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Abstract
A mean field game is proposed for the synchronization of oscillators facing conflicting
objectives. Our motivation is to offer an alternative to recent attempts to use dynamical
systems to illustrate some of the idiosyncrasies of jet lag recovery. Our analysis is driven
by two goals: (1) to understand the long time behavior of the oscillators when an individual
remains in the same time zone, and (2) to quantify the costs from jet lag recovery when
the individual has traveled across time zones. Finite difference schemes are used to find
numerical approximations to the mean field game solutions. They are benchmarked against
explicit solutions derived for a special case. Numerical results are presented and conjectures
are formulated. The numerics suggest that the cost the oscillators accrue while recovering is
larger for eastward travel which is consistent with the widely admitted wisdom that jet lag
is worse after traveling east than west.

Keywords Mean field game · Mean field control · Jet lag · Synchronization · Oscillators ·
Partial differential equations · Explicit solutions · Perturbation analysis · Numerical results ·
Ergodic

1 Introduction

Circadian rhythm refers to the oscillatory behavior of certain biological processes occur-
ring with a period close to 24 h. Recent interest in these biological processes has spawned
from the Nobel Prize winning work of Hall, Rosbash, and Young, who discovered molecular
mechanisms for controlling the circadian rhythm in fruit flies [20]. Examples of circadian
rhythms in animals include sleep/wake patterns, eating schedules, bodily temperatures, hor-
mone production, and brain activity. These oscillations can be entrained to the 24 h cycle of
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sunlight exposure. Abrupt disruptions of such circadian rhythms can occur, such as when an
individual travels across time zones, resulting in jet lag.

The suprachiasmatic nucleus (SCN) is a region in the brain that is responsible for con-
trolling circadian rhythms [13,19]. The SCN contains on the order of 104 neuronal oscillator
cells, each of which has a preferred frequency corresponding to a period slightly longer than
24 h [21]. The sheer size of the SCN suggests a mean field model to work with effective
equations capturing macroscopic features of the system. We model the oscillators as rational
agents attempting to synchronize with each other as well as the natural 24-h sunlight cycle,
while at the same time, minimizing their effort. It is clearly unrealistic to assume that the SCN
oscillators are rational agents. Still, the merit of this approach is that the equilibrium dynam-
ics of the oscillators arise endogenously from simple basic principles. This is in contrast with
many agent-based models who essentially specify the equilibrium dynamics directly.

While we will focus on the case of the search for a distributed Nash equilibrium, the case
of cooperative oscillators implementing the control prescribed by a central planner, leading
to a mean field control problem, is almost equivalent. Indeed, since the cost function we use
is in the form of a potential (see section 6.7.2 in [11]) the solutions of the two problems are
closely related. This point is the object of Proposition 1.

Quite naturally, we use the mean field game (MFG) paradigm as originally introduced
independently by Lasry and Lions [16] and Caines et al. [14]. Working with frequencies,
our model is naturally set on a torus. In such a case, existence of classical solutions is
shown in [16], with more detail in Bardi and Feleqi [6] and Cardaliaguet’s notes based on
Lions’ lectures [8]. These proofs rely on compactness arguments and Schauder’s fixed point
theorem. Uniqueness, on the other hand, is hard to prove for mean field games. Typically,
uniqueness arguments are based on the so-called Lasry–Lions monotonicity condition [16].
The rationale for our model also relies on the connection between finite horizon and infinite
horizon models as studied, for example, in the papers of Cardaliaguet, Lasry, Lions, and
Porretta, in which they prove the convergence of the solution to the former to the solution
of the latter as the horizon tends to infinity [9,10]. Finally, we mention that finite difference
schemes for numerically solving the partial differential equation (PDE) formulations of mean
field games are discussed in the works of Achdou and collaborators [1–4].

Here, our goal is to model stylized facts commonly known about jet lag recovery. To
this end, we concentrate on: (1) the long time behavior of the neuronal oscillator cells for
an individual that is entrained to the 24-h light/dark rhythm, and (2) how the oscillators
resynchronize to a shifted 24-h light/dark rhythm after travel across time zones.

This project was inspired by [17] which proposes a model of jet lag recovery for SCN
oscillators using the classical Kuramoto model. In this model, each oscillator has a random
preferred frequency, and their phases evolve forward in time according to deterministic
coupled ordinary differential equations (ODEs). By making an ansatz and turning to the limit
as the number of oscillators tends to infinity, the authors reduce the dynamics of the system
to an ODE for a complex order parameter. From there, they argue for a larger recovery time
for eastward travel. Our model differs from theirs in several ways. In particular, the system is
modeled as a stochastic differential game and the macroscopic behavior of the system occurs
endogenously. The thrust of our analysis is to identify and compute the Nash equilibriums
of that model.

We know of one instance in which the synchronization of oscillators was approached as
a mean field game. It is in the work of Yin et al. [23] in which the oscillators choose their
control to minimize a cost objective which encourages synchronization of the oscillators with
each other. Our model is different because it includes an external forcing term. While we
also wish to see the oscillators synchronize with each other, they also need to synchronize
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with the natural 24-h light/dark cycle which is crucial for SCN oscillators. When interpreted
in terms of jet lag recovery, our main finding is that there is a larger cost associated with
recovery from jet lag after traveling east.

The paper is organized as follows: Our problem formulation is described in Sect. 2. Our
model of long time behavior of the oscillators is provided in Sect. 3 where we also derive an
explicit solution for a special case of the model parameters. Section 4 details our model for
resynchronization after travel. Jet lag recovery is described inSect. 4.2whereweprovide a few
notions of jet lag recovery time and jet lag recovery cost. We use finite difference schemes
to find numerical approximations to the solutions. Numerical results and conjectures are
presented in Sect. 5. Section 6 concludes the paper.

