
February 6, 2017 Computer Science Education output

To appear in Computer Science Education
Vol. 00, No. 00, Month 20XX, 1–25

Research Article

Understanding Problem Solving Behavior of 6-8 Graders in a

Debugging Game

(Received 00 Month 20XX; final version received 00 Month 20XX)

Debugging is an over-looked component in K-12 computational thinking education.
Few K-12 programming environments are designed to teach debugging, and most de-
bugging research were conducted on college-aged students. In this paper, we presented
debugging exercises to 6th-8th grade students and analyzed their problem solving be-
haviors in a programming game - BOTS. Apart from the perspective of prior literature,
we identified student behaviors in relation to problem solving stages, and correlated
these behaviors with student prior programming experience and performance. We
found that in our programming game, debugging required deeper understanding than
writing new codes. We also found that problem solving behaviors were significantly
correlated with students’ self-explanation quality, number of code edits, and prior pro-
gramming experience. This study increased our understanding of younger students’
problem solving behavior, and provided actionable suggestions to the future design of
debugging exercises in BOTS and similar environments.
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1. Introduction

Due to advances in educational technologies, increased enthusiasm in computer
science outreach programs, and the growing number of international primary-age
computing curriculums, more students have started learning to program at a young
age. The notion of computational thinking is first envisioned by Papert (1980), as
derived from the Constructivism Learning Theory. As Papert (1980) wrote, “com-
puters might enhance thinking and change patterns of access to knowledge” (p. 3).
In 2006, Wing broadened the concept of computational thinking as “a fundamen-
tal skill for everyone, not just for computer scientists” (p. 33). In Wing’s (2006)
viewpoint, debugging is a key-part of computational thinking, as “computational
thinking is thinking in terms of prevention, protection, and recovery from worst-
case scenarios through redundancy, damage containment, and error correction” (p.
34). In 2010, Hemmendinger pointed out that finding and correcting errors, creating
representations, and analyzing are among key elements of computational thinking
that are shared across many disciplines beyond computer science. Similarly, Barr
and Stephenson (2011) as well as Grover and Pea (2013) view debugging as a
core element to be assessed in the development of computational thinking in K-12
classrooms. In 2012, Brennan and Resnick, researchers investigating Scratch, pro-
posed three dimensions of computational thinking that are applicable in the K-12
context: computational thinking concepts, practices, and perspectives (students’
understanding of their relationship with the technological world around them).
Testing and debugging was identified as one of the four main parts in the practice
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dimension which are “useful in a variety of design activities, not just programming”
(Brennan and Resnick, 2012, p. 7).

However, when Lye and Koh (2014) conducted a literature review on the progress
of K-12 computational thinking education in 2014, they found that 85% of stud-
ies investigated learning outcomes only in terms of computational concepts. This
review concluded that to complete the picture of K-12 computational thinking ed-
ucation, more work need to address computational practices such as debugging.
Similarly, Werner et al. (2012) designed an assessment tool to measure Computa-
tional Thinking in 325 students taking a middle school game-based programming
course. They found that students scored lowest on the tasks that involved problem
solving skills using debugging.

Moreover, for young novices, most programming environments are not intention-
ally designed to teach debugging. For example, Scratch (Resnick et al., 2009) and
Alice (Cooper et al., 2000) seek to prevent the introduction of syntactic errors in
the first place through designing visual components to directly manipulate objects.
Such environments also help students ‘debug’ by making problem states, which in-
clude a character’s properties and variable values, immediately visible on screen.
However, the visibility of problem states provides very little help to novices to
bridge the gap between current and desired state. When the objects behave dif-
ferently than expected, there is no feedback to help novices locate the error and
proceed. Other environments such as Greenfoot (Kölling, 2010) and BlueJ (Kölling
et al., 2003) provide simple debuggers showing variable values at specified lines of
code. However, novices need to first understand debugging as a problem solving
process in order to effectively use the debugging tools. Moreover, novices may ex-
perience negative emotions when encountering bugs. For example, Kinnunen and
Simon (2010) reported college freshmen expressed confusion, or more anguished
frustration and anger during debugging. These studies show that debugging edu-
cation would likely to be benefited from fun and engaging environments that foster
problem solving skills.

To design such environments, we need to first improve our understanding on
young students’ debugging process. For this purpose, we designed a debugging
feature in an educational game - BOTS (Hicks et al., 2014a). Twenty-two 6th-8th
grade students played through 7 levels of debugging puzzles in 2-hour workshop
sessions. We sought to address the following research questions:
RQ1: What are some problem solving behaviors and patterns students exhibited

when debugging?
RQ2: How do students’ problem solving behaviors relate to performance and

prior programming experience?
RQ3: How well can young students participate in self-explanation before and

after debugging, and how does the quality of self-explanations correlate to student
problem solving patterns and performance?
RQ4: What are young students’ perceptions of debugging?
The article starts with a review of problem solving stages, debugging environ-

ments for young novices, and learning analytics for programming (section 2). Then,
section 3 shows the design of BOTS and its debugging features, the experiment,
and the data analyze method. Section 4 presents the quantitative and qualitative
results of the study. Section 5 discusses result and design implications. Finally,
Section 6 outlines conclusions and future work.
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2. Related Work

2.1. Debugging and Problem Solving

Computational Thinking is essentially a type of problem solving methodology (Barr
and Stephenson, 2011; Grover and Pea, 2013; Wing, 2006) and debugging has been
widely considered an essential problem solving skill. For example, Klahr and Carver
(1988) identified five debugging phases for the Logo debugging curriculum: program
evaluation, bug identification, program representation, bug location and bug cor-
rection. Yoon and Garcia (1998) proposed (1) a cognitive model of debugging that
includes a comprehension strategy to identify discrepancies from the desired pro-
gram, and (2) an isolation strategy to localize bugs, hypothesize causes, correct
bugs and verify solutions. Both debugging models closely resemble the five stages
in modern problem solving models (Bruning et al., 2010), as illustrated in Figure 1.

Figure 1. Five Problem Solving Stages

In the problem solving model, identifying the problem is considered as one of the
most difficult stages. This stage requires domain knowledge, time and persistence.
In the context of debugging, a shallow problem identification could be noticing the
superficial differences in the outcomes between the desired and actual programs. A
deeper identification, instead, should locate the bug by identifying where and why
was wrong with the program. Domain knowledge facilitates the identification of the
problem. For example, when a program never ends, an experienced programmer
would immediately look into the program’s exit conditions in iterative structures
such as loop.

Representing the problem occurs both internally and externally, by either think-
ing abstractly or using external representations such as a flow chart. Both ap-
proaches can be done efficiently through identifying the current state and the goal
state in the problem solving space. In the context of debugging, good representation
reveals the underlying structures, common patterns, and discrepancies between the
buggy and desirable programs.

Selecting Strategy means selecting the method to derive solutions; it does not
mean selecting the possible solutions. One good problem solving strategy is mean-
end-analysis, which means breaking a problem into sub-parts, and gradually ap-
proaching the goal state through completing subparts. In the context of debugging,
one such strategy is to isolate bugs and correct one bug at a time. Another strat-
egy is to identify subgoals towards goal state, and fix program to achieve these
subgoals.

