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Abstract
Generative Moment-Matching Network (GMMN)
is a deep generative model, which employs max-
imum mean discrepancy as the objective to learn
model parameters. However, this model can only
generate samples, failing to infer the latent code
from samples for downstream tasks. In this pa-
per, we propose a novel Joint Generative Moment-
Matching Network (JGMMN), which learns the
structural latent code for unsupervised inference.
Specifically, JGMMN has a generation network for
the generation task and an inference network for the
inference task. We first reformulate this model as
two joint distributions matching problem. To solve
this problem, we propose to use the Joint Maxi-
mum Mean Discrepancy (JMMD) as the objective
to learn these two networks simultaneously. Fur-
thermore, to enforce the consistency between the
sample distribution and the inferred latent code dis-
tribution, we propose a novel multi-modal regular-
ization to enforce this consistency. At last, exten-
sive experiments on both synthetic and real-world
datasets have verified the effectiveness and correct-
ness of our proposed JGMMN.

1 Introduction
In recent years, deep generative models have attracted much
attention among machine learning and computer vision com-
munities. Due to deep learning techniques’ flexibility and
powerful capability on fitting nonlinear functions, deep gen-
erative models have shown promising capabilities in charac-
terizing the distribution of complex datasets.

Among various generative models, Generative Adversarial
Network (GAN) [Goodfellow et al., 2014] has achieved much
progress in many tasks, such as image generation [Goodfel-
low et al., 2014; Chen et al., 2016; Reed et al., 2016], image
translation [Zhu et al., 2017; Kim et al., 2017]. Specifically,
given a dataset X ∼ QX where QX might be very compli-
cated, GAN learns a transformation gθ(·) by a deep neural
network, which operates on a simple distribution Z ∼ PZ ,
such that Pgθ(Z) is a good approximation of the sample dis-
tribution QX . To measure the similarity between Pgθ(Z) and
QX , GAN employs a min-max optimization schema where

another deep neural network fφ(·) is trained to measure the
similarity of these two distributions. Although this schema
has shown success in many tasks, yet it is difficult to optimize
because it requires special techniques [Arjovsky et al., 2017;
Gulrajani et al., 2017] to converge to a good solution. Instead,
Generative-Moment Matching Network (GMMN) [Li et al.,
2015] employs Maximum Mean Discrepancy (MMD) as the
measurement for the similarity of two distributions, which is
much simpler than the objective of GAN models and easy
to optimize. Specifically, it employs the kernel embedding
[Gretton et al., 2012] technique to match all orders of statis-
tics between Pgθ(Z) and QX . In this paper, we will focus on
the GMMN model.

Although the GMMN model can successfully learn the ap-
proximation of the underlying sample distribution QX , yet
it lacks the inference capability, failing to learn the poste-
rior distribution of the latent code. Since many downstream
tasks heavily depend on the latent code, such as the classifi-
cation and clustering, it is important and necessary to endow
GMMN model with inference capability.

To address the inference problem, we propose a Joint Gen-
erative Moment Matching Network (JGMMN) as shown in
Figure 1. Specifically, it includes two networks: the gen-
eration network and the inference network. The generation
network works as a generative model gθ(·) to generate sam-
ples: X̂ = gθ(Z) ∼ PX|Z , Z ∼ PZ . The inference net-
work defines an inference model hβ(·) to infer latent codes
from observed samples: Ẑ = hβ(X) ∼ QZ|X , X ∼ QX .
Importantly, this problem can be formulated as the match-
ing of two joint distributions QX,hβ(X) and Pgθ(Z),Z . If they
are matched, corresponding marginal distributions and con-
ditional distributions also can be guaranteed to match [Du-
moulin et al., 2016]. Especially, the desired posterior distri-
bution PZ|X can be matched by the conditional distribution
QZ|X [Dumoulin et al., 2016].

However, it is challenging to match the two joint distri-
butions Pgθ(Z),Z and QX,hβ(X). Since the marginal dis-
tributions QX and Qhβ(X) are not independent, we can-
not match two marginal distributions (QX with Pgθ(Z) and
Qhβ(X) with PZ) respectively. Thus, how to match the two
joint distributions is challenging. Another challenge is that
the learnedQZ|X should be consistent with the sample distri-
bution QX . Specifically, the inferred latent code distribution
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Figure 1: The architecture of our method. It includes a generation
network to generate samples and an inference network to infer la-
tent code. The JMMD module is to measure the similarity between
two joint distributions. The modal prediction part is used for multi-
modal regularization to guarantee the consistency between QX and
QZ|X .

QZ|X should have similar structures with the sample distri-
bution QX . More specifically, if the sample distribution QX
is a multi-modal distribution, QZ|X should also be a multi-
modal distribution such that the inferred latent code is a good
representation of observed samples. Then, the downstream
tasks can benefit from it.