2 Model Formulation

2.1 N Player Game Formulation

We model the SCN as N coupled oscillators, i ∈ {1, . . . N }, with at time t , phases �i
t in

the one-dimensional torus T = [0, 2π). Without any external stimuli, SCN oscillators are
believed to have an intrinsic frequency ωi corresponding to a period slightly longer than
24 h [21]. We will take this frequency to be the same for all of the oscillators: ωi = ω0 ∈
R

+, ∀i ∈ {1, . . . N }. Note that, this differs from the formulation in [17] where the ωi needed
to be independent and identically distributed random variable with a non-trivial common
distribution. We assume that for each oscillator i , the phase �i

t evolves according to the
equation:

d�i
t = (ω0 + αi

t )dt + σd Bi
t , (1)

where the Bi
t ’s are independent standard Wiener processes, σ > 0 is a constant independent

of i , and the processes α i = (αi
t )t≥0 ∈ A

i are expected to provide a Nash equilibrium for
the long run average (LRA) costs:

J̃ i (α) := lim sup
T →∞

1

T
E

⎡
⎣

T∫

0

(
1

2
(αi

t )
2 + K c̄(�i

t , μ
N (t, ·)) + Fc̃sun(t,�

i
t , ρ(t))

)
dt

⎤
⎦ , (2)

where we use the notation α = (α1, . . . ,αN ) and A
i is the set of locally square integrable

stochastic processes that are adapted to Bi
t for i = 1, . . . , N . Also, μN (t, ·) = 1

N

∑N
j=1 δ

�
j
t
,

is the empirical measure of the phases of the N oscillators at time t ≥ 0.
The aggregate cost over the time interval [0, T ] appearing in (2) has three components

which we now explain. The term (αi
t )
2/2 penalizes the efforts to change the dynamics (1)

of the phase through the control of its drift. The goal of the second term is to encourage
synchronization of the oscillators with each other through their empirical measure. To be
specific, we use the cost function c̄ : [0, 2π) × P([0, 2π)) � (θ, ν) �→ c̄(θ, ν) ∈ R given
by:

c̄(θ, ν) := 1

2

∫ 2π

0
sin2

(
θ ′ − θ

2

)
dν(θ ′). (3)
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Here, P([0, 2π)) denotes the space of probability measures on [0, 2π). Thus, we have:

c̄(�i
t , μ

N (t, ·)) := 1

2N

N∑
j=1

sin2
(

�
j
t − �i

t

2

)
.

In other words, oscillator i has a cost associated with the difference between its phase and the
phase of all of the other oscillators. Finally, the third term is intended to encourage alignment
of the oscillators’ phases with the natural 24-h sunlight cycle. It is given in terms of the cost
function c̃sun : R+ × [0, 2π)2 → R defined as:

c̃sun(t, θ, ρ(t)) := 1

2
sin2

(
ωSt + ρ(t) − θ

2

)
,

whereωS = 2π/24 radians per hour is the frequencyof the 24-h sunlight cycle, andρ : R+ →
[−π, π) is a phase shift accounting for the longitude (in radians) of the traveler’s location
at time t . ρ(t) ≡ p ∈ [−π, π) models an individual that stays in their time zone forever,
whereas ρ increases for eastward travel and decreases for westward travel. For example, if
an individual travels from longitude 0 to longitude p > 0, they have traveled roughly p/ωS

time zones east. The quantityωSt +ρ(t) represents the phase of the sun at time t in longitude
ρ(t). In other words, oscillator i incurs a cost for the difference between its phase and the
phase ωSt +ρ(t). The constants, K ≥ 0 and F ≥ 0, are used to weigh the three components
of the cost.

2.2 Mean Field Game Formulation

By considering the limit N → ∞, we reformulate the problem as a mean field game:

(1) Fix a deterministic flow of measures, μ = (μ(t, ·))t≥0.
(2) Solve the standard control problem of finding αμ = (α

μ
t )t≥0 ∈ A to minimize the LRA

cost:

J̃μ(α) = lim sup
T →∞

1

T
E

[∫ T

0

(
1

2
α2

t + K c̄(�α
t , μ(t, ·)) + Fc̃sun(t,�t , ρ(t))

)
dt

]
,

subject to the dynamical constraint:

d�α
t = (ω0 + αt )dt + σdBt ,

where Bt is a Wiener process.
(3) Find a flow μ = (μ(t, ·))t≥0 such that for every t > 0, μ(t, ·) = L(�αμ

t ).

In the fixed point step of bullet point (3) above, we use the notation L(·) for the law of a
random variable. The convergence of the N player game to themean field game as formulated
above is the major underpinning of the theory of mean field games. It will not be addressed
here, but for the remainder of the paper, we will work with the mean field game.

2.3 Change of Variables

For now, ρ(t) ≡ p will be constant. Note that, the time dependency of c̃sun can be removed
if we make the change of variables: �t = �t −ωSt , where �t is also in the periodic domain
[0, 2π). Now the optimal control part of the mean field game is the following. The phase of

Author's personal copy



Dynamic Games and Applications

a generic oscillator evolves according to:

dφt = (ω0 − ωS + αt )dt + σdBt , (4)

where α ∈ A is chosen to minimize the LRA cost:

Jμ(α) = lim sup
T →∞

1

T

∫ T

0

(
1

2
α2

t + K c̄(�t , μ(t, ·)) + Fcsun(�t , p)

)
dt, (5)

where c̄ is as defined in Eq. (3), and:

csun(φ, p) := 1

2
sin2

(
p − φ

2

)
. (6)

Now that, the cost functions no longer depend on t , we can address our first problem of
interest: to understand the long time behavior of the oscillators when an individual remains
in the same time zone. In fact, this formulation will also help us with the second problem of
interest: to understand how the oscillators recover when the individual has traveled across
time zones. Thus, for the remainder of the paper, we will refer to �t as the phase of a
representative oscillator at time t .