The successful implementation of a strategy heavily depends on the previous
stages. Good problem solvers consider and evaluate more solutions when imple-
menting a strategy. Lastly, the evaluating the solution phase includes the eval-
uation of both the final solution, and the whole problem solving process. Good
problem solvers apply appropriate measurements, such as designing comprehen-
sive unit tests.

Across domains, several problem solving patterns distinguish novices and experts.
Experts spend more time at the initial stages of problem solving: experts are more
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proficient with domain knowledge, and take more effort to understand the problem
deeply before implementing solutions. Moreover, experts tend to break problems
into more meaningful subparts and solve these subparts sequentially. Experts also
consider more alternative solutions when reflecting on the problem solving process.
Moreover, expertise in problem solving skills can be improved through accumulat-
ing general problem-solving knowledge, domain knowledge, and deliberate practice
(Bruning et al., 2010). Because debugging is commonly considered as a problem
solving process (Klahr and Carver, 1988; Yoon and Garcia, 1998), identifying and
understanding novices and experts behavioral patterns would benefit debugging
education.

The discrepancies between novices and experts at debugging have been stud-
ied extensively since the 1980s. Spohrer and Soloway (1986) found that contrary
to common belief at the time, not all bugs were results of misconceptions about
language constructs. Spohrer and Soloway (1986) concluded that bugs seem likely
to occur when novices are unable to coordinate and integrate the goals and plans
that underlie program code. Vessey (1985) classified novice and expert based on
their abilities to chunk programs. She found that experts who chunk programs into
meaningful pieces were significantly better in several measurements of debugging
expertise, such as time cost and strategy use. Nanja and Cook (1987) suggested
that fragile knowledge is what keeps novices from continuing in sophisticated prob-
lem solving strategies. In their work, fragile knowledge refers to misplaced, inert
or mixed knowledge that is unable to be applied in context.

In more recent studies, Fitzgerald et al. (2008) found that locating bugs is more
difficult than fixing them, suggesting the importance of identifying problems at
early stages. Murphy et al. (2008) evaluated debugging logs and final solutions from
college-level novices. They identified good debugging strategies including efficient
use of “tracing”, “testing”, “understanding the code”, “isolating the problem” and
“considering alternatives”. They identified bad strategies as inefficient use of some
previously mentioned strategies, along with “worked around the problem”(e.g. Re-
placed code student did not understand with completely new code), “just in case”
(did unnecessary and meaningless changes), and “tinkering” (randomly and usu-
ally unproductive changes (Murphy et al., 2008). These findings helped us identify
and quantify students problem solving behaviors in our analyses.

2.2. Debugging Game for Young Novices

For decades, serious gaming has been an engaging and effective way to teach com-
putational thinking and programming. One of the earliest efforts is LOGO Pro-
gramming Language designed by Papert et al. in 1967 (Logo Foundation, 2015). In
LOGO, children construct programs that direct the movement of a “turtle” object
to draw graphics on screen. In 2014, Vahldick et al. reviewed a total of 40 games
that are designed to teach programming, categorized as “LOGO-like” (drag-and-
drop commands from a tool-bar), “Adventure Games” (hero explore the world to
collect and interact with objects and characters), and “General Puzzles” (simula-
tions, real time strategies and maze games). Vahldick et al. (2014) tagged the games
based on the competences the games’ activity saught to establish: comprehension,
writing, and debugging. Surprising, they found while the majority of games’ activ-
ity helped practice writing programs (32 out of 40), only 6 games’ activities helped
practice comprehending programs, and only 5 helped practice debugging.

One of the few gamified environments that were specifically designed to teach
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debugging is Gidget created by Lee et al. (2014). Gidget follows a debugging-first
principle, in which learners debug existing programs before creating new programs.
The objective to fix the main character in the game - a self-blaming, fallible and
cooperative robot. Students write code such as “scan bucket” and “goto crate”
to order the robot character to perform actions and interact with objects. The
Gidget interface also enables students to step through code, view changes in the
environment, and receive feedback from the robot character such as “I could not
find anything to scan by that name”.

Lee et al. (2014) identified five counterproductive problem solving patterns from
students debugging in Gidget: blindly trusted the correctness of the original code;
deleted the original code without reading/understanding its clues; persisted in using
non-applicable programming constructs that worked for earlier levels; asked for
help before trying; and failed to adapt examples to specific contexts. Lee et al.’s
(2014) study also reported that students overcame more algorithm design and
learning phase barriers (Ko et al., 2004) in the programming activities if they had
debugged existing programs. The biggest improvements were found in two learning
phase barriers: design (knowing what to do), and understanding (knowing what to
expect on program’s external behavior). These results show the benefits of using
educational games to teach debugging. However, Lee et al.’s (2014) study identified
debugging strategy mainly from students’ verbal scripts and field observations, with
only 1 observer for 34 students. The study also did not interpret the results in the
context of problem solving, or relate debugging strategies to students’ performance
or prior programming experience.

2.3. Learning Analytics for Detecting Patterns in Programming

To design a gamified environment that fosters problem solving and debugging skills,
we must first understand how young students debug. One common approach is cod-
ing verbal scripts from a “think-aloud” process, during which participants verbalize
their thoughts when solving the problem. In the Gidget study, Lee et al.’s (2014)
Gidget study applied the “think-aloud” method to detect those counterproduc-
tive problem-solving strategies. Fitzgerald et al. (2005) conducted a study where
37 students were asked to “think-aloud” while working on multiple choice ques-
tions featuring code samples of arrays and loops. Later, Fitzgerald et al. (2008)
followed a Grounded Theory-based approach, where researchers noted key phrases
and strategies from transcripts, finalized strategies via a group-review process, and
went back to code to determin which strategies were used for individual tran-
scripts. This study found students deployed a total of 19 strategies with multiple
strategies on each question. This study was also able to group strategies based
on existing learning theory, connecting students problem solving to large bodies
of literature. Loksa and Ko (2016) recorded participants “think-aloud” in a study
where students were to write pseudo-code to solve problems related to while-loop
usage. They coded “think-aloud” transcripts with 4 problem solving activities re-
lated to self-regulation and 5 types of self-regulation activities. These studies found
that novice programmers do self-regulate, but in an infrequent, inconsistent and
shallow fashion.

Other studies used human judgement to record students activity and analyze
program artifacts. For example, Blikstein (2011) conducted an exploratory case
study, where he collected log files of user actions and code snapshots from nine
students in a three week programming assignment. Blikstein identified novice pro-
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gramming strategies and compilation behaviors through visualizing simple mea-
surements such as code size, frequency of compilations and number of errors across
time. This case study suggested three student coding profiles (copy and pasteres,
mixed-code, and self-sufficient), and three code compilations stages (initial explo-
ration, intense code evolution, and final touch). Similarly, Murphy et al. (2008)
conducted a study where students did six programming excersices followed by one
debugging exercise containing 3-5 logic errors. The debugging logs were recorded
each minute by observers and the final debugging solutions were later noted by
two researchers, and finalized in consultation with a third. This work identified 35
distinct strategies in 12 categories (described in the last section of 2.1), and found
cases where students employed these strategies effectively or not during debugging.

