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ABSTRACT

Voice controlled interactive smart speakers, such as Google Home,
Amazon Echo, and Apple HomePod are becoming commonplace in
today’s homes. These devices listen continually for the user com-
mands, that are triggered by special keywords, such as "Alexa" and
"Hey Siri". Recent research has shown that these devices are vul-
nerable to attacks through malicious voice commands from nearby
devices. The commands can be sent easily during unoccupied peri-
ods, so that the user may be unaware of such attacks. We present
EchoSafe, a user-friendly sonar-based defense against these attacks.
When the user sends a critical command to the smart speaker,
EchoSafe sends an audio pulse followed by post processing to de-
termine if the user is present in the room. We can detect the user’s
presence during critical commands with 93.13% accuracy, and our
solution can be extended to defend against other attack scenarios,
as well.
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Figure 1: EchoSafe Overview

1 INTRODUCTION

Voice interaction based smart speakers, such as Amazon Echo, have
emerged, as a popular way to interact with smart home devices in
a hands free manner. More than 11 million Echo devices were sold
as of 2017 [24]. Also, major vendors such as Google, Apple, Nvidia,
and Bosch have introduced there own devices.

Smart speakers consist of an omnidirectional speaker and a mi-
crophone array to listen to the user from any direction. The speaker
is in listening mode all the times. It only activates the device to
listen for commands, when a preselected keyword such as Alexa or
Siri is used. Once the speaker is activated, the microphone array
uses beamforming to increase audio sensitivity in the direction of
the speaker. The received voice command is sent to a cloud ser-
vice, where it is transcribed using speech recognition algorithms.
The command is parsed, executed, and the results are sent back to
the user as an audio response. The speaker connects to Internet
via home WiFi and uses user accounts for authentication. Smart
speakers provide a variety of services, such as providing general
information, setting reminders (e.g. for medicine), controlling smart
home devices, placing online orders, and integrating third party
applications.

As the smart speakers are always listening, they are susceptible
to security attacks by devices that can generate malicious voices.
Audio from television news triggered Amazon Echo to place or-
ders for dollhouse [25]. Recent research has shown that machine
learning models can mis-classify an input, if an adversary carefully
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adds noise to its input [7]. Also, Goodfellow et al. in the same work
show that an image of panda is misclassified as a gibbon with high
confidence after adding noise by an adversary, but to a human the
image still looks like a panda. Carlini et al. [3] build on this idea,
and create malicious commands for speech recognition algorithms
commonly used in smart speakers and smartphones. Humans hear
the audio commands generated as garbled sounds while the speech
recognition algorithms interpret them as commands. The authors
posit that such commands can be embedded into online videos or
TV advertisements to attack devices.

Roy et al. [21] introduce a different type of attack. They identify
that the microphones used in modern devices have non-linearities
associated with translating analog sounds to digital audio. These
non-linearities are benign and filtered away when the microphone
receives sounds in the expected frequency range of 20Hz to 20kHz.
However, if the input to the microphone is ultrasound (i.e. fre-
quency >20kHz), the microphone can interpret the sound in the
audible range. The authors exploit these non-linearities to create
ultrasound signals that are inaudible to humans but interpreted as
normal sounds by the device. They use this exploit to block the
microphone from working (e.g. in a movie theater), and transfer
data between devices. We posit that the same methods can be used
to send malicious commands to smart speakers without the users
being aware of them.

Several types of defenses have been proposed. Amazon Echo
has an option to add a pin for making purchases. Carlini et al. [3]
propose multiple defense options — the smart speaker can provide
audio/visual feedback on reception of a command, an audio captcha
can be used to verify if the command is from the user, a machine
learning classifier can distinguish between human and machine
generated commands. However, these defenses are not fool proof,
they add a burden on the usability of the device. Also, the authors
themselves conclude that further research is needed. We provide
a detailed comparison of different defenses in the Related Work
section.

