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Abstract—In this paper we consider the information-theoretic
characterization of performance limits of a broad class of multi-
terminal communication problems with general continuous-
valued sources and channels. In particular, we consider point-to-
point source coding and channel coding with side information,
distributed source coding with distortion constraints and function
reconstruction problems (two-help-one). We develop an approach
that uses fine quantization of the source and the channel
variables followed by random coding with unstructured as well
as structured (linear) code ensembles. This approach leads to
lattice-like codes for general sources and channels.

I. Introduction

Multi-terminal communication problems involving

continuous-valued sources and channels have been studied

extensively in the literature. For certain problems, such

as point to point source coding and channel coding, and

the multiple-access channel, performance limits have been

derived using techniques based on weak typicality. For more

complex problems such as distributed source coding, and

broadcast channels, one needs a stronger technique because,

for example, the Markov lemma [3] (a crucial step in the

derivation of achievable rate regions) is not valid for weakly

typical sequences. To address this, Wyner [2] proposed

a technique for the problem of rate-distortion with side

information using the technique of fine quantization where

the source, the side information and the auxiliary variables

are quantized to create a finite-alphabet problem. Then, the

achievablity results for the finite-alphabet problem are used to

derive performance limits for the original problem using the

convergence properties of mutual information. This problem

has also been addressed using weak-* typicality in [4] where

the Markov lemma has been extended to continuous sources

and side information. These are based on unstructured

random code ensembles. Another technique that has been

considered for linear quadratic Gaussian (LQG) sources and

channels is to use subtractive dithered lattice codes [5], [6].

In this technique, the codes constructed have certain algebraic

structures that can be exploited to obtain performance that

is superior to those achievable using the unstructured code

ensembles [7]. The drawback of these lattice codes is that (a)

they are very specific to the LQG nature of the problem, and

hence not amenable to non-Gaussian and nonlinear problems,

(b) they are based on the point-to-point communication

perspective, and hence not general enough to implement all

of the multiuser techniques such as joint quantization as

seen in multiple-description coding, and joint source-channel

mapping as seen in transmission of correlated sources over

multiple-access channels.

In this paper, we develop a unified framework for achieving

performance limits of general continuous-valued sources and

channels in general multi-terminal communication setups. This

is based on the fine quantization technique that can be used

either with unstructured random code ensembles or structured

code ensembles.

II. Point-to-point Communication with Side Information

We derive the optimal rate-distortion function for source

coding and optimal capacity-cost function for channel coding

by first discretizing the associated random variables, and then

using transmission systems designed for discrete sources and

channels. This approach is described in the following.

For any integer n > 0, consider the discrete set 1
2nZ. Define

the following quantization function Qn : R → Zn as, for

any s ∈ R, Qn(s) = arg mina∈ 1
2n Z

(s − a)2. For any two real

numbers l > 0 and u > 0, define the clipping function

Cl,u : R → R, Cl,u(s) = max{min{u, s},−l}. Associated with

this quantization, and the clipping function, define the discrete

set Zl,n , [−l, u]
⋂

2−n
Z, and the associated quantization

cells Al,n(i) for i = 0, 1, 2, . . . , (bu 2nc − d−l2ne − 1). Let

ζl,u,n(i) denote the quantization reconstruction of the ith cell.

To reduce clutter, we denote Qn(Cl,u(S )) as S l,u,n when the

subscript is clear from the context. Moreover, we also denote

S l,u = Cl,u(S ). For the channel coding and source coding

problems that will be studied in this section, we consider cost

and distortion functions as follows. We assume that the cost

function κ : R2 → R+, and the distortion function d : R3 → R+

are jointly continuous (for n-length vectors, we use additive

cost κn and distortion dn functions).

A. Source Coding With Side Information at Decoder

Consider a memoryless source X with side information Y

given by (PXY , d) comprising of a probability measure PXY on

R
2, with reconstruction alphabet R, and a jointly continuous

distortion function d.

Definition II.1. An (n,Θ) transmission system is a pair of

mappings e : Rn → {1, 2, . . . ,Θ}, f : {1, 2, . . . ,Θ} × Rn → Rn.

