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Abstract

Thepriceofanarchy,originallyintroducedtoquantifytheinefficiencyofselfishbehaviorin
routinggames,isextendedtomeanfieldgames.Thepriceofanarchyisdefinedastheratioof
aworstcasesocialcostcomputedforameanfieldgameequilibriumtotheoptimalsocialcost
ascomputedbyacentralplanner. Weillustratepropertiesofsuchapriceofanarchyonlinear
quadraticextendedmeanfieldgames,forwhichexplicitcomputationsarepossible.Asufficient
andnecessaryconditiontohavenopriceofanarchyispresented.Variousasymptoticbehaviors
ofthepriceofanarchyareprovedforlimitingbehaviorsofthecoefficientsinthemodeland
numericsarepresented.

1 Introduction

Theconceptofthe‘priceofanarchy’wasintroducedtoquantifytheinefficiencyofselfishbehavior
infiniteplayergames[9][10][13][16][17][18].Inthisreport,weextendthenotionofpriceofanarchy
tomeanfieldgames(MFG).MeanfieldgameswereintroducedbyLasryandLions[14]andCaines
andhiscollaborators[12]todescribethelimitingregimeoflargesymmetricgameswhenthenumber
ofplayers,N,tendstoinfinity.AmeanfieldgameequilibriumcharacterizestheanalogueofaNash
equilibriumintheN=∞ regime.Thus,asinthefiniteplayercase,itispossiblethatthemean
fieldgameequilibriumisinefficient.Infact,inthepaperofBalandatandTomlin[2],theypresent
anumericalexamplethatshowsthatmeanfieldgameequilibriaarenotefficient,ingeneral.The
suboptimalityofameanfieldgameequilibriumisalsoillustratednumericallyforacongestion
modelinapaperofAchdouandLaurìere[1]. MorerecentlyCardaliaguetandRainergavein[5]
apartialdifferentialequationbasedthoroughanalysisofthe(in)efficiencyofthemeanfieldgame
equilibria.
Inthisreport,thegoalistodefinethepriceofanarchyinthecontextofmeanfieldgames,

andtocomputeitforaclassoflinearquadraticmeanfieldgamemodels,whichcanbesolved
explicitly.Infact,weconsideranevenmoregeneralclassofgamesbyallowingforinteraction
betweentheplayersthroughtheircontrols,inadditiontointeractionthroughtheirstates. This
isoftenreferredintheliteratureasextendedmeanfieldgame,ormeanfieldgameofcontrol. We
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comparethesocialcostofameanfieldgameequilibriumtothecostincurredwhentheplayers
executeastrategycomputedcentrally.
Weconsiderasystemof NplayerswhoseprivatestatesaredenotedattimetbyX1t,X

2
t,···,

XNt. Tokeepthepresentationssimple,weassumethestatespaceisR. WedenotebyµNt the
empiricaldistributionofthestates,namely:

µNt=
1

N

N

i=1

δXit.

We assumethatthesestatesevolveincontinuoustimeundertheinfluencesofcontrolsα1t,α
2
t,···,

αNt ∈A,wherethesetofadmissiblecontrols,A,willbedefinedlater.Letν
N
t denotetheempirical

measureofthecontrols:

νNt =
1

N

N

i=1

δαit.

We alsoassumethatifandwheninteractionsbetweenthesestatesandcontrolsarepresent,they
areofameanfieldtype,i.e.throughµNt andν

N
t.Thetimeevolutionofthestateforplayeriis

givenbytheIt̂odynamics:

dXit=b(t,X
i
t,µ
N
t,α

i
t,ν
N
t)dt+σdWt.

Weworkovertheinterval[0,T]limitedbyafinitetimehorizonT∈R+. Weassumethedrift
functionb:[0,T]×R×P(R)×A×P(A)∋(t,x,µ,α,ν)→ RisLipschitzineachofit’sinputs.
Forthesakeofsimplicity,weassumethatthevolatility,σ,isapositiveconstant.

CostFunctionals

Weassumethatwearegiventwofunctions f:[0,T]×R×P(R)×A×P(A)∋(t,x,µ,α,ν)→R
andg:R×P(R)∋(x,µ)→Rwhichwecallrunningandterminalcostfunctions,respectively. We
assumefandgareLipschitzineachoftheirarguments.Thegoalofplayeriistominimizetheir
expectedcostasgivenby:

Ji(α1,···,αN)=E
T

0
f(t,Xit,µ

N
t,α

i
t,ν
N
t)dt+g(X

i
T,µ

N
T).

SocialCost

WerestrictourselvestoMarkoviancontrolstrategies α=(αt)0≤t≤Tgivenbyfeedbackfunctionsin
theformαt=φ(t,Xt)andweletAdenotethesetofsuchcontrols.IftheNplayersusedistributed
Markoviancontrolstrategiesoftheformαit=φ(t,X

i
t),wedefinethecost(perplayer)tothesystem

asthequantityJ
(N)
φ :

J
(N)
φ =

1

N

N

i=1

Ji(α1,···,αN).

Weshallcomputethissocialcostinthelimit N → ∞ whenalltheplayersusethedistributed
controlstrategiesgivenbythesamefeedbackfunctionφidentifiedbysolvinganoptimization
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probleminthelimitN→∞. WetakethesocialcosttobethelimitasN→∞ ofJ
(N)
φ ,namely:

lim
N→∞

J
(N)
φ =lim

N→∞

1

N

N

i=1

Ji(α1,···,αN)

=lim
N→∞

1

N

N

i=1

E
T

0
f(t,Xit,µ

N
t,φ(t,X

i
t),ν

N
t)dt+g(X

i
T,µ

N
T),

=lim
N→∞

E
T

0
<f(t,·,µNXt,φ(t,·),ν

N
t),µ

N
t>dt+<g(·,µ

N
XT
),µNT> ,

ifweusethenotation<ϕ,ρ>fortheintegral ϕ(z)ρ(dz)ofthefunctionϕwithrespecttothe
measureρ. NowifweassumethatinthelimitN→ ∞ theempiricaldistributionsµNt converge
towardameasureµt,andthusν

N
t =

1
N

N
i=1δφ(t,Xit)alsoconvergestowardameasureνt,thenthe

socialcostofthefeedbackfunctionφbecomes:

SC(φ)=
T

0
<f(t,·,µt,φ(t,·),νt),µt>dt+ <g(·,µT),µT>,

withtheexpectation,E,disappearingwhenthelimitingflowsµ=(µt)0≤t≤Tandν=(νt)0≤t≤T
aredeterministic.
Wewouldliketoevaluate SC(φ)intheN=∞ regimedirectly,withouthavingtoconstruct

thedeterministic measureflowsµandνaslimitsofthefiniteplayerempirical measures. To
dothis,weassumethatpropagationofchaosholdsandthatthestatesoftheNplayersbecome
asymptoticallyindependentinthelimitasN→∞. Weconsiderarepresentativeagentwhosestate
isgivenbyXφ=(Xφt)0≤t≤T,thecontinuoustimesolutionofthestochasticdifferentialequation
ofMcKean-Vlasovtype:

dXφt=b(t,X
φ
t,L(X

φ
t),φ(t,X

φ
t),L(φ(t,X

φ
t))dt+σdWt (1)

controlledbyφ. Thenwecanidentifyµasthelawofarepresentativeagentusingthefeedback
functionφ,i.e.µt=L(X

φ
t),andsimilarly,wecanidentifyνasthelawofthecontrol,suchthat

νt=L(φ(t,X
φ
t)).Thus,intheN=∞ regime,werewritethesocialcostas:

SC(φ)=
T

0
<f(t,·,L(Xφt),φ(t,·),L(φ(t,X

φ
t))),L(X

φ
t)>dt+<g(·,L(X

φ
T)),L(X

φ
T)>,

whereXφsatisfiesequation(1).Fortheremainderofthepaper,weworkintheN=∞ regime.
Asmentionedearlier,φshouldbeidentifiedbysolvinganoptimalcontrolproblem. Weconsider
twodistinctproblems:

•φisafeedbackfunctionprovidingameanfieldgameequilibrium. Wedetailmoreprecisely
whatismeantbyφprovidingameanfieldgameequilibriuminsection1.1.

•φisthefeedbackfunctionminimizingthesocialcostSC(φ),withouthavingtobeameanfield
gameequilibrium,inwhichcaseweusethenotationSCMKV forSC(φ). Thisisacontrol
problemofMcKean-Vlasovtype,whichisdetailedmorepreciselyinsection1.2.
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Thetwoproblemsaredetailedmorepreciselyinsections1.1and1.2.Insection1.3,wedefinethe
priceofanarchybasedonthesetwoproblemformulations. Theclassoflinearquadraticmodels
isexploredinsection2,whereweprovidesometheoreticalresultsonthepriceofanarchyforthis
classofgames.Thisincludesourmainresult,Theorem2,whichprovidesasufficientandnecessary
conditiontohavenopriceofanarchy.Insection2,wealsoprovesomelimitingcasesandshow
numericalresults. Weconcludeinsection3.

1.1 NashEquilibrium: MeanFieldGameFormulation

Thegoalofthissubsectionistoarticulatewhatis meantbyafeedbackfunctionprovidinga
meanfieldgameequilibrium. Tobegin,wedefinewhatwecallthemeanfieldenvironment. By
symmetryoftheplayers,wesupposealloftheplayersinthemeanfieldgameusethesamefeedback
function,φ. Thenthemeanfieldenvironment specifiedbyφischaracterizedbyL(Xφt)0≤t≤T
andL(φ(t,Xφt))0≤t≤T wherethedynamicsof(X

φ
t)0≤t≤T aregivenbyequation(1). Sincewe

searchforaNashequilibrium,weconsiderarepresentativeagentwhowishestofindtheirbest
response,φ′,tothemeanfieldenvironmentspecifiedbyφ,inwhichcasetheirstateisgivenby

Xφ
′,φ=(Xφ

′,φ
t )0≤t≤Tsolvingthestandardstochasticdifferentialequation:

dXφ
′,φ
t =b(t,Xφ

′,φ
t ,L(Xφt),φ

′(t,Xφ
′,φ
t ),L(φ(t,Xφt)))dt+σdWt.

Considerthefunction:

S(φ′,φ)=
T

0
<f(t,·,L(Xφt),φ

′(t,·),L(φ(t,Xφt)),L(X
φ′,φ
t ))>dt+<g(·,L(XφT)),L(X

φ′,φ
t )> .

Thebestresponsefortherepresentativeagentinthemeanfieldenvironmentspecifiedbyφisthe
feedbackfunctionminimizingthiscost,namelyφ∗=arginfφ′S(φ

′,φ).Assumingtheminimizeris
unique(whichwillbethecaseforthemodelsweconsider),thisdefinesamappingΦ:φ→φ∗.If
thereisaφ̂suchthatΦ(̂φ)=̂φ,thentheplayersareinameanfieldgameequilibrium.
Thus,thesearchforafeedbackfunctionprovidingameanfieldgameequilibriumcanbesum-

marizedasthefollowingsetoftwosuccessivesteps:

1.Foreachfeedbackfunctionφ:[0,T]×R∋(t,x)→R,solvetheoptimalcontrolproblem

φ∗=arginf
φ′
S(φ′,φ).

DefinethemappingΦ(φ):=φ∗.

2.Findafixedpointφ̂ofΦsuchthatΦ(̂φ)=̂φ.

Whenthesetwostepscanbetakensuccessfully,wesaythat φ̂providesameanfieldgame

equilibrium. NotethatXφ̂,φ̂=Xφ̂andthereforeS(̂φ,φ̂)=SC(̂φ)givesthesocialcostforthe
meanfieldgameequilibriumprovidedby φ̂. Noticethattherecouldpossiblybemanyfeedback
functionsprovidingameanfieldgameequilibrium. LetN denotethesetofallsuchfeedback
functionsprovidingmeanfieldgameequilibria,asdetailedabove,i.e.

N={φ:[0,T]×R∋(t,x)→R|Φ(φ)=φ}.
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1.2 CentralizedControl: OptimalControlof McKean-VlasovType

Thegoalofthissubsectionistoarticulatehowtocomputethecostassociatedwiththecontrol
problemof McKean-Vlasovtype,SCMKV. Thecentralplannerconsidersthefollowingcontrol
problem:

φ̂=arginf
φ
SC(φ)

=arginf
φ

T

0
<f(t,·,L(Xφt),φ(t,·),L(φ(t,X

φ
t))),L(X

φ
t)>dt+ <g(·,L(X

φ
T)),L(X

φ
T)> .

Thus,thecostofthesolutiontotheoptimalcontrolproblemofMcKean-Vlasovisgivenby:

SCMKV =SC(̂φ).

Remark1.WearenotconcernedwithuniquenessforthecontrolofMcKean-Vlasovtypeproblem,
becauseSCMKV =SC(φ1)=SC(φ2)isstillwelldefinedeveniftherearetwodifferentoptimal
feedbackfunctionsφ1andφ2minimizingSC(φ).

1.3 PriceofAnarchy

Wehavedescribedtwoapproachestocomputetheoptimalfeedbackfunction φ.Inthe mean
fieldgameformulation,werequireφ∈N,whereNdenotesthesetoffeedbackfunctionsproviding
meanfieldgameequilibria.IntheoptimalcontrolofMcKean-Vlasovtypeformulation,theoptimal
controltobeadoptedbyallplayersiscomputedbyacentralplanner,whooptimizesthesocialcost
functionSC(φ)directly.Thus,wenecessarilyhave:

SCMKV ≤SC(φ),∀φ∈N.

Inotherwords,thereisa‘priceofanarchy’associatedwithallowingplayerstochoosetheircontrols
selfishly. Wethusdefinethepriceofanarchy(denotedPoA)astheratiobetweentheworstcase
costforameanfieldgameequilibriumandtheoptimalcostcomputedbyacentralplanner:

PoA=
supφ∈NSC(φ)

SCMKV
.

