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Abstract—In this paper we consider the information-theoretic
characterization of performance limits of a broad class of multi-
terminal communication problems with general continuous-
valued sources and channels. In particular, we consider point-to-
point source coding and channel coding with side information,
distributed source coding with distortion constraints and function
reconstruction problems (two-help-one). We develop an approach
that uses fine quantization of the source and the channel
variables followed by random coding with unstructured as well
as structured (linear) code ensembles. This approach leads to
lattice-like codes for general sources and channels.

1. INTRODUCTION

Multi-terminal ~ communication  problems  involving
continuous-valued sources and channels have been studied
extensively in the literature. For certain problems, such
as point to point source coding and channel coding, and
the multiple-access channel, performance limits have been
derived using techniques based on weak typicality. For more
complex problems such as distributed source coding, and
broadcast channels, one needs a stronger technique because,
for example, the Markov lemma [3] (a crucial step in the
derivation of achievable rate regions) is not valid for weakly
typical sequences. To address this, Wyner [2] proposed
a technique for the problem of rate-distortion with side
information using the technique of fine quantization where
the source, the side information and the auxiliary variables
are quantized to create a finite-alphabet problem. Then, the
achievablity results for the finite-alphabet problem are used to
derive performance limits for the original problem using the
convergence properties of mutual information. This problem
has also been addressed using weak-* typicality in [4] where
the Markov lemma has been extended to continuous sources
and side information. These are based on unstructured
random code ensembles. Another technique that has been
considered for linear quadratic Gaussian (LQG) sources and
channels is to use subtractive dithered lattice codes [5], [6].
In this technique, the codes constructed have certain algebraic
structures that can be exploited to obtain performance that
is superior to those achievable using the unstructured code
ensembles [7]. The drawback of these lattice codes is that (a)
they are very specific to the LQG nature of the problem, and
hence not amenable to non-Gaussian and nonlinear problems,
(b) they are based on the point-to-point communication
perspective, and hence not general enough to implement all
of the multiuser techniques such as joint quantization as
seen in multiple-description coding, and joint source-channel
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mapping as seen in transmission of correlated sources over
multiple-access channels.

In this paper, we develop a unified framework for achieving
performance limits of general continuous-valued sources and
channels in general multi-terminal communication setups. This
is based on the fine quantization technique that can be used
either with unstructured random code ensembles or structured
code ensembles.

II. PoINT-TO-POINT COMMUNICATION WITH SIDE INFORMATION

We derive the optimal rate-distortion function for source
coding and optimal capacity-cost function for channel coding
by first discretizing the associated random variables, and then
using transmission systems designed for discrete sources and
channels. This approach is described in the following.

For any integer n > 0, consider the discrete set ZLZ Define
the following quantization function Q, : R — Z, as, for
any s € R, Q,(s) = argminaefm(s — a)*. For any two real
numbers / > 0 and u > 0, define the clipping function
C: R = R, Cp,(s) = max{min{u, s}, —I}. Associated with
this quantization, and the clipping function, define the discrete
set Z, = [-Lu]l(27"Z, and the associated quantization
cells A;,(i) for i = 0,1,2,...,(lu 2"] = [-12"] = 1). Let
L1 (i) denote the quantization reconstruction of the ith cell.
To reduce clutter, we denote Q,(C;,(S)) as S;,, when the
subscript is clear from the context. Moreover, we also denote
Siu = Ciu(S). For the channel coding and source coding
problems that will be studied in this section, we consider cost
and distortion functions as follows. We assume that the cost
function « : R — R*, and the distortion function d : R® — R*
are jointly continuous (for n-length vectors, we use additive
cost «,, and distortion d,, functions).

A. Source Coding With Side Information at Decoder

Consider a memoryless source X with side information Y
given by (Pxy, d) comprising of a probability measure Pxy on
R?, with reconstruction alphabet R, and a jointly continuous
distortion function d.

Definition II.1. An (n,®) transmission system is a pair of
mappings e : R" — {1,2,...,0}, f:{1,2,...,0} xR" - R".
A rate distortion pair (R, D) is said to be achievable if there
exists a sequence of (n,®,) transmission systems such that

log ®,
lim —&

n—oo n

<R, lim Ed,(X",Y", f(e(X"),Y")) < D.
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Let the operational rate-distortion function Ryz(D) denote the
infimum of rates R such that (R, D) is achievable.