A rate distortion pair (R,D) is said to be achievable if there

exists a sequence of (n,Θn) transmission systems such that

lim
n→∞

logΘn

n
≤ R, lim

n→∞
Edn(Xn,Yn, f (e(Xn),Yn)) ≤ D.
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Let the operational rate-distortion function RWZ(D) denote the

infimum of rates R such that (R,D) is achievable.

We prove the following theorem for a general probability

measure PXY and continuous distortion function d.

Theorem II.1. For a given source (PXY , d), we have RWZ(D) ≤

α(D), where

α(D) , min
{PU |X ,g(·,·)}

[I(U; X) − I(U; Y)] ,

and the minimization is carried out over all transition prob-

ability PU |X , and continuous functions g : R2 → R such that

Y → X → U, and E[d(X,Y, g(U,Y))] ≤ D.

Proof: Consider a joint probability measure PXYU and g(·, ·)

that satisfies the conditions given in the theorem. Define an

induced distortion function d̃ : R3 → R
+ as d̃(x, y, u) =

d(x, y, g(y, u)). Note that d̃ is continuous everywhere, and

Ed̃(X,Y, u) is finite whenever u is finite. We quantize X

with parameters l1, u1 and n1, quantize U with parameters

l2, u2, n2 and quantize Y with parameters l3, u3, n3. However,

the quantized triple (Xl1,u1,n1
,Yl3,u3,n3

,Ul2,u2,n2
) may not satisfy

Markov chain Yl3,u3,n3
− Xl1,u1,n1

− Ul2,u2,n2
. To address this we

consider the following approach.

We are given the source (X,Y) and an auxiliary variable

U with joint distribution PXYU such that Y − X − U. We

consider a series of single-letter transformations of these

random variables as follows.

Step 1: Let Z and W be two random variables that are

independent of the source (X,Y) such that Z ∈ [−l1, u1] with

probability 1, and the distribution PZW is given by

PZW (A × B) =
PXY (A ∩ [−l1, u1] × B)

P(X ∈ [−l1, u1])

for all events A and B in Borel sigma algebra. Define

(X̃, Ỹ) =

{

(X,Y) if X ∈ [−l1, u1]

(Z,W) otherwise
.

Let Ũ be a random variable that is correlated with (X,Y,Z,W)

such that the distribution of (X̃,U) is given by

PX̃,Ũ(A × B) =
PXU(A ∩ [−l1, u1] × B)

P(X ∈ [−l1, u1])

for all event A and B, and (X,Y, Ỹ) − X̃ − Ũ. It should be

noted that (X̃, Ỹ , Ũ) depends on l1, u1, however, this is not

made explicit to keep the notation simple. Next we show

that I(X̃; Ũ) ≈ I(X; U), I(Ỹ; Ũ) ≈ I(Y; U), and Ed(X̃, Ỹ , Ũ) ≈

Ed(X,Y,U) for sufficiently large l1, u1. Fix an ε > 0. Consider

I(X̃; Ũ) =

∫ u1

−l1

∫

dPXU(x̃, ũ)

PX([−l1, u1])
log

dPXU

d(PŨ PX)
(x̃, ũ)

(a)
=

∫ u1

−l1

∫

dPXU(x̃, ũ)

PX([−l1, u1])
log

dPXU

d(PU PX)
(x̃, ũ) − D(PŨ‖PU)

≤
1

PX([−l1, u1])

∫ ∫

dPXU(x̃, ũ) log
dPXU

d(PU PX)
(x̃, ũ)

→ I(X; U),

as l1, u1 → ∞, where in (a) we note that PŨ � PU . Next

observe that

PỸŨ(A × B) = PX̃ỸŨ([−l1, u1] × A × B)

=
PXYU([−l1, u1] × A × B)

PX([−l1, u1])
→ PYU(A × B)

as l1, u1 → ∞, and hence we have liml1,u1→∞ I(Ỹ; Ũ) ≥ I(Y; U).

Moreover,

Ed(X̃, Ỹ , g(Ỹ , Ũ)) =

∫ u1

−l1

∫ ∫

d(x̃, ỹ, g(ỹ, ũ))
dPXYU

PX([−l1, u1])
(x̃, ỹ, ũ)

→ Ed(X,Y, g(Y,U))

as l1, u1 → ∞.