2 Priceof AnarchyforLinear QuadraticExtended MeanField
Games

Theclassoflinearquadraticextendedmeanfieldgamesisaclassofproblemsforwhichexplicit
solutionscanbecomputedanalytically,andthus,wecancomputethepriceofanarchyexplicitly.
Tothebestofourknowledge,thecaseoflinearquadraticextendedmeanfieldgameshasnotbeen
exploredintheliterature,aswellascomputingthepriceofanarchyforthisclassofgames.
Tobegin,weneedtodescribeinmoredetailthetwoproblemsthatwillbeusedtocompute

thepriceofanarchy:thelinearquadraticextendedmeanfieldgame,andthelinearquadratic
controlproblemofMcKean-Vlasovtypewithdependenceonthelawofthecontrol.Tospecifythe
problems,weonlyneedtospecifythedriftandcostfunctions,b,f,andgintroducedinsection1.
Forthelinearquadraticmodels,wetakethedrifttobelinear:

b(t,x,µ,α,ν)=b1(t)x+b̄1(t)̄µ+b2(t)α+b̄2(t)̄ν,
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whereµ̄denotesthemeanofthemeasureµ,namely,µ̄= Rxdµ(x),andsimilarlyforν̄. Wetake
therunningandterminalcoststobequadratic:

f(t,x,µ,α,ν)=
1

2
q(t)x2+̄q(t)(x−s(t)̄µ)2+r(t)α2+̄r(t)(α−s̄(t)̄ν)2,

g(x,µ)=
1

2
qTx

2+̄qT(x−sTµ̄)
2.

Remark2. If̄b2(t)≡0and̄r(t)≡0,thenwehavethestandardmeanfieldgameorcontrolproblem
ofMcKean-Vlasovtype.(SeeTheorem1forassumptionsthatprovideexistenceanduniqueness.)

2.1 LinearQuadraticExtended MeanFieldGames

Tosolvethelinearquadraticextendedmeanfieldgame(LQEMFG),webeginbyconsideringthe
reducedHamiltonianforthisproblem:

H(t,x,̄µ,α,̄ν,y)=b1(t)x+b̄1(t)̄µ+b2(t)α+b̄2(t)̄νy

+
1

2
q(t)x2+̄q(t)(x−s(t)̄µ)2+r(t)α2+̄r(t)(α−s̄(t)̄ν)2,

andwhenevertheflowsµ̄=(̄µt)0≤t≤Tandν̄=(̄νt)0≤t≤Tarefixed,weconsiderforeachcontrol
processα=(αt)0≤t≤Ttheadjointequation:

dYt=−∂xH(t,Xt,̄µt,αt,̄νt,Yt)dt+ZtdWt, YT=∂xg(XT,L(XT)).

AccordingtothePontryaginstochasticmaximumprinciple,asufficientconditionforoptimalityis
∂αH(t,Xt,̄µt,̂αt,̄νt,Yt)=0.Thus,wefindtheoptimalcontrol:

α̂t=
r̄(t)̄s(t)̄ν−b2(t)Yt
r(t)+̄r(t)

. (2)

Whensolvingthefixedpointstep,weidentify ν̄t=E(̂αt).Bytakingtheexpectation,wefind:

ν̄t=E(̂αt)=c
MFG(t)E(Yt), with cMFG(t)=−

b2(t)

r(t)+̄r(t)(1−s̄(t))
.

Thus,fromequation(2)wehave:

α̂t=a
MFG(t)Yt+b

MFG(t)E(Yt), (3)

with:

aMFG(t)=−
b2(t)

r(t)+̄r(t)
, and bMFG(t)=−

r̄(t)̄s(t)b2(t)

(r(t)+̄r(t))(r(t)+̄r(t)(1−s̄(t)))
.

NotethatcMFG(t)=aMFG(t)+bMFG(t).Thesolutionofthemeanfieldgameequilibriumproblem
isgivenbythesolutiontotheFBSDEsystem:

dXt = b1(t)Xt+b̄1(t)EXt+a
MFG(t)b2(t)Yt+(b

MFG(t)b2(t)+c
MFG(t)̄b2(t))EYtdt+σdWt

dYt = −[(q(t)+̄q(t))Xt−q̄(t)s(t)EXt+b1(t)Yt]dt+ZtdWt,
(4)
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withinitialconditionX0=ξ,arandomvariablewithfinitemeanandvariance,andterminal
conditionYT=(qT+̄qT)XT−q̄TsTEXT.
ThisisalinearFBSDEof McKean-Vlasovtype,whichcanbesolvedexplicitlyundermild

assumptions(oratleastinthecaseoftime-independentcoefficientswhichwewillconsiderlater.
SeeAppendixA).Letη̄MFGt ,ηMFGt ,x̄MFGt ,andvMFGt denotethesolutionsforthisproblemas
describedintheappendixsothat:

Yt=η
MFG
t Xt+(̄η

MFG
t −ηMFGt )̄xMFGt ,E(Yt)=̄η

MFG
t x̄MFGt ,

E(Xt)=̄x
MFG
t , Var(Xt)=v

MFG,

provideasolutiontotheLQEMFGproblem.Thenfromtheappendix,wehave:

•ascalarRiccatiequationforη̄MFGt :

˙̄ηMFGt + cMFG(t)(b2(t)+̄b2(t))·(̄η
MFG
t )2+ 2b1(t)+̄b1(t)·̄η

MFG
t +q(t)+̄q(t)(1−s(t))=0,

(5)
withterminalconditionη̄MFGT =qT+̄qT(1−sT),

•alinearfirstorderODEforx̄MFGt :

˙̄xMFGt = b1(t)+̄b1(t)+c
MFG(t)(b2(t)+̄b2(t))·̄η

MFG
t ·̄xMFGt , (6)

withinitialconditionx̄MFG0 =E(ξ),

•ascalarRiccatiequationforηMFGt :

η̇MFGt +aMFG(t)b2(t)·(η
MFG
t )2+2b1(t)·η

MFG
t +q(t)+̄q(t)=0, (7)

withterminalconditionηMFGT =qT+̄qT,

andwherethedotisthestandardODEnotationforaderivative. Andthus,weobtainexplicit
solutionsforx̄MFGt andvMFGt :

x̄MFGt =E(ξ)e
t
0(b1(s)+̄b1(s)+[c

MFG(s)(b2(s)+̄b2(s))]·̄ηMFGs )ds, (8)

vMFGt =Var(ξ)e
t
0
2[b1(s)+aMFG(s)b2(s)·ηMFGs ]ds+σ2

t

0
e2

t
s[b1(u)+a

MFG(u)b2(u)ηMFGu ]duds. (9)

LetSCMFG :=SC(φMFG)inwhichφMFG =φMFG(t,x)isthefeedbackfunctionspecifiedbythis
solution,namely,fromequation(3),wehave:

φMFG(t,x)=aMFG(t)ηMFGt x+ aMFG(t)(̄ηMFGt −ηMFGt )+bMFG(t)̄ηMFGt x̄MFGt .

Thenwecancomputethesocialcostasdescribedinsection1.1:

SCMFG =
1

2
(qT+̄qT)v

MFG
T +(qT+̄qT(1−sT)

2)(̄xMFGT )2

+
T

0
q(t)+̄q(t)+(r(t)+̄r(t))(aMFG(t)ηMFGt )2vMFGt dt (10)

+
T

0
q(t)+̄q(t)(1−s(t))2+(r(t)+̄r(t)(1−s̄(t))2)(cMFG(t)̄ηMFGt )2 (̄xMFGt )2dt,

wherewehaveusedthefactthat:

E(φMFG(t,Xt))=c
MFG(t)·̄ηMFGt x̄MFGt and Var(φMFG(t,Xt))=a

MFG(t)ηMFGt
2
·vMFGt .
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2.2 LinearQuadraticControlof McKean-VlasovTypeInvolvingtheLawofthe
Control

Tosolvethelinearquadraticoptimalcontrolproblemof McKean-Vlasovtypeinvolvingthelaw
ofthecontrol(LQEMKV),webeginwiththereducedHamiltonian,whichisthesameasinthe
LQEMFGproblem:

H(t,x,̄µ,α,̄ν,y)=b1(t)x+b̄1(t)̄µ+b2(t)α+b̄2(t)̄νy

+
1

2
q(t)x2+̄q(t)(x−s(t)̄µ)2+r(t)α2+̄r(t)(α−s̄(t)̄ν)2.

SincewerequirēνttobeequaltoE(αt)throughouttheoptimization,itisnotsufficienttominimize
theHamiltonianwithrespecttotheαinputaloneinordertoguaranteeoptimality. Asufficient
conditionforcontrolproblemsofMcKean-Vlasovtypeinvolvingthelawofthecontrolisderived
in[6].SinceweconsideraHamiltonianthatdependsonthemeansofµ̄andν̄insteadofthefull
distributions,thesufficientconditionreducestothefollowing(seesection4in[6]):

∂αH(t,Xt,E(Xt),̂αt,E(̂αt),Yt)+̃E ∂̄νH(t,̃Xt,E(Xt),̂αt,E(̂αt),̃Yt)=0,

wheretheadjointequationisgivenby:






dYt = − ∂xH(t,Xt,̄µt,αt,̄νt,Yt)+̃E ∂̄µH(t,̃Xt,̄µt,̃αt,̄νt,̃Yt) dt+ZtdWt

YT = ∂xg(XT,L(XT))+̃E ∂̄µg(̃XT,L(XT))(XT),

andwhere(̃X,̃Y,̃α)denotesanindependentcopyof(X,Y,α).InthepresentLQcase,the
sufficientconditioncanbeusedtosolvefor:

α̂t=a
MKV(t)Yt+b

MKV(t)E(Yt), (11)

with:

aMKV(t)=−
b2(t)

r(t)+̄r(t)
, and bMKV(t)=−

1

r(t)+̄r(t)
b̄2(t)−

r̄(t)̄s(t)(̄s(t)−2)(b2(t)+̄b2(t))

r(t)+̄r(t)(1−s̄(t))2
.

ThenE(̂αt)=c
MKV(t)E(Yt)with:

cMKV(t)=aMKV(t)+bMKV(t)=−
b2(t)+̄b2(t)

r(t)+̄r(t)(1−s̄(t))2
.

SothesolutionoftheoptimalcontrolproblemofMcKean-Vlasovtypeisgivenbythesolution
totheFBSDEsystem:

dXt= b1(t)Xt+b̄1(t)EXt+a
MKV(t)b2(t)Yt+(b

MKV(t)b2(t)+c
MKV(t)̄b2(t))EYtdt+σdWt

dYt=− (q(t)+̄q(t))Xt+s(t)̄q(t)(s(t)−2)EXt+b1(t)Yt+b̄1(t)EYtdt+ZtdWt,
(12)

withinitialconditionX0=ξ,andterminalconditionYT=(qT+̄qT)XT+sTq̄T(sT−2)EXT.
Asintheprevioussection,thisisalinearFBSDEofMcKean-Vlasovtype,whichcanbesolved

explicitlyundermildassumptions(oratleastinthecaseoftime-independentcoefficientswhichwe
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willconsiderlater.SeeAppendixA).Letη̄MKVt ,ηMKVt ,x̄MKVt ,andvMKVt denotethesolutions
forthisproblemasdescribedintheappendixsothat:

Yt=η
MKV
t Xt+(̄η

MKV
t −ηMKVt )̄xMKVt ,E(Yt)=η̄

MKV
t x̄MKVt ,

E(Xt)=̄x
MKV
t , Var(Xt)=v

MKV,

provideasolutiontotheLQEMKVproblem.Thenfromtheappendix,wehave:

•ascalarRiccatiequationforη̄MKVt :

˙̄ηMKVt +cMKV(t)(b2(t)+̄b2(t))·(̄η
MKV
t )2+2 b1(t)+̄b1(t)·̄η

MKV
t +q(t)+̄q(t)(1−s(t))2=0,

(13)
withterminalconditionη̄MKVT =qT+̄qT(1−sT)

2,

•alinearfirstorderODEforx̄MKVt :

˙̄xMKVt = b1(t)+̄b1(t)+c
MKV(t)(b2(t)+̄b2(t))·̄η

MKV
t ·̄xMKVt , (14)

withinitialconditionx̄MKV0 =E(ξ),

•ascalarRiccatiequationforηMKVt :

η̇MKVt +aMKV(t)b2(t)·(η
MKV
t )2+2b1(t)·η

MKV
t +q(t)+̄q(t)=0, (15)

withterminalconditionηMKVT =qT+̄qT,

andwherethedotisthestandardODEnotationforaderivative. Andthus,weobtainexplicit
solutionsforx̄MKVt andvMKVt :

x̄MKVt =E(ξ)e
t
0(b1(s)+̄b1(s)+[c

MKV (s)(b2(s)+̄b2(s))]·̄ηMKVs )ds, (16)

vMKVt =Var(ξ)e
t
0
2[b1(s)+aMKV (s)b2(s)·ηMKVs ]ds+σ2

t

0
e2

t
s[b1(u)+a

MKV (u)b2(u)ηMKVu ]duds.(17)

ThenSCMKV =SC(φMKV)whereφMKV isthefeedbackfunctionspecifiedbythissolution,
namely,fromequation(11),wehave:

φMKV(t,x)=aMKV(t)ηMKVt x+ aMKV(t)(̄ηMKVt −ηMKVt )+bMKV(t)̄ηMKVt x̄MKVt .

