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Abstract

The price of anarchy, originally introduced to quantify the inefficiency of selfish behavior in
routing games, is extended to mean field games. The price of anarchy is defined as the ratio of
a worst case social cost computed for a mean field game equilibrium to the optimal social cost
as computed by a central planner. We illustrate properties of such a price of anarchy on linear
quadratic extended mean field games, for which explicit computations are possible. A sufficient
and necessary condition to have no price of anarchy is presented. Various asymptotic behaviors
of the price of anarchy are proved for limiting behaviors of the coefficients in the model and
numerics are presented.

1 Introduction

The concept of the ‘price of anarchy’ was introduced to quantify the inefficiency of selfish behavior
in finite player games [9][10][13][16][17][18]. In this report, we extend the notion of price of anarchy
to mean field games (MFG). Mean field games were introduced by Lasry and Lions [14] and Caines
and his collaborators [12] to describe the limiting regime of large symmetric games when the number
of players, N, tends to infinity. A mean field game equilibrium characterizes the analogue of a Nash
equilibrium in the N = oo regime. Thus, as in the finite player case, it is possible that the mean
field game equilibrium is inefficient. In fact, in the paper of Balandat and Tomlin [2], they present
a numerical example that shows that mean field game equilibria are not efficient, in general. The
suboptimality of a mean field game equilibrium is also illustrated numerically for a congestion
model in a paper of Achdou and Lauriére [1]. More recently Cardaliaguet and Rainer gave in [5]
a partial differential equation based thorough analysis of the (in)efficiency of the mean field game
equilibria.

In this report, the goal is to define the price of anarchy in the context of mean field games,
and to compute it for a class of linear quadratic mean field game models, which can be solved
explicitly. In fact, we consider an even more general class of games by allowing for interaction
between the players through their controls, in addition to interaction through their states. This
is often referred in the literature as extended mean field game, or mean field game of control. We
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compare the social cost of a mean field game equilibrium to the cost incurred when the players
execute a strategy computed centrally.

We consider a system of N players whose private states are denoted at time ¢t by X}, X2, -,
va . To keep the presentations simple, we assume the state space is R. We denote by ,uév the
empirical distribution of the states, namely:

1 N
uu’t N 5Xth
i=1

We assume that these states evolve in continuous time under the influences of controls o, a2, - - - |
o:iv € A, where the set of admissible controls, A, will be defined later. Let v,fv denote the empirical

measure of the controls: N
1
t = N P 5‘1:'

We also assume that if and when interactions between these states and controls are present, they
are of a mean field type, i.e. through ,uév and vgv . The time evolution of the state for player 7 is
given by the It6 dynamics:

dX] = b(t, X}, py o, v dt + odW,.

We work over the interval [0,7] limited by a finite time horizon T € RT. We assume the drift
function b: [0,T] x R x P(R) x A x P(A) > (¢,z,p,,v) — R is Lipschitz in each of it’s inputs.
For the sake of simplicity, we assume that the volatility, o, is a positive constant.

Cost Functionals

We assume that we are given two functions f: [0,7] x R x P(R) x A x P(A) > (¢t,z,p,,v) -+ R
and g : R x P(R) > (x, 1) — R which we call running and terminal cost functions, respectively. We
assume f and ¢ are Lipschitz in each of their arguments. The goal of player 7 is to minimize their
expected cost as given by:

T
y(ala'” 1aN} :E[A f(trxttﬂu’ivragrutN}dt+g(X’}Hw¥} .

Social Cost

We restrict ourselves to Markovian control strategies o = (a¢)o<t<T given by feedback functions in
the form a; = ¢(t, X¢) and we let A denote the set of such controls. If the N players use distributed
Markovian control strategies of the form ol = ¢(t, X}), we define the cost (per player) to the system

as the quantity J;N):
N 1L
Jé, ) = FZJ“(QI,——— ,a).
i=1

We shall compute this social cost in the limit N — oo when all the players use the distributed
control strategies given by the same feedback function ¢ identified by solving an optimization



problem in the limit N — co. We take the social cost to be the limit as N — oo of Jq(bN), namely:

im ™ — lim L5 Jial ... oV
Jim, Je = Jim, g 2 Tl a)

N—oo

N T
1 . ) .
= lim =Y E / F, X ud o, X)) dt + o(X5, 1) |,
N i=1 0

T
:B}]m E[/ <f(t1:l”’gtaé(t:}1V§V)Hu’£v>dt+<g(:ﬂgrf}ﬂu’?jy>:|1
—r 0 1]

if we use the notation < ¢, p > for the integral [ ¢(z)p(dz) of the function ¢ with respect to the
measure p. Now if we assume that in the limit N — oo the empirical distributions ¥ converge
toward a measure u;, and thus vgv = ]%'r Zi\‘;l 5¢(£ X also converges toward a measure 4, then the

social cost of the feedback function ¢ becomes:

T
Sc(é) = A < f(ta 'Hu’taé(t: '}1Vt)1lu’t >dt4+ < g('al”’T)aﬂT >,

with the expectation, E, disappearing when the limiting flows p = (p¢)o<i<r and v = (v)o<i<T
are deterministic.

We would like to evaluate SC(¢) in the N = oo regime directly, without having to construct
the deterministic measure flows g and v as limits of the finite player empirical measures. To
do this, we assume that propagation of chaos holds and that the states of the N players become
asymptotically independent in the limit as N — co. We consider a representative agent whose state
is given by X? = (Xf‘j )o<t<T, the continuous time solution of the stochastic differential equation
of McKean-Vlasov type:

dX{ = b(t, X{, L(XP), b(t, X)), L(p(t, X7))dt + odW; @)

controlled by ¢. Then we can identify p as the law of a representative agent using the feedback
function ¢, i.e. puy = L',(Xf' ), and similarly, we can identify v as the law of the control, such that

vy = L(o(t, Xf)) Thus, in the N = co regime, we rewrite the social cost as:
T
SC(¢) = ] < f(t - LKD), 8l ), L(B(E XD))), LXE) > dit+ < g(-, L(XF)), L(XF) >,

where X ¢ satisfies equation (1). For the remainder of the paper, we work in the N = oo regime.
As mentioned earlier, ¢ should be identified by solving an optimal control problem. We consider
two distinct problems:

e ¢ is a feedback function providing a mean field game equilibrium. We detail more precisely
what is meant by ¢ providing a mean field game equilibrium in section 1.1.

e ¢ is the feedback function minimizing the social cost SC(¢), without having to be a mean field
game equilibrium, in which case we use the notation SCMKV for SC (¢). This is a control
problem of McKean-Vlasov type, which is detailed more precisely in section 1.2.



The two problems are detailed more precisely in sections 1.1 and 1.2. In section 1.3, we define the
price of anarchy based on these two problem formulations. The class of linear quadratic models
is explored in section 2, where we provide some theoretical results on the price of anarchy for this
class of games. This includes our main result, Theorem 2, which provides a sufficient and necessary
condition to have no price of anarchy. In section 2, we also prove some limiting cases and show
numerical results. We conclude in section 3.

1.1 Nash Equilibrium: Mean Field Game Formulation

The goal of this subsection is to articulate what is meant by a feedback function providing a
mean field game equilibrium. To begin, we define what we call the mean field environment. By
symmetry of the players, we suppose all of the players in the mean field game use the same feedback
function, ¢. Then the mean field environment specified by ¢ is characterized by ;ﬁC(Xf‘j Jo<t<T
and ﬁ(cﬁ(t,Xf))oggT where the dynamics of (Xf)ggg;r are given by equation (1). Since we
search for a Nash equilibrium, we consider a representative agent who wishes to find their best
response, ¢’, to the mean field environment specified by ¢, in which case their state is given by
X = (Xf‘j !’¢}0£t£rp solving the standard stochastic differential equation:

dX{? = b(t, X7, £(XD), 8 (6, X{), L(6(t, X7)))dt + odW,.

Consider the function:
T
S(¢,9) = [ / < f(t, LX), 8 (1), £(6(, X7)), L(XE0)) > di+ < g(-, £(XP)), LX) > .

The best response for the representative agent in the mean field environment specified by ¢ is the
feedback function minimizing this cost, namely ¢* = arginfy S(¢/, ¢). Assuming the minimizer is
unique (which will be the case for the models we consider), this defines a mapping ® : ¢ — ¢*. If
there is a q?) such that ‘I’(QAS) = cﬁ, then the players are in a mean field game equilibrium.

Thus, the search for a feedback function providing a mean field game equilibrium can be sum-
marized as the following set of two successive steps:

1. For each feedback function ¢ : [0,T"] x R 5 (t,z) — R, solve the optimal control problem
¢ = argig,f S(¢',9).

Define the mapping ®(¢) := ¢*.
2. Find a fixed point ¢ of ® such that ‘I’(QAS) = ¢.

When these two steps can be taken successfully, we say that (;AB provides a mean field game
equilibrium. Note that X?? = X% and therefore S (g?)? (;AB) = SC(gf)} gives the social cost for the
mean field game equilibrium provided by (;AB Notice that there could possibly be many feedback
functions providing a mean field game equilibrium. Let A’ denote the set of all such feedback
functions providing mean field game equilibria, as detailed above, i.e.

N={¢:[0,T] xR > (t,z) - R | B(¢) = $}.



1.2 Centralized Control: Optimal Control of McKean-Vlasov Type

The goal of this subsection is to articulate how to compute the cost associated with the control
problem of McKean-Vlasov type, SCMEV  The central planner considers the following control
problem:

¢ = arg inf SC(¢)

= arginf [ ] Ul - LX), (L ), LX), LXP) > dt 4+ < a(-, L(XP)), L(X3) >| -
0

Thus, the cost of the solution to the optimal control problem of McKean-Vlasov is given by:
SCMEY — 5C(4).

Remark 1. We are not concerned with uniqueness for the control of McKean-Vlasov type problem,
because SCMEV — SC(¢,) = SC(¢y) is still well defined even if there are two different optimal
feedback functions ¢, and ¢o minimizing SC(¢).

1.3 Price of Anarchy

We have described two approaches to compute the optimal feedback function ¢. In the mean
field game formulation, we require ¢ € N/, where ' denotes the set of feedback functions providing
mean field game equilibria. In the optimal control of McKean-Vlasov type formulation, the optimal
control to be adopted by all players is computed by a central planner, who optimizes the social cost
function SC(¢) directly. Thus, we necessarily have:

SCMKY < 5C(¢), Vo € N.