Step 2: Clip Ỹ and Ũ with parameters l3, u3 and l2, u2,

respectively. We still have Ỹl3,u3
− X̃ − Ũl2,u2

. One can see that

there exists sequence of lengths l2n, l3n and u2m, u3m such that

lim
n,m→∞

Ed(X̃, Ỹl3n,u3n
, g(Ỹl2m,u2m

, Ũl2m,u2m
))

= lim
n,m→∞

Ed̃(X̃, Ỹl3n,u3n
, Ũl2m,u2m

) = Ed̃(X̃, Ỹ , Ũ) = Ed(X̃, Ỹ , g(Ỹ , Ũ)).

Moreover,

lim
l2,u2→∞

I(X̃; Ũl2,u2
) = I(X̃; Ũ), lim

l2,u2,l3,u3→∞
I(Ỹl3,u3

; Ũl2,u2
) = I(Ỹ; Ũ)

Step 3: Next we quantize X̃ into X̃n1
and enforce the Markov

chain. Before we proceed further, let us note that all random

variables with ∼ on top depend on l1 and u1, and this

dependence is not made explicit. Now using

I(X̃Ỹl3,u3
; Ũl2,u2

|X̃n1
) = I(X̃, Ỹl3,u3

; Ũl2,u2
) − I(X̃n1

; Ũl2,u2
),

we get

lim
n1→∞

I(Ỹl3,u3
X̃; Ũl2,u2

|X̃n1
) = I(Ỹl3,u3

; Ũl2,u2
|X̃) = 0. (1)

Define Ûl2,u2
as a random variable having the same alphabet

as Ũl2,u2
, and that is jointly correlated with (X̃n1

, X̃, Ỹl3,u3
)

according to the probability distribution that satisfies the

Markov chain Ỹl3,u3
− X̃ − X̃n1

− Ûl2,u2
, and the pair (X̃n1

, Ûl2,u2
)

has the same distribution as the pair (X̃n1
, Ũl2,u2

). First, let us

consider the following lemma.

Lemma II.1. For any triple of random variables S ,T,W with

joint distribution PS TW , consider a random variable Ŵ that is

correlated with (S ,T ) such that PTW = PTŴ and S − T − Ŵ,

then

I(S ; W |T ) ≥ D(PS W‖PS Ŵ ) ≥
1

2 ln 2
V2(PS W , PS Ŵ ).

Using (1), and Lemma II.1 with the triple (X̃, Ỹl3,u3
), X̃n1

,

and Ũl2,u2
, we have

lim
n1→∞

V
(

PX̃,Ỹl3 ,u3
,Ũl2 ,u2
, PX̃,Ỹl3 ,u3

,Ûl2 ,u2

)

= 0,

and hence using lower semicontinuity of mutual information

in variational distance, we have

lim
n1→∞

I(X̃n1
; Ûl2,u2

) = I(X̃; Ũl2,u2
),
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lim
n1→∞

I(Ỹl3,u3
; Ûl2,u2

) ≥ I(Ỹl3,u3
; Ũl2,u2

),

and since convergence in variational distance implies conver-

gence in distribution, we have

lim
n1→∞

Ed(X̃n1
, Ỹl3,u3

, g(Ỹl3,u3
, Ûl2,u2

)) = Ed(X̃, Ỹl3,u3
, g(Ỹl3,u3

, Ũl2,u2
)).

(2)

Step 4: Next we quantize Yl3,u3
and Ûl2,u2

into Yl3,u3,n3

and Ûl2,u2,n2
. We can show the convergence of mutual in-

formation and expected distortions as n2 and n3 become

large. Let us summarize the approach used till now. We

are given three infinite-alphabet random variables (X,Y,U)