Thenwecancomputethesocialcost,denotedSCMKV,asdescribedinsection1.2:

SCMKV =
1

2
(qT+̄qT)v

MKV
T +(qT+̄qT(1−sT)

2)(̄xMKVT )2

+
T

0
q(t)+̄q(t)+(r(t)+̄r(t))(aMKV(t)ηMKVt )2vMKVt dt (18)

+
T

0
q(t)+̄q(t)(1−s(t))2+(r(t)+̄r(t)(1−s̄(t))2)(cMKV(t)̄ηMKVt )2 (̄xMKVt )2dt,

wherewehaveusedthefactthat:

E(φMKV(t,Xt))=c
MKV(t)·̄ηMKVt x̄MKVt and Var(φMKV(t,Xt))=a

MKV(t)ηMKVt
2
·vMKVt .
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2.3 TheoreticalResults

Fortheremainderofthepaper,weassumethecoefficientsareindependentoftimeandnon-negative:

(b1(t),̄b1(t),b2(t),̄b2(t),q(t),̄q(t),r(t),̄r(t),s(t),̄s(t))=(b1,̄b1,b2,̄b2,q,̄q,r,̄r,s,̄s)∈(R
+)10,

(qT,̄qT,sT)∈(R
+)3,

andtherefore,

aMFG(t),bMFG(t),cMFG(t)= aMFG,bMFG,cMFG

aMKV(t),bMKV(t),cMKV(t)= aMKV,bMKV,cMKV .

Also,itwillbeconvenienttodenote:

λ:=
cMFG

cMKV
=

b2
b2+b̄2

·
r+̄r(1−s̄)2

r+̄r(1−s̄)
, ut:=λ̄η

MFG
t , wt:=η̄

MKV
t . (19)

andtomakethefollowingobservations:

aMFG =aMKV =:a, ηMFGt =ηMKVt =:ηt, vMFGt =vMKVt =:vt. (20)

Theorem1.Assumethefollowing:

b2 > 0 b2+b̄2 > 0
r+̄r > 0 r+̄r(1−s̄) > 0 r+̄r(1−s̄)2 > 0
q+̄q > 0 q+̄q(1−s)> 0 q+̄q(1−s)2 > 0

qT+̄qT ≥ 0 qT+̄qT(1−sT) ≥ 0 qT+̄qT(1−sT)
2 ≥ 0.

(21)

ThenthereexistsauniquesolutiontotheLQEMFGproblem,andthereexistsauniquesolutionto
theLQEMKVproblem. Andtherefore,PoA= SCMFG

SCMKV
whereSCMFG andSCMKV aregivenby

equations(10)and(18),respectively.

Remark3.NotethatexistenceinTheorem1followsfromtheexplicitconstructioninAppendixA,
becausetheaboveconditionsprovideexistencetothesolutionsoftheRiccatiequations.Uniqueness
comesfromtheconnectionbetweenLQEMFGorLQEMKVanddeterministicLQoptimalcontrol.
(Seesection3.5.1in[8]).

Proposition1.Assuming(21),iffurthermore,

b̄1̄η
MKV
t +s̄q(s−1)·̄xMKVt =0, ∀t∈[0,T] (22)

cMFG−cMKV ·̄ηMKVt x̄MKVt =0, ∀t∈[0,T] (23)

sTq̄T(sT−1)·̄x
MKV
T =0, (24)

thenPoA=1.

Proof.ComparingtheFBSDEsystems(4)and(12),andusingthefactthataMFG =aMKV and
bMFG−bMKV =cMFG−cMKV,theresultisclear.
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Remark4. RecallfromRemark2thatinthestandardmeanfieldgame,b̄2=r̄=0,andthus,
λ=1.AlthoughProposition1isasimpleresult,wewillseeshortlyinCorollary3thatinthecase
whenλ=1,thesufficientconditiongivenbyequations(22)-(24)isalsoanecessaryconditionto
havePoA=1. Wecanseethatinthestandardmeanfieldgamesetting,Proposition1issimilar
toTheorem3.4in[5]whichcharacterizestheglobalefficiencyofmeanfieldgameequilibriainthe
caseofaseparatedHamiltonian.SeealsoRemark6.1in[15],whereitisnotedthatthemeanfield
gameandcontrolofMcKean-Vlasovtypeproblemsarethesameforaparticularmodelofflocking.

Corollary1. Assuming(21),iffurthermore, b̄1=0,s̄q(s−1)=0,sTq̄T(sT−1)=0,and
cMFG =cMKV,thenPoA=1.

Corollary2. Assuming(21),iftheinitialconditionξissuchthatE(ξ)=0,thenfromequation
(16),xMKVt =0forallt∈[0,T],andthus,PoA=1.

Usingtheobservationsinequation(20),wecanrewrite:

SCMFG =
1

2
(qT+̄qT)vT+

1

2
qT+̄qT(1−sT)

2 (̄xMFGT )2+
1

2

T

0
q+̄q+(r+r̄)(aηt)

2vtdt

+
1

2

T

0
q+̄q(1−s)2+(r+̄r(1−s̄)2)(cMFGη̄MFGt )2 (̄xMFGt )2dt, (25)

SCMKV =
1

2
(qT+̄qT)vT+

1

2
qT+̄qT(1−sT)

2 (̄xMKVT )2+
1

2

T

0
q+̄q+(r+r̄)(aηt)

2vtdt

+
1

2

T

0
q+̄q(1−s)2+(r+̄r(1−s̄)2)(cMKV η̄MKVt )2](̄xMKVt )2dt. (26)

Inthefollowing,weintendtosimplifytheexplicitsolutions(25)and(26)forthesocialcostsin

theLQEMFGandLQEMKVproblems.First,considerthequantity
T
0(̄η

MFG
t )2(̄xMFGt )2dt.Using

equation(5),wehave:

T

0
(̄ηMFGt )2(̄xMFGt )2dt

=−
1

cMFG(b2+b̄2)

T

0

˙̄ηMFGt (̄xMFGt )2dt+
T

0
(2b1+b̄1)̄η

MFG
t +(q+̄q(1−s))(̄xMFGt )2dt,

thenusingintegrationbypartsforthefirstterminthebracket:

=−
1

cMFG(b2+b̄2)
η̄MFGT (̄xMFGT )2−η̄MFG0 (̄xMFG0 )2−2

T

0
η̄MFGt x̄MFGt ·̇̄xMFGt dt

+
T

0
(2b1+b̄1)̄η

MFG
t +(q+̄q(1−s))(̄xMFGt )2dt,

andtogetherwithequation(6)yields:

=2
T

0
(̄ηMFGt )2(̄xMFGt )2dt−

1

cMFG(b2+b̄2)
η̄MFGT (̄xMFGT )2−η̄MFG0 (E(ξ))2

+
T

0
−̄b1̄η

MFG
t +(q+̄q(1−s))(̄xMFGt )2dt.
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Finally,wearriveat:

T

0
(̄ηMFGt )2(̄xMFGt )2dt=

η̄MFGT (̄xMFGT )2−η̄MFG0 (E(ξ))2+
T
0 −̄b1̄η

MFG
t +(q+̄q(1−s))(̄xMFGt )2dt

cMFG(b2+b̄2)
.

Ifwedenote:

hvar:=
1

2

T

0
q+̄q+(r+r̄)(aηt)

2vtdt+
1

2
(qT+̄qT)vT,

andusetheterminalconditionforη̄MFGT ,thenequation(25)canberewrittenas:

SCMFG =hvar+
1

2

T

0
b̄1λ̄η

MFG
t +(q+̄q(1−s)2)−λ(q+̄q(1−s))(̄xMFGt )2dt, (27)

+
1

2
λη̄MFG0 (E(ξ))2−(qT+̄qT(1−sT))(̄x

MFG
T )2 +

1

2
(qT+̄qT(1−sT)

2)(̄xMFGT )2.

Similarly,equation(26)canberewrittenas:

SCMKV =hvar+
1

2
η̄MKV0 (E(ξ))2. (28)

Let’sdenotethe(weighted)differencebetweenthesolutionsoftheRiccatiequationsassociated
withη̄MFGt andη̄MKVt by:

∆̄ηt:=λ̄η
MFG
t −η̄MKVt =ut−wt. (29)

Proposition2.Underassumption(21),thedifferenceinthesocialcostsintheLQEMFGand
LQEMKVproblemscanberepresentedby:

∆SC:=SCMFG−SCMKV =
1

2
·
(b2+b̄2)

2

r+̄r(1−s̄)2

T

0
(∆̄ηt·̄x

MFG
t )2dt. (30)

Proof.Thesolutionsη̄MFGt andη̄MKVt fortheRiccatiequations(5)and(13),respectively,arewell
definedunderassumption(21)(seeAppendixA). Wenoticethat∆̄ηtdefinedin(29)satisfiesthe
followinglinearfirst-orderdifferentialequation:

d(∆̄ηt)

dt
=γt∆̄ηt+βt, ∆̄ηT=λ̄η

MFG
T −η̄MKVT ,

withcoefficients:

γt = −2b1−2̄b1+
(b2+b̄2)

2

r+̄r(1−s̄)2
λ̄ηMFGt +̄ηMKVt ,

βt = b̄1λ̄η
MFG
t +(q+̄q(1−s)2)−λ(q+̄q(1−s)).

SinceqT+̄qT(1−sT)=̄η
MFG
T ,qT+̄qT(1−sT)

2=η̄MKVT andλ̄ηMFG0 −η̄MKV0 =∆̄η0,wededuce
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fromequations(27)and(28)that:

SCMFG−SCMKV =
1

2
∆̄η0(E(ξ))

2−∆η̄T(̄x
MFG
T )2+

T

0
βt(̄x

MFG
t )2dt

=
1

2

T

0
−
d(∆̄ηt(̄x

MFG
t )2)

dt
+
d(∆̄ηt)

dt
−γt∆̄ηt (̄x

MFG
t )2 dt

=
1

2

T

0
−2∆̄ηt̄x

MFG
t

˙̄xMFGt −γt∆̄ηt(̄x
MFG
t )2dt

=
1

2

T

0
∆̄ηt(̄x

MFG
t )2 −2 b1+b̄1−

(b2+b̄2)
2

r+̄r(1−s̄)2
λ̄ηMFGt −γtdt

=
1

2
·
(b2+b̄2)

2

r+̄r(1−s̄)2

T

0
(∆̄ηt·̄x

MFG
t )2dt,

whereweuseequation(6)forthefourthequality.

Remark5.WecanseedirectlyfromProposition2thatthesocialcostintheLQEMFGproblemis
largerthan(orpossiblyequalto)thesocialcostintheLQEMKVproblem.Thisresultisconsistent
withthedefinitionofthepriceofanarchyinsection1.3.

Notethatwecanwrite:

PoA=1+
∆SC

SCMKV
. (31)

ItwillbeusefulforustonoteherethescalarRiccatiequationsassociatedwithut=λ̄η
MFG
t ,

wt=̄η
MKV
t andηt:

u̇t−2A
uut−Bu

2
t +C

u=0, uT=D
u, (32)

ẇt−2A
wwt−Bw

2
t+C

w=0, wT=D
w, (33)

η̇t−2A
ηηt−B

ηη2t+C
η=0, ηT =D

η, (34)

with:

Au=− b1+
b̄1
2
, Aw=−(b1+b̄1), Aη=−b1,

Bu=
(b2+b̄2)

2

r+̄r(1−s̄)2
, Bw=

(b2+b̄2)
2

r+̄r(1−s̄)2
, Bη=

b22
r+̄r

,

Cu=λ(q+q̄(1−s)), Cw=q+̄q(1−s)2, Cη=q+̄q,

Du=λ(qT+̄qT(1−sT)), Dw=qT+̄qT(1−sT)
2, Dη=qT+̄qT. (35)

IfBu=0,BuDu≥0andBuCu>0,wehave(seeequation(73)inAppendixA)theexistenceand
uniquenessforutwhichcanbeexpressedby:

ut=
Cu(1−e−(δ

+
u−δ

−
u)(T−t))+Du(δ+u−δ

−
ue
−(δ+u−δ

−
u)(T−t))

BuDu(1−e−(δ
+
u−δ

−
u)(T−t))+δ+ue−(δ

+
u−δ

−
u)(T−t)−δ−u

, (36)

withδ±u=−A
u± (Au)2+BuCu.Underassumption(21),theaboveconditionsonBu,Cu,and

Duaresatisfied,andwehaveδ−u<0<δ
+
u,ut>0forallt∈[0,T),anduT≥0. Wehaveanalogous

expressionsforwtandηt,intermsofδ
±
wandδ

±
η,respectively.NotethatB

u=Bw=:B.
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Itwillalsobeusefultocomputethederivativeofutwithrespecttotimetfromtheexplicit
forminequation(36):

dut
dt
=
B(Du)2+2AuDu−Cu ·(δ+u−δ

−
u)
2
e−(δ

+
u−δ

−
u)(T−t)

BDu(1−e−(δ
+
u−δ

−
u)(T−t))+δ+ue−(δ

+
u−δ

−
u)(T−t)−δ−u

2. (37)

NotethatutisincreasingifB(D
u)2+2AuDu−Cu>0,andlikewise,decreasingifB(Du)2+

2AuDu−Cu<0.

Theorem2.Assume(21)andtheinitialconditionξsatisfiesE(ξ)=0.LetAu,Aw,B,Cu,Cw,
Du,andDwasdefinedinequation(35).

•When b̄1>0,wehavePoA=1ifandonlyif:

Du=Dw=:D and BD2+2AuD−Cu=BD2+2AwD−Cw=0. (38)

•When b̄1=0,thenA
u=AwandwehavePoA=1ifandonlyif:

Du=Dw and Cu=Cw. (39)

Proof.Fromananalogousequationto(36)forwt,weknowthatunderassumption(21),w0>0.
Thus,withtheassumptionE(ξ)=0,wehave0<SCMKV <∞.Hence,PoA=1ifandonlyif
∆SC=0.Sincex̄MFGt =0forallt∈[0,T],fromProposition2andthecontinuityofutandwt,
wededucethat:

PoA=1 ifandonlyif ut=wt, ∀t∈[0,T].