We propose an active defense mechanism called EchoSafe, where
the smart speaker uses sonar (SOund Navigation And Ranging?) to
verify the availability of the user during critical commands. When
the smart speaker receives a command that requires authentica-
tion, it sends out an omnidirectional audio signal and analyzes the
reflections received by the microphone array to sense the person.
Sonar is routinely used in underwater applications, such as subma-
rine navigation. Furthermore, recent research has used the same
techniques to map the shape of a room [6], and recognize gestures
using smartphones [16].

In this paper, we present a proof of concept of EchoSafe by
demonstrating that sonar can be used to verify the presence of a
person in a room. We can build upon this idea to mount stronger
defenses, such as using a gesture based password or even a ges-
ture captcha to deter sophisticated attacks. Such methods would
provide security equivalent to the two factor authentication, while
still maintaining the convenience of hands free interaction. Sonar
can also be used for other applications that rely on the presence
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detection such as occupancy based control [14, 22], and the fine-
grained signal processing techniques can be exploited for activity
recognition, as well2.

In our proof of concept experiments, we setup a prototype smart
speaker to send audio signals both in presence and absence of a
person, and exploit machine learning classification with relevant
features to detect user presence. We find that EchoSafe can detect
user presence with an accuracy of 93.13%.

2 THREAT MODEL

We focus on remote attacks through compromised devices like
television, speakers, or smartphones that can generate malicious
voice commands in the absence of the user. We trust the smart
speaker device manufacturer and third party service providers. The
attacks on cloud services and compromised communication links
are out of the scope of this work. We consider attacks in a single
room scenario and assume that there can only be a single user in the
line of sight of the smart speaker. We assume attacks in presence
of the user will be easily detected through audio/visual feedback.
The user and the attacker can give commands from any direction,
smaller objects such as papers, chairs can be moved around, and
there can be external ambient sounds.

3 METHODOLOGY

EchoSafe aims to detect the availability of the user in the room,
when a critical command is received by the smart speaker in order
to protect against many powerful attacks. The intuition behind
EchoSafe is to generate a sound pulse from the smart speaker, then
capture the echoes reflected from the objects and humans in the
room. We use machine learning classifiers to detect the difference
between the presence and absence of the user based on features
selected from the reflected audio signals received after the smart
speaker emits an omnidirectional sound. There is a training phase
where the user provides ground truth labels of occupancy in the
room, and the smart speaker trains its classifiers based on multiple
rounds of emitting sounds and analyzing the received audio. After
the training phase, the speaker emits a sound every time it receives
a critical voice command, sends the received audio signals to the
classifier, and executes the command only when it verifies the
availability of a person successfully.

EchoSafe uses Random Forest machine learning algorithm for
detecting the person availability. We divide the audio time series
data from each microphone into different time windows, then use
standard deviation of each time window, and the mel-frequency
cepstrum coefficients (MFCC), as candidate machine learning clas-
sification features. Picking the most relevant features among the
candidates is needed to avoid the curse of dimensionality, speed up
the learning process, and achieve better machine learning models.
Therefore, the Relief-F algorithm [13] is used to perform the feature
selection process among the candidates features efficiently.

4 EXPERIMENT SETUP

We created our own prototype of a smart speaker in order to con-
duct experiments. Our prototype consists of Matrix Creator> which
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Figure 2: The Matrix Creator Board. It consists of 8 micro-
phones, 32 multi-color LEDs, an FPGA and a GPIO connec-
tor that is attached to Raspberry Pi 3 in our experimental
setup.

Figure 3: The experiment portion of our lab. The area mea-
sures 6.2m x 3.6m and is part of the larger lab measuring 9m
x 10m. During the experiments chairs were moved around,
and there was ambient noise from activities in the rest of
the lab.

is a microphone array available in the market, a small omnidirec-
tional speaker and a Raspberry Pi 3. Figure 2 shows the Matrix
Creator with 8 microphones in a circular array, an FPGA for audio
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processing and a GPIO header that connects to Raspberry Pi in our
setup. Sampling the microphones signal is done at the standard
40kHz frequency, so that, it can capture all the frequencies in the
audio spectrum (i.e. 20Hz to 20kHz). The microphone array together
performs beamforming and produces an additional audio signal
apart from the 8 signals received from the individual microphones.
We use all the nine audio signals in our experiments.