In other words, there is a ‘price of anarchy’ associated with allowing players to choose their controls
selfishly. We thus define the price of anarchy (denoted PoA) as the ratio between the worst case
cost for a mean field game equilibrium and the optimal cost computed by a central planner:

supgen SC(9)

PoA = SCMEKV

2 Price of Anarchy for Linear Quadratic Extended Mean Field
Games

The class of linear quadratic extended mean field games is a class of problems for which explicit
solutions can be computed analytically, and thus, we can compute the price of anarchy explicitly.
To the best of our knowledge, the case of linear quadratic extended mean field games has not been
explored in the literature, as well as computing the price of anarchy for this class of games.

To begin, we need to describe in more detail the two problems that will be used to compute
the price of anarchy: the linear quadratic extended mean field game, and the linear quadratic
control problem of McKean-Vlasov type with dependence on the law of the control. To specify the
problems, we only need to specify the drift and cost functions, b, f, and ¢ introduced in section 1.
For the linear quadratic models, we take the drift to be linear:

b(t, 2,1, 0, ) = bi(t)z + b1 () + ba(t)a + Ba(t)5,



where i1 denotes the mean of the measure p, namely, & = fR zdp(x), and similarly for . We take
the running and terminal costs to be quadratic:

flt,z,p,a,v) = = [q(t)z? + 4(t)(z — s(t)in)® + r(t)o? + 7(t)(a — 5(t)p)?]

1
2
1 _ _
9(@,p) =5 lar2® + ar(z — sTi)?] .
Remark 2. Ifby(t) =0 and 7(t) = 0, then we have the standard mean field game or control problem
of McKean-Vlasov type. (See Theorem 1 for assumptions that provide eristence and uniqueness.)

2.1 Linear Quadratic Extended Mean Field Games

To solve the linear quadratic extended mean field game (LQEMFG), we begin by considering the
reduced Hamiltonian for this problem:

H(ta T, .aa , v, y) = [bl (t}ﬂ'} + 51 (t)-ﬁ’ + b?(t}a + EQ(t}E] Yy

+5 a2 +2(0) (@ — s + r()0® + 70 @ — 509

and whenever the flows i = (fit)o<t<T and ¥ = (V¢)o<i<T are fixed, we consider for each control
process a = (oy)o<t<T the adjoint equation:

dlft = _6.’-."H(t1 Xta .ata Qi Eta lft)dt + thWta YT = 6.’-.“9‘(XT1 ‘C(XT))

According to the Pontryagin stochastic maximum principle, a sufficient condition for optimality is
OaH (t, X4, fit, &, ¢, Y:) = 0. Thus, we find the optimal control:

. _ (0507 — b)Y

o r(t) + 7(t) )

When solving the fixed point step, we identify 7; = E(&;). By taking the expectation, we find:

e =E(d) = MEDEY,),  with M) = )+ ;()i)(g — (1)

Thus, from equation (2) we have:
& = POy, + M (HE(Y), (3)

with:

MFGp _ () amL MFG(py _ _ r(t)5(t)ba(t)
O=—mrr ™ O rrTroen o o)

Note that cMFC () = aMFC(t) +bMFG(t). The solution of the mean field game equilibrium problem
is given by the solution to the FBSDE system:
dX; = [bi(t)X¢ +bi(t)EXe + aMFC(4)ba(8)Y: + BMFC ()ba(t) + MFC(#)ba(t))EY] dt + odW,
dY; = —[(at) +aq(t))X: — q(t)s()EX; 4 b1(£)Ye] dt + Z;dW,
(4)



with initial condition Xy = £, a random variable with finite mean and variance, and terminal
condition Y1 = (g1 + ¢r) X1 — grsTEXT.

This is a linear FBSDE of McKean-Vlasov type, which can be solved explicitly under mild
assumptions (or at least in the case of time-independent coefficients which we will consider later.
See Appendix A). Let 77 _M FG nf"f FG mf"f FG and Uf"f FG denote the solutions for this problem as
described in the appendlx so that:

Y; = ngh‘FGXt + (ﬁgh‘FG ,,}.MFG) ~MFG ]E Yt) _ nMFG 1‘!.fH7'(?1

E(X;) = zMFC¢ Var(X,) = oMFC,
provide a solution to the LQEMFG problem. Then from the appendix, we have:

e a scalar Riccati equation for pM¥C:

TG 4 [MFC () (ba(t) + ba(8)] - ()2 + (261 (8) + ba () - 77 +a(t) +a(8)(1—s(t) = 0,

with terminal condition W}%JFG =gqr + qr(1 — s1), ®)
e a linear first order ODE for zMFC:
ETC = [b1 (1) + b (t) + MIC(R) (ba(t) + ba(2)) - 7MTE] - 2TC, (6)
with initial condition z}/F¢ = E(¢),
e a scalar Riccati equation for pM¥G:
i 1 4 aM T (ba(t) - (nTC)? + 2b1(2) - T + () + a(t) = 0, (7)
with terminal condition 1}%4 FG — gr + gr,
and where the dot is the standard ODE notation for a derivative. And thus, we obtain explicit
solutions for zMF¢ and vMFC:
gMre E({)efo (b1(8)+D1 (8)+[eMFC () (b2(8)+b2(s))| - F ) dsj (8)

WMFG _ ap(£)elo 2[b1(6)+aMPE (o)ba(s) m FCJds | 2 / 2 J: 1 ratTE @b i TCldugg - (g)
0

Let SCMFG .— §C(¢MFG) in which pMFC = gMFG (¢ 1) is the feedback function specified by this
solution, na,me]y, from equation (3), we have:

(,bMFG(t?:B} _ aMFG(t)ngh‘FGm + [GMFG(t}(ﬁglJFG MFG) + bMFG(t)T}MFG] mMFG

Tt

Then we can compute the social cost as described in section 1.1:

SCMFE = L [(ar +ar)olf 7 + (ar +ar(1 — s1))(@HTCY
+ A " o) + a0) + (0 + )@@ FOY] oM (10)
+ ]D ' [a(t) + a()(1 — s(£)? + (r(t) + 7()(1 — 5(2))*) (MFC ()i FC)?] (:rci"*‘m)%t],

where we have used the fact that:

_ — 2
E(@MFO(t, X0) = MPO@) PR PE and  Var(MFE(t, X)) = (PO EC) M,



2.2 Linear Quadratic Control of McKean-Vlasov Type Involving the Law of the
Control

To solve the linear quadratic optimal control problem of McKean-Vlasov type involving the law
of the control (LQEMKYV), we begin with the reduced Hamiltonian, which is the same as in the
LQEMFG problem:

H(t,z,j1,,7,y) = [b1(t)z + b1 (t)i + ba(t)a + ba(t)7] y

+5 a2 +2(0) (@ — ) + r()0® + 7))@ — 5]

Since we require ¢ to be equal to E(oy) throughout the optimization, it is not sufficient to minimize
the Hamiltonian with respect to the a input alone in order to guarantee optimality. A sufficient
condition for control problems of McKean-Vlasov type involving the law of the control is derived
in [6]. Since we consider a Hamiltonian that depends on the means of i and 7 instead of the full
distributions, the sufficient condition reduces to the following (see section 4 in [6]):

0o H(t, X, E(X,), 41, E(&),Y;) + E [6‘,;H(t, Xt,E(Xt),ét,E(ét),ﬁ)} -0,
where the adjoint equation is given by:

e = — |0:H (t, X, e, 00,7, Ye) + B [0pH (t, Koo fiv, a0, 71, Vo) || dt + ZedW,
Yr = O.g(Xr,£(X1)) +E |9u9(Xr, £(XT))(X7)] |

and where (X,Y,&) denotes an independent copy of (X,Y,a). In the present LQ case, the
sufficient condition can be used to solve for:

& = oMV ()Y, + MEV (H)E(V), (11)
with:
MKV .\ _ __ ba(d) and BMEV(py— 1 = T(6)5(8)(5(t) — 2)(ba(t) + ba(2))
T O=mrr ™ YOG (f”(” "0 + FO - 502 )

Then E(&;) = cMEV (1)E(Y;) with:

_ b)) +bo()
r(t) +r(t)(1 —s(2))*

So the solution of the optimal control problem of McKean-Vlasov type is given by the solution

to the FBSDE system:

CMKV(t} _ GMKV(t) + bMKV(t) _

{ dX¢ = [b1(t)X¢ + b1 ()EX: 4+ a™EV (£)ba (1) Y + (M EY (1)ba(t) + MEY (t)ba(t))EY,] dt + odW,

dY; = — [(a(t) + 4(t)) X; + s(8)a(t)(s(t) — 2)EX; + by (8)Y: + by (t)EY,] dt + Z,dW,
(12)
with initial condition Xy = &, and terminal condition Yr = (¢r + ¢r) X1 + star(st — 2)EX7.
As in the previous section, this is a linear FBSDE of McKean-Vlasov type, which can be solved
explicitly under mild assumptions (or at least in the case of time-independent coefficients which we



will consider later. See Appendix A). Let gM&V pMEV zMEV = and oMEV denote the solutions

for this problem as described in the appendix so that:

Yt:néh‘Kth_'_(ﬁgh‘KV nMKV) MKV ]E(Y}—??MKV l‘i.f{K‘/"1

1

E(X;) = zMEY | Var(X;) = oMEV,
provide a solution to the LQEMEKYV problem. Then from the appendix, we have:

e a scalar Riccati equation for 77KV

i Y 4 [ MYV () (b2(8) + b2(2))] - T )P 42 (b1(8) + Ba(8)) -7 Y () +a(t) (1-s(1))? = O,

with terminal condition ﬁ%"va =qr + ar(1 — st)?, 9
e a linear first order ODE for zM&V:
7Y = [ba(®) + bi (1) + MV (@) ba(0) + o) - ]2 (14)
with initial condition z}/KV = E(¢),
e a scalar Riccati equation for g KV:
i Y 4 @™V (@)ba(t) - (YY) + 261 (2) - Y + q(t) + @) = 0, (15)
with terminal condition 1}%4 KV — g1 + gr,

and where the dot is the standard ODE notation for a derivative. And thus, we obtain explicit

solutions for zM KV and oMKV
gMEV _ (g)efu (b1(8)+b1(8)+[eMEY (s) (b2 (s)+b2(s))]- MKV}dS (16)

WY = Var(ell 2 ) y g2 [ 2 s ot g, (17
0

Then SCMEV — SC(gﬁM KV) where ¢MEV is the feedback function specified by this solution,
namely, from equation (11), we have:

éMKV(t?:B} _ aMKV(t)nih‘KV MKV )(T?MKV MKV) _l_bMKV(t)ﬁgh‘KV] :Ei!.f{KV.

m—l—[a

CMKV

Then we can compute the social cost, denoted S , as described in section 1.2:

SCMEV _ %[(c;»r +ar) o5V 4 (gr + gr(1 — s7)?)(FHEV)?
T
+ ] [a(t) + @(t) + (r(t) + 7(£)) (MK (£)pMEV)2] oMEV gy (18)
0
+/T [a(t) + a(t)(1 — s())? + (r(t) + 7()(1 — 5(£))*)(MEV )M EV 2] (zMEV) th}
0

where we have used the fact that:

E((}f}MKV(t X )} o CMKV(t} —MKV MKV and VGT((ﬁMKV(t,Xt)) _ (GMKV(t)niWKV)Q_UéWKV.



