

calls, exceptions, and resources on behalf of WSL pico processes

(Hammons, 2016a). A Linux shell GUI will be created if wsl.exe is

executed either from within cmd.exe or from the Windows GUI.
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Alternatively, users can execute wsl.exe with the -C <command>

argument to execute an ELF binary and immediately return to the

calling process without spawning a /bin/bash GUI (Cooley, 2017).

4. Deficiencies in WSL memory analysis

4.1. Identifying deficiencies

Our research effort began by testing existing memory analysis

algorithms, through the use of Volatility plugins, to determine

which were affected by the data structure and algorithm changes

introduced by WSL. Through this testing, many deficiencies were

noted.

First, the name of a pico process is not stored in the traditional

ImageFileName member of the _EPROCESS kernel structure. This

causes pslist, as well as the numerous other Volatility plugins

that print the names of processes, to incorrectly report an empty

string as the name of each WSL pico process.

The parent/child relationship between processes is also broken,

which affects the pstree plugin. With the exception of/init, the

Fig. 1. A comparison of Drawbridge's process types. Each of the components associated with NT processes are left out of minimal and pico processes (Hammons, 2016a).

Fig. 2. Communication between components of WSL (Hammons, 2016b).
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usual _EPROCESS structure member for a process' parent is not

populated. Furthermore, there is a unique set of process IDs (PIDs)

used by the Linux subsystemversus the normalWindows PIDs. This

makes it impossible to match process identifiers from Volatility's

process listing plugins with those found in WSL log files, such as/

var/log/syslog or/var/log/messages, within the Linux filesystem.

As discussed in Ionescu's Black Hat presentation as well as

Windows Internals 7th Edition, pico processes do not have an

associated process environment block (PEB). For native NT pro-

cesses, this data structure tracks a number of crucial userland

memory artifacts, all of which aremissing fromWSL pico processes.

These missing artifacts and the corresponding Volatility analysis

plugins that rely on them are:

Along with a missing PEB, WSL pico processes also do not have a

traditional handles table. This breaks Volatility's handles plugin as

it is unable to track which resources, such as files, that a process is

utilizing. Tracking threads of execution is also broken since some of

the traditional _ETHREAD fields are not populated for threads of

WSL pico processes. This affects the thrdscan and threads

plugins.

For non-pico consoles, such as cmd.exe and powershell.exe, the

cmdscan and consoles plugins enumerate all remnant input and

output generated on the consoles. These plugins operate by focusing

on data structures inside of the server components of these client

consoles (Stevens and Casey, 2010), which stay active even after a

particular console exits. Unfortunately, wsl.exe does not leverage the

same subsystem and therefore does not populate the data structures

targeted by existing memory forensics algorithms.

4.2. Deficiencies targeted by existing research

To ensure that our research did not overlap with existing work,

we compared the deficiencies found through our analysis with the

code and works published by others.

As mentioned in section 2 the two main previous research ef-

forts against WSL are the work done by Alex Ionescu and Michael

Ligh. Combined, these covered the following deficiencies:

! The missing process names of WSL pico processes

! Recovery of command line arguments

! Locating the handle table of WSL pico processes, but not parsing

the related file descriptors or referenced file paths and resources

! Enumeration of threads for WSL pico processes

The remaining deficiencies became the focus of our research

effort.

5. Analyzing WSL memory artifacts

The primary focus of this section is the presentation of algo-

rithms to recover forensic artifacts created by WSL application ac-

tivity. The goal is to provide automated recovery, through the

implementation of Volatility plugins, of userland and kernel space

data structures utilized by WSL components.

For analysis, we collected memory samples from the Windows

10 x64 Version 1703 operating system with developers mode

enabled and the Ubuntu WSL distribution installed. Volatility 2.6

was used for both initial memory analysis and plugin development.

The Win1064x_15063 Volatility profile already existed in Vola-

tility 2.6 and matched the system version used for testing and

research. Memory samples generated included instantiations of

common Linux programs such as top, man, ifconfig, iperf, python,

and /bin/bash that were either currently running or that had

terminated before collection.