We use a rectangular portion of our research lab for experiments,
two of the sides are regular walls while the other two sides have
short cubicle divisions. The dimensions of the experiment area
is 6.2x3.6m? which is almost an open area as a part of 9x10m?
lab as shown in Figure 3. There is a rectangular table with chairs
around it in the middle of the area, and we place our EchoSafe
prototype at the center of the table. The user stands somewhere
within this experiment area when they are supposed to be present
in our experiments. Other furnitures include a sofa, a television and
a bookshelf. We present the details of the experiments and results
analysis in the Evaluation section.

5 EVALUATION

We send a 1kHz tone for about one second using the omnidirec-
tional speaker, then acquire the audio signals from Matrix Creator
for four seconds. Raspberry Pi is used to coordinate, keep time
and store the results. We refer to this brief experiment as a sonar
cycle. We collect data from several sonar cycles both in presence
and absence of the user. We use the data collected to train and
test our machine learning models. We tried several features: maxi-
mum, mean, standard deviation, percentiles, skewness, kurtosis and
MFCC. MFCC is a popular feature for audio signals and captures
characteristics of the frequency spectrum. Skewness captures the
symmetry of the probability distribution of the signal and kurtosis
captures the long tail characteristics of the probability distribution.
The rest of the features are regular timeseries characteristics and
are self-explanatory. Note that we record 9 audio signals for each
sonar cycle, so each of these signals has their corresponding feature
set. In addition, we divide each audio signal into smaller time win-
dows to capture the time varying characteristics. We implement
both feature extraction and machine learning models using Matlab.

In order to evaluate EchoSafe, we perform a series of experiments.
For our initial machine learning classification, we collected 400
sonar cycle data. During 200 sonar cycles no one was there in the
experiment area. On the other hand, 200 sonar cycles were collected
while some one stood in different positions of the experimental
area. We conducted the experiments over different days and the
furniture in the testing area were moved randomly. Some students
were there in the remaining part of lab conducting their work and
talking randomly during all the experiments. The presence of the
working students in the remaining part of the lab can be presented
as a background noise in real life scenarios.

We evaluated the performance of different supervised learning
classifiers to detect the availability of someone in the experimental
area. Each microphone output is divided into 8 time windows. We
select the most relevant 50 features using the Relief-F algorithm
[13]. We tried using the random forest classifier (RF) and support
vector machines classifier (SVM) with quadratic kernel, order three
polynomial kernel, gaussian radial basis function kernel (RBF), and
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Figure 4: Comparison of cross-validation performance of
machine learning classifiers in EchoSafe. We used 400 sonar
cycle data for the experiment, where each sonar cycle con-
sists of 1 second of speaker sound and 4 seconds of micro-
phones listening. We divided the 4 second data into 8 time

windows and chose 50 statistical features using Relief-F.
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Figure 5: Comparison between the performance of different
feature selection algorithms in EchoSafe. We evaluate ran-
dom forest classifier using cross validation of 400 sonar cy-
cle data samples. 50 out of 189 features are chosen by each
algorithm. The candidate feature are the standard deviation
of each time window and the MFCC of each microphone.

multilayer perceptron kernel (MLP). Figure 4 summarizes the cross-
validation results from these classification methods. Random forest
achieved the best performance, and it is used for the rest of the
experiments.

The feature selection process has a significant impact on the
performance of the classifier. Also, reducing the number of training
samples a user has to provide, requires careful choosing for the
fundamental features that capture the essence of the data in order to
boost the overall accuracy and avoid over-fitting. Feature selection
can be categorized into three classes: embedded methods, wrappers
and filter methods. Embedded methods introduce a penalty to the
complexity in order to decrease the degree of over-fitting. It also
injects the selection process into the learning process. The greedy
search algorithm is an example of wrappers, just to give the reader
an intuition to the concept of wrappers which use classifiers to rank
a subset of candidate features. FSV [2, 8] is an another example of
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wrappers methods. Finally, filter methods, such as Inf-FS [17, 19]
and Fisher [9], analyze intrinsic properties of data, like variance for
instance, and they generally ignore the classifier decision. Relief-F
is an iterative, randomized, and supervised algorithm which was
inspired by instance-based learning. It relies on a statistical method,
few heuristics to assign weights for the candidate features. Relief-F
is less often fooled, as it estimates the features ranking according to
the capability of differentiating data samples that are near to each
other. Furthermore, we can also categorize the feature selection
algorithms into supervised and unsupervised methods. LLC-FS
[27], UDES [26], MCFS and CFS [11] are examples of unsupervised
feature selection methods. Relief-F, Fisher [9] and FSV [2, 8] are
under the umbrella of supervised method.