3 Long Time Behavior in One Time Zone

When the longitude p of an individual does not change for a long time, we expect the
distribution of their oscillators to offer a stationary solution to the mean field game posed in
Eqs. (4)–(6). Using the analytic (PDE) approach to solving mean field games, this stationary
solution is given by (μ∗

p, V ∗
p , λ∗

p) solving the coupled ergodic Hamilton–Jacobi–Bellman
(HJB) and Poisson equations [16]:
⎧⎨
⎩

(ω0 − ωS)∂φV ∗
p − 1

2 (∂φV ∗
p )2 + σ 2

2 ∂2φφV ∗
p = λ∗

p − K c̄(φ, μ∗
p(·)) − Fcsun(φ, p),

(ω0 − ωS)∂φμ∗
p − ∂φ

[
μ∗

p(∂φV ∗
p )

]
− σ 2

2 ∂2φφμ∗
p = 0,

over the periodic domain [0, 2π). Note that,μ∗ plays the role of the distribution of the phases
of the oscillators, while V ∗

p plays the role of the value function giving the expected cost that
an oscillator at a given position will accumulate during a unit of time. Since V ∗

p is defined up

to a constant, without loss of generality, we add the constraint
∫ 2π
0 V ∗

p (φ)dφ = 0. Also, μ∗
p

should be a probability measure, so we require μ∗
p(φ) ≥ 0 for all φ and

∫ 2π
0 dμ∗

p(φ) = 1.
Note that, λ∗

p is given by the ergodic average cost, i.e.,

λ∗
p =

∫ 2π

0

[
1

2
(∂φV ∗

p )2 + K c̄(φ, μ∗
p(·)) + Fcsun(φ, p)

]
dμ∗

p(φ).

Ifwedenote by (μ∗, V ∗, λ∗)without subscripts the solution to the abovePDEsystemwhen
p = 0, it is easy to check that for p �= 0, (μ∗

p(·), V ∗
p (·), λ∗

p) := (μ∗(·− p), V ∗(·− p), λ∗) is
a solution to the above PDE system. Therefore, if we can find the solution of this system for
p = 0, then we have simultaneously solved for the long time behavior in any longitude p.
Thus, without loss of generality, let p = 0 and pose the Ergodic Mean Field Game (MFG)
Problem.
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Definition 1 Ergodic MFG Problem: Find (μ∗, V ∗, λ∗) solving

(ω0 − ωS)∂φV ∗ − 1

2
(∂φV ∗)2 + σ 2

2
∂2φφV ∗ =λ∗ − K c̄(φ, μ∗) − Fcsun(φ, 0), (7)

(ω0 − ωS)∂φμ∗ − ∂φ

[
μ∗(∂φV ∗)

] − σ 2

2
∂2φφμ∗ =0, (8)

∫ 2π

0
V ∗(φ)dφ =0, (9)

μ∗(φ) ≥ 0,
∫ 2π

0
dμ∗(φ) =1, (10)

on the periodic domain φ ∈ [0, 2π), where c̄ is defined in Eq. (3) and csun in (6).

We now pause to elaborate on a comment made in the introduction.We have thus far modeled
the SCN oscillators as selfish players, which leads to theErgodic MFG Problem posed above.
If we instead considered cooperative players that are willing to follow the instructions of a
central planner, and replace the weight K by a new parameter κ , then the central planner
would consider the following optimal control problem of McKean–Vlasov type:

Find α : [0, 2π) → R minimizing:

J (α) = lim sup
T →∞

1

T

∫ T

0

(
1

2
α2

t + κ c̄(�t ,L(�t )) + Fcsun(�t , 0)

)
dt,

under the dynamical constraint (4).
In the introduction, we claimed that the two modeling formulations are almost equivalent.

We make the connection more precise in the following proposition:

Proposition 1 The optimal control for the Ergodic MFG Problem is an optimal control for
the McKean–Vlasov control problem posed above when κ = K

2 . The converse also holds.

Proof Using the analytic (PDE) approach to optimal control of McKean–Vlasov type, we
recover exactly the system (7)–(10) when κ = K

2 . See section 6.7.2 in [11]. 
�

Theorem 1 For any solution (μ∗, V ∗, λ∗) to the Ergodic MFG Problem, μ∗ has a density
given by:

μ∗(φ) = 1

zζ(φ)

[∫ 2π

0
ζ(φ′)dφ′ +

(
e− 4π

σ2
(ω0−ωS) − 1

) ∫ φ

0
ζ(φ′)dφ′

]
, ∀φ ∈ [0, 2π),

where ζ(φ) := e− 2
σ2
[(ω0−ωS)φ−V ∗(φ)] and z ∈ R

+ is a constant such that μ∗ integrates to 1.

Proof Given V ∗, there is a unique solution to Eq. (8). One can check that the above density
satisfies Eq. (8) with periodic boundary. 
�

Remark 1 As a consequence of Theorem 1, we have the below Corollary 1, which states
that the search for a solution to the coupled system defined by the Ergodic MFG Problem
is equivalent to the search for a solution to a single integro-differential equation. Although
this corollary is not used in the sequel, we note it here because this type of result seems to
be uncommon in the mean field games literature.
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Corollary 1 For any solution (μ∗, V ∗, λ∗) to the Ergodic MFG Problem, we can write

V ∗(φ) = (ω0 − ωS)φ + σ 2

2 log(ζ(φ)) and μ∗(φ) = ν(φ, ζ ), where ζ : [0, 2π) → R

is a solution to the following integro-differential equation:

ζ ′′ζ − 3

2

(
ζ ′)2 = 4

σ 4 ζ 2
[
λ∗ − K c̄(φ, ν(φ, ζ ))−Fcsun(φ, 0)−1

2
(ω0−ωS)2

]
, φ ∈ [0, 2π)

(11)

with boundary constraint:

ζ(2π) = e− 4π
σ2

(ω0−ωS)
ζ(0), and ζ ′(2π) = e− 4π

σ2
(ω0−ωS)

ζ ′(0),

and with, without loss of generality, the normalization constraint:
∫ 2π

0
(ω0 − ωS)φ + σ 2

2
log(ζ(φ))dφ = 0,

and where:

ν(φ, ζ ):=
1

ζ(φ)

[∫ 2π
0 ζ(φ′)dφ′ +

(
e− 4π

σ2
(ω0−ωS) − 1

) ∫ φ

0 ζ(φ′)dφ′
]

∫ 2π
0

1
ζ(φ̃)

[∫ 2π
0 ζ(φ′)dφ′ +

(
e− 4π

σ2
(ω0−ωS) − 1

) ∫ φ̃

0 ζ(φ′)dφ′
]
dφ̃

, ∀φ ∈ [0, 2π).