We disabled developers mode and upgraded our system to the

Fall Creators Update after it was released, then performed similar

analysis on each Linux distribution using the Win1064x_16299

Volatility profile. Our results are similar between versions except

where noted in later subsections. The Linux distributions share a

common pico provider, allowing our plugins to be distribution-

agnostic.

5.1. Memory artifacts of a pico process

To determine if a process is a full NT process or a pico process,

several members of the process structure (_EPROCESS) can be uti-

lized. The following type information, derived from Volatility's

volshell plugin, illustrates the relevant members:

Affected Plugin Missing Artifact

dlllist List of loaded DLLs

ldrmodules List of loaded DLLs

cmdline Command line arguments

envars Environment variables

procdump Application base address

dlldump Base addresses of loaded DLLs

impscan Location of exported APIs
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For each pico process, the Minimal flag will be set as all pico

processes are also minimal processes by definition. The PicoCreated

flag will also be set for all pico processes and cleared for all NT

processes.

The PicoContext pointer is cast as void because the structure of

its corresponding object is defined by its process’ pico provider,

allowing the data structure to support the specific needs of each

pico provider. Microsoft has not published any information

regarding the structure of WSL PicoContext objects. Therefore, this

structure must be reverse engineered in order to determine its

layout before useful information can be extracted.

5.2. Initial binary analysis

The pico provider is the process that manipulates the Pico-

Context object. Therefore, reverse engineering the pico provider's

executable can yield additional insight into the PicoContext's

structure. Our effort began with static analysis using IDA Pro (Hex-

Rays.). First, we analyzed lxcore.sys, which is the executable that

provides most of lxss's functionality, to locate references to and

within PicoContext objects. The lxcore.sys executable contains 2355

subroutines, of which about 3% are listed in lxcore.sys's export table.

The remaining subroutines are internal functions, which are

unnamed.

Although only a small percentage of functions are purposely

exported, we determined that the names of many internal sub-

routines can be extracted from the executable through cross-

referencing the exported LxpTraceLoggingBreakPoint func-

tion, which is called when an exception occurs within theWSL pico

provider. Among other tasks, it displays a name and a status string

with details about the breakpoint. The status string often contains

the name and return code of a recently-returned subroutine whose

failure triggers the exception. Over 600 subroutines can be named

by relying on this method. Fig. 3 shows an example of such a

subroutine.

The names of subroutines often provide enough context to un-

derstand the general tasks the subroutines perform. Many relate to

the virtual filesystem, networking stack, and threading support

responsibilities of the pico provider. One design choice indicated by

the naming scheme is the ownership of threads by the WSL pico

provider, which is responsible for requesting resources from the

kernel on behalf of the threads it supports. Threads that belong to a

common pico process are organized into a thread group as indicated

by the LxpThreadGroup prefix.

5.3. Structured enumeration of WSL pico processes

In his WinDbg scripts, Ionescu enumerates processes by

following data structures linked from the global list of Linux Sub-

system (LXSS) sessions. In our work, to preserve the existing work

flow of Volatility plugins and avoid reliance on global data struc-

tures, we instead chose to enumerate pico processes bywalking the

well-known active process list.

Our picolist plugin, derived from the existing pslist Vola-

tility plugin, enumerates active processes and outputs only the

processes that match the following conditions:

! _EPROCESS.Minimal ¼¼ 1

! _EPROCESS.PicoCreated ¼¼ 1

! _EPROCESS.PicoContext s null

This filtering criteria ensures that our plugin 1) provides ana-

lysts with a quickmethod to determine if pico processes are present

and 2) allows developers to inherit from our plugin to write anal-

ysis plugins targeted specifically at pico processes. Fig. 4 illustrates

the output of the picolist plugin against a memory sample from

our testbed. Each process is listed along with its full path inside of

the Linux filesystem, its Windows and Linux PID, and its creation

and termination time.

5.4. Scanning for WSL pico processes

WSL pico processes can also be identified via pool tag scanning

(Schuster, 2008). The WSL pico provider allocates pool memory

using the tag 0x4c782020 (“Lx” followed by two spaces) for many

of the various types of objects it creates. The pool memory dedi-

cated to PicoContext objects has a fixed size and is allocated in an

unnamed internal function. Our new picoscan plugin uses the

information related to this allocation, including the tag, size, and

type, to locate PicoContext instances within the objects found

through the existing bigpagepools Volatility plugin. Thus

picoscan provides an alternate method of enumerating WSL pico

processes without relying on pslist. Removing the reliance on

pslist allows the potential discovery of processes that are hidden

by malware.