Fromequation(37)andtheuniquenessofsolutionstoRiccatiequations(32)and(33),itis
easytocheckthatiftheconditionsin(38)and(39)aresatisfied,thenut=D

u=Dw=wtforall
t∈[0,T],andthus,PoA=1.
SupposenowthatPoA=1.Thenut=wtforallt∈[0,T]andclearly:

Du=uT=wT=D
w.

Now,ifwetakethedifferencebetweenthetwoRiccatiequations(32)and(33),andbyusingut=wt
forallt∈[0,T],weobtain:

2(Au−Aw)wt=C
u−Cw, ∀t∈[0,T]. (40)

Since2(Au−Aw)=̄b1,inthecasewhen̄b1=0wemusthaveC
u=Cw.Otherwise,equation(40)

impliesthatut=wt=(C
u−Cw)/̄b1,areconstantforallt∈[0,T].Thus,thetimederivativesof

utandwtshouldbezero.Fromequation(37),andthefactthatδ
+
u−δ

−
u>0,wededuce:

B(Du)2+2AuDu−Cu=0.

SimilarlywealsohaveB(Dw)2+2AwDw−Cw=0.

Corollary3. Assume(21)andλ=1. Thenthesufficientcondition(equations(22)-(24))from
Proposition1isalsoanecessaryconditiontohavePoA=1.
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Proof.AssumePoA=1.Sinceλ=1,wehavecMFG =cMKV andthus,condition(23)holds.If
E(ξ)=0,clearlyconditions(22)-(24)hold,asnotedinCorollary2.IfE(ξ)=0andb̄1=0,from
Theorem2,wehaveDu=DwandCu=Cwwhichtogetherwithλ=1implyconditions(22)and
(24),similarlyasCorollary1. Now,ifE(ξ)=0andb̄1>0,fromTheorem2,wehaveD

u=Dw

whichimpliescondition(24).Finally,theconditionB(D)2+2AuD−Cu=B(D)2+2AwD−Cw=0

impliesη̄MKVt =wt=D=
Cu−Cw

2(Au−A2)=
s̄q(1−s)
b̄1

andthus,wehavecondition(22).

Westudyinthefollowingthevariationof PoAbylettingonlyoneofthecoefficientstendto
zeroortoinfinity.Inordertomakethefollowingcomputationseasiertofollow,werepeatequations
(30),(28),(8),and(9),whichwerecallisequivalenttoequation(17),usingtheabovenotations.
Assuming(21),wehave:

∆SC=
1

2
B

T

0
(ut−wt)

2·(̄xMFGt )2dt, (41)

SCMKV =
1

2

T

0
q+̄q+Bηη2t vtdt+

(qT+q̄T)

2
vT+

1

2
w0(E(ξ))

2, (42)

x̄MFGt =E(ξ)e
t
0
(b1+̄b1−Bus)ds, (43)

vt=Var(ξ)e
t
0
2(b1−Bηηs)ds+σ2

t

0
e2

t
s
(b1−Bηηu)duds. (44)

Alsoforconvenience,recallthedefinitionfromequation(19):λ=
b2

b2+b̄2
·
r+̄r(1−s̄)2

r+̄r(1−s̄)
.

Inthefollowingpropositions,weutilizethefollowingassumptiontomaketheirproofssimpler.

Assumption1. Assume(21).Inaddition,assume: b1>0,D
u>0,Dw>0,Dη>0andthe

initialconditionsatisfiesE(ξ)=0.

Proposition3.AssumingAssumption1,then:

lim
r→∞

PoA=1 and lim
r̄→∞

PoA=1.

Proof.First,weconsiderr→∞.Foreverygivenr>0,wehaveexistenceanduniquenessofthe
solutionsurt,w

r
tandη

r
ttothescalarRiccatiequations(32)-(34). Notethatwehaveaddedthe

superscriptrtoemphasizethedependenceonthisparameter.
When r→∞,wehave:

λr−→λr→∞ :=
b2

b2+b̄2
,

and

Br−→0, Bη,r−→0,
Cu,r−→Cu,r→∞ :=λr→∞(q+̄q(1−s)), Du,r→Du,r→∞ :=λr→∞(qT+̄qT(1−sT)).

Letur→∞ :[0,T]→Rbethesolutiontothelinearfirst-orderdifferentialequation:

(ur→∞t )′−2Auur→∞t +Cu,r→∞ =0, ur→∞T =Du,r→∞.
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Thenwehave:

ur→∞t = Du,r→∞ −
Cu,r→∞

2Au
e−2A

u(T−t)+
Cu,r→∞

2Au
.

Itiseasytoshowdirectlyfromtheirexplicitsolutions(seeequation(36))thatforeverytime
t∈[0,T],

lim
r→∞

urt=u
r→∞
t , andthus, lim

r→∞
Brurt=0.

Next,ourgoalistoboundtheurtuniformlyovert∈[0,T]forlarger.NotethatA
u<0,Br,

Cu,r,λr→∞,Cu,r→∞,Du,r,Du,r→∞ >0,andδ−,ru <0<δ+,ru .Letǫ>0. Thenthereexistsa
r∗>0suchthatmax{Br,Cu,r,Du,r}≤max{Cu,r→∞,Du,r→∞}+ǫ=:ζforr≥r∗.Thus,wecan
deducethatforr≥r∗,andforeveryt∈[0,T]:

|urt|≤
Cu,r+Du,r(δ+,ru −δ−,ru )

δ+,ru e−(δ
+,r
u −δ−,ru )(T−t)

≤
ζ+2ζ (Au)2+ζ2

−2Aue−2T
√
(Au)2+ζ2

.

Fromequation(43)andbytheboundedconvergencetheorem,wehaveforeveryt∈[0,T]:

lim
r→∞

x̄MFG,rt =E(ξ)e(b1+̄b1)t=:̄xMFG,r→∞t .

Moreover, x̄MFG,rt isuniformlyboundedfort∈[0,T].Fromthenon-negativityofurt,wehave:

x̄MFG,rt ≤|E(ξ)|e(b1+̄b1)T, ∀t∈[0,T].

Similarly,foreveryt∈[0,T]:

lim
r→∞

wrt=:w
r→∞
t , lim

r→∞
ηrt=:η

r→∞
t ,

andthefunctionswrtandη
r
tareuniformlyboundedovert∈[0,T]andlarger.Bythebounded

convergencetheoremwehaveforeveryt∈[0,T]:

lim
r→∞

T

0
(urt−w

r
t)
2(̄xMFG,rt )2dt=

T

0
(ur→∞t −wr→∞t )2(̄xMFG,r→∞t )2dt <∞,

andthus,fromequation(41):

lim
r→∞

∆SCr=lim
r→∞

1

2
·Br

T

0
(urt−w

r
t)
2(̄xMFG,rt )2dt=0.

Fromequation(44)andbytheboundedconvergencetheorem,wehaveforeveryt∈[0,T]:

lim
r→∞

vrt=Var(ξ)e
2b1t+σ2

t

0
e2b1(t−s)ds=:vr→∞t .

Wealsohave wr→∞0 >0andvr→∞t >0fort>0.Hence,fromequation(42):

lim
r→∞

SCMKV,r =
1

2

T

0
(q+̄q)vr→∞t dt+(qT+̄qT)v

r→∞
T +wr→∞0 (E(ξ))2 >0.

Therefore,fromequation(31),wehave:

lim
r→∞

PoAr=1.

Byreplacingλr→∞ withλ̄r→∞ := b2
b2+̄b2

(1−s̄),theproofcanberepeated,andweobtain

lim
r̄→∞

PoAr̄=1.
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Proposition4.AssumeAssumption1.If:

q+̄q(1−s)

r+̄r(1−s̄)
=
q+q̄(1−s)2

r+̄r(1−s̄)2
,

then:
lim
b2→∞

PoA=1.

Otherwise,
lim
b2→∞

PoA>1.

Proof.When b2→∞,wehave:

λb2→ r+̄r(1−s̄)2

r+̄r(1−s̄)=:λ
b2→∞, Bb2→∞, Bη,b2→∞

Cu,b2→λb2→∞(q+̄q(1−s))=:Cu,b2→∞, Du,b2→λb2→∞(qT+̄qT(1−sT))=:D
u,b2→∞ >0,

andAu,(Aw,Cw,Dw),(Aη,Cη,Dη)areindependentofb2. Moreover,wenoticethat:

δ±,b2u

b2+b̄2
=−

Au

b2+b̄2
±

(Au)2

(b2+b̄2)2
+

Cu,b2

r+̄r(1−s̄)2
−−−−→
b2→∞

±
q+̄q(1−s)

r+̄r(1−s̄)
=:±cδu,

andthus,limb2→∞δ
+,b2
u −δ−,b2u =+∞.Forthesakeofsimplicity,denotehu(b2,t):=(b2+b̄2)u

b2
t

andhw(b2,t):=(b2+b̄2)w
b2
t.Fromequation(36),forallt∈[0,T),wededuce:

hu(b2,t)=

Cu,b2

b2+b̄2
+Du,b2·

δ+,b2u

b2+b̄2
−

Cu,b2

b2+b̄2
+Du,b2·

δ−,b2u

b2+b̄2
e−(δ

+,b2
u −δ

−,b2
u )(T−t)

−δ−,b2u

(b2+b̄2)2
+

Du,b2

r+̄r(1−s̄)2
+

δ+,b2u

(b2+b̄2)2
−

Du,b2

r+̄r(1−s̄)2
e−(δ

+,b2
u −δ

−,b2
u )(T−t)

−−−−→
b2→∞

(r+̄r(1−s̄)2)cδu=:cu.

Similarly,forallt∈[0,T):

lim
b2→∞

hw(b2,t)=(r+̄r(1−s̄)
2)cδw =:cw, with cδw :=

q+̄q(1−s)2

r+̄r(1−s̄)2
,

and

lim
b2→∞

b2η
b2
t =(r+̄r)cδη=:cη, with cδη:=

q+̄q

r+̄r
.

Next,wederiveastrictlypositiveuniformlowerboundfor(b2+b̄2)u
b2
t over[0,T]andlargeb2.

Letζ1:=
1
2min cδu,D

u,b2→∞ .Thenthereexistsab∗,u,lower2 >0suchthatforallb2≥b
∗,u,lower
2 :

max
δ+,b2u

b2+b̄2
−cδu ,

δ−,b2u

b2+b̄2
−(−cδu),D

u,b2−Du,b2→∞ ,
1

b2+b̄2
≤ζ1,
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andthusforallt∈[0,T]:

hu(b2,t)≥(b2+b̄2)
Du,b2δ+,b2u

(δ+,b2u −δ−,b2u )+Bb2Du,b2

≥
(Du,b2→∞ −ζ1)(cδu−ζ1)

ζ1(2cδu+2ζ1)+(D
u,b2→∞ +ζ1)/(r+̄r(1−s̄)2)

=:mu>0. (45)

Then,bythesametechniqueininequality(45),thereexistsab∗,η,lower2 >0andmη>0suchthat

forallb2≥b
∗,η,lower
2 andallt∈[0,T]:

b2η
b2
t ≥mη. (46)

Fromequation(37),weseethatt→ ub2t isincreasingifB
b2(Du,b2)2+2AuDu,b2−Cu,b2>0.

Sincelimb2→∞B
b2(Du,b2)2+2AuDu,b2−Cu,b2=∞,thereexistsab∗,u,upper2 >0suchthatforall

b2≥b
∗,u,upper
2 ,wehave|Du,b2−Du,b2→∞|≤1andt→ub2t isincreasing.Therefore,

ub2t ≤u
b2
T =D

u,b2≤Du,b2→∞ +1, ∀t∈[0,T],b2≥b
∗,u,upper
2 .

Bythesameargumentforwb2t andη
b2
t,thereexistsab

∗,upper
2 ≥b∗,u,upper2 suchthat:

max ub2t ,w
b2
t ,η

b2
t ≤M, ∀t∈[0,T],b2≥b

∗,upper
2 , (47)

andsuchthatthefunctionst→ub2t,t→w
b2
t andt→η

b2
t areincreasingon[0,T].

Case1:Assume:
q+̄q(1−s)

r+̄r(1−s̄)
=
q+q̄(1−s)2

r+̄r(1−s̄)2
.

Thencδu =cδw andtherefore,cu=cw=:c. Wewanttoshowthatlimb2→∞
∆SCb2

SCMKV,b2
=0. Our

approachistosplittheinterval[0,T]intotwoparts:[0,T/2]and[T/2,T].Sincevb2t ≥0forall
t∈[0,T],fromequations(41)and(42),wehaveSCMKV,b2≥wb20(E(ξ))

2andthus:

∆SCb2

SCMKV,b2
≤

1

wb20E(ξ)
2
Bb2

T
2

0
(ub2t−w

b2
t)
2(̄xMFG,b2t )2dt+Bb2

T

T
2

(ub2t−w
b2
t)
2(̄xMFG,b2t )2dt

=
1

(b2+b̄2)w
b2
0

Ib21 +I
b2
2 ,

(48)

with:

Ib21 =
(b2+b̄2)

3

r+̄r(1−s̄)2

T
2

0
(ub2t−w

b2
t)
2e2(b1+̄b1)texp −2Bb2

t

0
ub2sds dt

=
b2+b̄2

r+̄r(1−s̄)2

T
2

0
[hu(b2,t)−hw(b2,t)]

2·e2(b1+̄b1)texp −
2(b2+b̄2)

r+̄r(1−s̄)2

t

0
hu(b2,s)ds dt,

and:

Ib22 =
(b2+b̄2)

3

r+̄r(1−s̄)2

T

T
2

(ub2t−w
b2
t)
2e2(b1+̄b1)texp −

2(b2+b̄2)

r+̄r(1−s̄)2

t

0
hu(b2,s)ds dt.
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Fixǫ>0.Inthefollowing,weshowthatIb21 ≤ǫandI
b2
2 ≤ǫforlargeb2. First,consider

Ib21. Recallthatfort∈[0,T/2],wehavelimb2→∞hu(b2,t)=limb2→∞hw(b2,t)=c,andforall
b2≥b

∗,upper
2 ,thefunctions[0,T/2]∋s→ ub2s and[0,T/2]∋s→ w

b2
s areincreasing,andthus,

[0,T/2]∋s→ hu(b2,t)and[0,T/2]∋s→ hw(b2,t)areincreasing.(NotethatT/2<Tischosen

arbitrarily,sincetheabovelimitsdonotholdatT.) Letζ2:=min
c
2,
1
2e
−T(b1+̄b2)

√
ǫc.Then

thereexistsab∗,I12 ≥b∗,upper2 suchthatforallb2≥b
∗,I1
2 andalls∈[0,T/2]wehave:

c−ζ2 ≤ hu(b2,0) ≤ hu(b2,s) ≤ hu(b2,T/2) ≤ c+ζ2,
c−ζ2 ≤ hw(b2,0) ≤ hw(b2,s) ≤ hw(b2,T/2) ≤ c+ζ2.