We prove the following theorem for a general probability
measure Pyy and continuous distortion function d.

Theorem I1.1. For a given source (Pxy,d), we have Ryz(D) <
a(D), where

a(D) £ m11(1

l/IX

U(U:X) = I(U; Y],

and the minimization is carried out over all transition prob-
ability Py, and continuous functions g : R* — R such that
Y > X—> U, and E[d(X,Y,g(U,Y))] < D.

Proof: Consider a joint probability measure Pxyy and g(-,-)
that satisfies the conditions given in the theorem. Define an
induced distortion function d : R®> — R* as J(x,y,u) =
d(x,y,g(y,u)). Note that d is continuous everywhere, and
Ed(X,Y,u) is finite whenever u is finite. We quantize X
with parameters /;,u; and nj, quantize U with parameters
lr,up,ny and quantize Y with parameters /s, u3, n3. However,
the quantized triple (Xi, u,.n,> Yty 505> Ulunn,) May not satisty
Markov chain Yz, u, n, — X1, — Ubunn,- To address this we
consider the following approach.

We are given the source (X,Y) and an auxiliary variable
U with joint distribution Pyyy such that ¥ — X — U. We
consider a series of single-letter transformations of these
random variables as follows.

Step 1: Let Z and W be two random variables that are
independent of the source (X,Y) such that Z € [-];,u;] with
probability 1, and the distribution Pzy is given by

Pxyy(An[-l,m1X B)
P(X € [-1,u1])

for all events A and B in Borel sigma algebra. Define

Pzw(A X B) =

X.Y)
Z. W)

S TN ifXE[—ll,Ml]
X, ¥) = { otherwise
Let U be a random variable that is correlated with (X, Y, Z, W)
such that the distribution of (X, U) is given by

Pxy(AN [~li,u1] X B)
P(X € [-I,u1])

for all event A and B, and (X,Y,¥Y) — X — U. It should be
noted that (X, Y, 0) depends on [, u;, however, this is not
made explicit to keep the notation simple. Next we show
that I(X; 0) ~ I(X; U), I(Y;0) ~ I(Y;U), and Ed(X,Y,0) ~
Ed(X, Y, U) for sufficiently large /i, u;. Fix an € > 0. Consider

PX’Q(A X B) =

dPxy(X, it) o
IX;U
( ) fll fPX([ llsul]) Og d(Ppr)( M)
@ dPxy(%, it) dPxy .
) _D P" P
fz, foq oD dpypy &M~ PEAlFY)

WPy
= Pl ll,ul]) f f Py 1) log gip p 5 (50
- I(X;U),

as I;,u; — oo, where in (a) we note that Py < Py. Next
observe that

Pyg(AX B) = Pyyg([=h,u1] X A X B)
_ Pxvy(I=li,u1] X A X B)
Px([=l1,u1])

as [, u; — oo, and hence we have limy, 4, 5« 1(Y;0)> I(Y; U).
Moreover,

g PYU(AXB)

dPxyy Iy
Ed = d%.5.8 -
(X.7,8(Y,0)) = fl] ff 380 5
— Ed(X,Y,g(Y,U))

as l,u
Step 2: Clip ¥ and U with parameters 3,u3 and I, us,
respectively. We still have YIWS -X- Ulz,uz. One can see that
there exists sequence of lengths I, I3, and uy,,, us, such that

1 — ©9.

lim Ed(x’ le.n,mn’ g(?IstuZm’ 012!71!”2"1))