Conversely, if (ζ, λ∗) is a solution to (11) satisfying ζ(φ) > 0 for all φ ∈ [0, 2π), then

for V ∗(φ) := (ω0 − ωS)φ + σ 2

2 log(ζ(φ)) and μ∗(φ) := ν(φ, ζ ), (μ∗, V ∗, λ∗) is a solution
to the Ergodic MFG Problem.

The following definition of entrainment will help us formulate the problem of the recovery
from jet lag.

Definition 2 An individual is entrained to the longitude p at time t if the phases of the
oscillators are distributed according to μ∗(· − p) for all s ≥ t , where μ∗ solves the Ergodic
MFG Problem.

In other words, L(�s) = μ∗(· − p) for all s ≥ t . Note that, the optimal control is given by
the feedback function [16]:

α∗(·) := −∂φV ∗(·). (12)

Theorem 2 There exists a classical solution to the Ergodic MFG Problem defined by equa-
tions (7)–(10). If K = 0, the solution is unique. If K > 0, the Lasry–Lions monotonicity
condition does not hold. If K = 1, ω0 = ωS, and F = 0, uniqueness does not hold.

Proof Existence follows from the original result of Lasry and Lions [16]. A detailed proof
can be found in Bardi and Feleqi [6]. See Theorem 2.1 therein.When K = 0, i.e., no weight is
given to the cost cosc, there is no interaction between the oscillators, and it is easy to see that the
Lasry–Lionsmonotonicity condition holds. If K > 0, the Lasry–Lionsmonotonicity does not
hold due to the cost c̄(φ, μ∗(·)). Indeed, the following provides a counterexample: ifμ1 = δx1

andμ2 = δx1 for x1 �= x2, then
∫ 2π
0 (c̄(φ, μ1)−c̄(φ, μ1))(μ1−μ2)dφ = − sin2( x1−x2

2 ) < 0.
Finally, if K = 1, ω0 = ωS , and F = 0, we recover the model used in [23] (where the
parameter ω is given by ω := ω0 − ωS = 0), and for which the authors identify multiple
solutions. 
�
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Theorem 3 For a given solution (μ∗, V ∗, λ∗) to the Ergodic MFG Problem, the state dynam-
ics:

dφt = (ω0 − ωS + α∗(�t ))dt + σdBt , (13)

where α∗, defined by Eq. (12), is ergodic and L(�t ) → μ∗(·) as t → ∞ at an exponential
rate.

Proof Because of the ellipticity of Eq. (13), recall σ > 0, the transition probabilities have
strictly positive densities (see, for example, the discussion on page 28 in [5] which refers to
[7]). Thus, since the state space of our process is compact, the process is ergodic and the
invariant measure is unique. See [15] for a proof and a discussion of the Doeblin stronger
form of ergodicity and exponential convergence. 
�

3.1 A Special Case

In this section, we consider the special case K = 0 and ω0 = ωS for which we can compute
an explicit solution. But first we introduce some notation related to Mathieu’s differential
equation:

∂2xx f + [a − 2q cos(2x)] f = 0 (14)

where a, q ∈ R. Let M(a, q, x) denote the unique even solution to Eq. (14) with the nor-
malization constraint M(a, q, 0) = 1, and let C(q) be the zeroth order characteristic value
of q . Note that, M(C(q), q, x) is nonnegative and periodic with period π [18]. We have the
following result.

Theorem 4 In the special case K = 0 and ω0 = ωS, the unique solution to the Ergodic MFG
Problem, denoted (μ∗,0, V ∗,0, λ∗,0) in this case, is given by:

∂φV ∗,0(φ) = −σ 2∂φ

[
log

(
M

(
C

(
− F

σ 4

)
,− F

σ 4 ,
φ

2

))]
,

λ∗,0 = F

4
+ σ 4

8
C

(
− F

σ 4

)
,

μ∗,0(φ) = 1

c1

[
M

(
C

(
− F

σ 4

)
,− F

σ 4 ,
φ

2

)]2
,

where c1 is the normalization constant:

c1 :=
∫ 2π

0

[
M

(
C

(
− F

σ 4

)
,− F

σ 4 ,
φ

2

)]2
dφ.

Proof The ergodic HJB can be linearized through the Cole-Hopf transformation:

f (x) = e−V ∗,0(2x)/σ 2
. (15)

Thus, when K = 0 and ω0 = ωS , Eq. (7) becomes:

∂2xx f +
[
8

σ 4

(
λ∗,0 − F

4

)
+ 2 · F

σ 4 cos (2x)

]
f = 0. (16)
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Since V ∗,0 is periodic with period 2π , and with Eq. (15), we want a solution to Eq. (16)
which is nonnegative with period π . This is given by:

f (x) = c2M

(
C

(
− F

σ 4

)
,− F

σ 4 , x

)
,

where λ∗,0 = F
4 + σ 4

8 C
(
− F

σ 4

)
.

The constant c2 > 0 can be chosen to satisfy the normalization constraint (9) and does

not affect ∂φV ∗,0. Finally, it can be verified that μ∗,0(φ) = f (φ/2)2∫ 2π
0 f (φ′/2)2dφ′ solves Eqs. (8)

and (10). 
�
Remark 2 After completing the first version of this paper, the authors were made aware of the
paper of Yin et al. [22], where a similar connection is made between the solution to a mean
field game and an eigenvalue problem, analogous to finding the appropriate characteristic
value of a in Eq. (14). However, [22] does not directly make the connection with Mathieu’s
equation.