Figure 5 reports the comparison of different feature selection
algorithms in terms of accuracy, precision, and F-score. We set
the number of features to 50 and number of time of windows to 8.
Interestingly, CFS [11] is an unsupervised method and it achieved
rank three in comparison with other supervised methods. Relief-F
achieves the best performance, and we use it for the rest of the
experiments. CFS sorts features according to pairwise correlations.
So, one could explore the unsupervised learning track for the person
detection with the aid of CFS.

We also analyzed the effect of number of features in the learning
process. Figure 6 summarizes the effect of increasing number of
the used features on cross validation accuracy. This comparison
is conducted by using 8 time windows. Relief-F is set to choose
the top ranked features. Using 70 features results in accuracy of
92.87% compared with 92.45% for 50 features. EchoSafe sets 50 as
a reasonable number of relevant features. Our analysis between
different algorithms made use of the efforts in [18, 20].

Furthermore, we analyze the effect of dividing the whole time
series data of the microphones into narrower time windows. Re-
call that each microphone signal is 4 seconds long and we it into
non-overlapping time windows. We are using 50 relevant features
using Relief-F. Figure 7 summarizes the effect of number of time
windows on classification performance using cross validation. The
accuracy reaches its peak of 93.13% using 32 time windows. Inter-
estingly, the accuracy drops back to 89.25% when we use 64 time
windows. Extensively dividing the data to narrower time windows
loses important features of the reflected audio signals.

We performed a separate set of experiments to determine if
the position of the user with respect to the smart speaker affects
our results. We systematically positioned the user in four different
directions of the experiment area, and collected data from 50 sonar
cycles in each direction. We performed the same cross-validation
based training and testing on Random Forest classifier with 50
features selected by Relief-F. The classifier accuracy was robust at
93%. Hence, EchoSafe works well regardless of the direction of the
user with respect to the speaker.

6 RELATED WORK

In the following section, we compare our work with previous re-
search in voice command attacks and defenses.
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Figure 6: Analyzing the effect of number of the features in
the cross validation accuracy. We use 8 time windows on
each microphone audio signal, the Relief-F algorithm to se-
lect features, and Random Forest for classification.
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Figure 7: Analyzing the effect of number of the time win-
dows in the cross validation accuracy. Each sonar cycle sam-
ple has 4 seconds of audio data for each microphone. We use
Relief-F to select the most relevant 50 features and Random
Forest for classification.

6.1 Voice command attacks and defenses

Attacks exploiting voice command interfaces enable attackers to
steal sensitive information and control the devices. Researchers
have demonstrated the impacts of these attacks. Diao et al. propose
and implement attacks that utilize the voice command interface to
steal information and take control of users’ phones [5]. Carlini et al.
propose attacks that are more stealthy by building voice commands
that will not be heard by the users but can be processed by the
machine learning applications running on the speakers [3].

To protect user against these attacks, researchers propose var-
ious defenses. However, the state-of-art defenses are clumsy. For
example, there are defenses trying to identify human voice from
machine voice, however, the accuracy is not high and is worse with
noise [3]. Developers can introduce audio captcha as a defense to
differentiate human from machine, however, the audio captcha can
be easily broken by modern machine learning technology [3]. Fur-
thermore, developers can use voice signature to identify whether
the voice command is from the user or different people [15]. How-
ever, this method cannot identify attacks if attackers reuse the
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user’s voice to create commands. Challenge response is also help-
ful to identify whether there is a user speaking to the device or a
remote attacker playing some voice commands to fool the device.
However, challenge response involves lots of user interactions. Sim-
ilarly, two-factor authentication is not suitable because of usability
issues [4]. Our solution is transparent to users and is effective for
most scenarios of attackers.