= lim Ed(X, Yy, > Usyu,) = Bd(X, Y, 0) = Bd(X, Y, g(¥, 0)).
Moreover,

lim I(X;0,,.,) = I(X; 0),

lz Uy —00

lim I(Ylg,,u;; Ulz,u‘)) = I(Y, U)
/2,%2,[3,%3%00 - -

Step 3: Next we quantize X into )N(m and enforce the Markov
chain. Before we proceed further, let us note that all random
variables with ~ on top depend on /; and u;, and this

dependence is not made explicit. Now using
I(XYI3,143; Olz,uz IXn]) = I(X’ ?13,u3; 012,142) - I(an 5 Ulz,ug)’
we get

lim I(Y/lg,ug}?; Ulz,uz p?nl) = I(f]13,ll3; f]lz,uz p?) =0

nj—co

D

Define U, L., as a random variable having the same alphabet
as 012 4, and that is jointly correlated with (Xn,,f( 1713 )
according to the probablhty distribution that satisfies the
Markov chain Y13 s -X- X,,, Uzz 1, and the pair (X,,l, Ul2 )
has the same distribution as the pair (an, Ulz,uz) First, let us
consider the following lemma.

Lemma I1.1. For any triple of random variables S, T, W with
Jjoint distribution Pgrw, consider a random variable W that is
correlated with (S,T) such that Prw = Ppy and S — T — W,
then

1
I(S;WIT) > D(Pswl||Pgy) = In ZV (Psw, Pgyy).

Using (1), and Lemma II.1 with the triple (X, ?13,:43), an,
and Uy, ,,, we have

lim V(PX Vi3 Otyary? PX’Y13,1435U[2,lt2) =0,

ny—oo
and hence using lower semicontinuity of mutual information
in variational distance, we have

lim 1(X,,; Uy,.,) = [X; U, ),

ny—oo
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hm I(?lj;,l,t}; 012,142) > I(Yl3,[l3; 0[2,uz),

ny—oo

and since convergence in variational distance implies conver-
gence in distribution, we have

lim Ed(an 5 yl},ugvg(?]:;,u}’ 0lz,u2)) = Ed(X, ?13,1,437 g(Yl3,u3, Olz,uz))-

np—o0o

2

Step 4: Next we quantize Yj,,, and Ulzm mnto Yy, uyn,
and U;z,uzm. We can show the convergence of mutual in-
formation and expected distortions as n, and n3 become
large. Let us summarize the approach used till now. We
are given three infinite-alphabet random variables (X, Y, U)
with joint distribution Pxyy and satisfying the Markov
chain ¥ — X — U. We create three finite alphabet random
variables (an,Y13 . n3,U12 o) satlsfymg the Markov chain
(le uz,n3 Ul7 U2, n2) The Palr (an’ Yl3 u3, m) is obtained
by a random transformation of the pair (X,Y). In partic-
ular, we note that, (X,¥) = (X,Y) if X € [-],u], and
(X,Y) = (Z, W) otherwise. Further, X,, is the quantized
version of X, and ¥}, ,, .., is the clipped and quantized version
of ¥. By choosing nine parameters L, b, 15, u, U, U3 and
ni,ny, n3, we can make I(X,“, Ulz ta )5 I(Yl3 Uz s U;2 wyny) and
Ed(anYl; U3, msg(Yl; us3,n3» Ulz u, nz)) approaCh I(X U) I(Y U)
and Ed(X, Y, g(¥,U)) arbitrarily closely. In other words, for
every € > 0, there exist infinitely many [, u;, [, us, [3, u3 such
that for all sufficiently large ny,n,,n3, we have

I(an 5 Ulz,ug,l’lz) - I(?Zyug,ng; Ulz,tlz,ﬂQ) < I(X’ U) - I(Y’ U) + 26’
Ed(Xo,, Vi sy 8 Vs nss Unpainny) < BAX, Y, g(Y, U)) + €.

Step 5: Now we can use Wyner-Ziv rate-distortion
theorem [1] for finite alphabets to show the existence
of a transmission system. In particular, one can show
that the rate-distortion pair given by (I(X,:Upupm) —
I(f/l3,u3,n3; Ulz,uz,nz)» Ed()?nl > ?13,u3,n3’g(?13,u3,n3’ ?jlz,ug,nz)) is
achievable for the finite-alphabet source (Xp,, Yy u;ns.d). In
other words, for all € > 0, and for all sufficiently large m,
there exists a transmission system TS, with parameter (m, ®)
for compressing the finite-alphabet source such that

1 ~ A - N
E log @ < I(Xm 5 Ulg,uz,nz) - I(Yl3,M3JZ3; Ulz,uz,nz) + €, (3)

Ed,, (X", 7"

ny° = l3us,n3°

Xm) < Ed(Xm > YILMM,@’ g(le,u3,n3’ Ulz,uz,nz))"'e’

where X" = f(e(X"), Y,
proof.

