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Abstract

Thisprojectinvestigatesnumerical methodsforsolvingfullycoupledforward-backward
stochasticdifferentialequations(FBSDEs)ofMcKean-Vlasovtype. Havingnumericalsolvers
forsuchmeanfieldFBSDEsisofinterestbecauseofthepotentialapplicationoftheseequations
tooptimizationproblemsoveralargepopulation,sayforinstancemeanfieldgames(MFG)
andoptimalmeanfieldcontrolproblems.Theoryforthiskindofproblemshasmetwithgreat
successsincetheearlyworksonmeanfieldgamesbyLasryandLions,see[27],andbyHuang,
Caines,andMalhaḿe,see[24].Generallyspeaking,thepurposeistounderstandthecontinuum
limitofoptimizersorofequilibria(sayinNashsense)asthenumberofunderlyingplayerstends
toinfinity. Whenapproachedfromtheprobabilisticviewpoint,solutionstothesecontrolprob-
lems(orgames)canbedescribedbycoupledmeanfieldFBSDEs,meaningthatthecoefficients
dependupontheownmarginallawsofthesolution.Inthisnote,wedetailtwomethodsfor
solvingsuchFBSDEswhichweimplementandapplytofivebenchmarkproblems. Thefirst
methodusesatreestructuretorepresentthepathwiselawsofthesolution,whereasthesecond
methodusesagriddiscretizationtorepresentthetimemarginallawsofthesolutions.Bothare
basedonaPicardscheme;importantly,wecombineeachofthemwithagenericcontinuation
methodthatpermitstoextendthetimehorizon(orequivalentlythecouplingstrengthbetween
thetwoequations)forwhichthePicarditerationconverges.

1 Introduction

Inthisproject,weexaminenumericalmethodsforsolvingforwardbackwardstochasticdiffer-
entialequations(FBSDEs)ofMcKean-Vlasovtype. Weareparticularlyinterestedinequationsof
thistypeastheycanbeusedtorepresent,fromtheprobabilisticviewpoint,solutionstomeanfield
gamesor,moregenerally,tomeanfieldstochasticcontrolproblems.
MeanfieldgamesweredevelopedindependentlyandataboutthesametimebyLasryandLions

[27],andHuang,Caines,andMalhaḿe[24].Thegoalofthistheoryistounderstandthelimitas
N→∞oftheNashequilibriaforanNplayerstochasticdynamicgamewithmeanfieldinteraction,
meaningthatplayersinteractwithoneanotherthroughtheircollectivestate.Equivalently,mean
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fieldgamesmustberegardedasthecontinuumlimitofgameswithalargenumberofsymmetric
players,eachofthemhavingasmalleffectonthedynamicsofthewholegroup.Theapplications
ofmeanfieldgamesarenumerous,andspreadacrossmanydisciplines,includingsocialscience
(congestion[25][19][3],cyberattacks[12]),biology(flocking[28][29]),andeconomics(systemicrisk
[11],productionofexhaustibleresources[23][13]),justtonameafew. Asexplainedin[8,9],
solutionstomeanfieldgamescanbecharacterizedthroughacoupledsystemoftwoforwardand
backwardstochasticdifferentialequationsofmeanfieldtype,likethoseweaddressinthisnote.
Theforwardequationprovidesthedynamicsofonetypicalplayerinthepopulationatequilibrium.
Generallyspeaking,thebackwardequationaccountsfortheoptimalityconditioninthedefinition
ofanequilibriumandthe McKean-Vlasovstructureispreciselyheretostressthefactthatthe
playerinhandisrepresentativeoftheothers.Asexemplifiedin[10],otherformsofequilibriacan
beaddressedbymeansofthiskindofequations.Thisincludesoptimalmeanfieldcontrolproblems,
whichcanberegardedasthecontinuumlimitofacontrolprobleminvolvingalargenumberof
symmetricplayersobeyingacentralplanner.Below,wemostlyfocusonexamplesarisinginthe
theoryofmeanfieldgames.
Whilstdeterministicnumericalmethods,baseduponfinitedifferencesorvariationalapproaches,

arealsoconceivableforhandlingmeanfieldgames,see[1,2,4]and[5,26,22],weherefocusonthe
approachbasedonFBSDEs.Inthisregard,weimplement(andcompare)twodifferentalgorithms.
Thefirstalgorithm,whichisbasedonthepaperofChassagneux,Crisan,andDelarue[14],relies
onatreestructuretorepresentthepathwiselawofthesolution.Thesecondalgorithm,andmain
contributionofthisreport,takesthealgorithmpresentedinthepaperofDelarueand Menozzi
[18]forsolvingFBSDEsandextendsittothemeanfieldframeworkinhand.Inthisalgorithm,
agridstructureisusedtorepresentthemarginallawsofthesolution.Theseriousissuethatwe
arefacinginthisnoteisthatbothmethodsarebaseduponaPicardscheme,thefirstmethod
involvingaglobalPicardschemeuponthewholeprocessandthesecondoneinvolvingaPicard
schemeonthesolemarginallawsoftheprocess.Itisindeedawell-knownfactthat,becauseofthe
strongcouplingbetweentheforwardandbackwardequations,PicardschemesforFBSDEsmay
justconvergeinsmalltime,evenintheclassicalcasewithoutmeanfieldinteraction. Forsure,
thislimitationshouldpersistinthemeanfieldsettingfortheglobalPicardmethod;asexemplified
below,itturnsoutthatitpersistsaswellwhenthePicardschemeisappliedtothemarginallaws.
Oneofourmaincontributioninthisreportistoapplythetimecontinuationapproachpresented
in[14]tothegridalgorithmandtocomparetheresultswiththetreealgorithmforwhichthetime
continuationapproachwasoriginallydesignedin[14].Inbrief,thetimecontinuationpermitsto
extend,byacontinuationargument,thetimeintervalonwhichthePicardschemeconverges. We
illustratebothalgorithmsonahandfulofexampleproblems.
Section2providesareviewofNashequilibriainN playerstochasticdifferentialgames,and

theircontinuummeanfieldgamecounterparts. Wereviewtwoprobabilisticapproachestoformulate
thesolutionsofmeanfieldgamesandprovidethegeneralFBSDEsystemwhichwewouldliketo
solve.InSection3,wedescribethealgorithmsthatweimplementinthereport.Somebenchmark
examplesandthecorrespondingnumericalresultsarepresentedinSection4. Weconcludein
Section5.
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2 Overviewof MeanFieldGamesandFBSDEs

Thepurposeofthissectionistointroducethetheoreticalmaterialthatisneededforournumerical
analysis.Theobjectiveispurelypedagogicalandthetextdoesnotcontainanynewresult.

2.1 NPlayerStochasticDifferentialGames

Westartwiththedescriptionoftheprototypeofafiniteplayergameinthetheoryofmean
fieldgames. WeconsiderN∈Z+playersindexedbyi∈{1,...,N}. Thedynamicgameoccurs
overafixedtimehorizon[0,T]forsomeT>0. WehaveNindependentm-dimensionalBrownian
motions(Wit)0≤t≤Twhicharesupportedbyafilteredprobabilityspace(Ω,F,F=(Ft)0≤t≤T,P).
Eachplayerchoosesitscontrolαi=(αit)0≤t≤TfromthesetAdefinedasthesetofsquareintegrable
FadaptedprocesseswithvaluesinagivensetA(typicallyAisaclosedconvexsubsetofaEuclidean
space).EachplayerihasastateXiwhichevolvesaccordingtothestochasticdifferentialequation:

dXit=b
i(t,Xit,̄µt,αt)dt+σ

i(t,Xit,̄µt,αt)dW
i
t,

wherēµtdenotestheempiricaldistributionoftheplayers’states:µ̄t=
1
N

N
j=0δXjt

∈P2(R
d).Here

P2(R
d)isthespaceofprobabilitymeasureswithafinitesecondmoment,whichweequipwiththe

2-Wassersteindistance,denotedbyW2.Forµ,ν∈P2(R
d),wecallΓ(µ,ν)thesetofallthejoint

lawswithmarginalsµandν.Then,the2-Wassersteindistanceisdefinedby:

W2(µ,ν)= inf
γ∈Γ(µ,ν)

|x−y|2dγ(x,y)
1/2

.

Thedriftandvolatilityfunctions,biandσi,respectively,aredeterministicfunctions(bi,σi):
[0,T]×Rd×P2(R

d)×A→ Rd×Rd×m. Mostofthetime,theyareassumedtobebounded
intimeandtobeLipschitzcontinuouswithrespecttoallthearguments,theLipschitzproperty
inthemeasureargumentbeingunderstoodwithrespecttoW2. Thisensuresthat,foragiven
α=(α1,···,αN),thestatedynamics(X1,···,XN)iswelldefined.
Givenatupleofcontrolsα=(α1,...αN),weassociatewithplayeriacostobjectivewhichwe

taketobeoftheform:

Ji(α)=E
T

0
fi(t,Xit,̄µt,α

i
t)dt+g

i(XiT,̄µT).

Thuseachplayerconsidersadeterministicrunningcostfi:[0,T]×Rd×P2(R
d)×A→ R,

anddeterministicterminalcostgi:Rd×P2(R
d)→R.Ofcourse,eachofthemwishestominimize

itsowncostbytuningitsowncontrolinthemostrelevantway. Notethatweonlyallowthe
interactionoftheplayersthroughtheirempiricalmeasure,asthiswillbeneededinourformulation
ofthecontinuumlimit.Still,extensionsexist,inwhichplayersalsointeractthroughthecontrols,
seeSubsection2.2.3.
TheplayersareinaNashequilibriumifeachplayerisnobetteroffforswitchingtheirstrategy

whentheyconsidertheotherplayers’strategiestobefixed. Moreprecisely,thesetofstrategiesα
isaNashequilibriumif

Ji(α)≤Ji(α1,...,αi−1,α,αi+1,...,αN),∀α∈A,∀i∈{1,...,N}.
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2.2 MeanFieldGames

ForgameswhereNislarge,theproblemquicklybecomesofanintractablecomplexity.Thus
weturntothecontinuumlimitbyconsideringthelimitasNtendstoinfinity.Inorderforthis
limittomakesense,werequiretheplayerstobesymmetric.Precisely,werequireb=bi,σ=σi,
f=fi,andg=gi∀i∈{1,...,N}.Asthenumberofplayersincrease,theimpactofeachplayer
ontheempiricaldistributiondecreases,andweexpecttohaveapropagationofchaossuchthatthe
playersbecomeasymptoticallyindependentofeachother.Thisistherationaleforpassingtothe
limit:Asymptotically,theinfluenceofoneplayeronthegroupshouldbenullandthestatistical
structureofthewholeshouldbeprettysimple.
WewishtoformulatetheanalogueofaNashequilibriumwhenthereisacontinuumofplayers.