3.2 Perturbation of the Special Case: Small K > 0

In this section, we consider the case ω0 = ωS and small K > 0, which corresponds to weak
interaction between the oscillators. Similar to the methodology of Chan and Sircar [12], we
expand our solution (μ∗, V ∗, λ∗) to the Ergodic MFG Problem by the parameter K , i.e., we
search for a first-order correction, (μ∗,1, V ∗,1, λ∗,1), independent of K , such that:

μ∗(φ) = μ∗,0(φ) + Kμ∗,1(φ) + O(K 2),

V ∗(φ) = V ∗,0(φ) + K V ∗,1(φ) + O(K 2),

λ∗ = λ∗,0 + Kλ∗,1 + O(K 2).

(17)

We have the following result.

Theorem 5 The quantities (μ∗,1, V ∗,1, λ∗,1) such that Eq. (17) holds for all K ≥ 0, φ ∈
[0, 2π) are given by:

∂φV ∗,1(φ) = 2

σ 2μ∗,0(φ)

[
c3 +

∫ φ

0
μ∗,0(φ′)

(
λ∗,1 −

(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ′)

)
dφ′

]
,

(18)

where

c3 = −
∫ 2π
0

∫ φ

0
μ∗,0(φ′)
μ∗,0(φ)

(
λ∗,1 − ( 1

2 sin
2
( ·
2

) ∗ μ∗,0
)
(φ′)

)
dφ′dφ

∫ 2π
0

1
μ∗,0(φ)

dφ
, (19)

and

λ∗,1 =
∫ 2π

0

(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ)dφ, (20)

where ∗ denotes convolution. Finally, we have μ∗,1(φ) = �(φ)W (φ) where

W (φ) = M

(
C

(
−2F

σ 4

)
,−2F

σ 4 , φ/2

)
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and where � solves:

σ 2

2

(
�∂2φφW − W∂2φφ�

)
= 2

σ 2 μ∗,0
(

λ∗,1 −
(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ)

)
. (21)

Proof After substituting the expansion from Eq. (17) into the ergodic HJB in Eq. (7), and
collecting terms of order K , we arrive at:

σ 2

2
∂2φφV ∗,1 − ∂φV ∗,0∂φV ∗,1 = λ∗,0 −

(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ).

Using the integration factor method, we arrive at Eq. (18) for some constant c3. Since V ∗,1

is periodic, we must have
∫ 2π
0 ∂φV ∗,1dφ = 0, which gives Eq. (19) for c3.

Next, we substitute the expansion from Eq. (17) into the Poisson Eq. (8). After collecting
terms of order K , we arrive at:

∂φ

[
μ∗,0∂φV ∗,1 + μ∗,1∂φV ∗,0] + σ 2

2
∂2φφμ∗,1 = 0.

Next, we use the fact that ∂φV ∗,0 = −σ 2 ∂φ W
W and we make the substitution μ∗,1(φ) =

�(φ)W (φ), which leads to:

σ 2

2

(
�∂2φφW − W∂2φφ�

)
= ∂φ

[
μ∗,0∂φV ∗,1] .

Substituting Eq. (18), we have Eq. (21). Since �, W , and their derivatives are periodic,
∫ 2π

0
�∂2φφWdφ =

∫ 2π

0
W∂2φφ�dφ,

and thus with Eq. (21), we have:

0 =
∫ 2π

0

2

σ 2 μ∗,0(φ)

(
λ∗,1 −

(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ)

)
dφ,

= λ∗,1 −
∫ 2π

0

(
1

2
sin2

( ·
2

)
∗ μ∗,0

)
(φ)dφ,

which gives Eq. (20). 
�
Remark 3 The reader may notice that Theorem 2 suggests potential non-uniqueness of μ∗,
the solution to the Ergodic MFG Problem when K > 0. Suppose ω0 = ωS and for a given
K > 0 there are two solutions, μ∗

1 and μ∗
2. Theorems 4 and 5, together with Eq. (17), say the

difference between μ∗
1 and μ∗

2 is at most order of K 2.

Since we know that uniqueness does not hold when F = 0, we will require F > 0. From
now on, we assume uniqueness holds in order to have clear definitions for jet lag recovery.

4 Jet Lag Recovery

In Section 3, we posed the Ergodic MFG Problem, which models the long time behavior
of oscillators when an individual remains in their time zone for a long period of time. In
other words, this problem models oscillators which are entrained to their local time zone.
The second goal of this study is to model the resynchronization of oscillators after travel to
a new time zone (i.e., how the oscillators return to the ergodic solution after switching time
zones).
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4.1 Travel Formulation

From our model formulation, provided by Eqs. (4)–(6), we notice that the LRA form of the
cost is not amenable to modeling the transient period of jet lag recovery. To be more specific,
the cost in Eq. (5) will have the same value, regardless of the behavior of the oscillators over
a fixed finite time interval. Thus, the LRA form of the cost does not penalize the oscillators
for taking an arbitrarily large amount of time to resynchronize, which is undesirable.

Since the oscillators have already learned the optimal feedback control, α∗(φ), for long
time behavior at longitude 0, they have simultaneously learned the optimal feedback control,
α∗(φ − p), for long time behavior at the longitude p. By ergodicity, they could use the
feedback control α∗(φ − p) after traveling p/ωS time zones, in which case the distribution
of the oscillators would relax to μ∗(φ − p). Thus, the oscillators could shift by p the control
they have already learned to recover from traveling p/ωS time zones. We would like to
compute the distribution, denoted μp(t, ·), of the oscillators at time t as they recover from
traveling p/ωS time zones. We make the following assumptions:

(A1) Travel is immediate. Without loss of generality,

ρ(0) = 0,

ρ(t) = p ∈ [−π, π), ∀t > 0.