Another common approach is data mining. Data mining is able to reveal pat-
terns from large number of participants, assisted by automatic data collection and
cognitive modeling. Blikstein et al. (2014) used Natural Language Processing tech-
niques to develop a metric to compare differences between programs, modeled
students progress as Hidden Markov Model (HMM), and found patterns through
clustering the paths student took through HMM. These interpretable patterns were
paths through program state, revealed states where students clearly encountered
difficulties, and were predictive of student midterm grades. Berland et al. (2013)
clustered programming snapshots based on created features such as the number of
action and logic primitives. They identified higher level programming and problem
solving styles, and delineated initial construction of programming knowledge as a
three-step explore, tinker, and refine process. This work also successfully quantified
tinkering, refined and emphasized on its importance in the context of programming.

We applied the second approach in our study. While the think-aloud method
yields rich information from students’ perspective, our participants from grades 6
to 8 were too young to clearly verbalize their problem solving process in a “think-
aloud” setting. Our debugging game also involved simple programming tasks and
few participants, which makes a data mining approach less useful. Moreover, we
observed game behaviors such as moving an object repetitively to see the anima-
tions frequently in the BOTS environment. This makes human judgement necessary
when interpreting the programming artifacts in BOTS. Given these factors, this
study used the BOTS system to log students actions and programming artifacts
during gameplay. Later, we extracted features from logged data, and relied on
human coders to identify barriers in problem solving strategies.

3. BOTS and Experiment Design

3.1. BOTS

BOTS (Hicks et al., 2014a) is a web-based game that teaches fundamental pro-
gramming ideas to K-12 students. The BOTS gaming experience is very similar
to Lightbot (Yaroslavski, 2014), Robozzle (Ostrovsky, 2009), and Program your
Robot (Kazimoglu et al., 2012), where students attempt to write programs to
guide a robot character through maze-like puzzles. Among these games, BOTS and
Program your Robot are specifically designed for teaching and researching compu-
tational thinking. Compared to Program your Robot, which has been studied on
college students, BOTS targets a much younger audience. The BOTS environment
contains simpler objectives and interaction, more realistic 3D puzzles, and more
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gamified features to foster creativity among K-12 students.
In BOTS, students solve each puzzle using loops, conditional statements, and

functions, the robot must press a number of buttons either by standing on them
or placing a crate on them. Most BOTS puzzles are designed to have repetitive
patterns, which provide opportunities for students to optimize (shorten) their pro-
gram through loops and functions. To encourage the practice of these program-
ming structures, BOTS awards students platinum, gold, silver and bronze medals
based on the length of their programs. In BOTS, students can play expert-designed
puzzles, create new puzzles, and play puzzles created by other players. BOTS has
scoreboards and other gamified elements to keep competitive players engaged, such
as offering creative play in the form of level designing tools.

First time players must play through the BOTS tutorial. The BOTS tutorial
contains eight levels of increasing difficulty, with pop-up instructions explaining
the BOTS interface, game mechanics and programming concepts at the beginning
of each level. The first tutorial level instructs students to move the robot in a
straight line. The next five levels (Level 2-6) teach students to program the robot to
make turns (Level 2), climb (Level 3), move boxes (Level 4), and move in repetitive
patterns through loops and functions (Level 5-6). The rest levels (Level 7-8) present
puzzles for students to practice the concepts learned in the previous levels. The very
last level (Level 8) is the designed as the Boss Level to engage and challenge over-
achievers. The last level of the BOTS tutorial is shown in Figure 2, which requires
both function and loop to solve the puzzle efficiently. An example of instructions
in BOTS tutorial is shown in Figure 3.

Figure 2. A student program from the last level of BOTS Tutorial. To pass this level, the robot (in red)
must press a number of buttons (in yellow) either by standing on them, or placing a crate on them. The

robot executes the program on the left panel, written by student dragging and dropping five types of code:

action, control, functions, variables, and parameters (in the top right panel).

Previously, BOTS has been used to study user-generated content in serious
games, particularly with regards to the design of the creative tools used to build
such content. Researchers found that even the best players were likely to build
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Figure 3. BOTS tutorial interface. At the beginning of puzzle solving, where dialog box explains the
interface, or concepts of loops and functions if they are needed in this level. After reading instructions,

students start to program from scratch.

puzzles which did not feature the game’s core mechanics, and that implementing
a “Solve and Submit” system which required players to provide solutions to their
own puzzles was a small improvement on this front (Hicks et al., 2014a). Further
work with this data showed that it is feasible to use student data to construct
low-level hints for user-created levels without requiring expert coding or annota-
tion (Hicks et al., 2014b; Peddycord III et al., 2014). A more effective approach
to improving user-generated content was the implementation of gamified level ed-
itors whose capabilities correspond more closely with the game’s mechanics; both
a “problem-posing” style level editor and a programming-oriented level editor re-
sulted in the creation of levels with better affordances for use of the game’s core
concepts (Hicks et al., 2016).

3.2. BOTS Debugging Feature Design

In each puzzle of BOTS debugging, students first view an animated scenario in
which the robot character executed a buggy or incomplete program and failed the
puzzle. Then, students debug the program using five types of debugging actions:
deletion & un-deletion of the original code, addition & removal of new code, and
running the code. We refer to the first four debugging actions as code edits in later
analyses. To help students keep track of changes, student edits were highlighted
to differentiate them from the original code. Another design is that when student
deletes an original code, it will be shown on the screen as being crossed out; but
if the student removes some of their own new code, it just disappears. This design
helps students focus on addressing problems in original code. From the study by
Lee et al. (2014), students were frequently observed to delete original code before
reading. Leaving original code crossed out instead of disappearing gives student
another chance to re-evaluate their decisions. Moreover, when solving the problem,
students may add or remove massive amount of lines due to struggles, frustration or
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gaming behaviors. Leaving only the original code crossed out avoid students from
flushing the programming panel with wrong codes and lose focus. An example of the
debugging interface is shown in Figure 4. Lastly, we used the same medal system
in BOTS Tutorial to award efficient solutions. The shorter the editing distance
between a solution and the original buggy program, the better medal the student
gets.

Additionally, because the think-aloud method is not suitable for our young par-
ticipants, we added a self-explanation feature to gain more insights from the stu-
dents’ perspective, and to encourage reflective thinking for educational purpose.
Self-explanation happened twice at each puzzle. When student made the first edit
on the original buggy code, a pop-up box asked students to explain what was wrong
with the program. After student successfully debugged the program, another pop-
up box asked students to submit or update the previous explanation. The pre-
explanation was optional, considering that students may wish to experiment first,
or may not understand the bug yet. The post-explanation was mandatory, because
students have successfully debugged the program. An example of self-explanation
feature is shown in Figure 5.

Figure 4. BOTS debugging interface, with a student debugging example (left) In the debugging feature,
students edit existing buggy code. Students can perform four types of actions: delete buggy code (line 7),

reverse deletion, add a new code (line 5), and remove it later.

We designed 7 puzzles with incomplete or buggy solutions for debugging, as
shown in Table 1. These 7 puzzles covered the same programming concepts and
structures taught in the first 5 levels of the tutorial. The lower level puzzles (1-3)
aimed to familiarize students with the debugging feature and practice the initial
stages of problem solving: identifying bugs, representing the problem and selecting
problem solving strategies. As shown in Table 1, these levels contained missing
actions, unnecessary steps and incorrect sub-goals. The higher level puzzles (4-7)
aimed to practice the identification of multiple bugs, and bugs in more complicated
programming concepts and structures such as counting variables, nested loops and
functions. Similar to the BOTS Tutorial, the last puzzle (Level 7) was designed to

9



February 6, 2017 Computer Science Education output

Figure 5. The self-explanation feature in BOTS debugging. This example shows the dialog box when
students made their first code edits, where students had the option of entering text or saving an empty

explanation. When student finished debugging, the dialog box will pop up again with the saved explanation

from the first time. This time, students had to enter explanations by updating their previous answers, which
was blank in this example.

be the Boss Level to engage and challenge over-achievers who finished the previous
levels early.