with joint distribution PXYU and satisfying the Markov

chain Y − X − U. We create three finite alphabet random

variables (X̃n1
, Ỹl3,u3,n3

, Ũl2,u2,n2
) satisfying the Markov chain

(Ỹl3,u3,n3
− X̃n1

− Ũl2,u2,n2
). The pair (X̃n1

, Ỹl3,u3,n3
) is obtained

by a random transformation of the pair (X,Y). In partic-

ular, we note that, (X̃, Ỹ) = (X,Y) if X ∈ [−l1, u1], and

(X̃, Ỹ) = (Z,W) otherwise. Further, X̃n1
is the quantized

version of X̃, and Ỹl3,u3,n3
is the clipped and quantized version

of Ỹ . By choosing nine parameters l1, l2, l3, u1, u2, u3 and

n1, n2, n3, we can make I(X̃n1
; Ûl2,u2,n2

), I(Ỹl3,u3,n3
; Ûl2,u2,n2

) and

Ed(X̃n1
, Ỹl3,u3,n3

, g(Ỹl3,u3,n3
, Ûl2,u2,n2

)) approach I(X; U), I(Y; U)

and Ed(X,Y, g(Y,U)) arbitrarily closely. In other words, for

every ε > 0, there exist infinitely many l1, u1, l2, u2, l3, u3 such

that for all sufficiently large n1, n2, n3, we have

I(X̃n1
; Ûl2,u2,n2

) − I(Ỹl3,u3,n3
; Ûl2,u2,n2

) ≤ I(X; U) − I(Y; U) + 2ε,

Ed(X̃n1
, Ỹl3,u3,n3

, g(Ỹl3,u3,n3
, Ûl2,u2,n2

) ≤ Ed(X,Y, g(Y,U)) + ε.

Step 5: Now we can use Wyner-Ziv rate-distortion

theorem [1] for finite alphabets to show the existence

of a transmission system. In particular, one can show

that the rate-distortion pair given by (I(X̃n1
; Ûl2,u2,n2

) −

I(Ỹl3,u3,n3
; Ûl2,u2,n2

),Ed(X̃n1
, Ỹl3,u3,n3

, g(Ỹl3,u3,n3
, Ûl2,u2,n2

)) is

achievable for the finite-alphabet source (X̃n1
, Ỹl3,u3,n3

, d). In

other words, for all ε > 0, and for all sufficiently large m,

there exists a transmission system TSd with parameter (m,Θ)

for compressing the finite-alphabet source such that

1

m
logΘ ≤ I(X̃n1

; Ûl2,u2,n2
) − I(Ỹl3,u3,n3

; Ûl2,u2,n2
) + ε, (3)

Edm(X̃m
n1
, Ỹm

l3,u3,n3
, X̄m) ≤ Ed(X̃n1

, Ỹl3,u3,n3
, g(Ỹl3,u3,n3

, Ûl2,u2,n2
))+ε,

where X̄m = f (e(X̃m
n1

), Ỹm
l3,u3,n3

). This completes the desired

proof.

B. Channel Coding with Side Information at Transmitter

Consider a channel with state (PY |XS , PS , κ) comprising of

a transition probability PY |XS : R2 ×B → R, a state random

variable S with a probability measure PS , and a cost function

κ : R2 → R+. We assume that the channel state is observable at

the encoder noncausally. For any transition probability PX|S :

R ×B → R+, we define the joint probability measure PXS Y

on the measurable space (R3,B3) as the unique extension of

the measure on product sets

PXS Y (A × B ×C) =

∫

A

PS (ds)

∫

B

PX|S (s, dx)

∫

C

PY |XS (x, s, dy)

We assume that the state is IID, and the channel is stationary,

memoryless and used without feedback. One can define the

capacity-cost function [8] with side information CGP(τ) (we

skip a formal definition due to lack of space).

Theorem II.2. For a given channel with state (PY |XS , PS , κ),

we have CGP(τ) ≥ α(τ), where

α(τ) , max
{PU |S ,g(·,·)}

[I(U; X) − I(U; Y)] ,

and the maximization is carried out over all transition prob-

ability PU |S , and continuous functions g : R2 → R such that

U → (X, S )→ Y, and E[κ(g(U, S ), S ] ≤ τ.

We skip the proof due to lack of space.