Tothisend,weconsiderthestatesandactionsoftheotherplayerstobefixed,andconsiderthe
bestresponseforarepresentativeplayer(asweexpectequilibriatoinheritthesymmetricstructure
ofthegame).Thus,thefirststepistosolveanoptimizationproblem.Thenextstepistofinda
fixedpoint,providingananalogueofaNashequilibriumforthemeanfieldgame.
Weagainhaveafilteredprobabilityspace(Ω,F,F=(Ft)0≤t≤T,P)wherethefiltrationsupports

anm-dimensionalBrownianmotionW =(Wt)0≤t≤Tandaninitialconditionξ∈L
2(Ω,F0,P;R

d).
Thestrategyforsolvingtheasymptoticgameisthefollowing:

1.Forafixeddeterministicflowofprobabilitymeasuresµ=(µt)0≤t≤T∈C([0,T],P2(R
d)),solve

thestandardstochasticcontrolproblem:

inf
α∈A
Jµ(α)=E

T

0
f(t,Xαt,µt,αt)dt+g(X

α
t,µT), (1)

subjectto

dXαt=b(t,X
α
t,µt,αt)dt+σ(t,X

α
t,µt,αt)dWt

Xα0=ξ.

2.Findafixedpoint,µ,suchthatL(Xαt)=µtforall0≤t≤T.

ThisstrategycanbetackledfromeitherthePDEviewpoint(leadingtoacoupledHamilton-
Jacobi-BellmanandKolmogorov/Fokker-Plankequations,knownasthe MFGsysteminthelit-
erature)[27][24]ortheprobabilisticviewpoint[8][9],whichisthefocusofthisproject. Within
theprobabilisticviewpoint,therearetwoapproaches,bothofwhichareformulatedwithFBSDEs.
SeeChapters3and4ofthe manuscriptofCarmonaandDelarue[8]forreferenceonthetwo
probabilisticapproaches.
Forsimplicity,fromnowonweassumem,thedimensionoftheBrownianmotionmatchesd,

thedimensionofthestatevariable. Wealsoassumethediffusioncoefficient,σ,isaconstantmatrix
σ∈Rd×d.Forbothapproaches,wewillutilizetheHamiltonianderivingfromtheaforementioned
stochasticcontrolproblem(1).Infact,sinceweassumethatthedriftisuncontrolled,wecanjust
writethereducedHamiltonian:

H(t,x,µ,α,y)=b(t,x,µ,α)·y+f(t,x,µ,α),
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fort∈[0,T],x∈Rd,µ∈P2(R
d),α∈A,andanadjointvariabley∈Rd.Then,akeyobjectin

ordertoformulatethesolutionto(1)is(wheneveritexists):

α̂(t,x,µ,y)=arginf
α∈A
H(t,x,µ,α,y).

Wewillprovidebelowexplicitexamplesfor α̂(t,x,µ,y). Wenowgiveabriefintroductiontothe
twoprobabilisticapproaches.

2.2.1 Weakapproach

Inthefirstprobabilisticapproach,whichwewillrefertoastheweakapproach,theoptimization
problemissolvedusingabackwardSDEfortheprobabilisticrepresentationofthevaluefunction.
Forafixedflowofmeasuresµ=(µt)0≤t≤T,letu:[0,T]×R→Rdenotethevaluefunction:

u(t,x):= inf
(αs)t≤s≤T∈A

E
T

t
f(s,Xs,µs,αs)ds+g(XT,µT)|Xt=x.

Thestrategyistoevaluatethevaluefunctionalongthesolutionofthestateprocess(Xt)0≤t≤T,
namelyweletYt=u(t,Xt).Theweakformulationofthestochasticcontrolproblemunderpinning
usaysthat,undersuitableassumptionsthatareexemplifiedbelow,thepair(Xt,Yt)0≤t≤Thasto
solvethefollowingFBSDE:

dXt=bt,Xt,µt,̂α t,Xt,µt,σ
−1Zt dt+σdWt

X0=ξ,

dYt=−ft,Xt,µt,̂α t,Xt,µt,σ
−1Zt dt+ZtdWt

YT=g(XT,µT),

(2)

whereweassumeσtobeinvertible.Forinstance,wetakethefollowingsetofassumptionsfrom
Chapter3ofthemanuscriptbyCarmonaandDelarue[8]: WemayassumethatthesetAforthe
valuesofthecontrolsisaboundedclosedconvexsubsetofaEuclideanspace,thedeterministic
functionsb,f,andgaredefinedon[0,T]×Rd×P2(R

d)×A,[0,T]×Rd×P2(R
d)×A,and

Rd×P2(R
d),respectively,andthereexistsaconstantC0>1suchthat:

•Foranyt∈[0,T],x,x′∈Rd,α,α′∈Aandµ∈P2(R
d):

(b,f)(t,x′,µ,α′)−(b,f)(t,x,µ,α)+ σ(t,x′)−σ(t,x)+

+ g(x′,µ)−g(x,µ)≤C0(x,α)−(x
′,α′).

•Thefunctionsb,f,σandgareboundedbyC0.

•Thereexistsafunction

α̂:[0,T]×Rd×P2(R
d)×Rd∋(t,x,µ,y)→ α̂(t,x,µ,y)

whichisC0-Lipschitzcontinuousin(x,y)suchthat,foreach(t,x,µ,y)∈[0,T]×R
d×

P2(R
d)×Rd,α̂(t,x,µ,y)istheuniqueminimizeroftheHamiltonianH(t,x,µ,y,α).
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Underthissetofassumptions,itisshowninChapter3ofthemanuscriptbyCarmonaand
Delarue[8]thataflowofmeasuresµ=(µt)0≤t≤Tisameanfieldgameequilibriumifandonly
ifµt=L(Xt),∀t∈[0,T],where(X,Y,Z)isasolutionoftheweakapproachFBSDEsystemin
Equation(2),inwhichcase(2)becomes

dXt=bt,Xt,L(Xt),̂αt,Xt,L(Xt),σ
−1Zt dt+σdWt

X0=ξ,

dYt=−ft,Xt,L(Xt),̂αt,Xt,L(Xt),σ
−1Zt dt+ZtdWt

YT=g(XT,L(XT)),

(3)

whereweusethegenericnotationL(·)forthelawofarandomvariable.Thisapproachisdeveloped
furtherinthepapersandmanuscriptofCarmonaandDelarue[8][9].

2.2.2 Pontryaginapproach

Thesecondprobabilisticapproach,whichwewillrefertoasthePontryaginapproach,isbased
onthePontryaginstochasticmaximumprinciple.Inthisformulation,theoptimizationproblemis
solvedusingabackwardSDEfortheprobabilisticrepresentationofthespatialderivativeofthe
valuefunctionu.Formally,thestrategyisthustoevaluatetheprocess(Xt)0≤t≤Talong∇xu.Hence
weletYt=∇xu(t,Xt),whichmakessensewhen∇xuiswell-defined.InfactthePontryaginsystem
maybeformulatedwithoutanyfurtherreferencetotheregularityofu,thePontryaginformulation
havingthefollowinggeneralform:

dXt=b(t,Xt,µt,̂α(t,Xt,µt,Yt))dt+σdWt

X0=ξ,

dYt=−[∇xb((t,Xt,µt,̂α(t,Xt,µt,Yt)))·Yt

+∇xf(t,Xt,µt,̂α(t,Xt,µt,Yt))]dt+ZtdWt

YT=∇xg(XT,µT),

(4)

whereweassumeb,fandgtobedifferentiablewithrespecttox. Wemayusethefollowingset
ofassumptionstakenfromChapter3ofthemanuscriptbyCarmonaandDelarue[8]toguarantee
thatthePontryaginsystemisbothanecessaryandasufficientconditionofoptimality: Weassume
thecoefficientsb,f,andgaredefinedon[0,T]×Rd×P2(R

d)×A,[0,T]×Rd×P2(R
d)×A,and

Rd×P2(R
d),respectively. Wealsoassumethattheysatisfy:

•Thedriftbisanaffinefunctionof(x,α)oftheform:

b(t,x,µ,α)=b0(t,µ)+b1(t)x+b2(t)α,

whereb0:[0,T]×P2(R
d)∋(t,µ)→b0(t,µ),b1:[0,T]∋t→b1(t)andb2:[0,T]∋t→b2(t)

areRd,Rd×dandRd×dvalued,respectively,andaremeasurableandboundedonbounded
subsetsoftheirrespectivedomains.

•ThereexisttwoconstantsC1>0andC2≥1suchthatthefunctionR
d×A∋(x,α)→

f(t,x,µ,α)∈RisoncecontinuouslydifferentiablewithLipschitz-continuousderivatives(so
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thatf(t,·,µ,·)isC1,1),theLipschitzconstantinxandαbeingboundedbyC2(sothatitis
uniformintandµ). Moreover,itsatisfiesthefollowingstrongformofconvexity:

f(t,x′,µ,α′)−f(t,x,µ,α)−(x−x′,α−α′)·∂(x,α)f(t,x,µ,α)≥C1α
′−α

2
.

Thenotation∂(x,α)fstandsforthegradientinthejointvariables(x,α).Finally,f,∂xfand

∂αfarelocallyboundedover[0,T]×R
d×P2(R

d)×A.

•ThefunctionRd×P2(R
d)∋(x,µ)→ g(x,µ)islocallybounded. Moreover,foranyµ∈

P2(R
d),thefunctionRd∋x→ g(x,µ)isoncecontinuouslydifferentiableandconvex,and

hasaC2-Lipschitzcontinuousfirstorderderivative.

Undertheseassumptions,itisshowninChapter3ofthemanuscriptbyCarmonaandDelarue
[8]thataflowofmeasuresµ=(µt)0≤t≤T isameanfieldgameequilibriumifandonlyifµt=
L(Xt),∀t∈[0,T],where(X,Y,Z)isasolutionofthePontryaginapproachFBSDEsystemin
Equation(4),inwhichcase(4)becomes

dXt=b(t,Xt,L(Xt),̂α(t,Xt,L(Xt),Yt))dt+σdWt

X0=ξ,

dYt=−[∇xb((t,Xt,L(Xt),̂α(t,Xt,L(Xt),Yt)))·Yt

+∇xf(t,Xt,L(Xt),̂α(t,Xt,L(Xt),Yt))]dt+ZtdWt

YT=∇xg(XT,L(XT)).

(5)

ThisapproachisalsodevelopedfurtherinthepapersandmanuscriptofCarmonaandDelarue
[8][9].

2.2.3 MeanFieldGamesofControl

Inmanyapplications,individualsmayinteractthroughtheircontrols,insteadoftheirstates.
Oneexampleisanapplicationoftradecrowdingwhichwastackledwithameanfieldgameapproach
inthepaperofCardaliaguetandLehalle[7]. Thereisalsoamodelforpriceimpactinthebook
ofCarmonaandDelaruewhichwetakeasoneofourexampleproblemsinSection4.4.2. Mean
fieldgameswhereplayersinteractthroughthelawoftheircontrolsissometimesreferredtoas
extendedmeanfieldgames[20],seealsoChapter4in[8]. Weareinterestedintestingournumerical
methodsonacertainclassofmeanfieldgamesofcontrol:thoseinwhichtheinteractionisthrough
themarginaldistributions,L(Xt)andL(αt). Todesignouralgorithmstohandlesuchageneral
frameworkofmeanfieldinteraction,westudynumericalmethodsforsolvingageneralFBSDE
systemwhichincludesthetwoapproachesdetailedabove,aswellasthisclassofmeanfieldgames
ofcontrol.