Thus,foranyt∈[0,T/2]andb2≥b
∗,I1
2 :

|hu(b2,t)−hw(b2,t)|
2≤4ζ22 and

t

0
hu(b2,s)ds≥(c−ζ2)t≥

c

2
·t.

Therefore,

Ib21 ≤4ζ
2
2e
2T(b1+̄b1)·

(b2+b̄2)

r+̄r(1−s̄)2

T
2

0
exp −

2(b2+b̄2)

r+̄r(1−s̄)2
·
c

2
·tdt

=
4e2T(b1+̄b1)

c
1−e

−
(b2+b̄2)c

r+̄r(1−s̄)2
T
2 ζ22≤ǫ, (49)

wherethelastinequalitycomesfromthedefinitionofζ2.
Next,considerIb22.Sinceu

b2
t ispositiveover[0,T],weknowfromtheinequalities(45)and(47)

thatforallb2≥max{b
∗,upper
2 ,b∗,u,lower2 }andallt∈[T/2,T]:

ub2t−w
b2
t ≤ sup

0≤s≤T
ub2s + w

b2
s ≤2M, and

t

0
hu(b2,s)ds≥

T
2

0
hu(b2,s)ds≥

T

2
mu>0.

Hence,thereexistsab∗,I22 ≥max{b∗,upper2 ,b∗,u,lower2 }suchthatforallb2≥b
∗,I2
2 :

Ib22 ≤
(b2+b̄2)

3

r+̄r(1−s̄)2
·4M2e2(b1+̄b1)T

T

T
2

exp −
T(b2+b̄2)

r+̄r(1−s̄)2
·mu dt

=κ1(b2+b̄2)
3e−κ2(b2+̄b2)≤ǫ, (50)

withκ1:=
2TM2e2(b1+b̄1)T

r+̄r(1−s̄)2 >0andκ2:=
Tmu

r+̄r(1−s̄)2>0areconstantsindependentofb2.

Letb∗2:=max{b
∗,I1
2 ,b

∗,I2
2 }.Theninequalities(48),(49)and(50)giveforb2≥b

∗
2:

∆SCb2

SCMKV,b2
≤
Ib21 +I

b2
2

(b2+b̄2)w
b2
0

≤
ǫ+ǫ

hw(b2,0)
≤
2ǫ

c/2
=
4ǫ

c
.

Sincetheproofholdsforarbitraryǫ>0,andc= (q+̄q(1−s)2)(r+̄r(1−s̄)2)>0isindepen-
dentofb2andǫ,weconclude:

lim
b2→∞

∆SCb2

SCMKV,b2
=0,
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andthus,fromequation(31):
lim
b2→∞

PoAb2=1.

Case2:Assume:
q+̄q(1−s)

r+̄r(1−s̄)
=
q+q̄(1−s)2

r+̄r(1−s̄)2
.

Thencu = cw. Wewanttoshowthatlimb2→∞PoA
b2 > 1. Todoso, wewillshowthat

(b2+b̄2)∆SC
b2 ≥ cnum > 0andb2SC

MKV,b2 ≤ Mden < ∞ forlargeb2, wherecnum and

Mdenaretwoconstantsindependentofb2. Weassumeinthefollowingthatb2≥ b
∗,basic
2 :=

max{b∗,u,lower2 ,b∗,η,lower2 ,b∗,upper2 },asdefinedpriortoCase1. Therefore,s→ ub2s,s→ w
b2
s and

s→ηηsareincreasingfunctions. Moreover,frominequalities(45)-(47),wehavehu(b2,t)≥mu>0,
b2η
b2
t ≥mη>0,andη

b2
t ≤M<∞,forallt∈[0,T].

Step1: Wederivealowerboundfor(b2+̄b2)∆SC
b2byadaptingthetechniquesusedininequality

(49). Wehaveshownthatforeveryt∈[0,T/2],limb2→∞hu(b2,t)=cuandlimb2→∞hw(b2,t)=cw.

Letζ3=ln(2)
r+̄r(1−s̄)2

T(cu+|cu−cw|/4)
−b̄2.Then,thereexistsab

∗,num
2 ≥max{b∗,basic2 ,ζ3}suchthatforall

b2≥b
∗,num
2 andalls∈[0,T/2]:

cu−|cu−cw|/4 ≤ hu(b2,0) ≤ hu(b2,s) ≤ hu(b2,T/2) ≤ cu+|cu−cw|/4,
cw−|cu−cw|/4 ≤ hw(b2,0) ≤ hw(b2,s) ≤ hw(b2,T/2) ≤ cw+|cu−cw|/4,

whichimpliesthatforallt∈[0,T/2]:

|hu(b2,t)−hw(b2,t)|≥
1

2
|cu−cw|,

t

0
hu(b2,s)ds≤ cu+

1

4
|cu−cw|t.

Thus,similartoinequality(49),forallb2≥b
∗,num
2 ,wededuce:

(b2+b̄2)∆SC
b2≥

b2+b̄2
2
Bb2

T
2

0
(ub2t−w

b2
t)
2(̄xMFG,b2)2dt

≥
|cu−cw|

2(E(ξ))2

8(r+̄r(1−s̄)2)
·(b2+b̄2)

T
2

0
exp−

2(b2+b̄2)

r+̄r(1−s̄)2
cu+

1

4
|cu−cw|tdt

=
|cu−cw|

2(E(ξ))2

16(cu+|cu−cw|/4)
1−e

−
T(cu+|cu−cw|/4)

r+̄r(1−s̄)2
(b2+̄b2)

≥
|cu−cw|

2(E(ξ))2

16(cu+|cu−cw|/4)
·
1

2
=:cnum. (51)

Step2: Wederiveanupperboundforb2SC
MKV,b2.Fromequation(42),wehave:

b2SC
MKV,b2=

q+̄q

2

T

0
b2vtdt+

qT+̄qT
2

b2vT+
b2
2
wb20(E(ξ))

2

=:Jb21

+
1

2

T

0
Bη,b2(ηb2t)

2·b2vtdt

=:Jb22

.

(52)
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WederivethefollowingtworesultswhichareusefulforderivingupperboundsforJb21 andJ
b2
2.

First,letκ3:=
2mη
r+̄r>0andl(b2,t):=

t

0
e−2B

η,b2
t
s
η
b2
ududs.Sinceb2ηt≥mηforallt∈[0,T]:

b2·l(b2,t)≤b2
t

0
exp −2

b2
r+̄r

mη·(t−s)ds=
1

κ3
(1−e−κ3b2t)≤

1

κ3
, ∀t∈[0,T]. (53)

Next,usingequation(34),integrationbyparts,andsince−Aη,ηb2t,C
η,l(b2,t)≥0wededuce:

T

0
Bη,b2(ηb2t)

2·l(b2,t)dt=
T

0
(ηb2t)

′·l(b2,t)dt+
T

0
−2Aηηb2t+C

η ·l(b2,t)dt

≥ ηb2Tl(b2,T)−η
b2
0l(b2,0)−

T

0
ηb2t·

∂(l(b2,t))

∂t
dt

=−
T

0
ηb2t·l(b2,t)·(−2B

η,b2ηb2t)+1dt+l(b2,T)D
η

≥2
T

0
Bη,b2(ηb2t)

2·l(b2,t)dt−
T

0
ηb2tdt.

Afterrearrangingterms,weobtain:

b2
T

0
Bη,b2(ηb2t)

2·
t

0
e−2B

η,b2
t
s
η
b2
ududs dt≤

T

0
b2η
b2
tdt. (54)

First,considerJb21. Fromequation(44)andinequalities(46)and(53),wehavethatforall

b2≥b
∗,basic
2 andforallt∈[0,T]:

b2vt=Var(ξ)e
2b1t·b2e

−2Bη,b2 t
0ηsds+σ2·b2

t

0
e2b1(t−s)·e−2B

η,b2 t
sηududs

≤Var(ξ)e2b1T·b2e
−
2b2
r+̄r
mη·t+σ2e2b1Tb2·l(t)

≤e2b1T Var(ξ)b2e
−κ3b2t+

σ2

κ3
.

Letb∗,J1≥b∗,basicsuchthatforallb2≥b
∗,J1
2 :

(b2+b̄2)w
b2
0 ≤cw+

1

2
cw, and b2e

−κ3b2T≤
1

κ3
.

Thenforallb2≥b
∗,J1
2 :

Jb21 ≤
q+̄q

2
·e2b1T

T

0
Var(ξ)b2e

−κ3b2t+
σ2

κ3
dt

+
qT+̄qT
2

·e2b1T Var(ξ)b2e
−κ3T·b2+

σ2

κ3
+

b2
2(b2+b̄2)

(E(ξ))2·(b2+b̄2)w
b2
0

≤
(q+̄q)e2b1T

2

Var(ξ)

κ3
+
σ2T

κ3
+
(qT+̄qT)e

2b1T

2

Var(ξ)

κ3
+
σ2

κ3
+
3cw(E(ξ))

2

4

=:MJ1. (55)
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Next,considerthequantityJb22,whichcanbewrittenas:

Jb22 =
1

2(r+̄r)

T

0
b2η
b2
t

2
Var(ξ)e2b1t·b2exp −2B

η,b2
t

0
ηsds dt

+
σ2

2
·b2

T

0
Bη,b2(ηb2t)

2
t

0
e2b1(t−s)−2B

η,b2
t
s
η
b2
ududs dt.

WewillmakeuseofLemma1,whichappearsbelow,andstatesthatthereexistsa b∗,l2 >0anda

constantMlindependentofb2suchthatforallb2≥b
∗,l
2:

T

0
b2η
b2
tdt≤Ml. (56)

Sincelimb2→∞b2η
b2
t =cηforallt∈[0,T/2],thereexistsab

∗,J2
2 ≥max{b∗,l2,b

∗,basic
2 }suchthatfor

allb2≥b
∗,J2
2 :

b2ηt≤cη+
1

2
cη, ∀t∈[0,T/2], and b

3
2e
−κ3b2

T
2≤

1

κ3
.

Thus,togetherwithinequalities(46),(47),(54),and(56),andforκ4:=
Var(ξ)e2b1T

2(r+̄r) ,wededuce
that:

Jb22 ≤
Var(ξ)e2b1T

2(r+̄r)

T
2

0
b2η
b2
t

2
b2e
−κ3b2tdt+

T

T
2

(ηb2t)
2b32e

−2Bη,b2 t
0η
b2
sdsdt +

σ2e2b1T

2

T

0
b2η
b2
tdt

≤κ4
3cη
2

21

κ3
(1−e−κ3b2

T
2)+M2·b32e

−κ3b2
T
2·
T

2
+
σ2e2b1T

2
Ml

≤
κ4
κ3

9

4
c2η+

M2T

2
+
σ2e2b1TMl
2

=:MJ2. (57)

Now,fromequation(52)andinequalities(55)and(57),wehaveforallb2≥b
∗,den
2 :=max{b∗,J12 ,b∗,J22 }:

b2SC
MKV,b2=Jb21 +J

b2
2 ≤MJ1+MJ2=:Mden. (58)

Finally,puttingtogetherinequalities(51)and(58)andforb∗,case22 :=max{̄b2,b
∗,num
2 ,b∗,den2 },

wehaveforallb2≥b
∗,case2
2 :

b2+b̄2
b2

≤2, andthus,
∆SCb2

SCMKV,b2
=

(b2+b̄2)∆SC
b2

b2+̄b2
b2

(b2SCMKV,b2)
≥
cnum
2Mden

>0.

Therefore,fromequation(31),weconclude:

lim
b2→∞

PoAb2>1.

ThefollowinglemmawasusedinProposition4.
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Lemma1.AssumeAssumption1.Thereexistsab∗,l2 >0andaM
l>0,suchthatforallb2≥b

∗,l
2:

T

0
b2η
b2
tdt≤M

l.

Proof.Sincelimb2→∞b2η
b2
t =cη,thereexistsab

∗,1
2 >0suchthatforb2≥b

∗,1
2 ,wehaveb2η

b2
0 ≤

cη+
1
2.Clearlythereexistsab

∗,2
2 >0suchthatforb2≥b

∗,2
2 :

b2η
b2
T =b2D

η=b2(qT+̄qT)≥cη+2.