III. Distributed Source Coding

Next we consider distributed source coding problem con-

sisting of two correlated and memoryless continuous-valued

sources X and Y , characterized by a probability measure PXY

which needs to be compressed distributively into bits to be

sent to a joint decoder. The joint decoder wishes to reconstruct

the sources with respect to two separable distortion measures

dx : R→ R+ and dy : R→ R+. This is a well-studied problem

[3] and we skip the formal definition for conciseness. Let

RD denote the set of all achievable rate and distortion tuples

(R1,R2,D1,D2). We denote R(D1,D2) as the set of all rates

(R1,R2) such that (R1,R2,D1,D2) is achievable.

Definition III.1. Let P(D1,D2) denote the collection of pairs

of transition probabilities PU |X and PV |Y , and pairs of contin-

uous functions gi : R2 → R for i = 1, 2, such that Edx(X, X̂) ≤

D1 , Edy(Y, Ŷ) ≤ D2 , where the expectations are evaluated

with the joint measure PXY PU |XPV |Y , i.e., U − X − Y − V form

a Markov chain. For a (PU |X , PV |Y , g1, g2) ∈ P(D1,D2), let

α(PU |X , PV |Y , g1, g2) denote the set of rate pairs (R1,R2) ∈

[0,∞)2 that satisfy

R1 ≥ I(X; U |V), R2 ≥ I(Y; V |U), R1 + R2 ≥ I(XY; UV).

Let the information rate region be defined as

α(D1,D2) = cl



















⋃

(PU |X ,PV |Y ,g1,g2)∈P(D1,D2)

α((PU |X , PV |Y , g1, g2)



















Theorem III.1. For a given source (PXY , d1, d2), we have

α(D1,D2) ⊆ R(D1,D2).

We skip the proof due to lack of space.

IV. Reconstruction of the Sum

In this section, we develop the framework that addresses

structured code ensembles. Consider a pair of jointly continu-

ous random variables U,V with a joint PDF fUV . We denote the

joint probability measure as PUV . We assume that (i) fUV has
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support over the compact set [0,M]2 for some finite M, and (ii)

for all (u, v) ∈ [0,M]2, the joint PDF satisfies l ≤ fUV (u, v) ≤ L,

for some L ≥ l > 0. Consider quantizing U and V with a

uniform quantizer with step size ∆n , M/n for some integer

n. We denote

Un , ∆n

⌊

U

∆n

⌋

+
∆n

2
, and Vn , ∆n

⌊

V

∆n

⌋

+
∆n

2
.

We have the following theorem.

Theorem IV.1. There exists a sequence ξn > 0 such that

I(Un; Un + Vn) ≤ I(U; U + V) + ξn,

and limn→∞ ξn = 0.

Proof: Let us denote the ith cell of the quantizer as Ei , [(i−

1)∆n, i∆n), and its midpoint as ei = i∆n−
∆n

2
, for i = 1, 2, . . . , n.

Consider the following sequence of inequalities.

H(Un + Vn)

(a)
= −

n
∑

i, j=1

PUV (Ei × E j) log PUV (Gi+ j)

= −
∑

i+ j≤n

PUV (Ei × E j) log

i+ j−1
∑

k=1

PUV (Ek × Ei+ j−k)

−
∑

i+ j>n

PUV (Ei × E j) log

n
∑

k=i+ j−n

PUV (Ek × Ei+ j−k),

(b)

≤ −
∑

i+ j≤n

PUV (Ei × E j) log

i+ j−1
∑

k=1

∆2
n( fUV (ek, ei+ j−k) − δn)

−
∑

i+ j>n

PUV (Ei × E j) log

n
∑

k=i+ j−n

∆2
n( fUV (ek, ei+ j−k) − δn),

(c)

≤ −
∑

i+ j≤n

PUV (Ei × E j) log

[

∆n

(∫ (i+ j−1)∆n

0

fUV (u, (i + j − 1)∆n

−u)du − ζn) − nδn∆
2
n

]

−
∑

i+ j>n

PUV (Ei × E j)

log

[

∆n

(∫ n∆n

(i+ j−n−1)∆n

fUV (u, (i + j − 1)∆n − u)du − ζn

)

− nδn∆
2
n

]

(d)

≤ −
∑

i, j

PUV (Ei × E j) log
[

fU+V (ei + e j)
]

+ (ηn − log∆n)

(e)

≤ −
∑

i, j

∆2
n fUV (ei, e j) log

[

fU+V (ei + e j)
]