6.2 Occupancy detection

Occupancy detection has been exploited by researchers using dif-
ferent sensors. Lu et al. utilize wireless motion sensors and door
sensors to detect whether there is someone at home, so that they
can turn the air conditioner off automatically [14]. Also, Shih et al.
propose using ultrasonic chirps to detect the number of people in
the room [23]. Researchers also combine multiple sensors to get an
accurate estimation of the occupancy [10]. In our current solution,
we use sonar to detect occupancy because we do not need to deploy
extra sensors in the smarthome scenario.

6.3 Analysis using sonar

Sonar is a useful technology for many use cases. Nandakumar et al.
explore active sonar to track users’ fingers [16]. Dokmanic et al. use
the acoustic information to generate the shape of rooms [6]. In this
project, we use sonar to detect the occupancy detection, but we can
also extend the approach to improve the system, such as estimating
the distance of the user, or even recognize the user based on sonar
signatures.

7 DISCUSSION AND FUTURE WORK

With EchoSafe, we have shown that sonar can be used to verify the
presence of the user using machine learning classifiers. The results
are robust to ambient noise, movement of environmental objects
and the direction at which the user is present. This proof of concept
shows that EchoSafe can be used as an active defense mechanism
against audio attacks on smart speakers without affecting it’s us-
ability. This direction of research can be extended in various ways,
to create defenses against voice attacks and in other application
domains such as occupancy detection.

7.1 Limitations

EchoSafe should be improved to support non-line-of-sight interac-
tions with the smart speaker. Also, the number of samples used for
training the EchoSafe classifier should be reduced. The frequency
of the sound pulse used in sonar can be moved to ultrasound, so
that users are not perturbed by them. We can also send multiple
randomized short pulses to improve robustness and defend against
stronger attacks. If the attacker crafts the voice commands and
sends them stealthy, as a noise for example, while the user is pre-
sented, then it is challenging for our current implementation to
prevent such attacks. However, we can extend our sonar analysis
to detect the sound source in order to prevent these crafted attacks.

7.2 Physics Based Sonar

Instead of relying on machine learning classifiers, we can implement
physics based methods to robustly compare the sound coming
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direction and the user standing direction. These can help with multi-
person interactions and stealthy attacks. We can even capture fine
grained motions such as gestures with sonar [16]. Secret gestures
can be used as authentication instead of just verification of user
presence. Moreover, gesture captchas can be used to thwart machine
learning attacks. Gesture based interactions can also add to the
usability of smart speakers.

7.3 Activity Recognition Applications

Motion sensors have long been used for occupancy based appli-
cations [14, 22], but they are not robust and can be triggered due
to sunlight, wind or other thermal variations [1]. EchoSafe can be
used as a robust method to detect occupancy for these applications.
With physics based sonar, we can also develop methods to identify
user activities, such as cooking, watching television, sleeping, etc.
Then, use it for many ubiquitous computing applications.

7.4 Privacy Implications

In our threat model, we assumed that the device vendor is trustwor-
thy. However, they have an incentive to share information about
the user to third party advertisers. Amazon Echo may already store
all the audio it listens to, and many different private inferences
can be made from it [12]. Sonar based methods are added to these
inferences, and presented a genuine threat to user privacy. Smart-
phone vendors have adopted several policies to limit exploitation
of phone sensor data (e.g. location). We need similar strategies for
smart speakers, and this presents a promising direction for future
work.

8 CONCLUSION

Smart speakers are becoming commonplace in modern homes.
Moreover, they are vulnerable to audio vector attacks, as they are
always listening for commands. An attacker can send malicious
commands to the speaker when the room is unoccupied and com-
promise user privacy, safety and security. In this paper, we propose
a promising defense against voice command attack by verifying
the presence of the user, when the command is received by the
smart speaker. We design the defense utilizing sonar to detect the
occupancy of the room in order to prevent remote attacks. We show
that user presence can be detected using sonar with 93% accuracy,
and our method is robust to ambient noise and user position in the
room.
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