2.3 Theoretical Results

For the remainder of the paper, we assume the coefficients are independent of time and non-negative:
(bl(t)a Bl (t}a bQ(t)a 52&): Q(t}a Q(t}a T(t)a F(t)a S(t): S_’(t}) = (bla Bl 3 b2: 521 q,q,7,T,8, '§} S (R+)lﬂa
(qr,qr,sT) € (RT)?,

and therefore,
(GMFG(t)? bMFG(t)?CMFG’(t}) _ (al‘!{f}'—'CJ1 bl‘!.ff}‘_'G1 CMFG)
(GMKV(t), bMKV(t)?CMKV(t}) _ (GMKV? bMKV?CMKV) )
Also, it will be convenient to denote:

MFG by r+7(1—35)?2

= = — , = A\gMFG, = gMEV, 19
MEV b, 1 +7(1-9) U U Wi U (19)
and to make the following observations:
GMFC _ MKV _ gMFG _ pMEV _. WMEG _ MKV _. (20)
Theorem 1. Assume the following:
b > 0 by + 3_)2 > 0
r+7 > 0 r+7(1-35 > 0 r4+7(l-35)?2 > (21)
g+q > 0 g+qgl—s) > 0 g+q(1—s)? > 0
ar+ar > 0 ar+ar(l1—sr) > 0 ar +ar(1 —sr)*> > 0.

Then there exists a unique solution to the LQEMFG problem, and there exists a unique solution to
SCM FG

the LQEMKYV problem. And therefore, PoA = SZyrv where SCMFG 4nd SCMEV 4re given by
equations (10) and (18), respectively.

Remark 3. Note that existence in Theorem 1 follows from the explicit construction in Appendiz A,
because the above conditions provide existence to the solutions of the Riccati equations. Uniqueness
comes from the connection between LQEMFG or LQEMKYV and deterministic LQ optimal control.
(See section 3.5.1 in [8]).

Proposition 1. Assuming (21), if furthermore,

[t ™EY + sq(s — 1)) -zMEV =0, Vtel0,T] (22)
(MFC _ MEVY gMKVZMKV _ o vt e[0,T] (23)
srar(sr —1) -3 XV =0, (24)

then PoA = 1.

Proof. Comparing the FBSDE systems (4) and (12), and using the fact that aMFC = MKV and
pPMFG _ pMKV _ MFG _ MKV ' the result is clear. O

10



Remark 4. Recall from Remark 2 that in the standard mean field game, bo = ¥ = 0, and thus,
A = 1. Although Proposition 1 is a simple result, we will see shortly in Corollary 3 that in the case
when A\ = 1, the sufficient condition given by equations (22)-(24) is also a necessary condition to
have PoA = 1. We can see that in the standard mean field game setting, Proposition 1 is similar
to Theorem 3.4 in [5] which characterizes the global efficiency of mean field game equilibria in the
case of a separated Hamiltonian. See also Remark 6.1 in [15], where it is noted that the mean field
game and control of McKean-Vlasov type problems are the same for a particular model of flocking.

Corollary 1. Assuming (21), if furthermore, by = 0, sq(s — 1) = 0, sygr(sy — 1) = 0, and
MFG — MKV then PoA = 1.

Corollary 2. Assuming (21), if the initial condition & is such that E(§) = 0, then from equation
(16), zMEV =0 for all t € [0,T], and thus, PoA = 1.

Using the observations in equation (20), we can rewrite:

1 _ 1 _ _ L 3
SOMFG _ 5(@? + gr)or + 5 (a7 + Gr(1 — s7)?) @FHFC)? + 5 / [a+ @+ (r +7)(an)?] vedt
0

T
b3 [ Lot a9+ (o 7L P MTERIEO (2, (25)
SCMKV:l( e 1 (1 — o)) (zMEVy2 4 L T _ _ 21 vrdt
5lar +ar)r + 3 (ar +ar(1 —s7)?) (") +3 ; g+ a+ (r+7)(ame)?] vt
T
g [ T a0 = 9+ (70— DMKV ) Y (26)

In the following, we intend to simplify the explicit solutions (25) and (26) for the social costs in

the LQEMFG and LQEMKYV problems. First, consider the quantity fg (aMFC)2(zMFG)24t. Using
equation (5), we have:

T
| @iy @e ar

1 T, T _
=~ IG5, 1 h,) [fo e G R +/D [(2b1 + b)) TC + (g + 31 - 9))] (f?f"‘fFG}th] )

then using integration by parts for the first term in the bracket:

1
=T ) g

T
_MFG-MFG+\2 _MFG—-MFG+2 _MFG-MFG -MFG
MFC(GMFGY2 _ gMFG (7] )—2/ PG GMFG gy
0

+ / ' [(2b1 + b)TTFC + (g +q(1 - 5))] (M FG):’dt] ,
0

and together with equation (6) yields:

T
1
o —MFG\2/-MFG\2 3, _ —_MFG-MFG\2 _-MFG 2
—ZA (e ) (=g 7)7dt cMFG(b, + by) !"FT @r ) =10 (E(§))

T —
+ / (=01 FC + (g + (1 — 5))] (ozf’*‘FG)i’dt] _
0
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Finally, we arrive at:

IFC@MFC)? — gl FCE(©)? + fy [~baiiMFC + (g +a(1 — 5))] @MFC)%dt
CMFG(E)Q + EQ) ’

/ (nMFG MFG)th

If we denote:

1 (T 1
oar = [ la+ @+ (- Plam )] wdt + ar +aror.
0

and use the terminal condition for ﬁ%"f FG | then equation (25) can be rewritten as:
1
SCHMTE = har + 5 / [BA 1 4 (0 4+ a(1 — 9)%) = Mg +a(1 - 9)] (@792, (27)
0

1, _ _
+ A [ (B(9)* = (ar +ar(1 — so)(@7' ")) + 5 (Q’T +ar(1—s7)?) (@ 7°)%
Similarly, equation (26) can be rewritten as:
1
SCMKV = hvar + anJKV(]E(g}) (28}

Let’s denote the (weighted) difference between the solutions of the Riccati equations associated
with fMFC and MKV by:
Ay = )‘ﬁf'JFG - ﬁéwKV = Up — Wy. (29)

Proposition 2. Under assumption (21), the difference in the social costs in the LQEMFG and
LQEMKYV problems can be represented by:

1 by + bs)
ASC := SCMFCG _ goMKV _ _. ({L/ (Am; - ZMFC) 24t (30)
Proof. The solutions 7 ¥¢ and MXV for the Riccati equations (5) and (13), respectively, are well

defined under assumption (21) (see Appendix A). We notice that An; defined in (29) satisfies the
following linear first-order differential equation:

d(An
) o ad 4B A= MTC
with coefficients:
T (ba + b2)? _ _
¥ = —2b; —2b + m ( MFG—FT??JKV) )

By = biAaMFC + (g +q(1—5)?) — Mg+ aq(1l— s)).

MKV and )‘,QMFG MKV

Since gr + qr(l — st) = G gr+ar(1—s7p)? = o = A7y, we deduce

12



that:
| Am(E(©)? - MmO + / Al

[ [o2egon, (s )

from equations (27) and (

SCMFG SCMKV—

_ by +b2)%
/ Ay (zMFG)? [ 2(51+bl—%/\?}'¥pc)—%] dt

28)

1

2

1

2

1 _
25/ [—2A7zMFCEMEC _ o A (zMFG)?] dt
1

2

1

2

(by + 52}2 FMFGY2
r+7(1—5)2 / (A - 2

where we use equation (6) for the fourth equality.

O

Remark 5. We can see directly from Proposition 2 that the social cost in the LQEMFG problem is
larger than (or possibly equal to) the social cost in the LQEMKYV problem. This result is consistent
with the definition of the price of anarchy in section 1.5.

Note that we can write:

ASC
It will be useful for us to note here the scalar Riccati equations associated with u; = AgMFC|
MKV d
=T and 7
i — 2A%; — Bu? +C" =0,  ur = DY, (32)
n — 24"y — B} +C" =0, nr =D, (34)
with:
b —
A" (bl—l- 1) A" = —(b1 + by), A" = —b,
BY — (by + by)? BY _ (ba + by)? B — b3
r+7(1—35)2’ r+7(1—3§)2’ r+7’
C* = XMg+4q(1-9), C¥=q+q(1-5)?, C"=q+4q,
= XNgr+ar(1—sr)), DY=g+ar(l1—sr)?, D"=qr+ar. (35)

If B* #£ 0, B*D"* > 0 and B*C" > 0, we have (see equation (73) in Appendix A) the existence and
uniqueness for u; which can be expressed by:
cu(1 - e—(ﬁ—&;)(’f—t)) + D¥(5F — 5—8—(5¢—5;)(T—z))

_ U u 36
Ut BuDY(1 — e~ =8u)(T=t)) 4 §Fe= (6L =0)(T—1) _ 5, %0

with §F = —A* + ,/(A%)2 + BuC%. Under assumption (21), the above conditions on B*, C*, and
D" are satisfied, and we have §,; <0< 8}, u; > 0forall ¢ € [0,T), and up > 0. We have analogous
expressions for w; and 7, in terms of 5$ and &,ﬂf, respectively. Note that B = BY =: B.

13



It will also be useful to compute the derivative of u; with respect to time ¢ from the explicit
form in equation (36):

du, _ (B(D") +24"D" — C¥) - (5F — 67) e B80T~ o
4 [BDY(1 - -6t -8T-0) | sre-(6E-sT-0 5 ’

Note that u; is increasing if B(D%)? + 2A%*D* — C* > 0, and likewise, decreasing if B(D%)? +
2A"D* — C" < 0.

Theorem 2. Assume (21) and the initial condition & satisfies E(§) # 0. Let A", A¥, B, C*, C",
D", and D" as defined in equation (35).

e When by > 0, we have PoA =1 if and only if:

D“=DY=:D and BD?+2A"“D —C"= BD?+2A"D —C" =0. (38)

e When by =0, then A* = AY and we have PoA =1 if and only if:
D"=D" and C"=C". (39)

Proof. From an analogous equation to (36) for w¢, we know that under assumption (21), wp > 0.
Thus, with the assumption E(£) # 0, we have 0 < SCMEV < oo, Hence, PoA = 1 if and only if
ASC = 0. Since ZMFC =L 0 for all t € [0,T], from Proposition 2 and the continuity of u; and wy,
we deduce that:

PoA=1 ifandonlyif  w=w; Vtel0,T].