2.3 GeneralSystem

Wecanaddressbothprobabilisticformulationsformeanfieldgamesandaclassofmeanfield
gamesofcontrolsimultaneouslybyconsideringthefollowinggeneralFBSDEsystem. Wenow
takethedimensionofthestatespacetobed=1since,forsimplicity,ouralgorithmswillbejust
appliedtothiscase.Let[X]=L(X)denotethelawofaprocessX. Withanabuseofnotation,
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let[X,Y,Z]:=(L(X),L(Y),L(Z))denotethelawsoftheindividualprocesses(andnottheirjoint
law).Thegeneralsystemisthefollowing:

dXt=B(t,Xt,Yt,Zt,[Xt,Yt,Zt])dt+σdWt

X0=ξ∈L
2(Ω,F0,P;R),

dYt=−F(t,Xt,Yt,Zt,[Xt,Yt,Zt])dt+ZtdWt

YT=G(XT,[XT]).

(6)

Theassumptionthatthecoefficientsdepend,atmost,uponthemarginallawsL(Xt),L(Yt)and
L(Zt)ofthetriple(Xt,Yt,Zt)(andnotuponthefulljointlaw)istailormadetotheapplications
wehavemind:Asexplainedinthepreviousparagraph,wewanttohandlegamesinwhichplayers
interactwithoneanotherthroughthelawofthecontrol.Inordertoguesstheimpactthismay
haveontheFBSDErepresentation,itisworthrecallingthat,intheproblem(1),theoptimal
controlmayberepresentedinaquitegenericwaythroughthefunctionα̂withtheadjointvariable
ythereintakenasthegradientofthevaluefunction.Undertheweakformulationapproach,this
turnstheFBSDEsystem(3)intoanFBSDEsystemdependingonthemarginallawsofZ,asZt
isknowntohavetherepresentationZt=∇xu(t,Xt)σ. UnderthePontryaginapproach,itturns
theFBSDEsystem(5)intoanFBSDEsystemdependinguponthemarginallawsofY.Henceour
choicetohandlesystemsoftheform(6).Stillthereadershouldobservethat,inordertohandlethe
moregeneralcasewhentheplayersinteractthroughthejointlawofthestateandofthecontrol,it
isnecessarytoaddresssystemsofthesametypeas(6)butwiththeconventionthat[Xt,Yt,Zt]is
understoodasthejointlawofthetriple(Xt,Yt,Zt);aswejustmentioned,wedonotaddressthis
levelofgeneralityinthereport.
In(6),thediffusionprocessXiscoupledtothediffusionprocess(Y,Z)throughthefunctions

BandF,representingthedriftoftheforwardprocessandthedriverofthebackwardprocess,
respectively. ThefunctionsBandFareassumedtobeLipschitzineachoftheirarguments
on([0,T],R3,(P2(R))

3)andGLipschitzon(R,P2(R)),namely,for(x,y,z,x
′,y′,z)∈R6and

(µ,ν,λ,µ′,ν′,λ′)∈(P2(R))
6,wehave:

|B(t′,x′,y′,z′,µ′,ν′,λ′)−B(t,x,y,z,µ,ν,λ)|≤KB |t
′−t|+|x′−x|+|y′−y|+|z′−z|

+W2(µ
′,µ)+W2(ν

′,ν)+W2(λ
′,λ)

|F(t′,x′,y′,z′,µ′,ν′,λ′)−F(t,x,y,z,µ,ν,λ)|≤KF |t
′−t|+|x′−x|+|y′−y|+|z′−z|

+W2(µ
′,µ)+W2(ν

′,ν)+W2|(λ
′,λ)

|G(x′,µ′)−B(x,µ)|≤KG |x
′−x|+W2(µ

′,µ).

ThegoalofthisprojectistostudynumericalmethodsforsolvingthisgeneralFBSDEsystem.
Atsomepointinthereport,wewillrelaxtheLipschitzconditionofFinthevariableszandλand
addressanFBSDEwithaquadraticdriverF,seeourexamplesinSection4.

3 Algorithms

WeimplementtwoalgorithmsfornumericallysolvingtheFBSDEsysteminEquation(6).In
thefirstalgorithm,werepresentpathsofthestochasticprocesses(X,Y,Z)usingatreestructure,
wherebranchesofthetreerepresentquantizationoftheBrownianmotion.Inthesecondalgorithm,
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wenolongerrepresentthepathsoftheprocess,butthemarginallawsoftheprocess.Inthiscase,
thelawoftheprocessisdiscretizedonafixedtemporalandspatialgrid.
Inbothcases,therepresentationservesasabasisforaPicardschemeforapproachingthe

solution.Forthefirstalgorithm,thePicardschemeisimplementedintheformofaglobalPicard
schemeonthewholeprocess;forthesecondone,iterationsarejustperformedonthemarginal
lawsoftheprocess.AlthoughPicard’smethodsoundsverynatural,thisstrategysuffers,whatever
thealgorithm,fromaseriousdrawbackasPicarditerationsforforwardbackwardsystemsareonly
expectedtoconvergeinsmalltime.Basically,thevalueofTforwhichthealgorithmwillconverge
dependsonthecouplingstrengthofthesystem;wemakethisfactclearfortheglobalmethodby
showinghowTdependsontheLipschitzcoefficientsKB,KF andKG.Inanycase,bifurcations
canbeobservedwhenTisincreased,orequivalently,whenthecouplingstrengthbetweenthetwo
equationsisincreased. Forourconvenience(sinceitcanbecostlytoincreaseT),wewillfixT
andexploretheconvergenceofthealgorithmsaswevarythecouplingstrength.Thisisonefirst
stepinourreport:Comparehowthetwoalgorithmssufferfromthecouplingstrengthbetweenthe
forwardandbackwardequations.
Thesecondkeyfeatureofourreportistouse,forbothalgorithms,acontinuationintime,

whichallowsustoextendthevalueofthecouplingparameterforwhichthealgorithmsconverge.
Inthefollowingsections,wedetailourPicardapproachesforthetwoalgorithmsandthe

continuationintimemethod.

3.1 GlobalPicardIterationonaSmallTimeInterval

ThemaindifficultyinnumericallysolvingtheFBSDEsystemisthefactthat,notonlythe
forwardcomponentX=(Xt)0≤t≤Tandbackwardcomponent(Y,Z)=(Yt,Zt)0≤t≤Tarecoupled,
butalsotheyruninoppositedirections.Thus,neitherequationcanbesolvedindependentlyofthe
other,seeminglyrequiringustomanagebothtimedirectionssimultaneously.Severalstrategiesare
conceivabletosortoutthisissue.Afirstoneistomakeuseofthedecouplingfieldofthesystem
inordertoworkwithonetimedirectioninsteadoftwo(roughlyspeaking,thedecouplingfieldis
thevaluefunctionuintheweakapproachanditsderivative∇xuinthePontryaginone). Wewill
investigatethismethodforoursecondalgorithm;itsimplementationisindeedprettysubtleinthe
meanfieldsettinganditleadstotheaforementionedPicardmethodonthemarginallaws.Forour
firstalgorithm,however,welimitourselvestoabruteforceapproach.Todecoupletheequations,
weproposeaglobalPicarditerationscheme,whosedefinitionisasfollows. Fortheinitialand
terminaldataoftheproblem(ξandG),wewanttodefineamappingΦξ,Gthatwilltakethej−1
PicarditerateandproducethejPicarditerate:

Φξ,G:(X
j−1,Yj−1,Zj−1,[Xj−1,Yj−1,Zj−1])→(Xj,Yj,Zj,[Xj,Yj,Zj]).

WedefinethedecoupledPicardschemeΦξ,Gasthefollowing:

1.First,solve

dXjt=B(t,X
j−1
t ,Yj−1t ,Zj−1t ,[Xj−1t ,Yj−1t ,Zj−1t ])dt+σdWt

Xj0=ξ∈L
2(Ω,F0,P;R),

forXjwhichgivesus[Xj].
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2.Next,solve

dYjt=−F(t,X
j
t,Y

j−1
t ,Zj−1t ,[Xjt,Y

j−1
t ,Zj−1t ])dt+ZjtdWt

YjT=G(X
j
T,[X

j
T]),

forYjandZjwhichgivesus[Yj]and[Zj].

3.Return(Xj,Yj,Zj,[Xj,Yj,Zj]).

Afterinitializing(X0,Y0,Z0,[X0,Y0,Z0]),wecandefineasequenceby:

(Xj,Yj,Zj,[Xj,Yj,Zj])=Φξ,G(X
j−1,Yj−1,Zj−1,[Xj−1,Yj−1,Zj−1]).

Ifthesequence(Xj,Yj,Zj,[Xj,Yj,Zj])j=1,...convergestosome(X,Y,Z,[X,Y,Z]),then:

(X,Y,Z,[X,Y,Z])=Φξ,G(X,Y,Z,[X,Y,Z]),

andthus,(X,Y,Z)isasolutiontotheoriginalFBSDEsysteminEquation(6).
Picardschemessuchasthisoneareonlyguaranteedtoconvergeforasmalltimehorizon,T,

dependingontheLipschitzcoefficientsofthefunctionsB,FandG(andinfactnotonlythe
convergenceofthePicardsequencebutalsothesolvabilityoftheequationmayfailonanarbitrary
timeinterval). Weillustratethisideathroughthefollowingexample(thereadermayfindthe
generalcasein[17]):LetthedriverfunctionF=0anddefinethecommonLipschitzcoefficient
K=max(KB,KG).TheFBSDEsystembecomes:

dXt=B(Yt)dt+σdWt, X0=ξ∈R

dYt=ZtdWt,YT=G(XT,[XT]).

Wewritetheequationaboveintheintegralformandtaketheexpectationconditionaltothe
filtrationFtinthebackwardequation:

Xt=ξ+
t

0
B(Ys)ds+σWt

Yt=G(XT,[XT])−
T

t
ZsdWs, i.e.,Yt=E(G(XT,[XT])|Ft).