Unfortunately, we have not developed a reliable method for

findingmetadata of terminated processes, like the existing Volatility

plugin psscan does for NT processes. psscan successfully recovers

terminated process metadata because the information it reports,

Fig. 3. A sample call to LxpTraceLoggingBreakPoint from the Graph Overview display in IDA Pro for an unnamed subroutine within lxcore.sys. The rdx register points to the

name of the calling subroutine. The r9 register points to a template that allows the status code and name of a failed subroutine call to be printed.
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including the process' name, PID, parent PID, and starting and exit

time are all stored directly within the _EPROCESS structure of the

terminated process. Recovery of such information for WSL pico

processes is generallymuchmore difficult because instead of storing

data directly within the process structure, much of the information

is referenced through pointers. Once these pointers are freed, the

memory regions they point to can be recycled by the memory

manager. In the case of PicoContext objects, both the process’ name

and its corresponding _EPROCESS instance are stored outside of the

structure. In rare cases, such as when analyzing a system that is very

lightly used or when a sample is taken immediately after a process

has terminated, these pointers may remain valid, but this is less

likely to occur in real incident response scenarios.

5.5. Enumerating threads from WSL pico processes

Threads have also been impacted by Microsoft's implementation

of pico processes. Each _ETHREAD contains a PicoContext pointer,

which is set if the thread is owned by a pico process and null

otherwise. The presence of a non-null value in this field indicates

whether or not the thread is a pico thread. The PicoContext main-

tained by a pico thread is not the same as the PicoContext main-

tained by its owning process, but both contexts include attributes

that identify their relationships with one another. A WSL pico pro-

cess' PicoContext maintains both a list and a counter describing the

PicoContext objects of its pico threads (Ionescu, 2016b). Each WSL

pico thread's PicoContext contains a pointer to the PicoContext of its

owning process as well as its corresponding _ETHREAD.

The values of non-pico fields are also affected. First, as shown

in Fig. 1, pico threads do not have Thread Environment Blocks

(TEBs). More importantly, some WSL pico threads maintain null

_ETHREAD.StartAddress pointer values. Volatility's _ETHREAD

class assumes that valid potential thread structures are invalid if

these pointers are null. The thrdscan plugin only reports

threads it considers valid, so many WSL pico threads are omitted

from its output. At this time we do not know why some

WSL pico threads do not have this field populated, but we sus-

pect that it is instead stored somewhere in the thread's

PicoContext.

Our new picothreads plugin enumerates the threads owned

by WSL pico processes. This plugin could have referenced the

thread list at _EPROCESS.ThreadListHead, but we chose to use the

PicoContext list described above as it exposes an alternative method

for discovering WSL pico threads. We also report per-process

thread counters read from WSL pico process' PicoContext objects

instead of their _EPROCESS.ActiveThreads values for similar reasons.

The plugin's output is similar to thrdscan while also reporting

each thread's PicoContext.

5.6. Scanning for WSL pico threads

Scanning for WSL pico threads is similar to scanning for WSL

pico processes. lxcore.sys's LxpThreadCreate function uses a

fixed-size pool memory allocation with a tag value of 0x4c782020

to create each thread's PicoContext. The function then populates

the new context object with values and updates the process'

PicoContext accordingly. We created a picothrdscan plugin to

search for these objects and produce the same data that is output

by picothreads. The plugin filters the output of bigpools using

the known size and tag to produce a list of potential PicoContext

objects belonging to WSL pico threads. The objects are validated if

their corresponding _ETHREAD objects can be fetched and the

_ETHREAD.PicoContext pointer matches the address of the scanned

object.

Similar to WSL pico process' PicoContext objects, WSL pico

threads' PicoContext memory allocations are susceptible to being

overwritten shortly after being freed, compared to objects with

flat structures. picothrdscan relies on the presence of several

pointers to objects associated with the contexts to validate its

findings. If any of these pointers are overwritten, then the thread

cannot be found with this plugin. In these cases, the _ETHREAD

class’ validation function could be loosened to allow a null

StartAddress pointer when the PicoProcess pointer is set, to in-

crease the likelihood that terminated WSL pico threads are

detected.