Letb∗,32 suchthatforb2≥b
∗,3
2 ,thefunctiont→b2η

b2
tisincreasing.Sinceforb2≥max{b

∗,1
2 ,b

∗,2
2 ,b

∗,3
2 },

thefunctiont→b2η
b2
t isincreasingandcontinuous,bytheintermediatevaluetheorem,thereexists

at∗b2∈[0,T]suchthatb2η
b2
t∗b2
=cη+1,andb2η

b2
t ≤cη+1,forallt≤t

∗
b2
.Fromananalogousequation

to(36)forηb2t∗b2
,wehaveforb2≥max{b

∗,1
2 ,b

∗,2
2 ,b

∗,3
2 }:

1=b2η
b2
t∗b2
−cη≤

Cη

b2
+Dη

δ
+,b2
η

b2
− Dη

r+̄rcη+
δ
−,b2
η

b22
cη+ −Dη

δ
−,b2
η

b2
+ Dη

r+̄rcη e
−(δ

+,b2
η −δ

−,b2
η )(T−t∗b2

)

Dη

r+̄r−
δ
−,b2
η

b22
− Dη

r+̄re
−(δ

+,b2
η −δ

−,b2
η )(T−t∗b2

)
.

Afterrearrangingterms:

Dη

r+̄r
−
δ−,b2η

b22
(1+cη)+

Cη

b2
+Dη

δ+,b2η

b2
−cδη

≤ −Dη
δ−,b2η

b2
+
Dη

r+̄r
(1+cη) e

− δ
+,b2
η −δ

−,b2
η (T−t∗b2

)
.

(59)

Sincewehavelimb2→∞
δ
−,b2
η

b22
=limb2→∞

Cη

b2
=limb2→∞

δ
+,b2
η

b2
−cδη =0,thereexistsab∗,42 >0

suchthatforb2≥b
∗,4
2 ,

δ
−,b2
η

b22
(1+cη)+

Cη

b2
+Dη

δ
+,b2
η

b2
−cδη ≤ Dη

2(r+̄r),andthusreturningto

inequality(59),forb2≥max{b
∗,1
2 ,b

∗,2
2 ,b

∗,3
2 ,b

∗,4
2 }:

Dη

2(r+̄r)
≤ −Dη

δ−,b2η

b2
+
Dη

r+̄r
(1+cη) e

− δ
+,b2
η −δ

−,b2
η (T−t∗b2

)
.

Afterrearrangingterms:

b2(T−t
∗
b2)≤

1

δ
+,b2
η −δ

−,b2
η

b2

ln−
2δ−,b2η (r+r̄)

b2
+2(1+cη) . (60)

Sincelimb2→∞
δ
+,b2
η

b2
=cδη=−limb2→∞

δ
−,b2
η

b2
,thereexistsab∗,52 >0suchthatforb2≥b

∗,5
2 :

cδη
2
≤
−δ−,b2η

b2
≤
3cδη
2
, and cδη≤

δ+,b2η −δ−,b2η

b2
≤3cδη.
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Returningtoinequality(60),forb2≥b
∗,l
2 :=max{b

∗,1
2 ,b

∗,2
2 ,b

∗,3
2 ,b

∗,4
2 ,b

∗,5
2 }:

b2(T−t
∗
b2)≤

1

cδη
ln3(r+r̄)cδη+2(1+cη)=

1

cδη
ln(5cη+2).

Finally,forb2≥b
∗,l
2:

T

0
b2η
b2
tdt=

t∗b2

0
b2η
b2
tdt+

T

t∗b2

b2η
b2
tdt≤t

∗
b2(cη+1)+b2(T−t

∗
b2)D

η

≤T(cη+1)+
Dη

cδη
ln(5cη+2)=:M

l.

Proposition5.AssumeAssumption1.Ifb̄2=0,then:

lim
b2→0

PoA=1,

whereasifb̄2>0,then:
lim
b2→0

PoA>1.

Proof.Case1:First,considerthecaseb̄2=0.Asb2→0,wehave:

Bb2→0, Bη,b2→0,

andλ=r+̄r(1−s̄)2

r+̄r(1−s̄),(A
u,Cu,Du),(Aw,Cw,Dw),(Aη,Cη,Dη)areallindependentofb2. Wecanthen

usethesametechniqueshowninProposition3toconcludethatlimb2→0PoA=1.

Case2:Now,let’sassumeb̄2>0.Asb2→0,wehave:

λ−→0, Bb2−→
b̄22

r+̄r(1−s̄)2
=:Bb2→0>0, Bη,b2−→0, Cu,b2−→0, Du,b2−→0,

andAu,(Aw,Cw,Dw),(Aη,Cη,Dη)areindependentofb2. Moreover,wehave:

lim
b2→0

δ+,b2u =−2Au>0, and lim
b2→0

δ−,b2u =0.

Thus,fromequation(36)wededucethatforeveryfixedtimet∈[0,T],limb2→0u
b2
t =0.

SimilartoProposition3,wecanderiveauniformboundforub2t over[0,T]forsmallb2.Indeed,
foranyfixedǫ>0thereexistsab∗2>0suchthatforanyb2≤b

∗
2:

max Bb2,Cu,b2,Du,b2 ≤Bb2→∞+ǫ=:ζ, andthus, |ub2t|≤
ζ+2ǫ (Au)2+ζ2

−2Aue−2T
√
(Au)2+ζ2

,∀t∈[0,T].

Fromequation(43),theassumptionE(ξ)=0,andbytheboundedconvergencetheorem,we
derivethatforanyfixedt∈[0,T]:

lim
b2→0

x̄MFG,b2t =E(ξ)e(b1+̄b1)t=:̄xMFG,b2→0t =0.

24



Itcanalsobeshownthatx̄MFG,b2t ≤|E(ξ)|e(b1+̄b1)Tforanyt∈[0,T]andb2>0.

Moreover,sinceBb2→0>0,Bb2→0Cw>0,Bb2→0Dw>0,wehavelimb2→0w
b2
t =:w

b2→0
t ,and

wb2→0t isstrictlypositiveover[0,T).Itiseasytocheckthatwb2t isalsouniformlyboundedover
[0,T]forsmallb2.Hence,fromequation(41)andtheboundedconvergencetheorem,wededuce:

lim
b2→0

∆SCb2=
1

2
Bb2→0

T

0
(wb2→0t ·̄xMFG,b2→0t )2dt>0.

SinceBη,b2→ 0,Aη<0,Cη>0,andDη>0,usingthesameargumentshowninProposition
3,wededucethatηb2t isuniformlyboundedover[0,T]forsmallb2andforallt∈[0,T]:

lim
b2→0

ηb2t = Dη−
Cη

2Aη
e−2A

η(T−t)+
Cη

2Aη
=:ηb2→0t .

Fromequation(44)andtheboundedconvergencetheorem,forallt∈[0,T]:

lim
b2→0

vb2t =Var(ξ)e
2b1t+σ2

t

0
e2b1(t−s)ds=:vb2→0t >0,

andthus,0<limb2→0SC
MKV,b2<∞.Weconcludelimb2→0PoA

b2>1.

Proposition6.AssumingAssumption1,then:

lim
b̄2→∞

PoA=1.

Furthermore,ifr+̄r(1−s̄)
2

r+̄r(1−s̄)=
qT+q̄T(1−sT)

2

qT+̄qT(1−sT)
then:

lim
b̄2→0

PoA>1.

Proof.Case1:When b̄2→∞,wehave:

λb̄2→0, Bb̄2→∞,Cu,̄b2→0, Du,̄b2→0,

andAu,(Aw,Cw,Dw),(Aη,Bη,Cη,Dη)areindependentof̄b2.Followingthesametechniqueused
inProposition4,wecanshowthat:

lim
b̄2→∞

δ±,̄b2u

b2+b̄2
=±

b2(q+̄q(1−s))

r+̄r(1−s̄)
=:±cδu,lim

b̄2→∞

δ±,̄b2w

b2+b̄2
=±

q+̄q(1−s)2

r+̄r(1−s̄)2
=:±cδw,

and,forallt∈[0,T):

lim̄b2→∞(b2+b̄2)
3
2ub̄2t =(r+̄r(1−s̄)

2)cδu=:cu,

lim̄b2→∞(b2+b̄2)w
b̄2
t =(r+̄r(1−s̄

2))cδw =:cw.

Next,weprovideauniformupperboundforub̄2t over[0,T]andlargēb2.
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Letζ1:=
1
2min{cδu,cδw}.Thenthereexistsāb

∗,u
2 >0suchthatforall̄b2≥b̄

∗,u
2 ,

max
δ+,̄b2u

b2+b̄2
−cδu ,

δ−,̄b2u

b2+b̄2
−(−cδu),

Cu,̄b2

b2+b̄2
,Du,̄b2 ,

1

b2+b̄2
≤ζ1.

Thenwithequation(36),foranyt∈[0,T]and̄b2≥b̄
∗,u
2 ,

ub̄2t ≤
Cu,̄b2+Du,̄b2 δ+,̄b2u −δ−,̄b2u

−δ−,̄b2u

≤
ζ1+ζ1(2cδu+2ζ1)

cδu−ζ1
. (61)

Bythesameargumentforwb2t andtogetherwithinequality(61),thereexistsāb
∗,upper
2 ≥b̄∗,u2 and

M>0suchthat:
max ub̄2t ,w

b̄2
t ≤M, ∀t∈[0,T],̄b2≥b̄

∗,upper
2 . (62)

Furthermore,wecangetauniformlowerboundfor(b2+b̄2)
3
2ub̄2t.

Denoteζ2:=
b2(r+̄r(1−s̄)2)(qT+̄qT(1−sT))

r+̄r(1−s) .Thenforallt∈[0,T]and̄b2≥b̄
∗,u
2 wehave:

(b2+b̄2)
3
2ub̄2t ≥

(b2+b̄2)
3
2Du,̄b2δ+,̄b2u

(δ+,̄b2u −δ−,̄b2u )+Bb̄2Du,̄b2
≥

ζ2(cδu−ζ1)

ζ1(2cδu+2ζ1)+ζ2/(r+̄r(1−s̄)
2)
=:mu.(63)

Now,weadaptthemethodusedinProposition4toprovelim̄b2→∞∆SC
b̄2=0.Considerthe

twoquantities:

Ib̄21 :=
1

2
Bb̄2

T
2

0
(ub̄2s−w

b̄2
s)
2(̄xMFG,̄b2s )2ds and Ib̄22 :=

1

2
Bb̄2

T

T
2

(ub̄2s−w
b̄2
s)
2(̄xMFG,̄b2s )2ds.

Fixǫ>0.Inthefollowing,wewillshowthat∆SCb̄2=Ib̄21 +I
b̄2
2 ≤2ǫforlargēb2. First,

considerIb̄21.Letζ3:=cu/2.Becauselim̄b2→∞B
b̄2(Du,̄b2)2+2AuDu,̄b2−Cu,̄b2>0,fromequation

(37),thereexistsāb∗,inc2 ≥b̄∗,upper2 sothatforall̄b2≥b̄
∗,inc
2 ,thefunctionss→ ub̄2s ands→ w

b̄2
s

areincreasing,andsothatforalls∈[0,T/2]:

cu−ζ3≤(b2+b̄2)
3
2ub̄20 ≤(b2+b̄2)

3
2ub̄2s ≤(b2+b̄2)

3
2ub̄2T

2

≤cu+ζ3,

(b2+b̄2)u
b̄2
s ≤ (b2+b̄2)u

b̄2
T
2

≤ζ3, and (b2+b̄2)w
b̄2
s ≤ (b2+b̄2)w

b̄2
T
2

≤cw+ζ3.

Thus,foranȳb2≥b̄
∗,inc
2 wehave:

Ib̄21 =
E(ξ)2

2(r+̄r(1−s̄)2)

T
2

0
(b2+b̄2)u

b̄2
t−(b2+b̄2)w

b̄2
t

2
e2(b1+̄b1)t·e

−
2(b2+b̄2)

1/2

r+̄r(1−s̄)2
t
0(b2+̄b2)

3/2u
b̄2
sds
dt

≤κ1
1

b2+b̄2
1−e−κ2(b2+̄b2)

1
2 −−−−→

b̄2→∞
0,

withκ1:=
E(ξ)2[ζ23+(cw+ζ3)

2]e2(b1+b̄1)
T
2

2(cu−ζ3)
andκ2:=

(cu−ζ3)T
r+̄r(1−s̄)2

areindependentof̄b2. Therefore,there

existsāb∗,I12 ≥b̄∗,02 suchthatfor̄b2≥b̄
∗,I1
2 ,wehaveI

b̄1
1 ≤ǫ.
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Now,weconsiderthequantityIb̄22.Sinceu
b̄2
t ispositiveover[0,T]andfrominequalities(62)

and(63),weknowthatforall̄b2≥b̄
∗,upper
2 ≥b̄∗,u2 andt∈[T/2,T],

ub̄2t−w
b̄2
t ≤2M, and

t

0
(b2+b̄2)

3
2ub̄2sds≥

T

2
mu.

Thus,similartoinequality(50),thereexistsāb∗,I22 ≥b̄∗,upper2 suchthatforall̄b2≥b̄
∗,I2
2 :

Ib̄22 ≤κ3(b2+b̄2)
2e−κ4

√
b2+̄b2≤ǫ,

whereκ3:=
TE(ξ)2e2(b1+b̄1)TM2

r+̄r(1−s̄)2 andκ4:=
Tmu

r+̄r(1−s̄)2areindependentof̄b2.

Hence,forallb̄2≥b̄
∗
2:=max{̄b

∗,I1
2 ,̄b

∗,I2
2 }wehave:

∆SCb̄2=Ib̄21 +I
b̄2
2 ≤2ǫ.

Sincetheproofholdsforarbitraryǫ>0,weobtain:

lim
b̄2→∞

∆SCb̄2=0.