). This completes the desired

/z u3,13

B. Channel Coding with Side Information at Transmitter

Consider a channel with state (Pyxs, Ps, ) comprising of
a transition probability Pyxs : R? x 4 — R, a state random
variable S with a probability measure Pg, and a cost function
k : R? — R*. We assume that the channel state is observable at
the encoder noncausally. For any transition probability Pyxs :
R x #Z — R*, we define the joint probability measure Pygy

on the measurable space (R, %°) as the unique extension of
the measure on product sets

PXSY(AXBXC)ZfPS(dS)fPXls(S,dx)fPYlXS(x»s’d.V)
A B c

We assume that the state is IID, and the channel is stationary,
memoryless and used without feedback. One can define the
capacity-cost function [8] with side information Cgp(T) (We
skip a formal definition due to lack of space).

Theorem IL.2. For a given channel with state (Pyxs, Ps, k),
we have Cgp(T) > a(T), where

a(t) = max [I(U;X)-IU;Y)],

{Puis .g()}
and the maximization is carried out over all transition prob-
ability Pys, and continuous functions g : R? — R such that
U—- X,S)—> 7, and E[x(g(U,S),S] <.

We skip the proof due to lack of space.

III. DisTRIBUTED SOURCE CODING

Next we consider distributed source coding problem con-
sisting of two correlated and memoryless continuous-valued
sources X and Y, characterized by a probability measure Pxy
which needs to be compressed distributively into bits to be
sent to a joint decoder. The joint decoder wishes to reconstruct
the sources with respect to two separable distortion measures
dy:R — R* and d, : R — R*. This is a well-studied problem
[3] and we skip the formal definition for conciseness. Let
RD denote the set of all achievable rate and distortion tuples
(R1,R,, Dy, D>). We denote R(D;, D) as the set of all rates
(R1,R,) such that (R, R,, D1, D;) is achievable.

Definition III.1. Let P(Dy, D;) denote the collection of pairs
of transition probabilities Pyx and Pyyy, and pairs of contin-
uous functions g; : R = R for i = 1,2, such that Bd,(X,X) <
D, , Ed,(Y, V) < D, , where the expectations are evaluated
with the joint measure PxyPyxPyy, i.e, U—-X-Y -V form
a Markov chain. For a (Pyxx, Pyyy,81,82) € P(D1,Dy), let
a(Pyix, Pviy, 81,82) denote the set of rate pairs (Ri,Ry) €
[0, 00)? that satisfy

R 2 I(X;U|V), Ry 2I(Y;V|IU), Ri+Ry =IXY;UV).

Let the information rate region be defined as

a(Dy,D,) =cl a((Pyix, Pviy, 81, 82)
(Puix,Pviy,g1,82)€P(D1,D2)

Theorem III.1. For a given source (Pxy,di,d>), we have
a(Dy, D) € R(Dy, Dy).
We skip the proof due to lack of space.

IV. RECONSTRUCTION OF THE SUM

In this section, we develop the framework that addresses
structured code ensembles. Consider a pair of jointly continu-
ous random variables U, V with a joint PDF f;y. We denote the
joint probability measure as Pyy. We assume that (i) fyy has
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support over the compact set [0, M]? for some finite M, and (ii)
for all (u, v) € [0, M]?, the joint PDF satisfies [ < fyy(u,v) < L,
for some L > [ > 0. Consider quantizing U and V with a
uniform quantizer with step size A, = M/n for some integer
n. We denote

U

Un = An e
B

Ay

A, 1%
+—,and V, 2 A, | — |+
" L,,

We have the following theorem.

Theorem IV.1. There exists a sequence &, > 0 such that
IU; U, +V) <IU;U+V)+ &,

and lim, ., &, = 0.

Proof: Let us denote the ith cell of the quantizer as E; = [(i —
DA, iA,), and its midpoint as e; = iA, — %, fori=1,2,...,n.
Consider the following sequence of inequalities.