5.7. Recovering process names

As stated earlier, the ImageFileName field within _EPROCESS

objects is not populated forWSL pico processes. The same is true for

the SeAuditProcessCreationInfo.ImageFileName field. Given that

these are the fields used to extract the names of NT processes, an

alternative method of discovering WSL pico process names is

required.

Analysis of the LxpThreadGroupSetExecutable function

reveals that the WSL pico provider creates a Unicode string for

each process that includes the full path to the process's

executable. The path is relative to the user's AppDa-

ta\Local\Packages\<distro> \LocalState\rootfs directory where

the WSL files are located within the Windows filesystem. A

pointer to this string is then stored in the process's PicoContext

at a fixed offset. The correct process name is included in the

picolist plugin's output and is provided to other WSL-related

plugins.

The missing ImageFileName values likely result from aWindows

kernel bug. A recent system patch to the Fall Creators Update en-

ables the kernel to correctly populate these values (Ionescu, 2018).

Our plugins continue to report WSL pico process names based on

the values managed by the process’ PicoContext objects in case

further discrepancies between these values arise.

5.8. Recovering process IDs

A pico process' PID, as reported by Linux programs, is different

from the PID tracked by Windows programs, such as Task Manager.

This causes discrepancies when analyzing log files and other

Fig. 4. Output of picolist plugin.
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runtime data from Linux programs and cross-referencing PIDs re-

ported by Volatility's pslist plugin. The same issue would arise if

a live response tool was used to generate a list of running processes

from a Windows program.

Accessing the Linux PID of a WSL pico process first requires

dereferencing a pointer within the process’ PicoContext to an un-

documented object. A uint32_t field at a fixed offset within this

object stores the Linux PID. All of our developed plugins report both

the Windows PID, stored at _EPROCESS.UniqueProcessId as well as

the Linux PID. A full analysis of the undocumented object remains

the subject of future work.

5.9. Building parent/child process mappings

Based on our analysis, the Linux parent PID of a WSL pico pro-

cess does not appear to be stored anywhere within the PicoContext

object. However, the parent/child relationship can still be recon-

structed as each PicoContext contains a pointer to its parent process'

PicoContext object. The lone exception to this rule is/init, which

instead has a correct _EPROCESS.InheritedFromUniqueProcessId

value. Our new picotree plugin is a modified version of Vola-

tility's pstree plugin that uses PicoContext addresses to correctly

create the inheritance tree of WSL pico processes.

5.10. Enumerating environment variables

Whereas NT processes store environment variables in a block of

memory pointed to by their PEBs’ ProcessParameters.Environment

field, WSL pico processes do not have PEBs and instead store

environment variables at addresses tracked by a field at a fixed

offset within their PicoContext objects. The environment variable

names and values are stored in a contiguous set of character strings

whose total length is specified by a size_t field at an adjacent

PicoContext offset. TheWSL pico provider writes this information in

one of two internal functions e LxpThreadGroupSetupUser or

LxpThreadGroupCreate. Automated recovery of WSL pico pro-

cess environment variables is included in the output of our

picoenvars plugin.

5.11. Locating the process executable

For an NT process, the base address of the application executable

can be found by referencing the ImageBaseAddress member of the

process’ PEB. The ability to determine where an application is

loaded into process memory enables several key memory forensic

capabilities, such as:

! Extraction of the running executable of a process, as imple-

mented in Volatility's procdump plugin

! Extraction of in-memory, unpacked malicious code (Ligh et al.,

2014)

! Detecting process hollowing techniques (Monnappa, 2016)

! Automating Yara and other signature-based scans across

running processes (Case, 2016)

! Reconstructing API usage to aid reverse engineering (Reverse

Engineering Rootkits, 2014)

The inability to access this information for pico processes breaks

all of the capabilities listed above, among others. Fortunately, the

load address can be recovered through analysis of the PicoContext

object. Specifically, by following two undocumented pointers that

are written to the context object in the WSL pico provider's

LxpThreadGroupSetupUser internal function, a pointer to the

application's ELF program headers can be obtained. This metadata

can then be used to determine the initial load address, which is

accessible via our plugin API. Access to the executable load address

can be used to restore all of the previously listed capabilities except

for those related to extraction, which is covered in Section 5.13.