(A2) The individual is entrained to their local time zone before travel begins:

μp(0, ·) = μ∗(·),
where μ∗ is a solution to the Ergodic MFG Problem (definition 1).

(A3) The oscillators adopt the feedback control:

αp(t, φ) := α∗(φ − p), ∀t > 0,

where α∗, defined by Eq. (12), is computed from the solution to the Ergodic MFG
Problem.

Under these assumptions, the law of the phases of the oscillators is given by solving the
Kolmogorov/ Fokker–Planck equation forward in time. We now pose the Ergodic Recovery.

Definition 3 Ergodic Recovery: Find μp(t, φ) solving

∂tμp + (ω0 − ωS)∂φμp + ∂φ

[
μpαp

] − σ 2

2
∂2φφμp = 0,

μp(0, φ) = μ∗(φ),

(22)

on the domain t ∈ [0,+∞), and φ ∈ [0, 2π) with periodic boundary.

Note that, since the initial condition, μ∗(φ), is a probability measure, a solution μp(t, φ) to
Eq. (22) is a probability measure for all t ≥ 0. Furthermore, given a solution to the Ergodic
MFG Problem, existence and uniqueness for the Ergodic Recovery are clear.

To summarize the proposed models, in Sect. 3, we posed the Ergodic MFG Problem
to describe the long time behavior of the oscillators for an individual who remains in one
time zone. In the Ergodic Recovery problem, which models jet lag recovery, we assume that
travel is immediate, the oscillators are synchronized with their time zone before travel, and
the oscillators attempt to resynchronize to the new time zone by adopting the control from
the Ergodic MFG Problem for the new time zone. In the next subsection, we provide some
definitions for quantifying jet lag recovery.
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4.2 Quantifying Jet Lag Recovery

To quantify jet lag recovery, we measure the time it takes to recover from jet lag, and the cost
the oscillators accrue while recovering from jet lag. First, we need to define what it means to
have recovered from jet lag. Since we are assuming (μ∗, V ∗, λ∗) solving the Ergodic MFG
Problem is unique, we define jet lag recovery as the following.

Definition 4 For a given p ∈ [−π, π) and εW > 0, we say that the oscillators have εW -
recovered at time t ≥ 0 from jet lag after traveling p/ωS time zones away if:

W2(μp(s, ·), μ∗(· − p)) < εW , ∀s ≥ t

whereW2 denotes the 2-Wasserstein distance,μ∗(·) denotes the solution to theErgodic MFG
Problem, and μp(t, ·) denotes the distribution of the oscillators’ phases t units of time after
the instantaneous travel of p/ωS time zones.

In other words, the oscillators are within εW of entrainment after traveling from longitude
0 to longitude p. We define the recovery time as:

τ W
p := inf{t > 0 : W2(μp(s, ·), μ∗(· − p)) < εW , ∀s ≥ t}.

A second notion of jet lag recovery time is based on the analog of the order parameter
introduced in [17]. Let z∗ = ∫ 2π

0 eiφdμ∗(φ). Similarly, let z p(t) = ∫ 2π
0 eiφdμp(t, φ). We

define a second notion of jet lag recovery time:

τ z
p := inf{t > 0 : |z p(s) − eipz∗| < εz, ∀s ≥ t}.

We also consider the cost accrued while recovering from jet lag using the values of the cost
functions that the oscillators wish to minimize. We define the instantaneous contributions to
the overall cost by:

fα(t) : =
∫ 2π

0

1

2
αp(t, φ)2dμp(t, φ) =

∫ 2π

0

1

2
α∗(φ − p)2dμp(t, φ),

fosc(t) : =
∫ 2π

0
c̄(φ, μp(t, ·))dμp(t, φ),

fsun(t) : =
∫ 2π

0
csun(φ, p)dμp(t, φ),

f(t) : = fα(t) + K · fosc(t) + F · fsun(t)

1 + K + F
.

To simplify the presentations of the numerical results, we compare the cost accrued over the
first 10 days after a time zone change, since the oscillators recover within 10 days for almost
all of the cases we consider. With an abuse of notation, we compute f p,α := ∫ 240

0 f p,α(t)dt ,

f p,osc := ∫ 240
0 f p,osc(t)dt , f p,sun := ∫ 240

0 f p,sun(t)dt , and f p := ∫ 240
0 f p(t)dt .

5 Numerical Results

We have two problems to solve numerically: the Ergodic MFG Problem and the Ergodic
Recovery. Although Corollary 1 says that we can solve an integro-differential equation in
place of the coupled system in the ErgodicMFGProblem, numericalmethods for the latter are
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Fig. 1 Log-log plot of the error
between the numerical solution
and the true solution for the
Ergodic MFG Problem when
K = 0, ω0 = ωS , as a function of
the number of discretization
points
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well studied, so wewill stick to this formulation for our numerical results. For both problems,
our numerical approach is to use finite differences and Picard iterations, where we solve
iteratively each equation. The main numerical complications are (1) the coupling between
the ergodic HJB and the Poisson equation, which is tackled through Picard iterations, and
(2) the nonlinearity in the HJB equation, which we avoid by using previous Picard iterations.
Note that, the Ergodic MFG Problem needs to be solved first, since its solution is used as the
initial condition for the Ergodic Recovery.

For our numerical results, we fix ωS = 2π
24 radians per hour. The number of grid points in

φ is also fixed at n = 120. The parameters of interest are thus p, ω0, σ , K , and F . Results
are presented for a reference set of values as well as unilateral changes of the parameters. For
our reference set, we let p = ±9ωS (travel east or west by 9 time zones), ω0 = 2π

24.5 radians
per hour, σ = 0.1, K = 0.01, and F = 0.01.

5.1 Verification of Numerical Methods

In Section 3.1, we derived an explicit solution to the Ergodic MFG Problem when K = 0
and ω0 = ωS . By using the Python package scipy.special to compute values of Mathieu’s
function, we verify that our numerical methods are accurate. Figure 1 shows that the error
between our numerical solution and the true solution decreases as we increase n, the number
of discretization points of the spatial domain [0, 2π).