From equation (37) and the uniqueness of solutions to Riccati equations (32) and (33), it is
easy to check that if the conditions in (38) and (39) are satisfied, then u; = D" = D" = w, for all
t € [0,T7], and thus, PoA = 1.

Suppose now that PoA = 1. Then uw; = w; for all ¢ € [0,T] and clearly:

D" = up = wr = D".

Now, if we take the difference between the two Riccati equations (32) and (33), and by using u; = wy
for all £ € [0,T], we obtain:

2(AY — A®)w, = C¥ — C¥, Y te[0,T). (40)

Since 2(A% — A¥) = by, in the case when by = 0 we must have C* = C. Otherwise, equation (40)
implies that u; = w, = (C* — C") /by, are constant for all ¢ € [0,7"]. Thus, the time derivatives of
u; and w; should be zero. From equation (37), and the fact that 6] — 6, > 0, we deduce:

B(D")? +24“D" — C* = 0.

Similarly we also have B(D")? + 2A¥ D" — C" = 0.
O

Corollary 3. Assume (21) and A = 1. Then the sufficient condition (equations (22)-(24)) from
Proposition 1 is also a necessary condition to have PoA = 1.

14



Proof. Assume PoA = 1. Since A = 1, we have ¢MFC¢ = MKV and thus, condition (23) holds. If
E(¢) = 0, clearly conditions (22)-(24) hold, as noted in Corollary 2. If E(¢) # 0 and b; = 0, from
Theorem 2, we have D* = D" and C" = C" which together with A = 1 imply conditions (22) and
(24), similarly as Corollary 1. Now, if E(£¢) # 0 and b; > 0, from Theorem 2, we have D* = D%
which implies condition (24). Finally, the condition B(D)?+2A%D—C" = B(D)>4+2A*D—-C" =0

implies M &V = w; = D = 25:;_?;) = 36(;;3) and thus, we have condition (22). O

We study in the following the variation of PoA by letting only one of the coefficients tend to
zero or to infinity. In order to make the following computations easier to follow, we repeat equations
(30), (28), (8), and (9), which we recall is equivalent to equation (17), using the above notations.
Assuming (21), we have:

T
ASC = %B/ (ug — we)? - (@P1FC)2dt, (41)
0
1 /T +q 1
SCMEV = 2 f lg+ @+ B™?] vedt + (q""—fr)w + wo(E(6))?, (42)
0
:Ef.ffFG _ E(E)e‘f‘;(b1+51_8us)d&, (43)
t
v = Vm"(‘f)efot 2b1=Bns)ds | JQ] e2Js O1=BMmu)du g (44)
0

by r47(l—35)?
by+by r+7(l—35)

In the following propositions, we utilize the following assumption to make their proofs simpler.

Also for convenience, recall the definition from equation (19): A =

Assumption 1. Assume (21). In addition, assume: by > 0, D* > 0, D" > 0, D" > 0 and the
initial condition satisfies E(§) # 0.

Proposition 3. Assuming Assumption 1, then:

lim PoA =1 and lim PoA =1.

T—r 0 F—ro0

Proof. First, we consider r — co. For every given r > 0, we have existence and uniqueness of the
solutions u], w] and 7] to the scalar Riccati equations (32)-(34). Note that we have added the
superscript r to emphasize the dependence on this parameter.

When r — oo, we have:

ba

ATy \T0 . _
bo + by’

and

BT —s0, B"W 0,
CUT __y (QU,r—00 . /\r—>oo(q 4 6(1 _ S)}, DWr _y Dur—oo . )"}“-}CXZ)(QT 4 Q_T(l _ ST))-

Let v" 7% : [0,T] — R be the solution to the linear first-order differential equation:

(u;‘—}CXD)f _ ZA'I'J.H;‘—}CX) _I_ C'U.,'l"—}DO — 01 fug_'—}OO — DE,‘}"—}OO.
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Then we have:
(OUT—r0 Cwr—ro0

—2A%(T—t)
2 Au )e YT

It is easy to show directly from their explicit solutions (see equation (36)) that for every time

te[0,T7,

r—0o0 __ U, r—r o0
Uy (D : -

lim uy =u; ', and thus, lim B u; = 0.
r—00 r—oo
Next, our goal is to bound the u] uniformly over ¢ € [0,T] for large r. Note that A* < 0, B",
CWr 'O CUrToe | pur  Uur—00 5 0 and 6, < 0 < 84" . Let € > 0. Then there exists a
r* > 0 such that max{B",C*", D"} < max{C""7°, D*" 7>} + € =: ( for r > r*. Thus, we can

deduce that for » > r*, and for every ¢ € [0,T]:

C'H.'l"_l_Dﬂ'r‘( t‘r,?"_(st:r C+2C ;Au}Q_I_CQ

S Te— (@0 T8 ) T—t) T _o gug—2T/ (A

From equation (43) and by the bounded convergence theorem, we have for every t € [0,T):

im :BMFGT ]E(f)e(bl-'—bl)t —. jtﬁ’fFG,‘}"—}OO.
r—o0
_MFG,r

Moreover, is uniformly bounded for ¢ € [0,7]. From the non-negativity of uj, we have:

< [E()[e®HT vt < [0,T].

Similarly, for every t € [0,T7:

lim w] =: w} lim nf =:n;
oL Wy t 3 e Tt Mt 3

and the functions w{ and 7] are uniformly bounded over ¢ € [0,7] and large r. By the bounded
convergence theorem we have for every ¢t € [0,T:
T

lim (u:_ t) MFGr)2dt ] (ur—mo r—>c>0) jilfFG,rﬁm}th < oo,
r—oo fq

and thus, from equation (41):

T
lim ASC" = lim l-B*’/ (uf — w2 (@EMFC™24t = 0.
r—00 r—oo 0
From equation (44) and by the bounded convergence theorem, we have for every t € [0,T:

t
lim v} = Var(&)e®1? + 0'2/ e201(t=8) gg —: o7,
r—0oo 0

We also have wg 7> > 0 and v{ " > 0 for ¢ > 0. Hence, from equation (42):

r—ro0

lim SCMEVr — ( / (g + q@)vi7%°dt + (gT + ar)vF > + wE_’w(E(E)}Q) >0

Therefore, from equation (31), we have:

lim PoA" = 1.
r—ro0
By replacing X" with AT7% = Tty +bz —2—(1 — §), the proof can be repeated, and we obtain
lim PoA" =1. O

F—ro0
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Proposition 4. Assume Assumption 1. If:

g+al—s) g+q(—s)’
r+7(1—35) r+7(1—-35)?2

then:
lim PoA=1.
ba—o0
Otherwise,
lim PoA > 1.
ba—o0

Proof. When by — 0o, we have:

. =(1_312
A2y THEZEE iz BB 00, BT 00

Cwb2 5 \2=0(g 4 g(1 — 5)) =: CWb27 Dvb2 5 \027%0(gp 4 gp(1 — s7)) =: DWP27® >

and A", (AY,C"Y,D"),(A",C", D") are independent of by. Moreover, we notice that:

=+,bg u uy2 u,b J —
v A_i (Al + (_7 2_ y + qu(f(l f)::ic(Sa
by+by  bytby | (ba+by)?  TH+7(1—5)% oo | T +7(1—5) ‘

and thus, limp, ;00 [f’f? — 62 = + 0. For the sake of simplicity, denote hy(ba,t) = (b2 + 52)‘1&?2
and hy(ba, t) == (b 4 bp)w®. From equation (36), for all ¢ € [0,T), we deduce:

b —,b
( b2 +Du,b2 . t—:— 2 ) B ( Cub2 +Du,b2 M) 8_(5I,52_5;,b2)(fp_t)

bg —I—EQ bg —I—EQ b2 —I—E_)Q b2 —I—E_)Q
hu(b% t) - —,b2 u,ba +,b2 u,ba
O~ _ D" w_ D% (632 5,2 (T 1)
(b2 +b2)2  r+7(1—75)2 (ba +b2)2 r+7(1—35)?

———  (r4+7(1—5)%cs, =: cu.
ba—oo

Similarly, for all ¢t € [0,T):

- (1 5)2 : : _ [a+a(d—s)®
bg.]._}ﬂéohw(bQ?t) = (7’ —I— 7'(]_ — S) )C&w = Cy, Wlth C&w = m,
and
. bo _ . . _ lata
b;}l—l;%o bon? = (r +7)cs, =1 ¢y, with c5, = m——

Next, we derive a strictly positive uniform lower bound for (by + 52)‘1&?2 over [0,T] and large b,.
Let ¢ == %min {es,, D¥?27>®}. Then there exists a b;’u’lower > 0 such that for all by > b;’u’tm”ﬂ:

max{ }SCI&

+,b2
U

by + by

5{: 7b2

P

1
by + by

Coy | 5 3

Du,bz _ Du,b‘z —00 |
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and thus for all ¢ € [0,T]:
Du,bg(s:;,bzl

(67 — 6,) + Bb2 Dub2
S (D27 — (1) (cs, — C1)
~ G265, +2G1) + (D@27 £ () /(r +7(1 - 5)?)

J,lower

hy(ba,t) > (by + by)

=:1my > 0. (45)

Then, by the same technique in inequality (45), there exists a b;
for all by > by™"" and all ¢ € [0,T:

> 0 and m, > 0 such that

barg? > . (46)

From equation (37), we see that ¢ u? is increasing if B%2(D%b2)2 4 24vpwbz _ cwbz > (,
Since limp, oo B?2(D%?2)2 4 24vD%b2 — 092 = oo, there exists a by """ > 0 such that for all
by > by """ we have |Dwb2 — Dwb2=°| <1 and ¢+ u?z is increasing. Therefore,

ul? <2 — pubz < pebm L W e [0, T, by > bR

By the same argument for w?z and n?, there exists a by""P" > by"""PP" such that:
max {|uf?|, [uf?|, [n?|} < M, v ee0,T), by > by, (47)
b

and such that the functions ¢ utz, t— w,? and t — 'qf ? are increasing on [0,77].