Table 1.: The Debugging Puzzle Design (7 levels)

Puzzle Main& Func. Programs Error

Turn Left Climb Down

Climb Up Climb Down

Turn Left +Turn Right
Climb Up Move Forward

Climb Up Move Forward

Climb Up Move Forward
Climb Down Move Forward

Missing turn right.

Turn Right +Turn Left

Move Forward Move Forward

Turn Left Climb Up
Move Forward Climb Up

Move Forward Climb Up
Move Forward Turn Right

Move Forward Pick Up

Can’t climb >1 block. The

program also implements a

path aims to picks up the
crate unnecessarily
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Set Var a=0 Climb Down
While a<4 Move Forward

{Climb Up Climb Down }
Move Forward Move Forward
Var a=a+1} Move Forward

End While Move Forward

Turn Right Pick Up
Climb Down Move Backward

Move Forward Move Backward

Turn Right Put Down
Move Forward Climb Up

The program puts a crater
in a spot that blocks access

to the next crate. Several

crater & circled spot com-
binations are available.

Set Var a=0 End While

While a<3 +Climb Up
{Climb Up Climb Down

Turn Left +Turn Right

Climb Up Climb Down
Turn Right Climb Down

+Var a=a+1} Move Forward

The program does not in-

crease the loop counter,
resulting a never-ending

loop. There are also miss-

ing steps outside the loop.

Move Forward Pick Up
Move Forward Move Forward

Move Forward Move Forward

Move Forward Move Forward
+Turn Right Put Down

Function A Move Backward

Function A Move Backward
Function A Move Backward

Function A: +Turn Left

No commands to connect
the repetitive use of Func-

tion A.

Set Var a=0 Function A:
While a<4 Climb Up

{Function A Pick Up

Turn Left Move Forward
Var a=a+1} Move Forward

End While Climb Up

Turn Left Move Forward
Move Forward Climb Down

Move Forward +Move Forward
Climb Up Put Down

The program does not in-
crease the loop counter,

and misses a step in the

function inside loop.

Turn Right Function A}
Set Var b=9 End While
Function A +Move Forward

Function A Function A:

Function A +Set Var a 0
Set Var c=0 While a<b

While c<3 {Var a=a+1

{Var c=c+1 Move Forward}
Var b=b-2 End While

Function A Turn Left

The program does not ini-

tialize Var a each time
the containing function is

called. As a result, the loop

is skipped on subsequent
calls of Function A.

3.3. Participants and the Experimental Process

The experiment was conducted in two workshop sessions happened in the morning
and afternoon of the same day, on the same site led by the same two instructors,
with different groups of participants. The participants registered for the workshop
from a pre-college program for science, technology, engineering and math (STEM)
education, approved by IRB. A total of twenty-two 6th-8th graders participated.
Among these students sixteen were males, and eighteen were non-Caucasians.

Each student was randomly assigned an anonymized ID to log into the BOTS
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system. As first time players, students’ first activity was to play through the BOTS
tutorial. The tutorial consists of a sequence of levels which teach the game’s basic
mechanics, from how to add instructions to the robot, to how to use loops and
functions. The first six levels introduce the game mechanics, while later levels
combine previously introduced mechanics. The final “Boss Level” combines all
game mechanics together in its optimal solution. Each level in the tutorial sequence
has authored help available. Additionally, in this activity, instructors offered as
much help as they could to ensure each student learned the game mechanics and
programming concepts. The tutorial activity lasted for 45 minutes, during which
students either completed the whole tutorial (reaching the last Boss Level), or
completing at least the first six levels which completes the teaching of all the
game mechanics and programming concepts. After the tutorial, students were given
a pre-questionnaire. The pre-questionnaire contained three parts. The first part
consisted of basic questions on anonymized ID, age, gender, and prior programming
experience. The second part contained open-ended questions such as “what are your
favorite and least favorite parts of this activity?”. The third part contained Likert-
scale questions such as “I enjoy playing this BOTS feature” scored on a range of
1-5, with 1 as strongly agree and 5 as strongly disagree. Two students who had
played the BOTS tutorial in the previous year’s workshop skipped the tutorial and
proceeded directly to the pre-questionnaire.

Students’ second activity was to play BOTS using the game’s debugging fea-
ture. The debugging activity lasted 45 minutes. Additionally, at the start of the
debugging activities, instructors told students that their debugging solutions could
be used to teach students in the future who may get stuck on the same puzzle.
During the debugging activity, instead of proactively offering help, instructors only
helped students when they were clearly stuck and raised their hand. When offer-
ing help, instructors did not explicitly tell students what to do, but instead gave
hints on where and why the code was wrong. During the debugging activity, BOTS
logged the following data from students: anonymized student IDs, puzzle IDs, the
text of student-authored puzzle explanations, debugging actions (the addition &
removal of new code, deletion & un-deletion of original code, and running the code)
and their timestamps. Student debugging activities were mapped to questionnaire
responses through the same anonymized IDs.

As the final activity in this experiment, students were given a post-questionnaire.
The post-questionnaire contained the same three question types as the pre-
questionnaire. The only differences were that the post-questionnaire asked about
the debugging activity instead of the tutorial activity.

4. Analyses Method and Results

In this section, we report our methods and results in the order of our four research
questions. Table 2 provides a high level overview, listing the average performance
on each level by all students who completed the level. From Table 2, students spent
an average of 3-8 minutes on each level. Students encountered the most difficulties
on Levels 4, 6 and 7 with the loop concept, and on Level 2 where the original
program implemented an tedious path when alternative paths were available.

One student submitted two solutions for Level 2; we only used his/her first
solution. Two students did not complete Level 6, but because they were near com-
pletion, their data were included in the analysis. These two students’ performance
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Table 2. Performance Statistics of the 7 Levels in Debugging Activity

Levels
(#students
completed)

Time
spent(s)

#compil-
ations

#code
edits

Edit dist of
(student,
expert)
solutions

Pre/Post SE
scores(#students
scored > 0)

1:Miss a com-
mand (22)

199.6 2.1 4.7 (1.0,1.0) Pre(n=16):1.2;
Post(n=19):1.6

2:Tedious path
(22)

385.7 11.1 38 (7.1, 2.0) Pre(n=8):0.4;
Post(n=17):1.4

3:Blocked by
itself (22)

160.3 2.6 6.0 (5.1, 1.0) Pre(n=10):0.6;
Post(n=18):1.1

4:Miss loop
counter (22)

451.4 10.9 35.9 (6.0, 3.0) Pre(n=12):0.6;
Post(n=17):1.1

5:Boundary of
Func. (22)

190.1 4.9 9.6 (3.5, 2.0) Pre(n=9):0.5;
Post(n=16):1.0

6:Func.+loop
(20)

305.3 7.7 17.6 (2.5, 2.0) Pre(n=7):0.4;
Post(n=16):1.3

7:Func.+nested
loops (12)

803.7 11.1 40.9 (8.1, 2.0) Pre(n=2):0.3;
Post(n=9):1.4

scores were estimated as the max (worst overall) performance scores of students
who completed Level 6. Level 7, which was designed to be the Boss Level to engage
over-achievers, was excluded from analyses because most students did not complete
the level.