HU, +V,)
(a -
@ _ Z Pyy(E; X Ej)log Pyy(Giy )

ij=1

i+j-1
=- Z Pyy(E; x Ej)log Z Pyv(Ex X Eiyj 1)
i+j<n k=1

- Z Pyv(E; X Ej) log Z Pyv(Ex X Eiyj-i),

i+j>n k=i+j-n
®) i+j-1
< - ), PuvEi X Eplog ) Ar(fuv(ers eivjot) = 60)
i+j<n k=1
- Z Pyy(E; X E;j)log Z A2(fuv(ex, eirj—t) = On),
i+j>n k=i+j-n
© (i+j- 1A,
< - > Pyv(E; X E))log [An( fov(u, (i + j= DA,
i+j<n 0
—w)du = &) =6, = 3" Puv(E; X Ej)
i+j>n
nA,
lOg [An ( fUV(u’ (l + ] - I)An - u)du - é,n) - nénA;%]
(i+j-n—1)A,

(d)
< - Z Pyy(E; X Ej)log [fU+V(€i + ej)] + (17, — log Ay)
ij

(e)
s - Z A fuvlei,ej)log [ fusviei + ej)]
bJj
+ Z ArS,l1og(furv(ei + el + (17, — log A,)
ij
)
< = 3 A foveseptog[fuevle + e))]
ij
+ M?*6, max{log(2ML), - log(1)} + (17, — log A,)

©
<- ffuv(u, v)log fuv(u + v)dudv + a,

+ M?*6, max{log(2ML), —log(D)} + (17, — log A,)

where we have used the following arguments. In (a) we have
defined for all k =2,...,2n,

Gy = {(u,v) : Am such that (u,v) € (E,;, X Ex_n)}.

In (b), we have a sequence ¢, such that lim,..0, = 0,
existence of which follows from the uniform continuity of
fuv over the support set [0, M1?. In (c), we have a sequence
{, such that lim,,_,. ¢, = 0, existence of which follows from
the uniform Riemann integrability of fyy. This is proved in
the following lemma. In (d) we have a sequence 7, such that
lim, . 1, = 0, existence of which follows from the uniform
continuity of log function over the support set [[/2,2ML].
In (e), we again have the sequence ¢, from the uniform
continuity of fyy over the support set [0, M]?. In (f) we have
used the lower bound [/, and upper bound 2ML on fy.y.
In (g), we have a sequence @, such that lim,_. @, = 0,
existence of which follows from the Riemann integrability
of the function fyv(u,v)log fy.v(u + v). Hence we see that
HWU,+V,)+logA, = h(U + V). Using similar arguments, we
can show that

H(U,, U, + V,)) +log A> ~ h(U,V) = h(U, U + V)

and HWU,) + logA, =~ h(U). Combining these we get the
desired result.

We have the next theorem saying something similar. For
any quadruple of random variables (U, V,X,Y), we have the
following result.

Theorem IV.2. There exists a sequence &,,,; > 0 such that

lim Uy + Vi, X3 Y1) 2 I(U + V, X3 Y) = Ens

n,m,l—oo
and limil,m,lﬁm §n,m,l =0.

Proof: Fix € > 0. We see that there exists mg and [y such
that for all m > mgy and [ > [y, have I(U + V; X,,;Y)) > (U +
V,X;Y) — €. Choose an m > my and an [ > [y. Note that X,
and Y; are finite-valued random variables. Applying Theorem
IV.1 on (U, V) for different realizations of (X,,, Y;), we see that
there exists a sequence &,,,; > 0 such that

lim I(Un + Vn’ Xm; Yl) > I(U + V,Xm; Yl) - gn,m,la

n—oo

and lim, &,,,; = 0. From this we get the desired result.
We next have the following lemma which we promised to
prove in the proof of Theorem IV.1.