Moreover,recallthatηtandvtareinvariantwithrespecttōb2and0<vt<∞ fort>0.Clearly

wealsohavewb̄20 ≥0andlim̄b2→∞w
b̄2
0 =0. Thus,weobtain:0<lim̄b2→∞SC

MKV,b̄2<∞,and
concludethat:

lim
b̄2→∞

PoAb̄2=1.

Case2: When b̄2→0,wehave:

λb̄2→λb̄2→0:=r+̄r(1−s̄)
2

r+̄r(1−s̄), Bb̄2→
b22

r+̄r(1−s̄)2
=:Bb̄2→0>0,

Cu,̄b2→λb̄2→0(q+̄q(1−s))=:Cu,̄b2→0>0, Du,̄b2→λb̄2→0(qT+̄qT(1−sT))=:D
u,̄b2→0>0,

andAu,(Aw,Cw,Dw),(Aη,Bη,Cη,Dη)areindependentof̄b2. Letub̄2→0:[0,T]→ Rbethe
solutiontothelimitingRiccatiequation:

ub̄2→0t

′
−2Auub̄2→0t −Bb̄2→0(ub̄2→0t )2+Cu,̄b2→0=0, ub̄2→0T =Du,̄b2→0, (64)

whichwerecallhasanexplicitsolution.Itiseasytoshowdirectlyfromtheexplicitsolutions

thatforeverytimet∈[0,T],lim̄b2→0u
b̄2
t =u

b̄2→0
t .Next,ourgoalistoboundub̄2t uniformlyover

t∈[0,T]forsmall̄b2,followingthemethodologyoftheproofofProposition3.Foranyǫ>0,there
existsāb∗2>0suchthatmax{B

b̄2,Cu,̄b2,Du,̄b2}<max{Bb̄2→0,Cu,̄b2→0,Du,̄b2→0}+ǫ=:ζ4forall
b̄2≤b̄

∗
2.Thus,forall̄b2≤b̄

∗
2andforeveryt∈[0,T]:

ub̄2t ≤
ζ4+2ζ4 (Au)2+ζ24

−2Aue−2T
√
(Au)2+ζ24

.
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Similarly,foreverytimet∈[0,T],lim̄b2→0w
b̄2
t =w

b̄2→0
t ,andwb̄2isuniformlyboundedover

[0,T]andsmall̄b2.Fromequation(43),theassumptionE(ξ)=0,andbytheboundedconvergence
theorem,wehaveforeveryt∈[0,T]:

lim
b̄2→0

x̄MFG,b̄2t =E(ξ)e
t
0
(b1+̄b1−Bb̄2→0u

b̄2→0
s )ds=:̄xMFG,b̄2→0t =0. (65)

Moreover, x̄MFG,b̄2 isuniformlyboundedforall̄b2≤ b̄
∗
2andforallt∈[0,T]. Fromthenon-

negativityofut,wehave:

x̄MFG,b̄2t ≤|E(ξ)|e(b1+̄b1)T, ∀t∈[0,T],∀̄b2≤b̄
∗
2.

Bytheassumptionr+̄r(1−s̄)2

r+̄r(1−s̄)=
qT+q̄T(1−sT)

2

qT+̄qT(1−sT)
,wehaveDu,̄b2→0=Dw,andthusbycontinuity,

ub̄2→0t =wb̄2→0t onasetofpositiveLebesguemeasure.Thus,bytheboundedconvergencetheorem,
wededuce:

lim
b̄2→0

∆SCb̄2=
1

2
Bb̄2→0

T

0
(ub̄2→0t −wb̄2→0t

2
x̄MFG,̄b2→0t

2
dt >0. (66)

Meanwhile,ηtdoesnotdependon̄b2,andtherefore,thevariancevtalsodoesnotdependon̄b2.

Clearly0<vt<∞ fort>0and0≤w
b̄2→0
0 <∞,andthus,0<lim̄b2→0SC

MKV,b̄2<∞.Hence,
wededuce:

lim
b̄2→0

PoAb̄2>1.

Remark6.ConsiderAssumption1andthecasewhen̄b2tendstozero. Wehave0<SC
MKV,b̄2→0<

∞,andtherefore,lim̄b2→0PoA
b̄2=1ifandonlyiflim̄b2→0∆SC

b̄2=0.Sincewecanpassthelimit
asinequation(66),wehaveananalogousresultasTheorem2butforthelimitingcoefficientsAu,
Aw,Bb̄2→0,Cu,̄b2→0,Cw,Du,̄b2→0,andDw.Therefore,theassumptioninProposition4Case2,
r+̄r(1−s̄)2

r+̄r(1−s̄)=
qT+q̄T(1−sT)

2

qT+̄qT(1−sT)
,whichisequivalenttoDu,̄b2→0=Dw,issufficient,butnotnecessary,in

ordertohavelimb2→0PoA
b2>1.

Proposition7.AssumingAssumption1,then:

lim
b1→∞

PoA=1 and lim
b̄1→∞

PoA=∞.

Furthermore,if:

b2
b2+b̄2

·
r+̄r(1−s̄)2

r+̄r(1−s̄)
·(qT+q̄T(1−sT))=qT+̄qT(1−sT)

2,

then:
lim
b1→0

PoA>1 and lim
b̄1→0

PoA>1.
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Proof.Case1:Considerb1→∞.Sincelimb1→∞A
u,b1=limb1→∞A

w,b1=−∞wehave:

lim
b1→∞

B(Du)2+2Au,b1Du−Cu=lim
b1→∞

B(Dw)2+2Aw,b1Dw−Cw=−∞.

Denotegu(b1,t):=B
u
b1
t
b1
andgw(b1,t):=B

w
b1
t
b1
.Forallt∈[0,T),wehavethelimits:

lim
b1→∞

gu(b1,t)=lim
b1→∞

gw(b1,t)=2. (67)

Fromequation(37),andtogetherwithequation(67),thereexistsab∗,upper1 >0suchthatforall
b1≥b

∗,upper
1 ,thefunctionst→ub1t andt→w

b1
t aredecreasingandsuchthat:

sup
0≤t≤T

{gu(b1,t),gw(b1,t)}≤max{gu(b1,0),gw(b1,0)}≤3.

Fixǫ>0.Thereexistsab∗,I11 ≥b∗,upper1 suchthatforallb1≥b
∗,I1
1 ,andforallt∈[0,3T/4],

|gu(b1,t)−gw(b1,t)|=max{gu(b1,t)−gw(b1,t),gw(b1,t)−gu(b1,t)}

≤max{gu(b1,0)−gw(b1,3T/4),gw(b1,0)−gu(b1,3T/4)}

≤ǫ,

and

gw(b1,0)≥2−
1

3
=
5

3
, gu(b1,t)≥gu(b1,3T/4)≥

5

3
.

WeadaptthemethodologyinProposition4andsplittheinterval[0,T]intotwoparts:[0,3T/4]
and[3T/4,T].Forallb1≥b

∗,I1
1 ,similartoinequality(48),wehave:

∆SCb1

SCMKV,b1
≤
Ib11 +I

b1
2

gw(b1,0)
,

where

Ib11 =b1

3
4
T

0
(gu(b1,t)−gw(b1,t))

2e2̄b1t·exp 2b1t−2b1
t

0
gu(b1,s)ds dt

≤ǫ2e2̄b1·
3
4
T·b1

3
4
T

0
exp 2b1t−2b1·

5

3
tdt

=ǫ2e
3̄b1T
2 ·
3

4
(1−e−b1T)

≤κ1ǫ
2,

inwhichκ1:=
3
4e
3̄b1T
2 ,and

Ib12 =b1
T

3
4
T
(gu(b1,t)−gw(b1,t))

2e2̄b1t·exp 2b1t−2b1
t

0
gu(b1,s)ds dt

≤b1(3+3)
2e2̄b1T·

T

3
4
T
exp 2b1t−2b1

3
4
T

0
gu(b1,s)ds dt

≤36e2̄b1Tb1·
T

4
exp 2b1·T−2b1·

3

4
T·
5

3

=9Te2̄b1Tb1e
−1
2
b1T−−−−→

b1→∞
0.
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Therefore,thereexistsab∗1≥b
∗,I1
1 ,sothatforb1≥b

∗
1,wehaveI

b1
2 ≤ǫ.Hence,forallb1≥b

∗
1,

∆SCb1

SCMKV,b1
≤
Ib11 +I

b1
2

gw(b1,0)
≤
3

5
(κ1ǫ

2+ǫ).

Sincetheproofholdsforarbitraryǫ>0,andκ1=
3
4e
3̄b1T
2 isindependentofb1andǫ,weconclude

that:
lim
b1→∞

PoAb1=1.

Case2: Now,considerb̄1→ ∞. SinceA
u,̄b1 <0andlim̄b1→∞|A

u,̄b1|=∞,wehavethe
followinglimits:

δ+,̄b1u −δ−,̄b1u =2 (Au,̄b1)2+BCu−−−−→
b̄1→∞

∞, −δ−,̄b1u =Au,̄b1+ (Au,̄b1)2+BCu−−−−→
b̄1→∞

0,

δ+,̄b1u

b̄1
=
b1+

b̄1
2

b̄1
+

b1+
b̄1
2

2
+BCu

b̄1
−−−−→
b̄1→∞

1

2
+
1

2
=1.

We alsohavefort∈[0,T):

δ+,̄b1u e−(δ
+,̄b1
u −δ

−,̄b1
u )(T−t)≤(δ+,̄b1u −δ−,̄b1u )e−(δ

+,̄b1
u −δ

−,̄b1
u )(T−t)−−−−→

b̄1→∞
0,

whichimplies:lim̄b1→∞δ
+,̄b1
u e−(δ

+,̄b1
u −δ

−,̄b1
u )(T−t)=0.Therefore,fort∈[0,T):lim̄b1→∞

u
b̄1
t

b̄1
= 1
B.

Bythesameargument,wehavefort∈[0,T):lim̄b1→∞
w
b̄1
t

b̄1
= 2
B.

Sincelim̄b1→∞B(D
u)2+2Au,̄b1Du−Cu=−∞andlim̄b1→∞B(D

w)2+2Aw,̄b1Dw−Cw=−∞,

fromequation(37)thereexistsāb∗,lower1 suchthatfor̄b1≥b̄
∗,lower
1 :

max






ub̄10
b̄1
−
1

B
,
wb̄1T/2

b̄1
−
2

B





≤
1

4B
,

andsuchthatthefunctionst→ub̄1t andt→w
b̄1
t aredecreasing.Thus,forallt∈[0,T/2]wehave:

0<
ub̄1t
b̄1
≤
ub̄10
b̄1
≤
1

B
+
1

4B
≤
2

B
−
1

4B
≤
wb̄1T/2

b̄1
≤
wb̄1t
b̄1
.

Thus,forall̄b1≥b̄
∗,lower
1 andallt∈[0,T/2],

wb̄1t
b̄1
−
ub̄1t
b̄1
≥
1

2B
. (68)

Notethatηt,andtherefore,vt,areindependentof̄b1.Thus,

1

b̄21
SCMKV,̄b1=

1

2̄b21

T

0
q+̄q+Bηη2t vtdt+(qT+̄qT)vT +

wb̄10
2̄b21
(E(ξ))2−−−−→

b̄1→∞
0.
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Now,consider:

1

b̄21
∆SCb̄1≥

B

2
(E(ξ))2

T
2

0

ub̄1t
b̄1
−
wb̄1t
b̄1

2

e2
t
0(b1+̄b1−Bu

b̄1
s)dsdt. (69)

Sinceub̄1t isdecreasingfor̄b1≥b̄
∗,lower
1 ,wehavēb1−Bu

b̄1
t ≥b̄1−Bu

b̄1
0. Wehavethefollowing

limitsfort∈[0,T):

lim
b̄1→∞

b̄1−δ
+,̄b1
u =−2b1, lim

b̄1→∞
−δ−,̄b1u b̄1=BC

u,

lim
b̄1→∞

δ+,̄b1u b̄1e
−(δ

+,̄b1
u −δ

−,̄b1
u )(T−t)=0, lim

b̄1→∞
(δ−,̄b1u −b̄1)e

−(δ
+,̄b1
u −δ

−,̄b1
u )(T−t)=0,

andthus,

b̄1−Bu
b̄1
0=

−BCu+BDu(̄b1−δ
+,̄b1
u )−δ−,̄b1u b̄1+(δ

+,̄b1
u b̄1+BC

u+BDu(δ−,̄b1u −b̄1))e
−(δ

+,̄b1
u −δ

−,̄b1
u )T

BDu−δ−,̄b1u +(δ+,̄b1u −BDu)e−(δ
+,̄b1
u −δ

−,̄b1
u )T

−−−−→
b̄1→∞

−2b1.

Sincelim̄b1→∞(̄b1−Bu
b̄1
0)=−2b1<0,thereexistsab̄

∗
1≥b̄

∗,lower
1 ,suchthatfor̄b1≥b̄

∗
1,(̄b1−

Bub̄10)≥−3b1.Returningtoinequality(69),andusinginequality(68)wehavefor̄b1≥b̄
∗
1:

1

b̄21
∆SCb̄1≥

B

2
E(ξ)2·

1

4B2
·

T
2

0
e2b1t+2(̄b1−Bu

b̄1
0)tdt≥

E(ξ)2

8B

T
2

0
e−4b1tdt>0.

Therefore,lim̄b1→∞
1
b̄21
∆SCb̄1>0,andthus,

lim
b̄1→∞

∆SCb̄1

SCMKV,̄b1
=lim
b̄1→∞

1
b̄21
∆SCb̄1

1
b̄21
SCMKV,̄b1

=∞.

Weconcludelimb̄1→∞PoA
b̄1=∞.