5.2 Ergodic MFG Problem Numerical Solution

For our reference set of parameters, the solution to the Ergodic MFG Problem is shown in
Fig. 2. Note that, themeasure is concentrated near p = 0. (Recall that the domain is periodic.)
The stationary solution is used to calculate the optimal feedback control α∗. The drift of an
oscillator using the optimal control is a function of φ, shown in Fig. 2c. This plot clearly
illustrates the mean reversion, the main reason for strong ergodicity. Note that, near φ = 0, if
φ < 0, meaning the oscillator is lagging behind the phase of the natural 24-h cycle, then the
drift is positive. This allows the oscillator to advance its phase forward to try to ‘catch up.’
Similarly, if φ ∈ (0, π], the drift is negative, meaning that the oscillator delays its phase. We
restate this observation more precisely in the following conjecture: For the reference set of
parameters, there exists l > 0 and r > 0 such that ω0 −ωS +α∗(φ) > 0 for φ ∈ [−l, 0), and
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Fig. 2 Solution to Ergodic MFG Problem for the reference set of parameters
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Fig. 3 Ergodic recovery Jet lag recovery after eastern travel (a–d) and western travel (e–h) by 9 time zones
for the reference set of parameters

ω0 −ωS +α∗(φ) < 0 for φ ∈ (0, r ], and ω0 −ωS +α∗(0) = 0. These qualitative properties
of the solution shown in Fig. 2 mirror the plots shown in Figs. 4 and 6 in [23].

5.3 Ergodic Recovery Numerical Solution

Using the numerical solution to theErgodic MFG Problem as the initial condition and control,
the solution to the Ergodic Recovery is shown in Figs. 3a–h for traveling 9 time zones east
and west, respectively. The solution is shown at time 0, after 1 day, after 2 days, and after 3
days to illustrate the gradual adjustment to the new longitude p, which is plotted as a vertical
line.

As shown in the plots, after a few days, the distribution of the oscillators has adjusted
itself to align with the new value of p. Now we compare our measures of jet lag recovery
between east and west travel to test the claim that jet lag is worse when traveling east.

Figure 4 shows the distance between the distribution of the oscillators over time as they
recover back to their stationary solution, in both the 2-Wasserstein distance and the distance
between the order parameters z p(t) and z∗, the latter plot being analogous to Fig. 3 in
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Fig. 4 Ergodic Recovery Distance from the stationary solution while recovering from jet lag after traveling
9 time zones east and west, as measured using 2-Wasserstein distance (left) and distance between the order
parameters z p(t) and z∗ (right)
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Fig. 5 Ergodic Recovery Jet lag recovery costs for travel by 9 time zones for the reference set of parameters

[17]. Recall that the jet lag recovery times are when these distances stay below a threshold.
The jet lag recovery times based on the 2-Wasserstein distance are τ W

9ωS
= 4.38 days and

τ W−9ωS
= 4.42 days, where we take εW = 0.01. The jet lag recovery times based on the order

parameters z p(t) and z∗ are τ z
9ωS

= 1.54 days and τ z
−9ωS

= 1.58 days, where we take the
same value of εz = 0.2 as in [17]. Thus, we do not find a significant difference in jet lag
recovery time between east versus west travel for the reference set of parameters. However,
we do see a difference in the jet lag recovery costs, which are shown in Fig. 5. The cost
from the controls, fα(t), and the cost of synchronizing with the other oscillators, fosc(t), are
larger for the eastward trip than the westward trip, while the cost for the 24 h cycle, fsun(t),
is the same for east and west. Thus, the total recovery cost is larger when recovering from
traveling east. To summarize, we conjecture that if ω0 < ωS , there is a larger recovery cost
associated with traveling east. And similarly, if ω0 > ωS , there is a larger recovery cost for
the westward trip.

For comparison with [17], Fig. 6 shows the paths z p(t) for p = ±9ωS . Recall that a
larger |z p(t)| means that the oscillators are more synchronized with each other. The results
are similar to Fig. 2a in [17], except the stationary solution z∗ for our approach is closer to
(1, 0) on the complex plane. Note that, the presentation is slightly different in that we take
ρ(0) = 0 and ρ(t) = p for t > 0 whereas in [17], they take ρ(0) = p and ρ(t) = 0 for
t > 0.
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Fig. 6 Ergodic Recovery Path
z p(t) while recovering from jet
lag after traveling 9 time zones
east (dots) and west (x’s) for the
reference set of parameters. A
point is plotted every hour
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5.4 Parameter Sensitivity Analysis for the Ergodic Recovery

Nowwe explore how the results change with the five parameters of interest: p, ω0, σ , K , and
F . Unless otherwise specified, parameters remain at their reference values of p = ±9ωS ,
ω0 = 2π/24.5, σ = 0.1, K = 0.01, and F = 0.01. We are somewhat restricted because we
can only obtain results for the Ergodic Recovery when the Picard iterations of our numerical
algorithm for solving the Ergodic MFG Problem converge. (Otherwise, we do not have an
initial condition and a control to feed into the Ergodic Recovery.) In particular, we found
that the values of K and F need to be sufficiently small for the Picard iterations to converge
(hence, our choice of K = 0.01, and F = 0.01 in the reference set). In addition, we should
not consider values of F which are too small, since when F = 0, it is known that uniqueness
does not hold [23]. Despite these limitations, we still get a picture of the behavior of the
solutions as we vary each parameter.

Figure 7a shows the two jet lag recovery times, τ W
p and τ z

p , as we vary p/ωS , the number
of time zones. The east and west recovery times almost completely coincide, except for
deviations at |p| ≥ 9ωS . The costs accrued over the first 10 days are summarized in Fig.
7b, which shows a larger cost for eastward trips with an increasing disparity between east
and west as |p| increases from 1ωS through 11ωS . Note that, in our model, a trip of 12 time
zones is the same if viewed as an eastward or a westward trip, and the results for p = ±12ωS

coincide.
The results of changing ω0, the preferred frequency of the oscillators, are shown in Fig. 8.