5.12. Locating shared libraries

The lack of a PEB also prevents Volatility's dlllist and

ldrmodules plugins from enumerating shared libraries associated

with a WSL pico process. This presents many of the same issues as

the inability to locate where the application executable resides in

memory.

To recover this information, Volatility's existing algorithm for

enumerating shared libraries from Linux's runtime loader, as

implemented in the existing linux_library_list plugin, was

ported to target WSL pico processes. Fortunately, it appears that

Microsoft did not substantially change the algorithm used by the

runtime loader as the existing algorithm was able to successfully

recover all shared libraries and their metadata. Fig. 5 contrasts the

output of dlllist, which attempts to use a process' PEB, with the

output of our new picosolist plugin. By leveraging our new

picosolist Volatility plugin, analysts can now determine which

shared libraries are loaded by WSL Linux processes.

5.13. Extracting Linux executables

Once a process' executable and shared libraries are located in

process memory, analysts may then want to extract them from

memory. For NT processes, Volatility provides the procdump and

dlldump plugins for this purpose. Unfortunately, neither of these

plugins work properly for WSL pico processes, because they handle

only Windows PE format executables and not Linux's ELF format.

To remedy this issue, we created two new Volatility plugins,

picoelflist and picoelfdump. The picoelflist plugin is

similar to the existing linux_elfs plugin, which enumerates all

ELF files mapped into processes on Linux systems. To gather the list

of ELF files in a WSL pico process, picoelflist walks the process'

VAD tree (Dolan-Gavitt, 2007) and focuses on VAD nodes with

PAGE_EXECUTE_WRITECOPY protection and an associated Fil-

eObject pointer. It then verifies that each matching memory region

begins with a valid ELF header. By default, our picoelfdump plu-

gin relies on picoelflist to find and properly extract all loaded

Fig. 5. Output of dlllist compared to output of the new picosolist plugin.
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ELF executables. Extraction is performed through Volatility's

existing ELF parsing and extraction API.

To replicate the functionality of Volatility's existing procdump

and dlldump plugins, we also created two new plugins, pico-

procdump and picosodump. These new plugins leverage our

ability to find the load address of a process as well as its associated

libraries to find executables to extract. Furthermore, we combined

the logic of picoelflist, picoscan, and picosolist to imple-

ment a new picoldrmodules plugin. This new plugin replicates

the malware-finding algorithm of the existing ldrmodules plugin,

so WSL pico processes can be scrutinized in the same way.

5.14. Enumerating file system handles

Since the handles tables for WSL pico processes are not main-

tained, the existing Volatility handles plugin is unable to enumerate

which system resources aWSL pico process is currently utilizing. To

address this issue, we created the picolsof plugin to provide

capabilities similar to those of the existing Volatility linux_lsof

plugin. Creation of this plugin required careful reverse engineer-

ing of the lxcore.sys driver to answer several key questions,

including how:

! a process' file descriptor table is linked to its PicoContext

! file descriptors are stored within the table

! to recursively recover the full path of files associated with

descriptors

The most useful functions to analyze for recovering this infor-

mation include LxpThreadCleanup for linking a file descriptor

table to its PicoContext, LxpFileReferenceByDescriptor

for descriptor enumeration, and VfsDirectoryEn-

tryGetPathHelper for mapping opened file paths. After a thor-

ough analysis of these functions, plus a few related helper

functions, we developed the picolsof plugin, which reports the

opened file descriptors associated withWSL pico processes. Sample

output from this plugin appears in Fig. 6.

5.15. Command history recovery - LXSS

Since WSL is largely driven by command line activity through

wsl.exe, a natural artifact of interest is the list of commands entered

into the consoles as well as any resulting console output. For this

reason, we investigated why Volatility's cmdscan and consoles

plugins were unable to produce console input and output related to

WSL wsl.exe sessions. These plugins operate by scanning instances

of the Client/Server Runtime System (Client/Server Runtime

Subsystem, 2017a; Windows 7/Windows Server, 2008 R2, 2017b)

for input and output generated by console programs such as

cmd.exe and powershell.exe.