Cases3and4: First,weconsiderb1→ 0. WehaveAu,b1→ Au,b1→0,δ+,b1u → δ+,b1→0u >0,
andδ−,b1u → δ−,b1→0u <0,andsimilarlyforAw,b1,Aη,b1,δ±,b1w ,andδ±,b1η . Clearlywehaveforall
t∈[0,T],limb1→0u

b1
t =:u

b1→0
t ,limb1→0w

b1
t =:w

b1→0
t ,andlimb1→0η

b1
t =:η

b1→0
t . Next,weshow

thatthethreesequencesareuniformlybounded.Let0<ǫ<−δ−,b1→0u . Thereexistsab∗1>0

suchthatmax δ+,b1u −δ+,b1→0u ,δ−,b1u −δ−,b1→0u <ǫforallb1≤b
∗
1.Thenforallb1≤b

∗
1and

t∈[0,T]:

ub1t ≤
Cu+Du δ+,b1u −δ−,b1u

−δ−,b1u

≤
Cu+Du δ+,b1→0u −δ−,b1→0u +2ǫ

−δ−,b1→0u −ǫ
,

andsimilarlyforwb1t andηb1t .Fromtheassumption
b2
b2+̄b2

·r+̄r(1−s̄)
2

r+̄r(1−s̄)·qT+q̄T(1−sT)=qT+

q̄T(1−sT)
2,wehaveDu=Dwandthusbycontinuity,ub1→0t =wb1→0t onasetofpositiveLebesgue

measure.
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Fromequation(43),theassumptionE(ξ)=0,andbytheboundedconvergencetheorem,we
haveforeveryt∈[0,T]:

lim
b1→0

x̄MFG,b1t =E(ξ)e
t
0(̄b1−Bu

b1→0
s )ds=:̄xMFG,b1→0t =0.

Moreover, x̄MFG,b1t isuniformlyboundedoverb1≤b
∗
1andt∈[0,T],i.e.

x̄MFG,b1t ≤|E(ξ)|eb̄1T, ∀t∈[0,T],b1≤b
∗
1.

Therefore,bytheboundedconvergencetheorem,0<limb1→0∆SC
b1<∞ andlimb1→0v

b1
t =:

vb1→0t ,whichisboundedovert∈[0,T]. Thus,0<limb1→0SC
MKV,b1 <∞ andweconclude

limb1→0PoA
b1>1.Theproofcanberepeatedtoshowlim̄b1→0PoA

b̄1>1.

2.4 NumericalResults

Thepriceofanarchyfortheclassoflinearquadraticextendedmeanfieldgamesthatweconsider
isgivenbytheratioofthetwoquantitiesgivenbyequations(25)and(26),whichareexplicit,
uptoevaluatingintegrals. Usingthesimplerectangleruletoestimateintegrals,wenumerically
computethepriceofanarchywhenthecoefficientsaretime-independent,non-negative,andsatisfy
Assumption1.Inparticular,whenweallowforfullinteraction(i.e.throughthestatesandthe
controls),wechoosethefollowingdefaultvalues:

ξ≡1,T=1,b1=1,̄b1=1,b2=1,̄b2=1,σ=1,

q=1,q̄=1,s=0.5,r=1,̄r=1,̄s=0.5,qT=1,̄qT=1,sT=0.5.

Unlessotherwisestated,theparametersstayatthesedefaultvalues.Forresultsinvolvingonly
interactionthroughthestates,weset̄b2=0andr̄=0. Forresultsinvolvingonlyinteraction
throughthecontrols,weset̄b1=0,q̄=0,andq̄T=0.Figures1-5showthepriceofanarchyas
wevaryoneparameteratatimeforeachofthreeinteractioncases:fullinteraction(i.e.through
thestatesandthecontrols),interactiononlythroughthestates,andinteractiononlythroughthe
controls. Theresultsshowvariouslimitingbehaviors,suchassomeofthecasesprovedinthe
previoussection.
Figure1confirmsasinProposition3thatlimr→∞PoA=1andlim̄r→∞PoA=1.Propositions

4and5areconfirmedinFigure2.Inthecaseoffullinteraction,wehaveq+̄q(1−s)r+̄r(1−s̄)=
q+q̄(1−s)2

r+̄r(1−s̄)2
and

weseethatlimb2→∞PoA=1.Inthecasesofinteractiononlythroughthestatesorinteraction

onlythroughthecontrols,thenq+̄q(1−s)r+̄r(1−s̄)=
q+q̄(1−s)2

r+̄r(1−s̄)2
,andweseethatlimb2→∞PoA>1,confirming

Proposition4.ForProposition5,whenthereisonlyinteractionthroughthestates,thenb̄2=0
andweseethatlimb2→0PoA=1. Whenthereisfullinteractionoronlyinteractionthroughthe
controls,then̄b2>0andweseethatlimb2→0PoA>1.ForProposition6,Figure3confirmsthat

lim̄b2→0PoA>1andlim̄b2→∞PoA=1.Notethatthecondition
r+̄r(1−s̄)2

r+̄r(1−s̄)=
qT+q̄T(1−sT)

2

qT+̄qT(1−sT)
isnot

satisfiedforthefullinteractioncase,andisthereforeasufficient,butnotnecessary,assumption.
ThisagreeswiththeconclusionofRemark6.InFigures4and5,wenotethatProposition7is

confirmed.Thecondition b2
b2+̄b2

·r+̄r(1−s̄)
2

r+̄r(1−s̄)·(qT+q̄T(1−sT))=qT+̄qT(1−sT)
2issatisfiedforall

threeinteractioncasesandweseethatlimb1→0PoA>1,lim̄b1→0PoA>1,limb1→∞PoA=1,and
lim̄b1→∞PoA=∞.Thus,thenumericalcomputationsconfirmtheresultspresentedinPropositions
3-7.
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Figure1:PoAaswevaryr(left)andr̄(right).
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Figure3:PoAaswevaryb̄2.

3 Conclusion

Wedefinedthepriceofanarchy(PoA)inthecontextofextendedmeanfieldgamesastheratioof
theworstcasesocialcostwhentheplayersareinameanfieldgameequilibriumtothesocialcost
ascomputedbyacentralplanner.Sincethecentralplannerdoesnotrequirethattheplayersbein
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ameanfieldgameequilibrium,thecentralplannerwillrealizeasocialcostthatisnoworsethan
thatofameanfieldgameequilibrium.Thus,PoA≥1.
Wecomputedthepriceofanarchyforlinearquadraticextendedmeanfieldgames,forwhich

explicitcomputationsarepossible. WeidentifyalargeclassofmodelsforwhichPoA=1(see
Proposition1andCorollaries1and2),aswellasgivingasufficientandnecessaryconditiontohave
PoA=1(seeTheorem2andCorollary3). WealsoderivesomelimitingcaseswherePoA→ 1
ascertainparameterstendtozeroortoinfinity(seePropositions3-7).Thenumericssupportour
theoreticalresults.
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Appendices

A SolvingLinearFBSDEsof McKean-VlasovType

ConsideralinearFBSDEsystemofMcKean-Vlasovtype:

dXt= axtXt+a
x̄
tEXt+a

y
tYt+a

ȳ
tEYtdt+σdWt, X0=ξ,

dYt= bxtXt+b
x̄
tEXt+b

y
tYt+b

ȳ
tEYtdt+ZtdWt, YT=c

xXT+c
x̄EXT.

(70)

FortheLQEMFGmodelconsideredinsection2.1,theFBSDEsysteminequation(4)isofthe
formofequation(70)ifweset:

axt=b1(t),a
x̄
t=b̄1(t),a

y
t=a

MFG(t)b2(t),a
ȳ
t=b

MFG(t)b2(t)+c
MFG(t)̄b2(t)

bxt=−(q(t)+̄q(t)),b
x̄
t=̄q(t)s(t),b

y
t=−b1(t),b

ȳ
t=0

cxt=qT+̄qT,c
x̄
t=−q̄TsT.

FortheLQEMKVmodelconsideredinsection2.2,theFBSDEsysteminequation(12)isofthe
formofequation(70)ifweset:

axt=b1(t),a
x̄
t=b̄1(t),a

y
t=a

MKV(t)b2(t),a
ȳ
t=b

MKV(t)b2(t)+c
MKV(t)̄b2(t)

bxt=−(q(t)+̄q(t)),b
x̄
t=−s(t)̄q(t)(s(t)−2),b

y
t=−b1(t),b

ȳ
t=−̄b1

cxt=qT+̄qT,c
x̄
t=sTq̄T(sT−2).

NowwereturntothegeneralFBSDEsystem(70). Bytakingexpectationsinequation(70),
andlettingx̄tandȳtdenoteEXtandEYt,respectively,weget:

˙̄xt=(a
x
t+a

x̄
t)̄xt+(a

y
t+a

ȳ
t)̄yt, x̄0=E(ξ),

˙̄yt=(b
x
t+b

x̄
t)̄xt+(b

y
t+b

ȳ
t)̄yt, ȳT=(c

x+cx̄)̄xT,
(71)

wherethedotisthestandardODEnotationforaderivative. Wethenmaketheansatz̄yt=̄ηt̄xt+̄χt
fordeterministicfunctions[0,T]∋t→ η̄t∈Rand[0,T]∋t→ χ̄t∈R.Bypluggingintheansatz,
thesysteminequation(71)isequivalenttotheODEsystem:

˙̄ηt+(a
y
t+a

ȳ
t)̄η
2
t+(a

x
t+a

x̄
t−b

y
t−b

ȳ
t)̄ηt−b

x
t−b

x̄
t=0, η̄T=c

x+cx̄,

˙̄χt+(̄ηt(a
y
t+a

ȳ
t)−b

y
t−b

ȳ
t)̄χt=0, χ̄T=0.
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ThefirstequationisaRiccatiequation. Notethatχ̄tsolvesafirstorderhomogeneouslinear
equation. Thusχ̄t=0,∀t∈[0,T]. Oncetheequationforη̄tissolved,wecancomputex̄tby
solvingthelinearODE:

˙̄xt=(a
x
t+a

x̄
t+(a

y
t+a

ȳ
t)̄ηt)̄xt, x̄0=E(ξ),

andthus,

x̄t=E(ξ)e
t
0
(axu+ā

x
u+(a

y
u+a

ȳ
u)̄ηu)du.

Oncewehavecomputed(̄xt)0≤t≤T,wecanrewritetheoriginalFBSDEsystem:

dXt= axtXt+a
y
tYt+a

0
t dt+σdWt, X0=ξ,

dYt= bxtXt+b
y
tYt+b

0
t dt+ZtdWt, YT=c

xXT+c
0,

with:

a0t=(a
x̄
t+a

ȳ
t̄ηt)̄xt, b

0
t=(b

x̄
t+b

ȳ
t̄ηt)̄xt, c

0=cx̄x̄T.

Nowwemaketheansatz:Yt=ηtXt+χt,whichreducestheproblemtotheODEsystem:

η̇t+a
y
tη
2
t+(a

x
t−b

y
t)ηt−b

x
t=0, ηT=c

x,

χ̇t+(−b
y
t+a

y
tηt)χt+a

0
tηt−b

0
t=0, χT=c

0,

Zt=σηt.

Again,thefirstequationisaRiccatiequation.Notethatitisnotnecessarytosolveforχtbecause
oftherelationship:

η̄t̄xt=̄yt=E(Yt)=E(ηtXt+χt)=ηt̄xt+χt.

Thus,χt=(̄ηt−ηt)̄xt.
Insummary,thesolutiontothelinearFBSDEof McKean-Vlasovtypeisreducedtosolving

linearODEsandRiccatiequations.ItwillalsobeusefultocomputeVar(Xt),whichwedenoteby
vt.Afterwehavesolvedtheaboveequations,wehave:

dXt= (axt+a
y
tηt)Xt+a

y
tχt+a

0
t dt+σdWt, X0=ξ.

Thus,

vt=Var(Xt)=Var(ξ)e
t
02(a

x
s+a

y
sηs)ds+σ2

t

0
e2

t
s(a

x
u+a

y
uηu)duds.

Inthecasewherethecoefficientsaretime-independent,theRiccatiequationsforη̄tandηtcanbe
solvedexplicitly.

ScalarRiccatiEquation

IfthescalarRiccatiequation:
ρ̇t−Bρ

2
t−2Aρt+C=0,

withterminalconditionρT=Dsatisfies:

B=0,BD≥0,BC>0, (72)
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thenithasauniquesolution:

ρt=
C(1−e−(δ

+−δ−)(T−t))+D(δ+−δ−e−(δ
+−δ−)(T−t))

BD(1−e−(δ
+−δ−)(T−t))+δ+e−(δ

+−δ−)(T−t)−δ−
, (73)

withδ±=−A± (A)2+BC.
Furthermore,ifB→0andA=0,wecandeducethatthelimitingsolutionofthescalarRiccati

equationcoincideswiththelinearfirst-orderdifferentialequation:

ρ̇t−2Aρt+C=0,

withterminalconditionρT=D,namely:

ρt= D−
C

2A
e−2A(T−t)+

C

2A
.

IfB→ 0andA=0,thelimitingsolutionofthescalarRiccatiequationcoincideswiththe
linearfirst-orderdifferentialequation:

ρ̇t+C=0

withterminalconditionρT=D,namely:

ρt=D+C(T−t).

Hence,returningtothelinearFBSDE(70),forη̄t,weuse:

A=−12(a
x+āx−by−b̄y), ,B=−(ay+āy), C=−(bx+b̄x), D= cx+c̄x.

Theconditions(72)aresatisfiedif−(ay+āy)>0,−(bx+b̄x)>0,andcx+c̄x≥0.
Forηt,weuse:

A=−12(a
x−by), B=−ay, C=−bx, D= cx.

Theconditions(72)aresatisfiedif−ay>0,−bx>0,andcx≥0.ReturningtotheLGEMFGand
LGEMKVproblems,ifweassumethecoefficientsarenon-negative,weseethattheseconditions
areexactlyassumption(21).
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