InsteadofonesingleX,letusnowconsidertwo(initial)processesdenotedbyX̂andX̃.After
onePicarditeration,wearriveatX̂′andX̃′.ThePicarditerationisgivenby:

Ŷt=E(G(̂XT,[̂XT])|Ft)

X̂′t=ξ+
t

0
B(̂Ys)ds+σWt,

andsimilarlyforX̃′.Fromtheforwardcomponent,wehavethefollowingestimateforthedifference
betweenX̂′andX̃′:

|̂X′t−X̃
′
t|
2≤

t

0
(B(̂Ys)−B(̃Ys))ds

2

≤tK2
t

0
|̂Ys−Ỹs|

2ds,

E sup
0≤t≤T

|̂X′t−X̃
′
t|
2 ≤T2K2E sup

0≤t≤T
|̂Yt−Ỹt|

2.
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Thenwewriteforthebackwardcomponent:

E sup
0≤t≤T

|̂Yt−Ỹt|
2 =E sup

0≤t≤T
|E(G(̂XT,[̂XT])−G(̃XT,[̃XT])|Ft)|

2

≤4E|G(̂XT,[̂XT])−G(̃XT,[̃XT])|
2

≤8K2E|̂XT−X̃T|
2+W2 [̂XT],[̃XT]

2
.

Inthesecondtolastinequality,weusedDoob’smartingaleinequalityforthemartingaleterm
E(G(̂XT,[̂XT])−G(̃XT,[̃XT])|Ft)0≤t≤T.AlsoweusedthefactthatW2([Xt],[̃Xt])

2≤E[|Xt−X̃t|
2].

Combiningtheinequalitiesaboveforbothforwardandbackwardcomponents,weobtainthe
followingestimate:

E sup
0≤t≤T

|̂X′t−X̃
′
t|
2 ≤16T2K4E|̂XT−X̃T|

2 ≤16T2K4E sup
0≤t≤T

|̂Xt−X̃t|
2.

Andthen,

sup
0≤t≤T

W2 [̂X
′
t],[̃X

′
t]
2
≤ sup
0≤t≤T

E|̂X′t−X̃
′
t|
2 ≤E sup

0≤t≤T
|̂X′t−X̃

′
t|
2.

Finally,when16T2K4<1,i.e.T≤4/K2,themappingΦξ,Grealizesacontractiononthe
forwardcomponentandthePicarditerationdefinedabovewillconvergetothefixedpoint,providing
asolutiontotheoriginalFBSDE.Thus,wehaveillustratedthatPicardschemesareonlyexpected
toconvergeinsmalltimeorforsmallcoupling(i.e.smallerLipschitzcoefficients).
Keepinginmindthatweeventuallywanttodescribenumericalschemes,wedefineasolver

picard,thatwillimplementafinitenumber,Jp∈Z
+,ofPicarditerations.Thus,wedefine:

•picard(ξ,G):

1.InitializeXt=ξ,Yt=0,andZt=0,∀t∈[0,T].

2.For1≤j≤Jp

(X,Y,Z,[X,Y,Z])=Φξ,G(X,Y,Z,[X,Y,Z])

3.Return(X,Y,Z,[X,Y,Z]).

3.2 ContinuationinTimeoftheGlobal MethodforArbitraryInterval/Coupling

Ofcourse,wewouldlikethemappingΦξ,Gtorealizeacontractiontomakesurethatthe
Picarditerationconverges.Aswejustexplained,thisisthecasewhentheforwardandbackward
processeshaveasmallenoughcouplingstrengthorforsmalltimehorizonT.Butinpractice,this
isnotalwaysthecase:ItmayhappenthattheFBSDEsystemisuniquelysolvable,butthatwe
areunabletoprovethatthePicardsequenceconverges.Inordertoovercomethisissue,wefollow
theapproachintroducedinChassagneux,Crisan,Delarue[14].Basically,thepointistodividethe
timeintervalintosmallerintervals,calledlevels,andtoapplyaPicardsolverrecursivelybetween
thelevels.
Todefinethelevels,wefixatimemesh:{0=T0<T1,...,Tk,...TNℓ−1<TNℓ=T}. Wewould

liketousethepicardsolverintroducedintheprevioussectiontoapplythePicarditerationona
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givenlevel. Noticethatforanarbitrarylevel[Tk,Tk+1],wedonotknowtheinitialconditionfor
XTkortheterminalconditionforYTk+1.Thus,ourcurrentapproximationofthesevalueswillbe
inputstothepicardsolverinplaceofξandG. Wewouldalsoliketomodifythesolverpicardto
alsotakethecurrentestimateof(X,[X])sothatwedon’thavetostartfromscratcheverytime
wewishtousepicard.Thus,wedefineforlevelk:

•picard[k](X,YTk+1):

1.InitializeYt=0,andZt=0,∀t∈[Tk,Tk+1).

2.For1≤j≤Jp

(X,Y,Z,[X,Y,Z])=ΦXTk,YTk+1(X,Y,Z,[X,Y,Z]))

3.Return(X,Y,Z,[X,Y,Z]),

whereX=(Xt)Tk≤t≤Tk+1,andsimilarlyforYandZandtheirlaws.NotethatΦXTk,YTk+1 isthe

sameasΦξ,Gdefinedearlierexceptthetimehorizonis[Tk,Tk+1]insteadof[0,T]andtheinitial
andterminalconditionsaregivenbyXTkandYTk+1 insteadofξandG,respectively.Inparticular,
payattentionthatwenolongerconsidertheterminalconditionintheformofamapping(likeG)
butintheformarandomvariable(likeYTk+1).Implicitly,thisrequirestostore,fromonestepto
another,thefullrandomvariableYTk+1;henceourchoicebelowtouseatree.
NowthatwehaveasolverpicardwhichwillimplementthePicarditerationforagivenlevel,

next,wewanttodefineaglobalsolvertoapplyacontinuationintime.Theglobalsolver,called
solver,isrecursivelydefinedasfollowsforsomeJs∈Z

+.Foragivenlevelk,define:

•solver[k](XTk,[XTk]):

1.InitializeXt=XTk,Yt=0,andZt=0,∀t∈[Tk,Tk+1].

2.For1≤j≤Js

(a)(YTk+1,[YTk+1])=solver[k+1](XTk+1,[XTk+1])

(b)(X,Y,Z,[X,Y,Z])=picard[k](X,YTk+1)

3.Return(YTk,[YTk]).

Asbefore,itisimportanttonoticethattheentryXTkinsolverisarandomvariable;[XTk]isits
law.Havingthetwoinournotationsisabitredundant,butwefeelitismoretransparentforthe
reader.Thebreakconditionoftherecursionisgivenbytheterminalcondition:

solver[Nℓ](XTNℓ,[XTNℓ])=(YTNℓ,[YTNℓ])=(G(XTNℓ,[XTNℓ]),L(G(XTNℓ,[XTNℓ])))

ThegoalofthecontinuationintimeisforaPicarditerationschemetoconvergeevenforlarge
couplingparametersorlargetimehorizon. WewillseeinSection4thatthecontinuationintime
successfullyachievesthisgoalforourbenchmarkexamples. Wereferto[14]foritstheoretical
analysis.
Thusfar,wehavedescribedourPicardapproachandacontinuationintimemethod. Now

weneedtoprovideaschemefordiscretizingthePicarditerationmappingΦξ,G.Inthisreport,
weimplementatreealgorithm; wealsogiveavariantofit,intheformofagridalgorithm.
Forbothalgorithms,weconsidertheuniformtime meshwithtimesteph=T/Nt>0with
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Nℓ<Nt∈Z
+ andti=ih,i=0,...,Nt.Forconvenience,wewillassumethecoarsetimemesh

usedtodefinethelevels,{0=T0<T1,...,Tk,...TNℓ−1<TNℓ=T},isasubsetofthefinetime
mesh{0=t0<t1,...,tNt−1<tNt=T}.

3.3 TreeAlgorithmfortheGlobal Method

ThefirstimplementationofthePicarditeration,Φξ,G,isthetreealgorithmpresentedinChas-
sagneux,Crisan,Delarue[14]. Wenowprovideabriefpresentationofthisalgorithm.

3.3.1 TimeDiscretization

OurfirststepindevelopingadiscretizationforthePicarditerationΦξ,Gistodiscretizethe
probleminthetimedomain. WeusethedecoupledschemederivedinChassagneux,Crisan,Delarue
[14],andrepeatedbelowforconvenience.Asnotedabove,weconsidertheuniformtimemeshwith
timesteph=T/Nt>0withNℓ<Nt∈Z

+andti=ih,i=0,...,Nt.
Step1)indefiningΦξ,GrequiressolvingtheforwardequationforX

j. WeusetheclassicalEuler
scheme:

Xjti+1 =X
j
ti
+hB(ti,X

j−1
ti
,Yj−1ti

,Zj−1ti ,[X
j−1
ti
,Yj−1ti

,Zj−1ti ])+σ∆Wi, X
j
0=ξ.

NotethatwhenwecalculateXjti+1,thevalueofX
j
ti
anditslawisknownandcouldbesubstituted

forXj−1ti anditslawinthedriftfunction,B.
Step2)indefiningΦξ,GrequiressolvingthebackwardequationforY

jandZj. Wederivethe
discrete-timeschemetoapproximatethebackwardcomponent,seee.g.[6].TheYjcomponentat
timetiinthebackwardschemeisobtainedbytakingtheexpectationconditionaltoFti,denoted
asEti,ofthebackwardequationbetweentiandti+1.Let∆Wi=Wti+1−Wtidenotetheforward
Brownianincrementbetweentiandti+1.ThedriverfunctionFisapproximatedbyitsvalueattime
tiandweusethefactthatFattiandZtiareFti-measurable,andEti(∆Wi)=Eti(Wti+1−Wti)=0:

Yjti=Y
j
ti+1
+

ti+1

ti

F(t,Xjt,Y
j−1
t ,Zj−1t ,[Xjt,Y

j−1
t ,Zj−1t ])dt−

ti+1

ti

ZjtdWt

≈Yjti+1+hF(ti,X
j
ti
,Yj−1ti

,Zj−1ti ,[X
j
ti
,Yj−1ti

,Zj−1ti ])−Z
j
ti
∆Wi

Yjti=Eti(Y
j
ti+1
)+hF(ti,X

j
ti
,Yj−1ti

,Zj−1ti ,[X
j
ti
,Yj−1ti

,Zj−1ti ])

YjT=G(X
j
T,[X

j
T]).

AsfortheZjcomponent,wemultiplytheapproximationofYjtibytheBrownianincrement
∆Wi,takingtheconditionalexpectationEti,andusingE((∆Wi)

2)=h. Bynoticingthatour
schemewillnevermakeuseofZjT,wecansimplysettheterminalconditionfortheZ

jcomponent
to0.

Zjti(∆Wi)
2≈Yjti+1∆Wi+(−Y

j
ti
+hF(ti,X

j
ti
,Yjti,Z

j−1
ti
,[Xjti,Y

j
ti
,Zj−1ti ]))∆Wi

Zjti=h
−1Eti(Y

j
ti+1
∆Wi),Z

j
T=0.