Case 1: Assume:
g+d(l—s) q+q(1-s)?
r+7r(1—35) r+7(1-35)72

Then ¢5, = c5, and therefore, ¢, = ¢, =: c. We want to show that limy, ., S—gg%% = 0. Our
approach is to split the interval [0,T] into two parts: [0,7/2] and [T'/2,T]. Since v > 0 for all
t € [0,T], from equations (41) and (42), we have SCMEV:b2 > w32 (E(£))? and thus:

ASCP 1 7 _MFG T _MFG
SCMKV,'!"Z S ngIE({;')Q (Bb2/0 (’L,‘}tb2 - wtb‘Z)Q(xt sb‘2)2dt + Bb[g (’L,‘}i}2 - w?)Q 'Tt sb2)2dt

1 b
= — Iz—l—Ibz 4
(bg‘l’bg)wgz ( ! 2)

(48)

with:

by + by)3 3 _ t

I = % A " — wf)2eR ) e (—2352 £ ’ngds) dt
— T —
b2 +b z 5 2(by + b t
= — = _25)2 /0 (R (bay t) — hoy (b, 1))? - 201101 expy (—ﬁ/ﬂ hu(bg,s}ds) dt

and:

b _(b2+52)° _ o b2y2 2(bi+B1)t _ 2(batb) [f
IQ T‘—I—T‘(l _ S ( wt ) € exp '}"—l—F(l — 5}2 0 hu(bQ, S)ds dt
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Fix € > 0. In the following, we show that T fz < € and Igz < € for large by. First, consider
I?Q. Recall that for ¢t € [0,7/2], we have limp, ;o0 hu(b2,t) = limp, o0 hw(b2,t) = ¢, and for all
by > by"PP’" | the functions [0,7/2] > s +— u? and [0,7/2] > s ++ w? are increasing, and thus,
[0,T/2] 5 s+ hy(be,t) and [0,T/2] 5 s ++ hy(bo,t) are increasing. (Note that 7/2 < T is chosen
arbitrarily, since the above limits do not hold at T.) Let (5 := min{% %e‘ﬂbﬁ&)\/&}. Then

there exists a byt > by""P*" such that for all by > b5’* and all s € [0,T/2] we have:

Cc— CQ S h’u(b2;0) S h’u(an S} S hu(an T/Q} S c+ CQ&
c—C < hw(b,0) < hy(b,s) < hw(b2,T/2) < c+(Co.

Thus, for any ¢ € [0,T/2] and by > b}

i
| (b2, t) — (b2, ) < 4¢2  and / ha(ba, s)ds > (c — Ca)t > % -t
0

Therefore,
— T —
7 by + bo) 2 2(by +by) ¢
b < 4o2,2T 040 (B2 +ba) _2batby)
Il _4C2€ T’—I—F(1—§)2£ exp( ?"+7_’(1_§)2 2 t)dt
2T (b1+b1) _ _(bog+ba)e T
= 46— (1 — e rtr(i-3) 2) CQQ <, (49)
c

where the last inequality comes from the definition of (5.
Next, consider I22. Since ul? is positive over [0,T], we know from the inequalities (45) and (47)

that for all by > max{b}"“PP*" by "'} and all ¢ € [T'/2, T:

ba ba
U™ — Wy

i -'12: T
< sup |ug'2| + ‘w?| < 2M, and / hu(ba, s)ds > / hu(ba, s)ds > —my > 0.
0<s<T 0 0 2

Hence, there exists a b;’h > max{by PP, b;’u’lw"&r} such that for all by > b;’h:

. ) T _
< (52_+ 52}_ _4M282(bl+m):"/ exp (- T'(b2 +b2) “my ) dt
r+7(1—35)?

T r+7(1—3)?2

= k1 (by + by)Be 22 th2) < ¢ (50)

with k1 1= %ﬁ >0 and k2 = %g > 0 are constants independent of bs.

Let b} := max{b}"",b52}. Then inequalities (48), (49) and (50) give for by > b}:

b
ASC? J Ry <_€te 2¢  Ade

SCMEVE: = (4, { bp)wl? ~ huw(b2,0) ~ /2 ¢

Since the proof holds for arbitrary € > 0, and ¢ = \/(q + (1 — 5)?)(r +7(1 — 5)?) > 0 is indepen-
dent of b; and €, we conclude:
lim —ASCb2 =
ba—oo SCMKV!‘I"Z ’
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and thus, from equation (31):
lim PoA” =1.
bo—00

Case 2: Assume:
g+q(1—s) , q+q(l—s)?
r+7(1—5) " r+7(1-35)72

Then ¢, # ¢y We want to show that limp, .o PoA® > 1. To do so, we will show that
(by + b2)ASC®” > cpym > 0 and bySCMEVR2 < M, < oo for large by, where cpy, and
Mygen, are two constants independent of b,. We assume in the following that by > b;’msm =
ma,x{b;’u’ww&r,b;’ﬂ’tm””,b;’upp "1, as defined prior to Case 1. Therefore, s — u?2, s — w2 and
s+ 1d are increasing functions. Moreover, from inequalities (45)-(47), we have hy (by,t) > my, > 0,
byn?? > my, > 0, and 1? < M < oo, for all t € [0,T].

Step 1: We derive a lower bound for (bs —I—E_)Q)AS C™ by adapting the techniques used in inequality
(49). We have shown that for every t € [0,7/2], limp, 00 hu(b2,t) = cy and limp,_, o0 haw(b2,t) = cuw.
Let (3 = ]11(2)#&% — by. Then, there exists a by ™™ > max{b;’basm, (3} such that for all
by > by and all s € [0,7/2]:

Cw—|cu —cCuw| /4 < hy(be,0) < hy(by,s) < hy(be,T/2) < cy+ ey —cul /4,
which implies that for all ¢ € [0,7/2]:
1 t 1
|ha(b2,t) — hyy(ba, )] Z§|Cu_cw|a hy(ba, s)ds < Cu+z|Cu—C-w| t.
0

Thus, similar to inequality (49), for all by > b;™*™, we deduce:

T T
(by + by)ASC?2 > #Bb /7(u?2 — wl?)2(gMFGbay2gy
0

— eyl 2 I b
= |ZTT+F(|1(1E(§§)2)} '(bﬁb?)l P [_% (C”Jr%'%_cw')t] “

_ _lew -l (E€))? (1 _ e—%y;ﬁw(mw)
16(cu + |cu — cu|/4)

lew — cul® (E(€))? 1

~ 16(cy + ey —cul/4) 2

=: Cnum. (51)

Step 2: We derive an upper bound for b,SCMEV:b2 | From equation (42), we have:

_ T _ T
b 1
bpSCMKVib2 _ [_q ;“ a /ﬂ bovedt + QTJ;qrbwr + Zuf? (E(&)):’] +5 L B2 (5?)? - byvydt

(.

=: TJ{” = JP
(52)
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We derive the following two results which are useful for deriving upper bounds for Jin and ng.

First, let k3 :=

1
b - 1(b2,t) SbQ/ exp (—2
0 ™

Next, using equation (34), integration by parts, and since —A", n??C"'?, [(by,t) > 0 we deduce:

2m.
?,—+§>Oand£

j_Qan . (t—s)) ds

t b
(b2, ) ::/ e~2B™2 [[midugs Gince bane > my, for all t € [0,T7:
0

La—emmy< Xl vicT.  (53)
K3 K3

T T T
f B2 (P22 1(by, t)dt = / (n2) - U(ba, t)dt + f (—QA”nfz+C”)-l(b2,t}dt
0 0 0

Vv

T
[”?3‘“’2’1? — 121(b2, 0) - ] UG D))

ot

.

T
_ —/ﬂ . [z(bg,t)-(—zBﬂ%?)H} dt + U(by, T)D"

T T
>2 [C B i, it - [t
0 0

After rearranging terms, we obtain:

T o bay\2 Y opnba [to2g T by
bQA BT],Q(??tQ) . (A e S5 “ds) dtgl bg?’k dt.

First, consider J{’?. From equation (44) and inequalities (46) and (53), we have that for all

by > b5 and for all ¢ € [0,T:

t
_apmby rt — _opmby t
bQ"U; — VGT(E)elet . 526 2B Jr[] Nsds 4+ 0_2 . be eQb](E s) e 2Bm:92 fs 'l’]udﬂds
0

2b.
< Var(€)eT . boe 7r™rt 4 521 Th, . |(t)

2
< 2T (Va'.r'(5}!)2e3_"3b2£ + O-—) .
K3

Let b*71 > p*:basic guch that for all by > b;’h:

Then for all by > b3

P2

<

q+4q T

2

2

(by + ba)uwg? <y + %cw, and  bye"30T < —

0
ar +4r  onT

Var(§) n a*T

T
/ (V(M’(f)if)ge_’wl}2£ +

a

2
) a

K3

(V(M’(f)if)ge_"{‘r"b2 +

qr + qr)e

a
K

3

) O
2
Var(©) |, o

by

< @+ et [

2

: My,.

K3

K3

E

21

2

2T (

K3

1
K3

K3

)+

(E(£))? - (b2 + bo)uw?
3cw(E(£))?

4

(54)

(55)



Next, consider the quantity ng, which can be written as:

by 1 T )2 2byt nba [*
I = / (bari?) Var(€)e™* - by exp ( ~2B™ / neds ) dt
0 0

2(r +r7)
o? T b b2 b by (t—s)—2B7b2 [ty224
+7-b2/ B (1) (f e (t=9) Js “ds) dt.
0 0

We will make use of Lemma 1, which appears below, and states that there exists a b;’t >0 and a
constant M; independent of bs such that for all by > b;’l:

T
/ bonP2dt < M;. (56)
0

Since limp,_, o0 banl? = ¢y for all ¢ € [0,T/2], there exists a b;’h > max{b;’l, b;’baﬂc} such that for
all by > b372:

bomy < cp + %c,] Vte[0,7/2], and ble F¥2%F < nis
1'311‘1}:::3, together with inequalities (46), (47), (54), and (56), and for k4 = %, we deduce
J2 < %}f ! /0 : (bQW?Z)sze_'“Sb”dt + /;(n?}:’b%e‘w""’” Jsmids gy | 4 Uge;blT A ' bany2 dt
= [(37%)2 %3(1 — e b T) 4 M2 pReRale T . % Gze;blTM;
<2 (324 2T) 4 e M, (57)

Now, from equation (52) and inequalities (55) and (57), we have for all by > b;’dm = ma,x{b;’Jl ) b;’b}:
by SCMEVD: — gb2 4 gb2 < My 4+ My, =2 Mgep. (58)

Finally, putting together inequalities (51) and (58) and for b;’mseg = max{l_)g,b;’num?b;’dm},
we have for all by > b;’mseg:

b2 + E_)Q ASC{)Z (bg + EQ}ASCbQ > Cnum

<2, and thus, = — > > 0.
bo SCMKV.b2 (bz-gbz) (by SCMKV.b2) 2M gen

Therefore, from equation (31), we conclude:

lim PoA® > 1.
b—oo

The following lemma was used in Proposition 4.