+
∑

i, j

∆2
nδn| log( fU+V (ei + e j)| + (ηn − log∆n)

( f )

≤ −
∑

i, j

∆2
n fUV (ei, e j) log

[

fU+V (ei + e j)
]

+ M2δn max{log(2ML),− log(l)} + (ηn − log∆n)

(g)

≤ −

∫

fUV (u, v) log fU+V (u + v)dudv + αn

+ M2δn max{log(2ML),− log(l)} + (ηn − log∆n)

where we have used the following arguments. In (a) we have

defined for all k = 2, . . . , 2n,

Gk = {(u, v) : ∃m such that (u, v) ∈ (Em × Ek−m)}.

In (b), we have a sequence δn such that limn→∞ δn = 0,

existence of which follows from the uniform continuity of

fUV over the support set [0,M]2. In (c), we have a sequence

ζn such that limn→∞ ζn = 0, existence of which follows from

the uniform Riemann integrability of fUV . This is proved in

the following lemma. In (d) we have a sequence ηn such that

limn→∞ ηn = 0, existence of which follows from the uniform

continuity of log function over the support set [l/2, 2ML].

In (e), we again have the sequence δn from the uniform

continuity of fUV over the support set [0,M]2. In (f) we have

used the lower bound l, and upper bound 2ML on fU+V .

In (g), we have a sequence αn such that limn→∞ αn = 0,

existence of which follows from the Riemann integrability

of the function fUV (u, v) log fU+V (u + v). Hence we see that

H(Un +Vn)+ log∆n ≈ h(U +V). Using similar arguments, we

can show that

H(Un,Un + Vn) + log∆2
n ≈ h(U,V) = h(U,U + V)

and H(Un) + log∆n ≈ h(U). Combining these we get the

desired result.

We have the next theorem saying something similar. For

any quadruple of random variables (U,V, X,Y), we have the

following result.

Theorem IV.2. There exists a sequence ξn,m,l > 0 such that

lim
n,m,l→∞

I(Un + Vn, Xm; Yl) ≥ I(U + V, X; Y) − ξn,m,l,

and limn,m,l→∞ ξn,m,l = 0.

Proof: Fix ε > 0. We see that there exists m0 and l0 such

that for all m > m0 and l > l0, have I(U + V; Xm; Yl) ≥ I(U +

V, X; Y) − ε. Choose an m > m0 and an l > l0. Note that Xm

and Yl are finite-valued random variables. Applying Theorem

IV.1 on (U,V) for different realizations of (Xm,Yl), we see that

there exists a sequence ξn,m,l > 0 such that

lim
n→∞

I(Un + Vn, Xm; Yl) ≥ I(U + V, Xm; Yl) − ξn,m,l,

and limn ξn,m,l = 0. From this we get the desired result.

We next have the following lemma which we promised to

prove in the proof of Theorem IV.1.

Lemma IV.1. For all m = 1, 2, . . . , (2n − 1),

|A(m∆n) − An(m∆n)| ≤ 2Mδn,

where

A(m∆n) =

∫ min{m∆n,M}

max{0,m∆n−M}

fUV (u,m∆n − u)du,

An(m∆n) =

min{m,n}
∑

k=max{1,m+1−n}

∆n fUV (ek,m∆n − ek).
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Proof: For all i, j ∈ {1, 2, . . . , n}, let

ēi, j = arg max
ũ:dũ/∆ne=i

arg max
ṽ:dṽ/∆ne= j

f (ũ, ṽ).

e
i, j
= arg min

ũ:dũ/∆ne=i
arg min

ṽ:dṽ/∆ne= j
f (ũ, ṽ).

First consider the case when m = 1, 2, . . . , n. Then we have

A(m∆n) =

m
∑

k=1

∫

Ek

fUV (u,m∆n − u)du ≤

m
∑

k=1

∆n fUV (ēk,m−k+1),

where the inequality follows because as u ranges over the set

Ek, we have (m∆n − u) range over the set Em−k+1. Similarly,

we have

A(m∆n) ≥

m
∑

k=1

∆n fUV (e
k,m−k+1

).