Puttingthistogether,thetime-discretizeddecoupledforward-backwardschemeforPicarditer-
ationofourgeneralFBSDEsystem(6)isthefollowing:
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

Xjti+1=X
j
ti
+hB(ti,X

j
ti
,Yj−1ti

,Zj−1ti ,[X
j
ti
,Yj−1ti

,Zj−1ti )]+σ∆Wi

Xj0=ξ,

Yjti=Eti(Y
j
ti+1
)+hF(ti,X

j
ti
,Yj−1ti

,Zj−1ti ,[X
j
ti
,Yj−1ti

,Zj−1ti ])

YjT=G(X
j−1
T ,[Xj−1T ])

Zjti=h
−1Eti(Y

j
ti+1
∆Wi)

ZjT=0.

(7)

Othervariantsofthisforward-backwardschemearepossible. Forexample,intheforward
schemewecouldchangejtoj−1andtitoti+1 ontherighthandside.Itiseasytoobserve
thattheforward-backwardsystemisdecoupledbecauseoflaggedPicardindicesj−1andj.
Thus,given(Xj−1,Yj−1,Zj−1,[Xj−1,Yj−1,Zj−1])whereXj−1=(Xj−1ti )0≤i≤Nt,andsimilarlyfor
YandZ,wecansolvethebackwardschemeautonomouslyandthentheforwardschemetoobtain
(Xj,Yj,Zj,[Xj,Yj,Zj]). WehavenotfullyprovidedadiscreteschemeforΦξ,Gyet,however,
becauseforagiventi,wehavenotdiscretized(Xti,Yti,Zti).Thisisthegoalofthenextsection.

3.3.2 SpatialDiscretizationviaTreeStructure

Theforward-backwarddecoupledscheme(7)abovelooksquitesimpleandexplicit.However,it
stillpresentssomedifficultiesforthenumericalcomputation.Firstly,itisdifficulttocomputethe
conditionalexpectationinthebackwardscheme.Secondly,itisnontrivialtocomputethelawof
Xti+1 forwardintime.Eveniftherewasnodrift,thecomputationwouldinvolvetheconvolution
ofthelawofXtiandaGaussianlawoftheBrownianincrement.Ultimately,wewillneedaspatial
dicretization.
TheapproachofthisalgorithmistoapproximatetheBrownianincrementsusingasimple

binomialapproximation: ∆Wi=±
√
hwithprobability1/2.Thisgivesrisetoabinomialtree

fortheforwardscheme.EachnodeonthetreeatdepthirepresentsavalueofXti,andhastwo
childrennodesrepresentingthetwopossiblevaluesofXti+1 (the“up↑”andthe“down↓”value),
conditionedonthevalueofXti.Thetwovaluesarecomputedasfollows:

Xjti+1(↑↓)=X
j
ti
+hB(ti,X

j
ti
,Yjti,Z

j
ti
,[Xjti,Y

j
ti
,Zjti])±σ

√
h. (8)

SupposethatweuseM pointsx1,...,xM fortheapproximationofthelawξoftheforward
processattheinitialtime,i.e.[X0]=ξ≈

M
k=1p

0
kδxk(·).ThenwehaveM parallelbinomialtrees

ateachPicarditeration.ForPicarditeratejandtimeti,thenumberofnodesatdepthiisM×2
i

withvaluesof(Xjti,Y
j
ti
,Zjti)savedonthenodesofthetreeatdepthi.Themarginallawofeach

processattimeticanbedeterminedbylookingatallthevaluesonthenodesatdepthi. The
backwardschemecanbeeasilycomputedonthebinomialtree. Atthelasttimestep,T=tNt,
wehaveYjT =G(X

j
T,[X

j
T])foreachoftheM ×2

Ntnodes. Theconditionalexpectationinthe
backwardschemeattiissimplytheaverageofthe“up”and“down”branchesatti+1.
Toinitializethej=0Picarditerateasinthedefinitionofthesolverpicard,wewanttoset

Xti=ξ,∀i∈{0,...,Nt}. Thisamountstotakingeachinitialvaluexkandinitializingitsentire
treetothisvalue,meaningthatX0ti=xkforallnodesatdepthiandforalli∈{1,...,Nt}ofthe
k-thbinomialtree. WethenbeginthePicarditerationbyapplyingthemappingΦξ,Gasdetailed
above.UsingthebinomialtreeandapproximationofBrownianincrements,theforward-backward
decoupledschemebecomesfullyimplementable.
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3.4 PicardIterationonthe MarginalLaws:aGridAlgorithm

ThecomplexityofthetreealgorithmisexponentialwithrespecttothenumberoftimestepsNt,
sincethesizeofthebinomialtreeisoforder2Nt.Theexponentialcomplexitybecomesproblematic
andmakescontinuationintimemuchslowerwhenwedealwithlargetimehorizons.Inorderto
reducethesizeofthetree,anaturalideaistomakesome“recombination”ofthebinomialtree.
ButsincethedriftfunctionBdependsonthevalueoftheprocess,thetwobranches“up-down”
and“down-up”fromthesamenodeattimetiwillnotcoincideattimeti+2,ingeneral.Instead
ofrecombination,wemayfixaspatialgridofacontrollablesizethatthebinomialtreecanbe
projectedonto,inordertoavoidexponentialcomplexity. Thiswillbethefirstingredientofour
gridalgorithm,whichisthemainnoveltyinourreport.
InspiredbythepaperofDelarueand Menozzi[18],wheretheauthorsusedaspatialgridfor

theapproximationofFBSDEswithoutmean-fieldinteraction,wemakeanintensiveuseofthe
notionofdecouplingfield,whichisthesecondkeyingredientofourstrategy.Indeed,usingthe
representationresultinProposition2.2in[16],weknowthatthereexistdeterministicfeedback
functions(u,v):[0,T]×R×P2(R)→ RwithuasolutiontoanonlinearPDE(onthespaceof
measures)suchthatforasolution(X,Y,Z)tothegeneralFBSDEsysteminEquation(6):

Yt=u(t,Xt,[Xt]) and Zt=v(t,Xt,[Xt]).

Generallyspeaking,uiscalledthedecouplingfieldof(6).Herecomesthemainobservation:The
timemarginalsofthesolutiontothegeneralFBSDEsysteminEquation(6),([Xt,Yt,Zt])0≤t≤T,can
beequivalentlycharacterizedby(µt,u(t,·),v(t,·))0≤t≤Twhere[Xt]=µt.Asin[18],ourstrategy
istothusapproximate(u,v)insteadof(X,Y,Z),butthisisnotsoeasyasuandvaredefined
onaspaceofinfinitedimension(becausethemeanfieldcomponentlivesinP(R)).Inorderto
overcomethisdifficulty,weproposetofreezethemeanfieldargumentin(u,v). Thispermitsto
regarduandvasfunctionsofafinite-dimensionalvariableandthustoapproximatebothalongthe
underlyingspatialgrid.Onceanapproximationofuandvhasbeencomputedforthegivenproxy
ofthemarginallaws,wecanupdatethevalueofthisproxybyusingaPicardmethod.Hencethe
nameofthissubsection.So,asopposedtothetreealgorithm,wewillnolongerkeeptrackofthe
pathwiselawsoftheprocesses.Instead,wewillonlycomputethemarginallawsateachtimestep
ofthetimemeshbymeansofaPicarditeration.

3.4.1 PicardIterationwithoutGrid

WefirstgivetheinputsandoutputsofournewPicardmappingwithoutanygridapproximation:

Ψ[ξ],G:(µ
j−1
t ,u

j−1(t,·),vj−1(t,·))0≤t≤T→(µ
j
t,u
j(t,·),vj(t,·))0≤t≤T,

withµj−10 =µj0=[ξ]. Denotingbelowϕ♯νasthepush-forwardmeasureofthemeasureνbythe

functionϕ,Ψ[ξ],G((µ
j−1
t ,u

j−1(t,·),vj−1(t,·))0≤t≤T)isdefinedby:

1.SolvethefollowingSDEforXj:

dXjt=B(t,X
j
t,u

j−1(t,Xjt),v
j−1(t,Xjt),µ

j−1
t ,(u

j−1(t,·),vj−1(t,·))♯µj−1t )dt+σdWt

Xj0=ξ∈L
2(Ω,F0,P;R),

Setµjt:=[X
j
t].
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2.Next,find(uj,vj)(·,·):[0,T]×R→R2through(uj,vj)(t,Xjt):=(Y
j
t,Z

j
t)bysolving:

dYjt=−F(t,X
j
t,Y

j
t,Z

j
t,µ

j
t,(u

j−1(t,·),vj−1(t,·))♯µjt)dt+Z
j
tdWt,

YjT=G(X
j
T,µ

j
T).

3.Return((µjt,u
j(t,·),vj(t,·))0≤t≤T).

GivenΨ[ξ],G,wecangothroughtheconstructionoftheglobalPicardmethodanddefinesimilar
routinespicardandsolverforournewPicardapproachbyreplacingformallyΦξ,GbyΨ[ξ],G.The
variousinputsandoutputsinthenewroutinesshouldbeclear.Thenextsteptomakethewhole
algorithmentirelytractableistoshowhowtocomputeµjt,u

j,andvjexplicitlyinthemapping
Ψ[ξ],G.SimilartoΦξ,G,thismappingwillbedefinedexplicitlyforadiscretizedschemeonatemporal
andspatialgridinthenexttwosections.Asinthetreealgorithm,weconsidertheuniformtime
meshwithtimesteph=T/Nt>0withNℓ<Nt∈Z

+andti=ih,i=0,...,Nt.

3.4.2 GridApproximationofForwardComponentanditsLaw

Webeginbyfixingaspatialdiscretizationgrid.Thisgridcouldinprinciplebedefineddifferently
foreachtimestepti,butforsimplicity,weconsiderahomogeneousgridΓfixedforalltimesteps
ti,i∈{0,...,Nt}withconstantspatialstepsize∆x.LetΠbetheprojectionfunctiononthegrid

Γ={xk=x1+(k−1)∆x,k=1,...,Nx}.

Precisely,Πisgivenby

Π(x)=xkifx∈[x−∆x/2,x+∆x/2) and Π(x)=x0ifx<x0,Π(x)=xNxifx≥xNx.

Theinitiallawξoftheforwardprocessisapproximatedasξ≈µ0(·)onthegridΓwithNx
points. Recallthatinthetreealgorithm,wecannotchooseM,thenumberofpointsforthe
approximationoftheinitiallaw,tobetoolargeaswewillneedM parallelbinomialtrees.Because
thetreealgorithmhasexponentialcomplexity,weareabletochooseNxtobemuchlargerthan
M,andinturn,theapproximationoftheinitiallawismoreaccurateinthegridalgorithmthan
inthetreealgorithm. WecaninitializethePicarditerate(µ0i,u

0
i,v
0
i)0≤i≤Ntsimilarasbeforeby

lettingµ0i=µ0and(u
0
i,v
0
i)=(0,0),foralli≤Nt.