22



Lemma 1. Assume Assumption 1. There exists a b;’t > 0 and a M' > 0, such that for all by > b;’l:

T
f bon2dt < M.
0

Proof. Since limp,_, bgnfz = ¢y, there exists a b;’l > 0 such that for by > b;’l, we have bg?}gz
cp + % Clearly there exists a b;’2 > 0 such that for by > b;’Q:

banif = ba D" = ba(gr + 1) > 0 + 2.

Let b;’s such that for by > b;"?', the function ¢t bgn? is increasing. Since for by > max{b;’l , b;’g, b;’S},
the function ¢t — bgn? is increasing and continuous, by the intermediate value theorem, there exists
aty € [0,T] such that bgnfi = cp+1, and bg?}?z < ¢y+1, forall £ < ¢ . From an analogous equation

to (36) for n?i, we have for by > max{by"', b3?, b5}

b2 —(5“2 85,°02)(T—t5.)
'6_+Dn_qb_ r+w—=cﬂ+_12_cn+ Dn_qb_+r+w‘= 2

—b by _,—b "
5% pn _—(65"2—6; 2)(T—t,)

Dn
TR e

1= b2 _ ¢ <
b27}'b2 n =

After rearranging terms:

DT [t okl st
1 — +D" -
r+v ! ( + CT} + b + ( b2 Cif"'.l'

(59)

r+r

+.b2
Since we have limp, ng— = limp, 00 5 3 = limpy 00 (%2— - C.s,]) = 0, there exists a b;’4 >0

— +.bg
such that for by > b;’4, [JE?_ (1+¢p) —|— -|- D" (5 — Cgﬂ):| < %, and thus returning to

inequality (59), for by > max{b*’1 b*’2 b*’3 6*4}

n —.b2 U] by s—b2) s
D_<(_Dn6n_+ D (Hcﬂ)) (s @)

2r+7) ba r+7T

After rearranging terms:

n ~ 9y 2
ba

. 1 2672 (r +7

+.bg —:bg
Since limy, o 571)2— =5, = —limp, 400 552—, there exists a b;s5 > 0 such that for by > b;’S:

Cﬁ<ﬂ<3cﬁ
2 = b - 27

o — o

and c¢5, < < 3cs,,-
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Returning to inequality (60), for by > b;’l = max{by", by%, b33 b5 b5}
1 1
bo(T — t3,) < —In (3(r +7)es, +2(1 +¢)) = —In (5cnp +2).
'5‘7 '5‘7
Finally, for b5 > b;’l:

T ty T
/ bom,*dt = / " bynldt + / bom?dt < 3, (cy + 1) + bo(T — t5,) D"
0

*
0 &,

Dn I
ST(CW—I-I}—I-aln(E)Gn—I-Q) =M.

n

Proposition 5. Assume Assumption 1. If by = 0, then:

lim PoA =1,
ba—0

whereas if by > 0, then:
lim PoA > 1.
ba—0

Proof. Case 1: First, consider the case by = 0. As by — 0, we have:
B2 0, B™2 0,

and A = %11—7?;’ (A%, C*, D%), (A", C",D"),(A",C", D) are all independent of b;. We can then

use the same technique shown in Proposition 3 to conclude that limp,—,0 PoA = 1.

Case 2: Now, let’s assume by > 0. As by — 0, we have:

52
——2 . p2050,  B™ 0, *2 0, D2 0,
r+7(1 — §)2

A—0, B2
and A", (AY,C",D"),(A",C", D") are independent of by. Moreover, we have:
lim 6% = —24* >0, and lim &% =0.
ba—0 bo—0
Thus, from equation (36) we deduce that for every fixed time ¢ € [0,T7], limy,_,ou’? = 0.

Similar to Proposition 3, we can derive a uniform bound for u? over [0, T for small by. Indeed,
for any fixed € > 0O there exists a b5 > 0 such that for any b, < b3:

[ Au)2 2
max {BbQ,C“’b,D“"‘”} < B?27® 4 ¢=:¢, and thus, |u62| < C+2ev(AY)+¢ , Vtelo,T].
i _QAEE_QT\/(Au)2+C2

From equation (43), the assumption E(§) # 0, and by the bounded convergence theorem, we
derive that for any fixed ¢t € [0,T:

lim z

_i‘.ffFG,bz _ ]E(‘S)e(bl+51}t _. jé‘.a‘FG,b-zﬁO £0.
62—3'0
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It can also be shown that |:I:£MFG’52‘ < |E(¢)|e®r )T for any ¢ € [0,T] and by > 0.

Moreover, since B”27? > 0, B27°C* > 0, B®27°D" > 0, we have lims, o w?z = w?_’ﬂ, and

w?_’o is strictly positive over [0,7). It is easy to check that w? is also uniformly bounded over

[0,T for small by. Hence, from equation (41) and the bounded convergence theorem, we deduce:

1 T
lim ASC?? — _ gh—0 / (w0 . gMFCh=02 g,
bz—}ﬂ 2 0

Since B2 — 0, A7 < 0,C" > 0, and D" > 0, using the same argument shown in Proposition
3, we deduce that 7 is uniformly bounded over [0, T for small by and for all ¢ € [0,T7:

cn cn
i 2 — (D7 — —2AM(T—t) . b2—0
blzl—m = ( 2A”’3) € + oAn -

From equation (44) and the bounded convergence theorem, for all ¢ € [0,T7]:

t
-0 0
and thus, 0 < limp, 0.5 CMEVb: < 50, We conclude limp, 0 PoA™ > 1. O

Proposition 6. Assuming Assumption 1, then:

lim PoA=1.

bo—00

+7(1 +qr(1—sr)? .
Furthermore, if rr:r((l Ss)) # q;,+q§(l_ssi)) then:

lim PoA > 1.

ba—0

Proof. Case 1: When by — 0o, we have:
A2 0, B2 00, C%P2 0, Dub2 50,

and A%, (AY,C", DY), (A", B",C", D") are independent of by. Following the same technique used
in Proposition 4, we can show that:

ba(g +q(1 —s)) 5Eb q+q(1—s)?
li —: s, i — ey [ e
bao0 /by + by \/bg Th \/ r+(1—3) O e by + by rhr(los)p

and, for all ¢t € [0,T):

b

limg, . (b2 + by)? Ty = (r+7(1—38)?)cs, =: cu,
b2

hme_}w(bg + bo)w w? = (r +7(1 — 5%))cs,, =: cy-

Next, we provide a uniform upper bound for u? over [0,T] and large bs.
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Let (1 := 111111 {¢cs,, €5, }. Then there exists a b "™ > 0 such that for all by > b; v

max —&u - c —51?52 (—cs,) o |Du & . <¢
= — Loy | s = — T8/ |> T | , ’ 1 =5l
V' ba +ba V' ba +ba by + by V' by + by

Then with equation (36), for any ¢ € [0,T] and by > l_);’u,

Ccwb2 4 pub (5;?5? — 6;’52) G+ C1(205u + Z’Cl)
5 o

<

|u (61)
By the same argument for w?z and together with inequality (61), there exists a E_);’upper > l_);’u and
M > 0 such that:

max {

Furthermore, we can get a uniform lower bound for (by + 52}%1;;?2.

Denote (; := 52('r+ﬂ1_ff;((ff$qﬁl_3ﬂ). Then for all ¢ € [0,T] and by > I_);’u we have:

b2
U

|wk|} < v, vee o), B > By (62)

_ 3 = T
(by + by)2 D%P2 a2 S G2 (cs, — 1)

> — —
(5:5—,62 _ 5;:62) _|_ BEQD'U.,EZ - C] (2C5u —|— 2C1) —|— CQ/(?" + '}'_’(1 - 5)2)

‘(bg —I—bg Q‘U.t

=:1my. (63)

Now, we adapt the method used in Proposition 4 to prove limg _, ASC® = 0. Consider the
two quantities:

- - _ _ T _ _
BbQ/ (u 22 MFG’ID)st and Igz = %B‘I’Z . ('u:g2 —w?)Q(EfFG’m)st.
7
Fix € ? 0. In the following, we will show that A.?'CB? = Ifz + 1, b2 < 2¢ for large by. First,
consider 1?2, Let (3 := ¢, /2. Because limy,_, . B%2(D%2)2 + 244 D% 52 — b2 > 0, from equation
(37), there exists a f:r""m“c > b* UPPET 56 that for all by > b*’mc the functions s — ub2 and s — wa
are increasing, and so that for all s € [0,T/2]:

cu—Cs < (by +bo)2ul? < (b + ba)3ul? < (by + b2)2u? < ¢y + G,

2

|(52 +ho)ul2| < |(b2 + bz}u < cy + Gs.

< ({3, and |(b2 + E_)Q)‘wgz

< ‘(52 +52)w§,;

Thus, for any by > gg’mc we have:

T £ 0172 _ B
z E(£)? T -z N - _20by) 2t 45)3/2 8245
b2 by ba 2(b1+b1)t (=52 Jo s
I? = CE () ((bg + by)uy? — (ba + bo)wy ) e e dt

! (1 _ e—m(bz—f—f?z)%) 0,

S Rl—F/—
\HbQ _|-b2 by—00

212 21,2(b1+51) %
with k1 = ROM(: H;‘(";C_Séz])e 77 and Ko = % are independent of by. Therefore, there

exists a b3' > b3¥ such that for by > b5'!, we have I'! <e.
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Now, we consider the quantity I_g"z. Since Pz? is positive over [0,7] and from inequalities (62)
and (63), we know that for all by > by""**" > b, and ¢ € [T/2,T],

b2
Uy _wt

t _
<2M, and / (b + 52)%’1;:22({5 > %mu.
0

Thus, similar to inequality (50), there exists a l_);’h > l_);’uppe " such that for all by > 5;’12:

152 < Ka(bg + bp)2e 4V batbs < ¢,

T]E 2 2(b1+b1)TM2
(E?’,H(l =) and k4 : T(l"s—)g are independent of by.