Our inspection of the parent/child relationship of processes

related to WSL showed that each wsl.exe instance spawned an

associated conhost.exe, which is the server component of the client/

server runtime system. When testing the plugins against various

memory samples, we noticed that the plugins not only missed ac-

tivity related towsl.exe, but also the traditional command shell and

PowerShell consoles. At this point, we contacted a Volatility

developer, who informed us that these plugins do not currently

support Windows 8 and Windows 10.

Analysis of conhost.exe from our Windows 10 test system

showed that it was using a new background implementation

contained within conhostV2.dll. This DLL and its implementation

do not appear before Windows 8. Binary analysis of this DLL

showed that several of the structure members and algorithms

expected by the Volatility plugins were drastically changed. We

then updated the cmdscan plugin to support Windows 10. After

our updates, the plugins successfully recovered commands

executed in the traditional consoles, but were still unable to pro-

duce results related to wsl.exe activity. Next, we performed binary

analysis of wsl.exe and cmd.exe, to better understand their in-

teractions with conhost.exe. This research was not conclusive, but

our current assessment is that wsl.exe does not leverage the same

APIs as the traditional consoles, which prevents the data structures

from being created and populated on the server side of the activity.

This research is still ongoing.

5.16. Command history recovery - bash

Beyond the interaction betweenwsl.exe and conhost.exe, we also

investigated recovery of command activity directly from /bin/bash.

This yielded much better results. To investigate this theory, we

created a version of the existing linux_bash Volatility plugin

designed to target WSL /bin/bash processes. Fortunately, Microsoft

seems to have leveraged the same code, or at least the same data

structures, as the familiar Linux bash console. This allows use of the

existing bash history recovery algorithm forWSL processes and this

is implemented by our new picobash plugin. As illustrated in

Fig. 7, the plugin successfully recovers executed commands as well

as the execution times for commands entered in the current ses-

sions. Commands from previous sessions that were saved to disk

will have starting times matching the time the shell process was

created.

Fig. 6. Output of the new picolsof plugin, enumerating file handles associated with a pico process.
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6. Conclusions and future work

In this paper we have detailed many new memory forensic al-

gorithms and Volatility plugins that enable deep analysis of

Microsoft's Windows Subsystem for Linux. Combined, these plu-

gins fix the many deficiencies we discovered when existing mem-

ory forensic algorithms are applied to WSL pico processes. By using

our new plugins, analysts will now have the same capabilities for

analyzing WSL pico processes as they do for traditional Windows

processes.

While the results of this research led to many new analysis ca-

pabilities for WSL, much remains to be done. For example, our

picohandles plugin can enumerate the WSL-specific file system

cache to match a particular file descriptor, but no other plugin

separately inspects the entire cached file system or fully enumer-

ates it. Furthermore, while the existing Volatility netscan plugin

can recover networking artifacts from WSL application network

activity, our time in reversing lxcore.sys revealed that there is a

substantial networking stack layer implemented inside of lxss. So

far, none of the artifacts from this network layer have been exam-

ined in detail. Finally, there are entire capabilities of lxss, such as IPC

between WSL's pico and NT processes, that remain unexplored.

Beyond simply enumerating artifacts from these undocumented

subsystems, the size of the lxss executables, along with the sub-

stantial functionality they implement, suggests that there are likely

many new ways for malware to interfere with and hide from in-

spection. Discovering weaknesses in these subsystems that can be

abused by malware will require a larger research effort to uncover

and document. Furthermore, existing Volatility plugins that hunt

for Linux userland malware, such as linux_apihooks and

linux_plthook have yet to be ported to WSL. We are currently

workingwith the Volatility developers to accomplish this goal in an

efficient manner.

Finally, our current research effort for WSL has focused on two

versions of Windows 10. As shown in Ligh's work on porting the

recovery of WSL process names to all versions of Windows 10, the

offsets inside of key data structures can and likely will change. We

experienced such changes when upgrading from Build 1703 to the

Fall Creators Update. Tomake porting ourmany new plugins to new

versions of Windows 10 easier, we have documented the func-

tion(s) inside of the lxss executables that reference needed offsets.

This allows quickly determining which offsets are appropriate

when the offsets change.
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