WefollowthedefinitionofStep1)forΨ[ξ],G,butweusetheEulerschemefortheforward
processbetweentiandti+1:

Xjti+1 =X
j
ti
+hB(Xjti,(u

j−1
i ,v

j−1
i )(X

j
ti
),µj−1i ,(u

j−1
i ,v

j−1
i )♯µ

j−1
i )+σ∆Wi. (9)

SupposethejPicarditerateattimetiisgivenbyµ
j
iwithµ

j
0=µ0:

µji(·)=
Nx

k=1

pji,kδxk(·),p
j
i,k≥0∀k∈{1,...,Nx}and

Nx

k=1

pji,k=1.

ThelawofXjtiintheEulerschemeoftheforwardprocessisµ
j
i.Thenwewouldliketodefineµ

j
i+1

asthelawofXjti+1 intheEulerschemeabove,butthequantityX
j
ti+1
maynotbelongtothegrid.
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Insteadofusingformula(9),thenaturalideaisthentoreplaceitbyitsprojectiononthegridΓ:

Xjti+1 =Π Xjti+hB(X
j
ti
,(uj−1i ,v

j−1
i )(Xjti),µ

j−1
i ,(u

j−1
i ,v

j−1
i )♯µj−1i )+σ∆Wi

[Xjti]=µ
j
i(·)andµ

j
i+1(·)=[X

j
ti+1
].

(10)

ThelawofXjti+1 istheconvolutionofµ
j
iwithtransitiondensityq

j(ti,ti+1;xk,xn)withxk,xntwo
pointsofthegridΓandk,n∈{1,...,Nx}. Thetransitionprobabilityisequaltotheconditional
probabilitythattheprocessXjstartingattimetifrompointxkarrivesattimeti+1atthepoint
xn,i.e.

qj(ti,ti+1;xk,xn)=P(X
j
ti+1
=xn|X

j
ti
=xk).

Thediscretizedlawµji+1isthenwrittenas:

µji+1(·)=(µi∗q
j(ti,ti+1))(·)=

Nx

n=1

pji+1,nδxn(·)

pji+1,n=

Nx

k=1

pji,k×q
j(ti,ti+1;xk,xn)=

Nx

k=1

pji,k×P(X
j
ti+1
=xn|X

j
ti
=xk).

ItisworthnoticingthatifwedidnottaketheprojectionwhencomputingXjti+1 inthescheme

(10),thenitslawwouldbegivenbyconvolutionofthelawµjiwiththeGaussiantransitionden-
sityq̄j(ti,ti+1;xk,y)associatedtotheEulerscheme. Thetransitiondensitiesq

jandq̄jhavethe
followingrelation:

P(Xjti+1 =xn|X
j
ti
=xk)=q

j(ti,ti+1;xk,xn)=
β(xn,∆x/2)

q̄j(ti,ti+1;xk,y)dy.

Infact,foramoretractableimplementationoftheforwardscheme,weusethebinomialapprox-
imationfortheBrownianincrements(8)introducedintheprevioussection.Notethatquantization
withmorepointscanbeeasilyapplied.Inthisbinomialcase,with(↑)/(↓)representingthe“up”
and“down”branches,respectively,thetransitionprobabilitiesonthegridcanbeeasilycomputed:

P(Xjti+1 =xn|X
j
ti
=xk)

=
1

2
1(Xjti+1(↑)=xn|X

j
ti
=xk)+1(X

j
ti+1
(↓)=xn|X

j
ti
=xk).

Thenwecanwriteµji+1bycomputingtheprobabilities:

pji+1,n=
Nx

k=1

pji,k
2
·1(Xjti+1(↑)=xn|X

j
ti
=xk)+1(X

j
ti+1
(↓)=xn|X

j
ti
=xk)

AtPicarditerationj≥1,theforwardschemefinallygivestheflowofmeasures(µji)
Nt
i=0 at

discretetimesteps(ti)
Nt
i=0ofthediscretizedlawdefinedonthegridΓ.Thus,wehavedescribedan

implementationofStep1)inthedefinitionofthePicardmappingΨ[ξ],G.Inthenextsection,we
detailtheimplementationofthebackwardcomponentsinStep2).
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3.4.3 Gridfortheapproximationofthebackwardcomponent

GiventhecurrentPicarditerates(µji,u
j−1
i (·),v

j−1
i (·)),i=0,···,Nt,wewouldliketodetail

Step2)inthedefinitionofΨ[ξ],G.SincewehaveadiscretespatialgridΓ,wewishtocompute

thevaluesofuji(x)andv
j
i(x)forx∈Γ. ByreplacingY

j
ti
andZjtiwiththeirrespectivefeedback

functionsinthebackwardcomponentinEquation(7),forx∈Γwehavethefollowingbackward
schemestarting,fori≤Nt−1,withterminalconditionattimeT=tNt,(u

j
Nt
,vjNt)=(G,0):

uji(x)=E u
j
i+1(X

j
ti+1
,µji+1)+h·F(X

j
ti
,uj−1i (X

j
ti
),vji(X

j
ti
),µji,(u

j−1
i ,v

j−1
i )♯µ

j
i)|X

j
ti
=x ,

vji(x)=E u
j
i+1(X

j
ti+1
)·∆Wi/h|X

j
ti
=x .

ThevariableXjti+1 withlaw[X
j
ti+1
]=µji+1isgivenbytheforwardschemepresentedintheprevious

sectionwithstartingpointXjti=x.Noticethatbyconstructionoftheforwardscheme,X
j
ti+1
∈Γ

andsupp(µji+1)=Γsou
j
i+1(·)hasbeencalculatedandsavedattimeti+1.

WehaveamoreexplicitschemeinthecaseofbinomialapproximationoftheBrownianin-
crements,whichisusedforthenumericalresultsforourexamples,withXjti+1(↑)andX

j
ti+1
(↓)as

definedintheforwardscheme,alwaysconditionaltoXjti=xandgivenµ
j
iattimeti:

uji(x)=
1

2
uji+1(X

j
ti+1
(↑))+uji+1(X

j
ti+1
(↓))+h·F(x,uj−1i (x),v

j
i(x),µ

j
i,(u

j−1
i ,v

j−1
i )♯µ

j
i),

vji(x)=
h−1/2

2
uji+1(X

j
ti+1
(↑))−uji+1(X

j
ti+1
(↓)).

WehavenowdescribedaschemeforStep2)inthedefinitionofΨ[ξ],G.Puttingthistogether
withtheprevioussection,wehavedescribedafullyimplementableschemeforΨ[ξ],G. Notethat
wecanusethisPicarditerationmappingtodefinetheanalogueofthesolverspicardandsolver.
Importantly,wecanalsoapplythecontinuationintimemethodtothegridalgorithmaswell.
Inthenextsection,weapplythesetwomethods,thetreeandgridalgorithms,tofiveexample
problems.

4 Examples

WehavecollectedfiveexampleproblemstotestthealgorithmspresentedinSection3.

4.1 LinearExample

ThefirstexampleisalinearmodelwhichcomesdirectlyfromChassagneux,Crisan,Delarue
[14],inwhichtheyimplementedthetreealgorithm.Thesystemofinterestisthefollowing:

dXt=−ρE(Yt)dt+σdWt

X0=x0

dYt=−aYtdt+ZtdWt

YT=XT.
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Forthisproblem,thesolutionisknownexplicitly:

Y0=
x0e

aT

1+ρa(e
aT−1)

Forthenumericalresults,weletρ=0.1,a=0.25,σ=1,T=1,andx0=2. Wevaryh,the
timestepsize,andforthegridalgorithm,weuse∆x=h2.Figure1showsthelogerrorbetween
thenumericalandtruesolutionvaluesofY0asafunctionoflognumberoftimestepsforthetree
andgridalgorithmwithonelevel(i.e. withoutusingcontinuationintime). Theleftfigure(tree
algorithm)repeatstheresultsin[14]andasexpected,itdecreaseslinearly. Ontheotherhand,
wealsoobserveanegativetrendintherateofconvergenceforthegridalgorithm. Thus,both
algorithmsappeartoconvergetothetruesolution.
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(b)GridAlgorithm

Figure1:LinearExample: Convergenceofthealgorithmswithonelevelasthenumberoftime
stepsincreases.

4.2 TrigonometricDriversExample

ThesecondexamplealsocomesdirectlyfromChassagneux,Crisan,Delarue[14].Thesystem
ofinterestisthefollowing:

dXt=ρcos(Yt)dt+σdWt

X0=x0

Yt=Et(sin(XT))

Forthenumericalresults,weletσ=1,T=1,x0=0,h=1/6forthetreealgorithmand
h=1/12and∆x=h2forthegridalgorithm.Forthisproblem,weobserveabifurcationwhen
usingthetreealgorithmasweincreasethecouplingparameter,ρ. Figure2showsthevalues
ofY0fromthelast5Picarditerations. Startingataboutρ=3.5,thetreealgorithmwithout
continuationintimebifurcates.Ifthecontinuationintimemethodisusedforthetreealgorithm
withtwolevels,thereisnobifurcationfortherangeofvaluesofρshowedintheplot.Notethat
theresultsfromthetreealgorithmrepeatthosein[14].Thegridalgorithmperformsquitewellin
thesensethatevenwithonlyonelevel,thealgorithmconvergesforallofthevaluesofρinthe
plot.Inparticular,itavoidstheexponentialgrowthofthedatastructurecharacterizingthetree
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algorithm.Notethateventhoughboththetreemethodwithtwolevelsandthegridmethodwith
onelevelconverge,theyproducedifferentvaluesforY0forlargervaluesofρ. Webelievethisis
becausethetreealgorithmislessaccuratesincethetimestepislarger.
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Figure2:TrigonometricDriversExample:BifurcationsinthevaluesofY0appearasthecoupling
parameter,ρ,increases. Thetreealgorithmwithonelevelisshowninbluecirclesandwithtwo
levelsisshowninredsquares.Thegridalgorithmwithonelevelisshowninblackasterisks.

Forvaluesofρforwhichthetreealgorithmbifurcates,wewereinterestedintheeffectof
changingσontheconvergence.Figure3showsthelast5valuesofY0fromthePicarditeration
asσvariesforρ=5.Surprisingly,thevalueofσplaysnoroleinthebifurcationforthisvalueof
ρ.Toseeifσwouldplayarolewhenρisclosertothebifurcationpoint,wehaveanalogousplots
whenρ=3.5andρ=4(seeFigure4).Intheseplots,however,itisclearthatσdoesaffectthe
bifurcation.Understandingtheroleofσonthebifurcationisanopenquestion.Itisinterestingto
notethateventhoughthetreealgorithmdoesnotbifurcateforρ=3.5whenσ=1,westillobserve
abifurcationwhenwefixρ=3.5andvaryσ. Thissuggeststhatwecheckifthegridalgorithm
bifurcatesaswevaryσforafixedvalueofρwherethereisnobifurcationwhenσ=1,suchas
ρ=5.Figure5showsthatthegridalgorithmdoesnotbifurcateaswechangeσforfixedρ=5.
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Figure3:TrigonometricDriversExample:Treealgorithmwithonelevelforρ=5. Changingσ
hasnoeffectonthebifurcation.
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Figure4:TrigonometricDriversExample:Treealgorithmwithonelevelforρ=3.5andρ=4.
Changingσproducesunexplainedresults.
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Figure5:TrigonometricDriversExample: Gridalgorithmwithonelevelforρ=5. Thereisno
bifurcationaswevaryσ.