Hence, for all by > b3 := max{b5’*, b2} we have:

where k3 :

ASCP = 172 4 I < 2e.
Since the proof holds for arbitrary € > 0, we obtain:

lim ASC? — 0.

bo—o0

Moreover, recall that 7; and v; are invariant with respect to by and 0 < v; < oo for ¢ > 0. Clearly
we also have ’wgz > 0 and limg, ., wgz = 0. Thus, we obtain: 0 < limg, , SCMEV:h2 < o0, and
conclude that:

lim PoAP — 1
bo—oo
Case 2: When by — 0, we have:
/\52 N )‘Bg—m - r+7(1—s)? Bb N b3 Bb2—>0 >0,
T v R(1-8) _ m

cub2 /\62_’0((1 +q(1 —5)) =: C®b2=0 > Duwb2 AbQ_’D(qT +qr(1 —st)) = Duwb2—0 0,

and A% (A*,C" DY), (A", B",C" D") are independent of by. Let ub2=0 . [0,7] —+ R be the
solution to the limiting Riccati equation:

— ! — — - — _ —
(ugz—a{)) _ 2Auui}2—>0 N Bbg—m(uiuaof + Cu,b2—>0 -0 ugg—m _ Du,bz—m? (64}

?

which we recall has an explicit solution. It is easy to show directly from the exphclt solutions

that for every time ¢ € [0, 77, limg, ., ui’? = u?_’o. Next, our goal is to bound ut uniformly over

telo, T] for small by, following the methodology of the proof of Proposition 3. For any e > 0, there
exists a b5 > 0 such that 1’115|,X{B""2 Cwb2 puwb2} < max{BP—0 Cub—0 pub—0} 4 ¢ —: ¢, for all
by < b3. Thus, for all by < b} and for every t € [0,T]:

< Ca+ 26/ (A%)? + ¢

ub?| < :
o fug—2T\(A
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Similarly, for every time ¢t € [0,77], limg,_,, w?z = w?_’o, and w® is uniformly bounded over
[0,T] and small by. From equation (43), the assumption E(§) # 0, and by the bounded convergence
theorem, we have for every t € [0,7):

b T Bo—s0, bg—0
1im SE?JFG’&Z = ]E(‘f)efut(bl—i—bl—BbE! 0y ds

= gMFER=0 4, (65)
bo—0

Moreover, Z/FGb2 is uniformly bounded for all by < b5 and for all ¢+ € [0,T]. From the non-
negativity of u;, we have:

FMFCh| < E(6)| e®+IT | vt ¢ [0,T], Vb, < B,

5(1—z)2 A (1—ge)2 =
By the assumption T:_ré(ll_‘% # qéig((ll_ssi)) , we have D%0270 oL D% and thus by continuity,

ui_”_’ﬂ #* wi;?_’o on a set of positive Lebesgue measure. Thus, by the bounded convergence theorem,
we deduce:
_ 1 - T , . 2 - 2
lim ASC% — = Bh—0 f (P = wfr=0)" (37570 at > o. (66)
ba—0 2 0

Meanwhile, 1; does not depend on l_)g,_and therefore, the variance v; also does not depend on b,.
Clearly 0 < vy < oo fort >0 and 0 < 'wg2_’0 < 00, and thus, 0 < limg, ., SCMEVh < . Hence,
we deduce: )

lim PoA® > 1.

ba—0
O

Remark 6. Consider Assumption 1 and the case when by tends to zero. We have 0 < SCMEVh—0
00, and therefore, limg, ,q PoA» =1 if and only if limg, .o ASC" = 0. Since we can pass the limit
as in equation (66), we have an analogous result as Theorem 2 but for the limiting coefficients A",
Av BP0 cuwb—0 cw  pub—=0  ong DWW Therefore, the assumption in Proposition 4 Case 2,
f‘+F_(1—§_)2 4 \‘-]"I’+t?_1r’(1—3'r)2
r+7(1-5) qr+qr(l—srt)’
order to have limy, o PoA® > 1.

which is equivalent to Du-b2—0 # DY, is sufficient, but not necessary, in

Proposition 7. Assuming Assumption 1, then:

lim PoA =1 and lim PoA = .

b1—o0 b1 —o0
Furthermore, if:

by r+7(1—5)?

by + by r+7(1—3) “(gr + ar(1 — s7)) %QT—I-@}"(I—ST}Q,

then:
lim PoA >1 and lim PoA > 1.

b1—0 b1 —0
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Proof. Case 1: Consider by — co. Since limp, 00 Awbr — limp, 00 AP — 5o we have:

lim B(D"%)? +2A%"1 D% — C* = lim B(DY)? 4 24%DY — C¥ =

— 0.
bi—oo bhi—oo

b b
Denote g, (by,t) := B%‘l—l and gy (by,t) := B%. For all t € [0,T"), we have the limits:
Iim gu(b1,t) = lim gw(bi,t) = 2. (67)
bi—oo bi—oo

From equation (37), and together with equation (67), there exists a b7"*"“" > 0 such that for all
b > b* UPPET the functions ¢ — u? and t wbl are decreasing and such that:

Oiug {gu(b1,1), gw(b1,t)} < max{gy(b1,0), g, (b1,0)} < 3.
T

Fix € > 0. There exists a b; ot > b1 "PP" such that for all by > b’ It and for all t € [0,3T/4],

|gu(b1,t) — gw(b1,t)| = max{gu(bi,t) — guw(b1,%), guw(b1,t) — gu(b1,t)}

< max{gu(bl s 0) Gu bla 3T/4} Gu (bl s 0) Gu bla 3T/4}}
€

IA

?

and

1 5 5
gw(blao} 22_5 = 51 gu(blat}zgu(b113T/4} 2 _-

We adapt the methodology 111 Proposition 4 and split the interval [0,T] into two parts: [0,37/4]
and [3T/4,T). For all by > b}’ It similar to inequality (48), we have:
ASCh 4
SCMEVh = gyy(by,0)’

where
3T _ i
b1 2 _2bit
L= bl/ (Gu(b1,t) — guw(b1,t))" ™" - exp (Zblt —2h / gu(blas}ds) dt
0 0

- 3T 5
< 2e?ral . p, / exp (let —2b, - Et) dt
0

3T
= E2€+ . é(]_ _ e_blT)
4

in which g, := %e 2, and

T _ t
I =t ] (9u(b,1) — gu (b1, 1)) 21 - exp 21t — 2by / gu(bl,s}ds) dt
0

_ T ir
<h(3+ 3)28261T . ﬁ exp | 2b1t — 251/ gu(b1,s)ds | dt
3 0

4
- T 3 5
< 3621 Tp, . — 2%, -T —2by - =T - =
= obe 1 46XP( 1 1 1 3)

9T82b1Tb e T 4,
by —o0
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Therefore, there exists a b] > b;’h, so that for by > b7, we have Igl < e. Hence, for all b > b7,

b b
ASC™ L+ 3

2
SCMEVE = 4. (51,0) — 5(%1‘E +€).

36T
Since the proof holds for arbitrary € > 0, and k1 = %e_il_ is independent of b; and €, we conclude

that:

lim PoA™ = 1.
by —o0
Case 2: Now, consider b; — co. Since A“"1 < 0 and ]jmgl_}w|A”’51| = 00, we have the

following limits:

S — 5 = 2y/(Auh)? 4 BOY — s 00, —8;% = A% 4 /(Auh)? 4 BOY — 0,

bhi—oo bi—oo

We also have for t € [0,T):

T +.b —.b T T +.b —.b
51-:—,518—('51; 15, 71)(T-1) < (5:,!'31 _ 5;,51)6—(% 15, ") (T—t) s 0,

by—oo
C1oe o . b1 — (6P 5Py (T—t : ull 1
which implies: limg, , . du""e (%u w" )Tt — 0. Therefore, for t € [0,T): limg, ., 3 = 5

b
By the same argument, we have for ¢t € [0,T): lim; ., E”Brlh = %.

Since lim, _, o B(D")? 4+ 2A%% D* — C" = —c0 and limj_, . B(D¥)? + 24" DY — C% = —oo,

from equation (37) there exists a E_)’;’tm”er such that for by > ET’EWET:
L1 e, 2 1
S 22\« —
"N, B h, Bl T 1B
and such that the functions ¢ u?‘ and t — wf ! are decreasing. Thus, for all ¢t € [0,7'/2] we have:
by by wh! by
0<EL_EU_5l_|_LSE_LS Tﬁggt_
by by, "B 4B~ B 4B by by
Thus, for all by > 67" and all t € [0,T/2],
b1 b1
w; Uy 1
—_— > —. 68
b1 b1 |~ 2B (68)

Note that 7;, and therefore, v;, are independent of b;. Thus,

_iSCMKVsEl _

1 [T _ wh!
) =3 U [g+ G+ B"nf] vedt + (ar + Q’T}’UT] + —2-(E(£))> —— 0.
1 2b1 LJo 2b?

bhi—oo
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Now, consider:

) T /b b\ 2 -
Lasch > Bge)y f Tl W) - Buitas gy (69)

Since u?l is decreasing for by > l_);’wwer, we have by — Bu?‘ > b — Bugl. We have the following
limits for ¢ € [0,T"): i i
lim by — 6% = —2b, lim —d,°"b; = BCY,
bhi—oo bi—oo
lim 51—1—,51518—(5I’51 _57M (T 1) —0, lim (5;,51 _ 51)8_('5I,51 5Py (T—1) —0,
bi—oo bi—oo

and thus,

_BC" + BD"(by — 6§™) — 67 %by + (6378, + BC® + BDU(87™ — by))e~(d "1 =8 "T

Bl — BHEl = _ _ ) .
i BDu — 57" 4 (57" — BDuw)e—(65" —6u "1

— —2by.

bi—oo
Since 1im51_}00(51 — Bugl) = —2b; < 0, there exists a b} > E’;’EMET, such that for b; > b%, (b —
Bugl) > —3b;. Returning to inequality (69), and using inequality (68) we have for b > b:

T T
1 - _ B 1 7 g Bl E@¢)? [T _
__Ascbl >_F 2 . / 2b1t+2(b1 — Buy, )tdt > ] 4bltdt 0.
52 2B )€ =8B J, °© Z

Therefore, limp _, EIEASC'B1 > 0, and thus,
1

]iHl —_— ‘m —_— O
b1—oo SCMEV.b1 b1—o0 EIQ-SCMKV?bl
1

We conclude limg _, , PoAPt = .