As in the previous results, we see that the recovery time is about the same for east and west
travels, but the cost is larger for east travels when ω0 < ωS . By symmetry, we expect that if
ω0 − ωS = � and p = + jωS , the results should be the same as when ω0 − ωS = −� and
p = − jωS . This is confirmed in Fig. 8.

Returning to our analysis of Fig. 8a, we note that the recovery time is fairly stable as we
change ω0 to different values near ωS , and recovery times increase for values of ω0 far from
ωS . Figure 8b shows that the jet lag recovery costs increase as ω0 goes further away from
ωS .

To understand why it takes so much longer to recover for the extremal values of ω0 − ωS ,
Fig. 9 shows the paths z p(t) for p = ±9ωS for different values of ω0. For values of ω0 closer
to ωS , as in Fig. 9a and b, the oscillators phase advance after traveling east and phase delay
after traveling west. If ω0 is much smaller than ωS , as in Fig. 9c and d, the oscillators recover
by phase delaying for both east and west travels. Clearly by symmetry, if ω0 is much larger
than ωS , then the oscillators recover by phase advancing for both east and west travels. It
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Fig. 7 Ergodic Recovery Jet lag recovery times and costs as a function of p. Note that, a trip of 12 time zones
is the same when viewed as an eastward or westward trip
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Fig. 8 Ergodic Recovery Jet lag recovery times and costs as a function of ω0 − ωS

is interesting to note that in Fig. 9d the path for recovery is not direct as in the other cases,
which is why it takes so much longer to recover.

The results of changing σ , the strength of the noise, are shown in Fig. 10. At first glance,
it is surprising that the recovery times decrease as σ increases, as one might think that it
would be harder to recover from jet lag when there is more noise. However, the solution
to the Ergodic MFG Problem as σ increases becomes closer and closer toward a uniform
distribution, and thus μ∗(φ) and μ∗(φ − p) become closer to each other. In fact, when |z∗|
is close enough to 0, then |z p(0) − eipz∗| = |z∗ − eipz∗| < εz and τ z

p = 0. This is the
case when σ = 0.5 and σ = 1 as shown in Fig. 10a. Since μ∗(φ) becomes closer to a
uniform distribution with larger σ , it makes sense that the cost for synchronization with the
other oscillators, fosc, and the cost for synchronization with the natural 24-h cycle, fsun, both
increase with σ . The reason for the increase and then decrease of fα is less clear.

Figure 11 shows the results when changing K , which encourages synchronization of the
oscillators with each other. The recovery times decrease with K . Since a larger K puts more
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(B) ω0 = 2π/26.4
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(C) ω0 = 2π/30
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(D) ω0 = 2π/36

Fig. 9 Ergodic Recovery Path z p(t) while recovering from jet lag after traveling 9 time zones east (dots) and
west (x’s) for various values of ω0. A point is plotted every hour

weight on synchronization, it is unsurprising that the fosc and fsun decrease with K . Since
more synchronization requires more effort, it is also unsurprising that fα increases with K .

The results for changing F , which encourages alignment with the 24-h sunlight cycle,
are shown in Fig. 12. The recovery times decrease as F increases, which is intuitive. The
recovery costs are qualitatively the same as for changing K , with similar justifications. As
we increase F , we put more weight on synchronization with the 24-h light/dark cycle, which
will decrease fsun. As a result, the oscillators will be more synchronized with each other as
well, which will decrease fosc. To achieve a larger degree of synchronization will require a
larger control, so fα increases.

In summary, when the rest of the parameters remain at the reference values, we conjecture
the following behavior for unilateral changes of the parameters:

(C1) There is a threshold�∗ such that if |ω0−ωS | < �∗, oscillators will phase advance after
traveling east and phase delay after traveling west. If |ω0 − ωS | > �∗, the oscillators
will phase delay if ω0 < ωS and phase advance if ω0 > ωS .

(C2) τ W and τ z decrease with K and F , and τ W
p → 0 and τ z

p → 0 as σ → ∞.
(C3) For a given p ∈ [0, π), f is largerwhen traveling to p (i.e., traveling east) than traveling

to −p (i.e., traveling west).
(C4) f increases with |p|, |ω0 − ωS |, σ , K , and F .
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Fig. 10 Ergodic Recovery Jet lag recovery times and costs as a function of σ
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Fig. 11 Ergodic Recovery Jet lag recovery times and costs as a function of K

6 Summary/Conclusion

We provided a mean field game formulation for the synchronization of SCN circadian oscil-
lators. The benefit of this approach is that the equilibrium dynamics of the oscillators arise
endogenously, a characteristic shared by a mean field control approach. We stress that the
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Fig. 12 Ergodic Recovery Jet lag recovery times and costs as a function of F

two formulations are equivalent, up to a rescaling of one parameter. The long time behavior
of the oscillators is described by the solution of an Ergodic Mean Field Game Problem in
which the oscillators optimize an ergodic cost. We show that the equilibrium distribution of
the oscillators’ phases has a density which can be written explicitly in terms of the ergodic
value function, and as a result, the system of equations describing the system can be replaced
by a single integro-differential equation. Furthermore, for a special case of the parameters
we find an explicit solution in terms of the Mathieu functions, and a first-order perturbation
around this solution is analyzed.

In order to study jet lag recovery from travel, we assume that travel is immediate, the
oscillators are entrained to their time zone before travel, and that the oscillators use the
control they have already learned to resynchronize to a new time zone. A finite differences
approach was implemented to solve the above problems numerically. The numerics suggest
that the cost accrued while recovering from jet lag is larger for eastward travels. This is
consistent with the experience of frequent travelers who claim that it is harder to recover
from jet lag after traveling eastward.
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