4.3 Mixed Model

ThethirdexamplealsocomesdirectlyfromChassagneux,Crisan,Delarue[14].Thesystemof
interestisthefollowing:

dXt=−ρYtdt+σdWt

X0=x0

dYt=arctan(E(Xt))dt+ZtdWt

YT=arctan(XT).

Forthenumericalresults,weletσ=1,T=1,x0=2,h=1/6forthetreealgorithmand
h=1/12and∆x=h2forthegridalgorithm. Wealsoobserveabifurcationforthisproblem
asweincreasethecouplingparameter,ρ.Figure6showsthevaluesofY0fromthelast5Picard
iterations.Startingataboutρ=1.5,thetreealgorithmwithoutcontinuationintimebifurcates.
Ifthecontinuationintimemethodisusedforthetreealgorithmwithtwolevels,thebifurcation
pointispushedbacktoaboutρ=3,andpushedbackfurtherwhenusingthreelevelstoabout
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ρ=5. Notethattheseresultsforthetreealgorithmrepeatthosein[14]. Thegridalgorithm
performsquitewellagaininthesensethatitconvergesforallofthevaluesofρshown,evenwhen
usingonlyonelevel.Further,itsmajorattractivnessisthelowercomplexitycomparedtothetree
algorithm.
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Figure6: Mixed Model: BifurcationsinthevaluesofY0appearasthecouplingparameter,ρ,
increases.Thetreealgorithmwithone,two,andthreelevelsisshowninbluecircles,redsquares,
andgreentriangles,respectively.Thegridalgorithmwithonelevelisshowninblackasterisks.

Asinthetrigonometricdriversexample,wecanalsoinvestigatetheeffectofchangingσfora
valueofρwherethetreealgorithmwithoutcontinuationintimebifurcates.Forρ=2,Figure7
showsthatthetreealgorithmconvergesforlargeenoughvaluesofσ.
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Figure7: MixedModel:Treealgorithmwithonelevelforρ=2.Thealgorithmconvergesforlarge
enoughvaluesofσ.

Sincewehaveobservedthatthetreealgorithmconvergesforsmallvalueofρandlargevaluesof
σ,thissuggeststryingacontinuationinρand/orσ,insteadofthecontinuationintime.Insteadof
implementingafullcontinuationmethod,weusedasimplermethodofincrementingtheparameter
ofinterest.
Theincrementationinρisperformedbystartingthealgorithmwithasmallvalueofρand

lettingitconverge.Thenρisincreasedbysomefixed∆ρ,andthealgorithmisinitializedwiththe
solutionfromthepreviousvalueofρ.Figure8showstheresultsfromtheincrementationinρ.The
incrementationinρonlyincreasesthebifurcationpointbyasmallamount.
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Theincrementationinσissimilar,exceptforeachvalueofρ,westartthealgorithmwitha
sufficientlylargevalueofσsuchthatitwillconverge.Thenσisdecreasedbyafixed∆σ.Figure
9showstheresultsfromtheincrementationinσ.Theincrementationinσalsoonlyincreasesthe
bifurcationpointbyasmallamount.
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Figure8: MixedModel:Treealgorithmwithonelevel. Withoutcontinuationorincrementationis
showninblack.Incrementationinρwith∆ρ=0.1,0.01,and0.001areshowninbluecircles,red
squares,andgreentriangles,respectively.
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Figure9: MixedModel:Treealgorithmwithonelevel. Withoutcontinuationorincrementationis
showninblackasterisks.Incrementationinσwith∆σ=1,0.5,and0.1areshowninbluecircles,
redsquares,andgreentriangles,respectively.

Ifwetakethepreviousexamplebutchangethedriftanddriverfunctionstoalsobeintermsof
themeanoftheprocesses,thenwehavethefollowingsystem,whichwewillrefertoasthemixed
modelofmeans:

dXt=−ρE(Yt)dt+σdWt

X0=x0=2

dYt=arctan(E(Xt))dt+ZtdWt

YT=arctan(E(XT)).
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Forthelastexample,wenoticedthatincreasingσallowsthetreealgorithmtoconverge. Weare
thusinterestedtoseeifreplacingthedynamicswiththemeanoftheprocesswillremovetheeffect
ofchangingσontheconvergence. Weusethesamevaluesoftheparametersasbefore.Figure10
showsthebifurcationwithonelevelofthetreealgorithm(i.e.withoutusingcontinuationintime).
TheeffectofchangingσisshowninFigure11. Ourpredictionisconfirmed:σnolongeraffects
theconvergencewhenthedynamicsarereplacedwiththemeanoftheprocess.
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Figure10: MixedModelofMeans:Bifurcationforthetreealgorithmwithonelevel.
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Figure11: MixedModelofMeans:Treealgorithmwithonelevelwithρ=3.Changingσhasno
affectonthebifurcation.

4.4 Examples:LinearQuadratic MeanFieldGames

Thelasttwoexamplesbelongtothefamilyoflinearquadratic(LQ)games.Inthesemodels,
thedynamicsofthestatearelinearinthesensethatthedriftisdefinedbyanaffinefunction:

b(t,x,α)=Atx+Btα+βt.

Furthermore,therunningandtheterminalcostarequadraticinthestateandcontrolvariables.
Forthesakeofsimplicity,wechoosenottoincludethecrossterms,sothatwedefinefandgas
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follows:

f(t,x,α)=
1

2
Ptx

2+
1

2
Qtα

2

g(x)=
1

2
Sx2.

TheFBSDEsystemderivedbyapproachingtheLQ meanfieldgamesviatheweakapproach
becomes:

dXt= Atx+Btα+βtdt+σdWt, X0=ξ

dYt= −
1

2
PtX

2
t+ AtXt+βt

Zt
σ
+
1

2

B2t
Qt

Z2t
σ2
dt+dWt, YT=

1

2
SX2T.

(11)

Wepresenttwoexamplesoflinearquadraticgames:aproblemofflocking,andapriceimpact
modelofatrader.

Remark1 WeobservethatthedriveroftheBSDEisquadraticin Zt,whichmakesitseldom
solvable.Ontheotherhand,itispossibletoobtainexplicitsolutionsforLQmodels.Ifwewereto
numericallysolveequation(11),wemightobserveblowupfromthequadratictermsinthebackward
equationandconsequentlythealgorithmtonotconverge.Luckily,wedonotobservesuchblowup
intheexamplesweconsider. Butifblowupdoesoccur,onecouldconsideradaptingthemethod
presentedbyChassagneuxandRichouin[15]tonumericallyapproximateaquadraticBSDE.

4.4.1 FlockingProblem

Thenextexampleproblemmodelsflocking.AsinthepaperofNourian,Caines,andMalhaḿe
[28],weconsiderthespatiallyhomogeneouscasewherethestate,Xt,representsthevelocityofa
representativeplayer,orbird.Eachbirdcontrolsitsvelocitythroughtheprocess:

dXt=αtdt+σdWt,

wherethecontrolischosentominimize:

J(α)=E
T

0

1

2
α2t+

ρ

2
(Xt−µ̄t)

2 dt.

overα∈A.Above,weletµ̄tdenotethemeanofthedistributionµt(ofthevelocitiesofthebirds)
attimet. Therunningcostconsistsoftwocomponents. Thefirsttermencouragesthebirdsto
minimizetheirkineticenergybynotchoosingalargecontrol. Thesecondtermencouragesthe
birdstoaligntheirvelocitieswiththemeanvelocityofthegroup.
Thismodelfallsintotheclassoflinearquadraticgames. Assumethattheinitialcondition

isgivenbyaconstant,X0=x0.ItcanbeshownthatthesolutionisGaussianwithmeanand
variance:

E(Xt)=x0

Var(Xt)=σ
2

t

0
exp −2

t

s
ηudu ds,
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where:

ηt=
√
ρ
e2
√
ρ(T−t)−1

e2
√
ρ(T−t)+1

.

Usingtheweakformulation,theFBSDEsystemofinterestisthefollowing:

dXt=−
Zt
σ
dt+σdWt

X0=x0

dYt=−
Z2t
2σ2
+
ρ

2
(Xt−EXt)

2 dt+ZtdWt

YT=0.

IfweusethePontryaginformulation,theFBSDEsystembecomes:

dXt=−Ytdt+σdWt

X0=x0

dYt=−ρ(Xt−E(Xt))dt+ZtdWt

YT=0.

Thenumericalresultsarepresentedforρ=1,σ=1,T=1,x0=0,h=1/20forthetree
algorithmandh=1/130and∆x=h2forthegridalgorithm.Figure12(a)showstheresultsfor
thegridalgorithmforboththeweakandPontryaginapproaches. Theplotshowstheweightsof
thedistributionL(XT). Theresultsaresimilarbetweenbothapproachesandcoincidewiththe
truesolution.
Wecanlookattheconvergenceratebycalculatingthe2-Wassersteindistancebetweenthe

numericalresultsandthetruesolutionaswechangethenumberoftimesteps.Sinceourstatespace
isinonedimension,wecancalculatethe Wassersteindistanceexplicitlyusingtherepresentation
providedbyProkhorov[30]:

Wp(µ,ν)=
1

0
|F−1µ (u)−F

−1
ν (u)|

pdu

1/p

,

whereFµ(x)=µ([0,x]),denotesthecumulativedistributionfunction.Figure12(b)presentsthe
convergencerateofthegridalgorithmintermsofthe2-Wassersteindistancecalculatedbetween
thetruesolutionandnumericalresultswithrespecttothenumberoftimesteps.Asexpected,the
2-Wassersteindistancedecreasestowards0asweincreasethenumberoftimesteps,forboththe
Pontryaginandweakapproaches.
TheresultsforthetreealgorithmareshowninFigure13fortheweakandPontryaginap-

proaches.Aswiththegridalgorithm,theweakandPontryaginsolutionsaresimilartoeachother
andcoincidewiththetruesolution.