4.1. RQ1: Problem Solving Behaviors in Debugging

We wrote code to recreate program snapshots for each time a student ran their
program based on the logged debugging actions. These snapshots showed the state
of the program and the resulting positions of the robot and movable objects after
the program completed. We also created descriptive statistics such as the time
spent, and the frequencies of compilation and other debugging actions.

The process of interpreting student data in BOTS depends on human interpre-
tation for two reasons. First, BOTS is designed as an open “playground” for young
students. It is necessary to use human judgment to filter out off-task behaviors
such as picking a box up and down repetitively to be entertained with the game’s
animation. Second, human interpretation suits the purpose of this small-scale pilot
study, as commonly used in prior literature (Blikstein, 2011; Murphy et al., 2008).

First, we collected the snapshots, programs, and timestamps for student solu-
tions. Next, from these data, the first two authors noted, discussed, and agreed on
general patterns of behavior and mapped them to the conceptual and problem solv-
ing barriers. In discussion with the other two authors, these behavior patterns were
refined and specific and measurable definitions for these patterns were created.

The rest of this subsection presents our results. We begin by describing the bar-
riers students encountered in programming concepts (CB) and in the five problem
solving stages (PB). Then, for each barrier, we summarize a list of measurable
behaviors which relate to those barriers, and which we later used to categorize
students debugging behaviors.
CB1. Shallow Understanding on Programming Concepts Even though
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students wrote loops and functions multiple times in the tutorial, many encountered
difficulties in debugging. Students first encountered a missing loop counter bug in
Level 4, which happened after they saw a correct loop in Level 3. Unfortunately,
only 5/22 students found the missing loop counter on the first attempt. Among
these 5 students, 4 went back to edit the corrected loop when the program still did
not work due to the missing commands outside the loop. Among the 17 students
who did not figure out the missing counter on the first attempt, 8 attributed the
error to the loop’s upper bound; 4 did not understand the boundary of the loop,
as they moved actions that belonged inside loop outside, or vice versa.

Students first encountered functions in Level 5, where the commands connecting
the repetitive use of functions were missing. Although adding commands inside
the function would give a shorter solution, 12/22 students wrote repetitive code
outside of functions.

Students encountered a combined loop and function errors in Level 6. 14/22 fig-
ured out the loop’s missing counter on the first attempt, 13/22 figured out missing
commands inside functions, and 8/22 figured out both. Although this was an im-
provement from the previous levels, the result was still disappointing given that
students also wrote loops and functions multiple times in the tutorial. Similarly,
3 students went back to change a corrected bug when their programs did not run
due to another bug. These observed patterns show that debugging may require
deeper understanding on programming concepts than writing code from scratch.
This observation back up Nanja and Cook’s (1987) argument, that novices experi-
ence difficulties in applying fragile knowledge during problem solving.
Measurable behaviors: a) Solved a bug on the first attempt. This behav-

ior showed mastery in programming concepts. b) Replaced loop or function with
repetitive codes, rather than fixing the original loop or function with fewer code
edits. This behavior, similar to what observed in Murphy et al. (2008) as“worked
around the problem”, implied a lack of understanding on the benefit of loops and
functions, or perhaps how to use them.

PB1. Barrier in Identifying the Problem Good problem solvers take time
to understand the code, and identify where and why it was wrong. Novices tend to
identify the superficial difference in program outcomes. Across levels, we observed
students editing code before locating bugs. In these cases, students simply assumed
that the line of code where the robot stopped executing was the bug’s location. A
barrier in identifying the problem can be seen in Level 1 where the robot character
walks in a straight line and stops at the puzzle’s edge due to a missing turn-right
command. In this puzzle, 8/22 students inserted the missing command immedi-
ately after the stopped line instead of the correct location several lines before.
Similarly, 10/22 students in Level 4 (missing loop counter) and 6/22 students in
Level 5 (function) started debugging by editing where the robot stopped instead of
where the bug was located. This observation corresponded with previous research
(Bruning et al., 2010) that novices do not spend enough time in the initial problem
solving stage, identifying the problem.
Measurable behaviors: a) Multiple compilations before editing. We interpreted

this as students taking time to identify the problem. b) Edited code line on which
the robot stopped, instead of the code that actually caused the problem.

PB2: Barrier in Representing the Problem Good problem solving strate-
gies begin with a good representation of the problem that reveals the discrepancies
between the buggy and desirable programs, underlying structures, and common
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patterns. Novices may make unnecessary changes if they do not create a correct
representation of what the buggy problem accomplishes. A barrier in representing
the problem is observed in Level 3, where the robot character puts a crate down
which then blocks the robot from accessing the other buttons (yellow circles) to
solve the puzzle. Students can solve the puzzle by fixing existing code in multiple
ways, or by adding new code to pick the wrongly-placed crate back up and move
ahead to complete the puzzle. Surprisingly, 0 students moved ahead from where the
robot stopped, even though this strategy was much easier than the next optimal
solution of fixing the original code implemented by 5/22 students. This observa-
tion implies that students simply viewed debugging as fixing broken code. Student
did not transform the problem into a problem solving space, and did not identify
the discrepancies between the current state and the goal state. This barrier was
also observed in Level 2, where 3 students changed the robot’s path through mas-
sive deletion of the original code, even though the bug is relatively small. Instead,
students should represent the problem to recognize the common patterns between
the original and new solutions, and reuse the code that implement these common
patterns.
Measurable behaviors: a) Unnecessary massive deletion. Deleting code with-

out recognizing re-usable code. This pattern is similar to the “reinvent the wheel”
counterproductive problem-solving strategy found by Lee et al. (2014) in the Gid-
get debugging game, where “a player deletes the original code without reading it
and misses out on clues the code provides” (p. 61).

PB 3: Barrier in Selecting Strategies Good problem solving strategies of-
ten break the problem into meaningful sub-parts, then isolate and solve sub-parts
sequentially, moving closer and closer to the goal state. In BOTS, some students
run their program on completion of each of these sub-goals, demonstrating a good
problem solving strategy of breaking problems into steps. An barrier in selecting
strategies is observed in some novice solutions to Level 2. Students who did not
encounter this barrier first fixed the code for climbing up the hill and picking up
the box, and ran the code. Next, these students wrote code to climb down the
hill, and ran the code again. Lastly these students wrote code to walk towards
the destination crate, and ran the code. However, many students instead ran their
programs very frequently and after minor edits that changed less than two lines,
demonstrating “tinkering” instead of working towards a subgoal.
Measurable behaviors: a) Frequent runs on minor edits. This behavior, similar

to what Murphy et al. (2008) observed as “tinkering” (random and usually unpro-
ductive changes), could be caused by failing to focus on meaningful sub-parts of
the problem (Vessey, 1985), or a lacking of awareness or confidence on the outcome
introduced by code edits.