Moreover since (m∆n − ek) = em−k+1, we see that

m
∑

k=1

∆n fUV (e
k,m−k+1

) ≤ An(m∆n) ≤

m
∑

k=1

∆n fUV (ēk,m−k+1).

Now making the observation that
∣

∣

∣

∣

∣

∣

∣

m
∑

k=1

∆n fUV (ēk,m−k+1) −

m
∑

k=1

∆n fUV (e
k,m−k+1

)

∣

∣

∣

∣

∣

∣

∣

≤ 2Mδn, (4)

we get the desired result. The case when m = (n+1), . . . , (2n−

1) can be handled similarly.

V. Lossy Two-Help-One Problem

Next we consider a coding theorem for continuous sources

for the two-help-one problem. Consider a triple of memoryless

continuous-valued sources (X,Y,Z) characterized by a proba-

bility measure PXYZ . Let d : R2 → R+ be a jointly continuous

distortion function. The sources X and Y act as helpers

for the third source Z. The sources need to be compressed

distributively with rates R1, R2 and R3, respectively, into bits

to be sent to a joint decoder. For simplicity we let R3 = 0. The

joint decoder wishes to reconstruct the source Z with respect

to distortion function d.

Definition V.1. An (n,Θ1,Θ2) transmission system consists

of mappings ei : Rn → {1, 2, . . . ,Θi}, for i = 1, 2, and

f : {1, 2, . . . ,Θ1} × {1, 2, . . . ,Θ2} → R
n. A triple (R1,R2,D) is

said to be achievable if there exists a sequence of (n,Θ1n,Θ2n)

transmission systems such that for i = 1, 2,

lim
n→∞

logΘi

n
≤ Ri, lim

n→∞
Edn(Zn, f (e1(Xn), e2(Yn))) ≤ D.

Let R(D) denote the set of rates (R1,R2) such that (R1,R2,D)

is achievable.

Definition V.2. Let P(D) denote the collection of transition

probabilities PQU1V1UVẐ|XY such that (i) (UU1)−(XQ)−(YQ)−

(VV1) form a Markov chain, (ii) Q is independent of (X,Y),

(iii) Ẑ = g(U1,V1,U + V) for some function g, and (iv)

Ed(Z, Ẑ) ≤ D1, where the expectations are evaluated with

distribution PXYZ PQU1V1UVẐ|XY . For a PQU1V1UVẐ|XY ∈ P(D), let

α(PQU1V1UVẐ|XY ) denote the set of rate pairs (R1,R2) ∈ [0,∞)2

that satisfy

R1 ≥ I(X; UU1|QV1) + I(U + V; V |QU1V1) − I(U; V |QU1V1),

R2 ≥ I(Y; VV1|QU1) + I(U + V; U |QU1V1) − I(U; V |QU1V1)

R1 + R2 ≥ I(XY; UVU1V1|Q) + I(U + V; V |QU1V1)

+ I(U + V; U |QU1V1) − I(U; V |QU1V1)

where the information terms are evaluated with

PXY PQU1V1UVẐ|XY . Let the rate region be defined as

α(D) = cl





















⋃

PQU1V1UVẐ|XY∈P(D)

α(PQU1V1UVẐ|XY )





















Theorem V.1. For a source (PXYZ , d) we have α(D) ⊆ R(D).

We propose a coding scheme involving two layers to prove

the theorem. The first is the Berger-Tung unstructured coding

layer. The second is the structured coding layer that uses

nested linear codes. Although we do not have space to give

a complete proof, the key steps in the proof are as follows.

First, we quantize the sources and the auxiliary variables,

and apply the technique developed in source coding with

side information to come up with a discrete version of the

problem at hand. The Berger-Tung unstructured coding is

accomplished in a straightforward way. The structured coding

is accomplished using nested linear codes. The rates associated

with this layer can be understood as follows, for example,

assuming U1,V1 and Q to be trivial. R1 ≥ I(X; U) + H(U +

V) − H(U) = I(X; U) − I(U; V) + I(V; U + V), and similarly

R2 ≥ I(Y; V) − I(U; V) + I(U; U + V). These rates can be

achieved using nested linear codes (over arbitrarily large

prime fields) along with joint-typical encoding and decoding.

Finally, we use the properties of mutual information to show

convergence.
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