Lemma IV.1. Forallm=1,2,...,2n-1),
|A(mAn) - An(mAn)| < 2M6m

where

min{mA,,M}
AGmA,) = f Fov(ut,mA, — wyd,

max{0,mA,—M}

min{m,n}
Ap(mA,) =

k=max{1,m+1-n}

A, fuv(er, mA, — ep).
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Proof: For all i, j € {1,2,...,n}, let

e; i = arg max arg max i, V).
A AR WAL
e..=arg min arg min V).
—hJ g it/ Ay =i 5[0/ A=) f@9
First consider the case when m = 1,2,...,n. Then we have

A = 3 [ fovtumd, = < ) Aufur@nio)
k=1 Y Ex k=1

where the inequality follows because as u ranges over the set
Ey, we have (mA, — u) range over the set E,,_;.;. Similarly,
we have

m
AMA) 2 Y A fov(€y i)
k=1
Moreover since (mA, — ex) = e,—k+1, We see that
m m
Z AnfUV(gk’m_/H_l) < An(mAn) < Z AnfUV(ék,m—k+l)'
k=1 k=1

Now making the observation that

DA Sy @) = Y Anfuv(ey )| <2M6,, (4
k=1 k=1

we get the desired result. The case when m = (n+1),...,(2n—
1) can be handled similarly.

V. Lossy Two-HeLr-ONE PROBLEM

Next we consider a coding theorem for continuous sources
for the two-help-one problem. Consider a triple of memoryless
continuous-valued sources (X, Y, Z) characterized by a proba-
bility measure Pxyz. Let d : RZ 5> R* be a jointly continuous
distortion function. The sources X and Y act as helpers
for the third source Z. The sources need to be compressed
distributively with rates R|, R, and Rj3, respectively, into bits
to be sent to a joint decoder. For simplicity we let Ry = 0. The
joint decoder wishes to reconstruct the source Z with respect
to distortion function d.

Definition V.1. An (n,®,0,) transmission system consists
of mappings e; R* — {1,2,...,0;}, for i = 1,2, and
f{L2,...,01} x{1,2,...,0,} > R". A triple (R|,R,,D) is
said to be achievable if there exists a sequence of (n, ®1,,®,,)
transmission systems such that for i = 1,2,

log ®;
lim o8

n—oo n

Let R(D) denote the set of rates (R, R,) such that (R, R,, D)
is achievable.

<R;, lim Ed,(Z", f(e1(X"),e2(Y"))) < D.

Definition V.2. Let P(D) denote the collection of transition
probabilities Pouviuvaxy such that (i) (UU)—(XQ)—(YQ)—-
(VVy) form a Markov chain, (ii) Q is independent of (X,Y),
(iii) 7 = gU,,Vi,U + V) for some function g, and (iv)
Ed(Z, Z) < D, where the expectations are evaluated with
distribution PxyzP oy, v,uvzxy- For a Poy v, uvaxy € P(D), let

(P gy, v,uvaxy) denote the set of rate pairs (Ry, R,) € [0, 00)?
that satisfy
Ry 2 IX; UULIQVY) + I(U + V; VIQU, Vi) = I(U; VIQU V),
Ry 2 I(Y; VV4IQUy) + I(U + V; UIQU, V) — I(U; VIQU, Vi)
R+ Ry, 2 IXY; UVUV1IQ) + I(U + V; VIQU, V)

+I(U + V,UIQU V) = I(U; VIQU V)

where the information terms are evaluated with

PxyPou,v,uvixy- Let the rate region be defined as

a(D) =cl

Pou, v uvaxy€P D)

Theorem V.1. For a source (Pxyz,d) we have a(D) C R(D).

Q(PQUIVIUVZ|XY)

We propose a coding scheme involving two layers to prove
the theorem. The first is the Berger-Tung unstructured coding
layer. The second is the structured coding layer that uses
nested linear codes. Although we do not have space to give
a complete proof, the key steps in the proof are as follows.
First, we quantize the sources and the auxiliary variables,
and apply the technique developed in source coding with
side information to come up with a discrete version of the
problem at hand. The Berger-Tung unstructured coding is
accomplished in a straightforward way. The structured coding
is accomplished using nested linear codes. The rates associated
with this layer can be understood as follows, for example,
assuming Uy, V) and Q to be trivial. Ry > I(X;U) + H(U +
VY-HWU) = I(X;U) - I(U; V) + I(V;U + V), and similarly
R, > I(Y;V) - I(U;V) + I(U;U + V). These rates can be
achieved using nested linear codes (over arbitrarily large
prime fields) along with joint-typical encoding and decoding.
Finally, we use the properties of mutual information to show
convergence.
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