PB4: Barrier in Implementing the Strategy Good problem solvers consider
and evaluate different solutions when implementing the strategy. Students may
encounter a barrier by becoming “locked in” to one solution, even though that
solution may be sub-optimal. Instead, students should consider other paths, or
consider alternatives once as they encounter difficulties. A barrier in implementing
the strategy can be observed in Level 2, where the program as written implements
a tedious and incomplete path involving climbing up the hill to pick up a crate
unnecessarily. Even though BOTS awards medals to more efficient solutions, only
2/22 students started by switching to a better path that did not pick up the
crate, costing less debugging actions to drive a much shorter solution. 7/22 solved
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the puzzle with the original tedious path; 13/22 students switched to the better
path only after midway; among these 13 students who switched midway, 5 clearly
struggled with the original path and 3 switched paths through massive deletion.
Many of these students asked for help, and instructors told them to “consider other
paths to solve the puzzle” during the activity.
Measurable behaviors: a) Starting with the tedious path. When two strategies

are available, students started with the obviously more tedious path (using fewer
loops or functions, or involving unnecessary actions).

PB5: Barrier in Evaluation Good problem solvers choose appropriate mea-
surements to evaluate the product. Instead, students may incorrectly identify why
their attempt has failed, and undo their last actions instead of looking for further
problems. A barrier in evaluation is observed in multi-bug puzzles. Some students
did not know when a specific bug was fixed. After fixing the first bug, when the
code did not solve the puzzle due to additional bugs, students went back to change
the first bug even if correctly fixed. Examples are described in CB1. This may
indicate that used solving the puzzle as the single measurement to evaluate code.
Instead, students should evaluate each individual bug, and focus on whether the
code edit introduced desirable behaviors.
Measurable behaviors: a) Undid a corrected bug. Players undid a correctly-

fixed bug instead of looking for other problems.

4.2. RQ2: Problem Solving Behaviors, Performance, and Prior
Programming Experience

Table 3. RQ2: Correlations between Problem Solving Patterns, Performance and Prior Programming

Experience

Problem Solving Patterns Time
Spent(s)

#
Code
Edits

Edit
Dist.

Program
ming
Exper.

CB1-a. Solved on 1st attempt (Mf=4.18) -0.52* -0.77** -0.17 0.42
CB1-b. Replaced loop/func. (Mf=0.27) 0.35 0.39 0.50 -0.14
PB1-a. Compiled before editing (Mf=1.41) 0.45 0.20 -0.03 -0.21
PB1-b. Edited where stopped (Mf=1.64) 0.42 0.37 0.05 -0.43
PB2-a. Massive deletion (Mf=1.18) 0.17 0.63** 0.29 -0.12
PB3-a. Run on minor edits (Mf=1.4) 0.55* 0.68** 0.03 -0.40
PB4-a. Started with tedious path (Mf=1) -0.36 -0.07 0.13 0.36
PB5-a. Undid a corrected bug (Mf=0.27) -0.43 -0.03 -0.23 0.03
Note: Green and red indicate positive and negative correlations with p <.05.
Darker colors indicate statistically significant correlations after Benjamini-
Hochberg Correction, with ** p<.05, and * p<.10.

Using the identified behaviors, the first author then counted the frequencies of
these measurable behaviors across levels to create problem solving patterns for each
student. These problem solving patterns were then correlated with students’ perfor-
mance measurements, as well as their self-reported prior programming experience.
Student performance measures included time spent, number of code edits from
debugging actions, and edit distance from the original code to the final solution.

Low edit distance implies that the student precisely located the bug, and un-
derstood the partial program well. We hypothesized that students with better
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debugging behaviors and more programming experiences were faster at debugging
(lower time spent), better at explaining the bug (higher Self-explanation scores),
and had a lower edit distance. After calculating the performance measures, we nor-
malized them to be within [0,1] at each level, so that levels were considered with
equal importance when calculating the average across levels. We used the formula
(value − min) ÷ (max − min) where min was either the smallest time spent by
students, or the minimum possible numbers of debugging actions and solution edit
distance. Max was the largest statistic from students that was within 3 standard
deviations of the mean; values above the Max were replaced with 1. Prior pro-
gram experience was collected from the pre-questionnaire, reported by students in
the format of open response. The responses were put into three bins: “less than 1
years”(10 students), “1-2 years”(6 students) and “more than 2 years”(6 students).

Table 3 reports the r-values of Spearman correlation between student problem
solving patterns with student performance measure and prior programming expe-
rience. We used Spearman correlation because it does not assume straight linear
relationship between variables, and normal distribution within variables. The first
column reports the identified behaviors and their mean frequencies across levels.
For example, a Mf = 4.18 on the first row means that students solved an average
of 4.18 bugs on their first attempts, out of the 8 bugs from the 6 levels in debugging
activities.

4.3. RQ3: Self-explanation(SE)

We then investigated students’ self-explanations (SE). BOTS logged two self-
explanations for each puzzles: when students did their first code edits, and when
students completed debugging. These self-explanations were scored by the first two
authors who designed the debugging puzzles. A score of 0 represents meaningless
(e.g. “hiiii”) or incorrect explanations; a score of 1 represents a shallow explana-
tion that described the robot character’s behaviors but did not relate to solving
the problem (e.g. “the robot could not move forward”); a score of 2 represents ex-
planations that identified the cause of the problem in the program (e.g. “the robot
could not move because of a missing loop counter”). The two coders agreed on all
explanation scores after discussion. Note that, due to the young ages of students,
SE is a limited measurement of their ability on this task. However, the activity
itself is pedagogically beneficial to students. Therefore we use this score mainly to
provide insights on students’ understanding of the problem.

Table 2 at the beginning of section 5 reports the number of students who partici-
pated in SE and their average SE scores. Across levels, the average post-explanation
scores were between 0.4 and 1.0 higher than the pre-explanation scores, with over
70% students input correct and meaningful post-explanations. This result show
that students improved their understanding on the original program through de-
bugging. An example of this improved understanding is that a student wrote “the
character turned so soon” in pre-explanation, and “the loop does not have a change
[changing] variable” in post-explanation.

Table 4 reports the r-values of Spearman Correlation between students’ pre/post
explanations, problem solving patterns, performance, and prior programing expe-
rience.
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Table 4. RQ2: Correlations between Problem Solving Pattern, Performance and Prior Experience

Problem Solving Patterns Pre SE Post SE

CB1-a. Solved on 1st attempt (Mf=4.18) 0.42 0.62**
CB1-b. Replaced loop/func. (Mf=0.27) 0.09 -0.22
PB1-a. Compiled before editing (Mf=1.41) -0.37 -0.25
PB1-b. Edited where stopped (Mf=1.64) -0.46 -0.45
PB2-a. Massive deletion (Mf=1.18) -0.27 -0.38
PB3-a. Run on minor edits (Mf=1.4) -0.44 -0.40
PB4-a. Started with tedious path (Mf=1) 0.23 -0.07
PB5-a. Undid a corrected bug (Mf=0.27) -0.14 0.11
Performance
Time Spent(s) -0.25 -0.37
# Code Edits -0.37 -0.71**
Edit Distance 0.16 -0.01
Prior Programming Experience 0.36 0.29
Note: Green and red indicate positive and negative correlations with p
<.05. Darker colors indicate statistically significant correlations after
Benjamini-Hochberg Correction, with ** p<.05, and * p<.10.