Cases 3 and 4: First, we consider by — 0. We have A%b1 —y Awb1—0 sy gm0 0,
and 65" — 67°7° < 0, and similarly for AW, Anb1 558 ang 55 Clearly we have for all
t € [0,T7], limp, 0 ugl =: ugl_’ﬂ, limgp, 0 wfl =: wfl_’o, and limp, _,on* =: nfl_’o. Next, we show
that the three sequences are uniformly bounded. Let 0 < € < —dy 0120 There exists a by > 0

such that max{ hb1 _ shb1=0) 5bt 5;’*’1*“‘} < € for all b; < bt. Then for all b, < b} and

u 1
te[0,T]:
C’H. + D'u, (5&-,61 . 5;,b1) C'u, ‘I’ D'u, (5;:—,51—3'0 o 5;,51—}0 ‘I‘ 26)
1
uz S _5;,b1 S _5;,!)1_}0 i 3
and similarly for w?‘ and n? 1|, From the assumption bft‘u . Trir;(ll__?; ~qr + qr(1 — st) # qr +

gr(1—st)?, we have D" # DY and thus by continuity, ugl_’o # w?l_’o on a set of positive Lebesgue
measure.
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From equation (43), the assumption E(§) # 0, and by the bounded convergence theorem, we
have for every t € [0,T']:

. _ top by—0 _
bhm mih‘FG’,bl _ E(f)e‘fo(bl Bug )ds —. mil’fFG,bl—}D % 0.
1—0

FG.,by

Moreover, :I:fﬂf is uniformly bounded over by < b} and ¢ € [0,T7, i.e.

z TN < [E(g)| MT, Ve [0,T], by < b

Therefore, by the bounded convergence theorem, 0 < limp,_,0 ASC' b1 < 50 and limp, o ’Utb 1 —;
U?l_m, which is bounded over ¢ € [0,7]. Thus, 0 < limp, 4o SCM_K Vbt < 50 and we conclude
limp, o PoA" > 1. The proof can be repeated to show limg . PoA" > 1. O

2.4 Numerical Results

The price of anarchy for the class of linear quadratic extended mean field games that we consider
is given by the ratio of the two quantities given by equations (25) and (26), which are explicit,
up to evaluating integrals. Using the simple rectangle rule to estimate integrals, we numerically
compute the price of anarchy when the coefficients are time-independent, non-negative, and satisfy
Assumption 1. In particular, when we allow for full interaction (i.e. through the states and the
controls), we choose the following default values:

€=1,T=1,b=1,b=1by=1by=1, 0 =1,
g=1,g=1 s=05,r=1,r=1,5=05, gr=1, gr=1, s =0.5.

Unless otherwise stated, the parameters stay at these default values. For results involving only
interaction through the states, we set b, = 0 and 7 = 0. For results involving only interaction
through the controls, we set b; = 0, § = 0, and gr = 0. Figures 1-5 show the price of anarchy as
we vary one parameter at a time for each of three interaction cases: full interaction (i.e. through
the states and the controls), interaction only through the states, and interaction only through the
controls. The results show various limiting behaviors, such as some of the cases proved in the
previous section.

Figure 1 confirms as in Proposition 3 that lim; o PoA = 1 and limz_, o PoA = 1. Propositions
a+a(1-s) _ ¢+q(1-8)* 4
r+F(1—8) ~ r+r(1—3)2

we see that limp, oo PoA = 1. In the cases of interaction only through the states or interaction
g+q(1-s) g+q(1-s)?
r+r(1—5) r+r(1—38)%? -
Proposition 4. For Proposition 5, when there is only interaction through the states, then by = 0

4 and 5 are confirmed in Figure 2. In the case of full interaction, we have

only through the controls, then and we see that limp, 00 PoA > 1, confirming

and we see that limp, .0 PoA = 1. When there is full interaction or only interaction through the

controls, then by > 0 and we see that limg,—0 PoA > 1. For Proposition 6, Figure 3 confirms that
. . . r4-7(1—5)2 gr+ar(1—st)? .

11111.52 _,0PoA > 1 and limg, ,, PoA = 1. Note that the COIldl.tIOIl - +-F((l— g)) Gl +§T((1—ST;’)) is not
satisfied for the full interaction case, and is therefore a sufficient, but not necessary, assumption.

This agrees with the conclusion of Remark 6. In Figures 4 and 5, we note that Proposition 7 is

#(1—3z)2
confirmed. The condition b;—?bz . ’":j:,i(ll_sg) -(gr +ar(1 —st1)) # qr + gr(1 — s7)? is satisfied for all
three interaction cases and we see that limy, _,o PoA > 1, limg .5 PoA > 1, limy, o, PoA =1, and
limg _, PoA = co. Thus, the numerical computations confirm the results presented in Propositions

3-7.
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Figure 3: PoA as we vary bs.

3 Conclusion

We defined the price of anarchy (PoA) in the context of extended mean field games as the ratio of
the worst case social cost when the players are in a mean field game equilibrium to the social cost
as computed by a central planner. Since the central planner does not require that the players be in

33



1.08 T T T T 10014 T T T T T T T
\ = full interaction = full interaction
107 == through states | L0012 == through states
b
----- through controls Loo1 I = through controls
106} TR
1
1.0008 |-V
E 105} - g Y
1.0006 [ 1
v
LO4 B, '
.............................. 1.0004 N
*
LY
e R e T 10002 | .
1.02 L L L L 1 " ————a
0.0 01 02 03 0.4 05 10 20 30 40 50 60 70 BO 90 100
I b
Figure 4: PoA as we vary b;.
1.025 T T T T 30 T T T T T T T T
= full interaction | = full interaction ||
1020l == through states || 251 = = through states |4
1.015 |
<
£
1.010
1.005 |
toopl— T TS =m-an pem== e . o . . . . . . . .
0.0 01 02 03 0.4 05 10 20 30 40 50 60 70 8O 90 100
By by

Figure 5: PoA as we vary b;.

a mean field game equilibrium, the central planner will realize a social cost that is no worse than
that of a mean field game equilibrium. Thus, PoA > 1.

We computed the price of anarchy for linear quadratic extended mean field games, for which
explicit computations are possible. We identify a large class of models for which PoA = 1 (see
Proposition 1 and Corollaries 1 and 2), as well as giving a sufficient and necessary condition to have
PoA =1 (see Theorem 2 and Corollary 3). We also derive some limiting cases where PoA — 1

as certain parameters tend to zero or to infinity (see Propositions 3-7). The numerics support our
theoretical results.
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Appendices

A Solving Linear FBSDEs of McKean-Vlasov Type
Consider a linear FBSDE system of McKean-Vlasov type:

dX; = (a?X; + aJEX; + a¥Y; + a?EY;) dt + 0dW;, Xo =&,

! ) ] 70
dY; = (b X¢ + bTEX; + WYY, + BEY;) dt + Z,dW,, Yr = X1 + “EX7. (70)

For the LQEMFG model considered in section 2.1, the FBSDE system in equation (4) is of the
form of equation (70) if we set:
af = bu(t), af = Bu(t), af = aMFEWa(t), af = IFO(R)ba(t) + MFC(t)by(t)
b = —(a(t) +4(t)), bf = a(t)s(t), b = —bi(t), b =0
¢t =qr +4r, ¢ = —qrsr.
For the LQEMKYV model considered in section 2.2, the FBSDE system in equation (12) is of the
form of equation (70) if we set:
af =bi(t), af =bi(t), af =a™*V(t)ba(t), af =MV (t)ba(t) + MKV (H)ba(2)
bf = —(a(t) +a(t)), b = —s(t)a(t)(s(t) —2), b = =bi(t), b/ = —by
¢ =4qr +ar, ¢ = star(sT — 2).
Now we return to the general FBSDE system (70). By taking expectations in equation (70),
and letting Z; and 4; denote EX; and EY;, respectively, we get:
& = (af +af)@ + (af +a))7,  To = E(€), (1)
e = (Of +b7)T¢ + (b + )3,  Ur = (" + )2,

where the dot is the standard ODE notation for a derivative. We then make the ansatz §; = q:Z:+ Xt
for deterministic functions [0,7] > t— 7 € R and [0,T] > t — x: € R. By plugging in the ansatz,
the system in equation (71) is equivalent to the ODE system:

i+ (af +af)n? + (af +af —bf — b)) — b —bf =0, 7y ="+,
Xt + (fe(af +af) — b —b))x¢ =0, x1=0.
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The first equation is a Riccati equation. Note that X solves a first order homogeneous linear
equation. Thus x; = 0, Vt € [0,T]. Once the equation for 7; is solved, we can compute Z; by
solving the linear ODE:

& = (af +af + (af +af)i)z:, To=E(),
and thus, i
%, = E(¢)elo (@i+ai+(ai+rai)m)du,
Once we have computed (Z;)o<¢<T, We can rewrite the original FBSDE system:
dXt = (ant —I—a?Yt —I—G?) dt—l—O'th, XO :E,
dY; = (bet +blY; + btﬂ) dt + Z, dW,, Yr =X+,
with:
af = (af +aji)ze, b} = (b + ()%, & =c"zr.
Now we make the ansatz: Y; = n: X; 4+ x¢, which reduces the problem to the ODE system:
M +ain; + (af — b)) —bf =0, nr=c7,
Xt + (=bf +ain)xe +agne — b =0, xr=c
Zy = o).

Again, the first equation is a Riccati equation. Note that it is not necessary to solve for x; because
of the relationship:

mxy = Uy = B(Y;) = E( Xe + x¢) = me%s + Xt

Thus, x¢ = (7 — 7).
In summary, the solution to the linear FBSDE of McKean-Vlasov type is reduced to solving
linear ODEs and Riccati equations. It will also be useful to compute Var(X;), which we denote by

vt. After we have solved the above equations, we have:
dX; = ((atr + a?nt)Xt + a?x; + a?) dt + ocdW,, X,=E¢.

Thus,

t
vy =Var(X;) = Va:r'(“;“)efﬂt 2(a3+adns)ds O'Qf e2 S (@ +alndu g
0

In the case where the coefficients are time-independent, the Riccati equations for 7; and 7; can be
solved explicitly.
Scalar Riccati Equation

If the scalar Riccati equation:
pt — Bp; — 2Ap; +C =0,

with terminal condition pr = D satisfies:

B+#0, BD >0, BC >0, (72)
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then it has a unique solution:

C(l _ 6—(5+—J_)(T—t)) 4+ D(5+ _ 5—6_(5+—5—)(T—t))
BD(l _ e—(5+—5—)(T—t)) 4 5te—(6t—07)(T—t) _ §5— "’

with 6+ = —A + /(A)2 + BC.
Furthermore, if B — 0 and A # 0, we can deduce that the limiting solution of the scalar Riccati
equation coincides with the linear first-order differential equation:

Pt = (73)

p;—QApt—I-C:O,

with terminal condition pr = D, namely:

_ C\ sar—, ©
pt= (D ﬂ) e + oA

If B—+ 0and A = 0, the limiting solution of the scalar Riccati equation coincides with the
linear first-order differential equation:

pi+C=0

with terminal condition pr = D, namely:

pt =D+ C(T —1t).

Hence, returning to the linear FBSDE (70), for 7, we use:
A= —%(ar +a® - W), ,B=—(a+a%), C=—-(b"+b%), D= "+

The conditions (72) are satisfied if —(a¥ + a¥) > 0, —(b* + %) > 0, and ¢* + ¢* > 0.

For 7y, we use:
A= —;(ar —-W), B=-a¥, C=-b*, D= .

The conditions (72) are satisfied if —a¥ > 0, —b" > 0, and ¢ > 0. Returning to the LGEMFG and
LGEMKYV problems, if we assume the coefficients are non-negative, we see that these conditions
are exactly assumption (21).
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