4.4.2 TraderProblem

Thelastexampleshowsanapplicationof meanfieldgamestofinance,suchasthetrader
congestionmodelinthepaperofCardialaguetandLehalle,[7]. WefocusonthePriceImpact
Model presentedinthebookofCarmonaandDelaruein[8].Theinterestforthiskindofmodel
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Figure12: FlockingProblem:(a)DistributionµT oftheplayers’statesattimeTforthegrid
algorithmwithonelevel. Pontryaginisinbluecircles,weakisinredsquares,truesolutionis
showninblackasterisks.(b)2-Wassersteindistancebetweentruesolutionandnumericalsolution
forgridalgorithmwithonelevelasweincreasethenumberoftimesteps,plottedasalog-logplot.
Pontryaginapproachisinbluecirclesandweakapproachisinredsquares.
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Figure13:FlockingProblem:DistributionµToftheplayers’statesattimeTforthetreealgorithm
withonelevel.Pontryaginisshowninbluecircles,weakisshowninredsquares,andtruesolution
isshowninblackasterisks.

ismotivatedbytheiruseinoptimalexecutionproblemsforhighfrequencytrading.Furthermore,
itrepresentsaninstanceofextendedmeanfieldgame,alsoknownasmeanfieldgameofcontrols,
inwhichtherepresentativeagentinteractswiththelawofthecontrolinsteadofthelawoftheir
state.Theproblemconsistsinagroupoftraderswhohavetobuyorsellalargeamountofshares
inagivenintervaloftime[0,T].Iftheytradetoofast,theywillsufferfrommarketimpact.Onthe
otherhand,iftheytradetooslow,theywillbeaffectedbyalargeriskpenalization.Approaching
thisproblemasameanfieldgame,theinventoryoftherepresentativetraderismodeledbya
stochasticprocess(Xt)0≤t≤Tsuchthat

dXt=αtdt+σdWt, t∈[0,T],
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whereαtcorrespondstothetradingrate. Thepriceoftheasset(St)0≤t≤T isinfluencedbythe
tradingstrategiesofallthetraderstroughthelawofthecontrols(θt=L(αt))0≤t≤Tasfollows:

dSt=γ
R
adθt(a)dt+σ0dW

0
t, t∈[0,T],

whereγandσ0areconstantsandtheBrownianmotionW
0isindependentfromW.Theamount

ofcashheldbythetraderattimetisdenotedbytheprocess(Kt)0≤t≤T. ThedynamicofK is
modeledby

dKt=−[αtSt+cα(αt)]dt,

wherethefunctionα→cα(α)isanon-negativeconvexfunctionsatisfyingcα(0)=0,representing
thecostfortradingatrateα.ThewealthVtofthetraderattimetisdefinedasthesumofthe
cashheldbythetraderandthevalueoftheinventorywithrespecttothepriceSt:

Vt=Kt+XtSt.

Applyingtheself-financingconditionofBlack-Scholes’theory,thechangesovertimeofthewealth
Varegivenbytheequation:

dVt=dKt+XtdSt+StdXt

= −cα(αt)+γXt
R
adθt(a)dt+σStdWt+σ0XtdW

0
t.

(12)

Weassumethatthetraderissubjecttoarunningliquidationconstraintmodeledbyafunction cX
ofthesharestheyhold,andtoaterminalliquidationconstraintatmaturityTrepresentedbya
scalarfunctiong.Thus,thecostfunctionisdefinedby:

J(α)=E
T

0
cX(Xt)dt+g(XT)−VT .

ApplyingEquation(12),itfollowsthat

J(α)=E
T

0
f(t,Xt,θt,αt)dt+g(XT),

wheretherunningcostisdefinedby

f(t,x,θ,α)=cα(α)+cX(x)−γx
R
adθ(a),

for0≤t≤T,x∈Rd,θ∈P(A)andα∈A=R. WeassumethatthefunctionscX andgare
quadraticandthatthefunctioncαisstronglyconvexinthesensethatitssecondderivativeis
boundedawayfrom0.SuchaparticularcaseisknownastheAlmgren-Chrisslinearpriceimpact
model.Thus,thecontrolischosentominimize:

J(α)=E
T

0

cα
2
αt
2+
cX
2
X2t−γXt

R
adθt(a)dt+

cg
2
X2T ,

overα∈A.Tosummarize,therunningcostconsistsofthreecomponents.Thefirsttermrepresents
thecostfortradingatrateα. Thesecondtermtakesintoconsiderationtherunningliquidation
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constraintinordertopenalizeunwantedinventories.Thethirdtermdefinestheactualpriceimpact.
Finally,theterminalcostrepresentstheterminalliquidationconstraint.
Asfortheflockingexample,thismodelfallsintheclassoflinearquadraticgames. Assume

thattheinitialconditionisgivenbyaconstant,X0=x0.ThesolutionisGaussianwithmeanand
variancedefinedas:

E(Xt)=x0e
− t

0
η̄s
cα
ds

Var(Xt)=σ
2

t

0
e−

2
cα

t
sηrdrds

where:

η̄t=
−C(e(δ

+−δ−)(T−t)−1)−cg(δ
+e(δ

+−δ−)(T−t)−δ−)

(δ−e(δ+−δ−)(T−t)−δ+)−cgB(e(δ
+−δ−)(T−t)−1)

ηt=−cα cX/cα
cα cX/cα−cg−(cα cX/cα+cg)e

2
√
cX/cα(T−t)

cα cX/cα−cg+(cα cX/cα+cg)e
2
√
cX/cα(T−t)

,

fort∈[0,T],whereB=1/cα,C=cX,δ
±=−D±

√
R,withD=−γ/(2cα)andR=D

2+BC.
UsingtheweakapproachyieldsthefollowingFBSDEssystem:

dXt=−
1

cα

Zt
σ
dt+σdWt, X0=x0

dYt=−
cX
2
X2t+

γ

cα

E[Zt]

σ
Xt+

1

2cα

Zt
σ

2

dt+ZtdWt, YT=cg
X2T
2
.

Alternatively,theFBSDEsystemobtainedviathePontryaginapproachis:

dXt=−
1

cα
Ytdt+σdWt, X0=x0

dYt=− cXXt+
γ

cα
E[Yt]dt+ZtdWt, YT=cgXT.

Thenumericalresultsfocusontheeffectofthecontinuationmethodforthegridalgorithm.In
contrastwiththepreviousexamples,weshowthatthegridalgorithmisalsoaffectedbybifurcation.
Figure14showsthelastfivePicarditerationsofY0forthePontryaginapproachwhenthenumber
oflevelsrangesfrom1to3. Fixingtheparametersx0=1,σ=0.7,1/cα =1.5,cg=0.3,
γ=2,T=1,h=1/12,∆x=h2andincreasingthecouplingparameter,cX,weobservethatthe
bifurcationeffectcanbecorrectedbyincreasingthenumberoflevels.Infact,Figure14showsthat
thetruevalueofY0matchesthevaluecomputednumericallywhenusingthreelevels.
Furthermore,Figure15(a)comparesthedistributionL(XT)obtainedbythePontryaginand

theweakapproachesusingthegridalgorithmwithparametersx0=1,σ=0.7,1/cα=0.3,cg=0.3
γ=2,cX =2,T=1,h=1/130and∆x=h

2.Thetwoapproachesproducesimilarresultsthat
coincidewiththetruesolution.
Figure15(b)presentstheconvergencerateintermsofthe2-Wassersteindistancecalculated

betweenthetruesolutionandnumericalresultswithrespecttothenumberoftimesteps. Weagain
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Figure14:TraderProblem:BifurcationsinthevaluesofY0dependingonthecouplingparameter
cX fordifferentnumberoflevelsinthegridalgorithm. One,two,andthreelevelsareshownin
bluecircles,redsquares,andgreentriangles,respectively.ThetruevalueofY0isshowninblack
asterisks.

makeuseoftheexplicitrepresentationofthe Wassersteindistance[30].Thenumericalsolutionis
obtainedusingthegridalgorithmwithparametersx0=1,σ=0.7,1/cα=0.3,cg=0.3,γ=2,
cX =2,T=1,and∆x=h

2.Asexpected,the2-Wassersteindistancedecreasestowards0aswe
increasethenumberoftimesteps.
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Figure15: TraderProblem:(a)DistributionµT oftheplayers’statesattimeTforthegrid
algorithmwithonelevel.Pontryaginisshowninbluecircles,weakisshowninredsquares,and
thetruesolutionisshowninblackasterisks.(b)2-Wassersteindistancebetweentruesolutionand
numericalsolutionforgridalgorithmwithonelevelasweincreasethenumberoftimesteps,plotted
asalog-logplot.Pontryaginapproachisshowninbluecirclesandweakapproachisshowninred
squares.

Thelastplot,Figure16,showstheerrorfromthetruesolutionofthecontrolattime0,α0,
asweincreasethenumberoftimesteps.Thisvalueisgivenbyα0=−Y0/cX forthePontryagin
approachandα0=−Z0/(cXσ)fortheweakapproach.Thetruevalueisgivenbyα0=−η̄0x0/cX.
Asforthe2-Wassersteindistance,theerrorinthecontroldecreasestowards0.
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steps,plottedasalog-logplot.

5 Conclusion

Inconclusion,wehaveprovidedtwoalgorithmsfornumericallysolvingFBSDEsof McKean-
Vlasovtype,whichcanbeusedtoformulatethesolutionstomeanfieldgameproblems.Thefirst
algorithmisbasedonapathwisetreestructure.Thesecondalgorithmisbasedonamarginalgrid
structure. Wehavealsoproposedvariousrefinementstothealgorithms,includingacontinuation
intime,andincrementationofacouplingparameterorthediffusioncoefficient. Thedifferent
numericalmethodswereillustratedonfivebenchmarkexamples.
Thetreealgorithm’smainadvantageisthatwedonotneedtoprojectthevaluesofXtonto

adiscretizedspatialgrid,whichpotentiallymakesthealgorithmmoreaccurate. However,asig-
nificantdisadvantageofthetreealgorithmistheexponentialgrowthofthedatastructureasthe
numberoftimestepsisincreased.Thisexponentialgrowthismadeworseyetifahigherorderof
quantizationweretobeusedforapproximatingtheBrownianincrements.
Thegridalgorithm’smainadvantageisitavoidstheexponentialgrowthofthedatastructure.A

higherorderofquantizationmaybeusedwithoutdrasticallychangingthealgorithm’scomplexity.
Adisadvantageofthegridalgorithmisitssensitivitytothespatialstepsizewithrespecttothe
timestepsize.Forthealgorithmtobestable,thetwostepsizesneedtobewelladjustedtoeach
other.
Forboththetreeandgridalgorithms,wehaveobservedthatthecontinuationintimeisableto

extendtherangeofvaluesofthecouplingparametersforwhichthealgorithmswillconverge.The
incrementationmethodsproposedinSubsection4.3,however,werenotverysuccessfulatavoiding
thebifurcations.
Thisreporthastouchedonmanythingsthatcouldbeexploreddeeper.Firstofall,theextension

ofthegridalgorithmin[18]tothemeanfieldsettinghasnotbeenstudiedfromatheoretical
standpoint.Itisanopenquestiontodetermineifthisalgorithmconverges(meaningthattheerror
decreasesasthegridsizedecreases).Theeffectofthecontinuationintimeorincrementationofthe
couplingparameterand/ordiffusioncoefficienthasalsoyettobestudied.Thenumericalresults
alsoraisedquestionsontheinfluenceofthediffusioncoefficientinthebifurcations.
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