4.4. RQ4: Students Perceptions of Debugging

Figure 6. Pre/Post-Questionnaires’ Results

We found no significant differences in the six Likert-type answers between the
pre and post questionnaires, as reported in Figure 6. The majority of students felt
positively about both the tutorial (where they wrote code from scratch) and debug-
ging activities in BOTS. The 6-8 graders in this experiment found that debugging
in the BOTS gamified environment was equally fun and engaging compared to
programming.

Students’ favorite parts of debugging activities included the feeling of learning,
focused, and achieving. Some students wrote:

“I think that it is a great way to learn the basics of coding.”
“The best part is figuring out exactly what’s happening.”

18



February 6, 2017 Computer Science Education output

“I liked the debugging because I get to see some cool code.”
“debugging makes me feel focused.”
“You get very excited when you beat the levels.”.
Students’ least favorite parts included certain interface designs such as “the robot

moved too slow”, and the difficulties as the natural of the debugging activity. How-
ever, these difficulties are often mentioned together with learning and engagement.
As students wrote:

“My favorite part about debugging is knowing I made the game better. My least
favorite part is you have to really think [and] concentrate.”

“Favorite- learning; Least favorite - being confused.”
“It’s very fun yet is very difficult.”

5. Discussion & Implication

The goal of this study is to understand young students’ problem solving behaviors
in a gamified debugging environment, and to use our understandings to refine
the environment. In this section, we summarize our answers to our four research
questions and discuss their implications to future K-12 debugging environment
design.

5.1. RQ1: Problem Solving Behaviors in Debugging

Our first research question is “What are some problem solving behaviors and pat-
terns students exhibited when debugging?”. To answer this question, we relied on
human interpretations of logged student debugging actions. We found 1 conceptual
barrier, from which we concluded that debugging requires deeper understanding
of programming concepts than programming. We also found 5 barriers that cor-
responded to the 5 problem solving stages: identifying the problem, representing
the problem, selecting a strategy, implementing the strategy, and evaluation. The
list below summarizes what we learned from twenty-two 6th-8th grade students
debugging in this experiment:

• In BOTS, debugging required deeper understanding of programming con-
cepts than solving the puzzles from scratch. Many students successfully wrote
loops in tutorial, but were unable to debug incorrectly written loops in the
debugging activity.

• Some students did not spend enough time identifying the problem during the
initial stage of debugging. Many students started by deleting the line where
the program stopped, instead of several lines previous where the bug actually
occurred.

• Some students treated buggy programs as entirely wrong, instead of as in-
complete or partially correct solutions. These students lacked the ability to
correctly represent the consequences of the program, and identify the dis-
crepancies between the current state and the goal state. In other words, some
students did not know how close the current program was to the solution,
and how to minimally edit existing code rather than delete and start over.

• Some students lacked the ability to break down problems into meaningful
sub-parts. For example, some students compiled and ran their program after
very small edits of one or two lines, instead of compiling and running when
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they believed a sub-goal had been reached.
• Some students did not consider alternative solutions early enough, or were

inflexible when encountering difficulties. For example, some students failed to
consider whether a better path existed than the one in the partial solution,
and switched to a better path only after encountering much difficulty.

• Some students did not correctly locate which bug is causing an identified
problem when multiple errors are present. For example, this could cause
them to reconsider their work on the previous bug rather than searching for
any additional bugs.

These observed behaviors correspond to the conclusion from prior work that
novices lack domain knowledge and general problem solving skills (Bruning et al.,
2010; Spohrer and Soloway, 1986). Thus, designers for future debugging environ-
ment should consider helping students develop general problem solving knowledge.
As prior work found that locating bugs is more difficult then fixing them for novices
(Fitzgerald et al., 2008), special attention should be paid at the initial stages of
problem solving. For example, in the BOTS environment, designers can scaffold
a debugging task into sub-goals corresponding to problem solving stages, ask stu-
dents to mark and explain where can be wrong, guide students on good problem
solving strategies, or ask students to list out possible solutions before editing codes.
Another approach would be to provide feedback based on the detection of certain
behaviors. For example BOTS could be modified to intervene when detecting mas-
sive code deletion of frequent compilation on minor changes, by displaying a pop
up message to remind students of recognize similar patterns between solutions, or
demonstrate a way to break problems into steps.

5.2. RQ2: Problem Solving Patterns, Performance, and Prior
Programming Experience

Our second research question is “How do students’ problem solving patterns re-
late to performance and prior programming experience?”. In general, our results
indicate that students’ problem solving behaviors are related to their self-reported
prior programming experiences, and that in turn we can infer some performance
aspects from detected student behaviors. More specifically, we found that many
problem solving patterns correlated with the time spent and code edits in the pro-
cess, but not with the edit distance in the final solution. The only pattern which
correlated with code edit distance was the “replace loop/function with code”, and
the significance of this correlation disappeared after preforming a False Discovery
Rate correction. We hypothesized that more advanced students would be able to
precisely locate the problem and fix it with minimal changes, so this result was
somewhat surprising. One possible explanation is that some problem solving be-
haviors, such as “run on minor edits”, require less cognitive effort than running on
the completion of meaningful sub-goals. This could help students to focus and reach
correct solutions, at the cost of longer time and more code edits during debugging.
This could be especially true for students with less proficiency in programming

Additionally, student prior programming experience was found to be positively
correlated with frequency of solving on 1st attempts, and negatively with the fre-
quency of editing where the robot stopped. However, these correlations are not
significant after False Discovery Rate correction is applied. Nevertheless the di-
rection of this result is expected based on prior literature, which concluded that
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problem solving experts have more “domain knowledge” and take more time at
initial stage of problem solving, such as identifying the problem (Bruning et al.,
2010; Fitzgerald et al., 2008). As an adaptation the the system, BOTS could be
modified to pop up messages to encourage them spending more time on understand-
ing the code before editing in cases when students report low prior programming
experiences or demonstrate low performance.

5.3. RQ3: Self-explanation

Our third research question is “How well can young students participate in
self-explanation before and after debugging, and how does the quality of self-
explanations correlate to student problem solving patterns, performance and
prior programming experience? ”. We found that participation in pre-explanation
varies per game level, but over 70% students input correct and meaningful post-
explanations across levels. Moreover, after students successfully debugged, the av-
erage post-explanation scores were higher than average pre-explanations at all lev-
els. Even though prior work would suggest that 6-8 graders often disengage in this
kind of voluntary workshop activity, our results show that most students in this
workshop participated, and their self-explanation quality reflected their improved
understanding of the problem. The high engagement in self-explanation activity
may be resulted from the instructors’ telling students that their solution could
be used to help other students who were stuck in the same puzzles. Additionally
the verbal encouragement could make students perceive their efforts as important
and useful, as some students wrote “make the game better” and “help others”
as their favorite BOTS debugging experience in the questionnaires. As shown in
earlier work by Aleahmad et al. (2008) on community authored problems, users
are more invested when they are given evidence that their activity will have a
real impact. Thus, we believe that BOTS’ designers could improve the perceived
value of learning activities, and perhaps enhance students motivation to participate
through informing students on the value and purpose of their activities. For exam-
ple, designers can call out that the program they are debugging could be another
user’s program, and their work could directly help that user.

For the second part of the question, our result implies that students’ under-
standing of the problem influenced their problem solving behaviors, and in return,
different problem solving behaviors related to students’ understanding after they
successfully debugged. We found that post-explanation scores and the number code
edits were negatively significantly correlated, with r = −0.71, p < 0.05. Prior result
shows that the number of code edits is positively significantly correlated with the
frequency of “Massive deletion” and “Run on minor edits” behaviors. A high num-
ber of code edits may also due to multiple attempts to find a solution, or attempting
an inefficient solution such as replacing loops and functions with repetitive codes.
On the other hand, post-explanation scores where positively significantly corre-
lated with the frequency of “solved on 1st attempt” with r = 0.62, p < 0.05. Our
results suggest that even though some students successfully debugged solutions,
the struggles in the process may distract them from understanding the problem
or engaging in post-explanation activities. Thus, we suggest that BOTS should be
modified to intervene when detecting certain problem solving patterns, even when
these patterns may not affect the final solution.

Additionally, pre-explanation scores were correlated with two measurable behav-
iors at the earlier stages of problem solving, however, they were not significant after
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false discovery rate correction. This result does suggest that weak pre-explanation
scores could result from the barriers in the earlier stages of problem solving. For
example, students who did not spend time identifying the problem would simply
edit on the line where the robot stopped, and did not know what to explain when
the pre-explanation box popped up. Thus, we recommend that BOTS could be
modified to intervene early when detecting missing pre-explanations. For example,
with messages encouraging students to spend more time on the earlier problem
solving stages.

5.4. RQ4: Students Perceptions of Debugging

Our last research question is “What are young students’ perceptions of debug-
ging?”. We conducted a pre-questionnaire after students completed the BOTS tu-
torial where they wrote code from scratch, and a post-questionnaire after students
played through the BOTS debugging feature. We found no significant differences
in responses, which shows that students perceived debugging similarly to program-
ming in this gamified environment. From open-ended responses we found that our
students generally viewed debugging as a positive yet intellectually challenging
experience, as one student wrote “It’s very fun yet is very difficult”. These re-
sults indicate that gamified environments have the potential to positively influence
students learning experiences with debugging activities.

5.5. Conclusions & Future Work

to summarize, in this study, we analyzed the problem solving behavior of 6th-8th
grade students when presented with debugging exercises in BOTS programming
game. We identified student behaviors in relation to programming concept and
problem solving stages. We found correlations between student behaviors, prior
programming experience, and performance (self-explanation scores, the time spent
on puzzles, the number of code edits, and the edit distance from original code to
solution). We found that students perceived debugging in this gamified environment
as fun and intellectually challenging. Our results suggest that designers for future
debugging environments to educate students on general problem solving knowledge,
to consider early interventions, to inform value and purpose of similar activities,
and to consider gamification.

One intuitive next step is to integrate the design implications learned from this
study to BOTS debugging feature. To evaluate the effectiveness of new designs, it is
necessary to improve on controlled experimental design and data-collection method.
For example, researchers can conduct face-to-face interviews or develop metrics for
coding observed behaviors on site. Researchers can also improve the assessment of
psychology responses through questionnaires. For example, applying the method in
the experiment by Moser et al. (2012) to rapidly assess game experience in public
setting.

Another future direction is to implement a learning gain assessment. This study
showed that students improved self-explanation scores after debugging, and many
commented that they learned and benefited from debugging activities in question-
naires. However, stronger assessments are needed to answer whether debugging
helped students learn. Future work could quantify how much students learned, and
whether they can transfer knowledge to general programming outside this game
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through designed pre- and post- tests. It could also be interesting to compare
learning gains between programming, debugging, and a combination of both in a
controlled experimental design. This design would provide valuable information on
when to present debugging questions that best help students learning.

Lastly, as future work creates more debugging solutions, researchers may crowd-
source these peer debugging solutions to create hints (Liu, 2015). Previously, Ped-
dycord III et al. (2014) applied the Hint Factory method created by Barnes and
Stamper (2008) in BOTS, and generated next-step hints from students’ past so-
lutions. However, this work found many dead-end states where too few students
derived solution from these states to generate hints. These dead-end states may
represent important conceptual error or creative problem solving solution. Thus,
future work can recycle these dead-end states as puzzles in BOTS debugging ac-
tivity. Students will be able to help their peers who stuck in dead-end state by
providing debugging solutions from which we can derive next-step hints. More-
over, filtered self-explanations in debugging can also be used as higher-level hints,
which may be more pedagogically beneficial than next-step hints.
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Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The bluej system and its
pedagogy. Computer Science Education, 13(4):249–268.

Lee, M., Bahmani, F., Kwan, I., Laferte, J., Charters, P., Horvath, A., Luor, F., Cao, J.,
Law, C., Beswetherick, M., Long, S., Burnett, M., and Ko, A. (2014). Principles of a
debugging-first puzzle game for computing education. In IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC, pages 57–64.

Liu, Z. (2015). Data-driven hint generation from peer debugging solutions. In the 8th
International Conference on Educational Data Mining.

Logo Foundation (2015). Logo History. Retrieved from http://el.media.mit.edu/

logo-foundation/what_is_logo/history.html.
Loksa, D. and Ko, A. J. (2016). The role of self-regulation in programming problem solving

process and success. In Proceedings of the 2016 ACM Conference on International
Computing Education Research, pages 83–91. ACM.

Lye, S. and Koh, J. (2014). Review on teaching and learning of computational thinking
through programming: What is next for k-12? Computers in Human Behavior, 41:51–61.

Moser, C., Fuchsberger, V., and Tscheligi, M. (2012). Rapid assessment of game experiences
in public settings. In the 4th International Conference on Fun and Games.

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., and Zander, C.
(2008). Debugging: the good, the bad, and the quirky–a qualitative analysis of novices’
strategies. ACM SIGCSE Bulleti, 40(1):163–167.

Nanja, M. and Cook, C. R. (1987). An analysis of the on-line debugging process. In
Empirical studies of programmers: second workshop, pages 172–184. Ablex Publishing
Corp.

Ostrovsky, I. (2009). Robozzle online puzzle game. RoboZZle Online Puzzle Game.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Peddycord III, B., Hicks, A., and Barnes, T. (2014). Generating hints for programming

problems using intermediate output. In the 7th International Conference on Educational
Data Mining.

Resnick, M., Maloney, J., Monroy-Hernndez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., a. S. J., Silverman, B., and Kafai, Y. (2009). Scratch:

24



February 6, 2017 Computer Science Education output

programming for all. Communications of the ACM, 52(11):60–67.
Spohrer, J. C. and Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?

Communications of the ACM, 29(7):624–632.
Vahldick, A., Mendes, A. J., and Marcelino, M. J. (2014). A review of games designed to

improve introductory computer programming competencies. In 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings, pages 1–7. IEEE.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. Inter-
national Journal of Man-Machine Studies, 23(5):459–494.

Werner, L., Denner, J., Campe, S., and Kawamoto, D. C. (2012). The fairy performance
assessment: measuring computational thinking in middle school. In Proceedings of the
43rd ACM technical symposium on Computer Science Education, pages 215–220. ACM.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3):33–35.
Yaroslavski, D. (2014). Lightbot. Retrieved on 25th May.
Yoon, B. D. and Garcia, O. N. (1998). Cognitive activities and support in debugging. In

Fourth Annual Symposium on Human Interaction with Complex Systems, pages 160–169.

25