To address the first challenge, we propose to use the Joint
Maximum Mean Discrepancy (JMMD) metric to measure
the similarity between two joint distributions. In detail,
JMMD measures the distance of two joint distributions by
their kernel embeddings in a Reproducing Kernel Hilbert
Space (RKHS). This objective can be efficiently optimized
by back-propagation. By minimizing this objective, we can
match Pgθ(Z),Z to QX,hβ(X), learning the generative model
and the inference model simultaneously. To address the sec-
ond challenge, we propose a novel multi-modal regulariza-
tion to enforce the latent code distribution QZ|X to be con-
sistent with the sample distribution QX . At last, extensive
experiments are conducted to verify the effectiveness of our
proposed model.

2 Related Works
In this section, we will review the most related works, analyz-
ing their properties and giving the motivation of our proposed
JGMMN.

In recent years, much progress has gone towards deep
generative models for modeling complicated data distribu-
tions. Among them, Generative Adversarial Network (GAN)
[Goodfellow et al., 2014] has attracted much more attention
in computer vision and machine learning communities, and
has achieved impressive results in many tasks, such as im-
age generation [Goodfellow et al., 2014; Chen et al., 2016;
Reed et al., 2016; Ledig et al., 2016; Radford et al., 2015;

Denton et al., 2015], image translation [Zhu et al., 2017;
Kim et al., 2017]. Generally, GAN trains a generator, which
transforms a simple latent distribution to a complicated sam-
ple distribution. Meanwhile, it also trains a discriminator,
which distinguishes the generated and real samples. Math-
ematically, GAN is to optimize a min-max problem. How-
ever, this optimization problem is difficult to optimize, which
usually needs special techniques [Arjovsky et al., 2017;
Gulrajani et al., 2017]. As opposite to GAN, Generative
Moment-Matching Network (GMMN) [Li et al., 2015] em-
ploys a simpler criterion to discriminate the generated and
real samples. Specifically, GMMN adopts similar generator
with GAN to map a simple distribution to a complicated sam-
ple distribution. Unlike GAN using a discriminator to distin-
guish the generated and real samples, GMMN employs max-
imum mean discrepancy (MMD) as the metric to measure the
distance between the generated and real sample distributions.
This objective is easy to optimize as long as the kernel func-
tion is smooth [Ren et al., 2016].

However, both GAN and GMMN lack the inference capa-
bility. They can only generate samples, failing to infer the la-
tent information from observed samples. As we know, the la-
tent code is important for model explanation and downstream
tasks. Thus, some researchers propose to endow genera-
tive models with the inference capability. For instance, Ad-
versarially Learned Inference (ALI) [Dumoulin et al., 2016]
and Bidirectional Generative Adversarial Networks (BiGAN)
[Zhang et al., 2016] are two representatives that can learn
generative and inference models simultaneously. The ba-
sic idea is to incorporate an inference network to infer the
latent code from observed samples and learn a discrimina-
tor to discriminate two joint distributions. However, these
models are based on the GAN framework. They also need
to solve a min-max problem, which is difficult to optimize.
Additionally, these techniques cannot be applied to GMMN
framework directly, since the two frameworks employ differ-
ent learning schemas. Thus, it is important and not trivial to
endow GMMN framework with the inference ability.

Furthermore, existing works, such as ALI and BiGAN,
only focus on matching two joint distributions, ignoring the
structure of the latent code distribution. As a good inference
model, it should guarantee the inferred latent code distribu-
tion to be consistent with the sample distribution. Thus, it is
important and necessary to preserve this consistency in the
inference model.

3 Background
In this section, we will give some preliminary knowledge
about kernel embedding of distributions and how to measure
the distance between two distributions based on the kernel
embedding.

3.1 Kernel Embedding of Distributions
To measure the similarity of two distributions, a widely used
approach is to compute their distance based on their embed-
dings in a reproducing kernel Hilbert space (RKHS). Here,
RKHS is a Hilbert function space in which each probability
distribution is an element. As a Hilbert function space, RKHS



denoted by H is associated with the inner product 〈·, ·〉H as
well as a kernel k(x, x′), satisfying f(x) = 〈f(·), k(x, ·)〉H
for all elements f in this function space. Here, k(x, ·) de-
notes a feature map φ(x) implicitly such that k(x, x′) =
〈φ(x), φ(x′)〉H.

The kernel embedding of a distribution P is defined to take
expectation on its feature map [Sriperumbudur et al., 2010;
Gretton et al., 2012]:

µP := EX [φ(X)] =

∫
φ(x)dP (x) , (1)

where x ∈ X ∼ P . Importantly, the kernel embedding µP is
guaranteed to be an element of RKHS if EX [k(x, x′)] ≤ ∞.
More importantly, if the kernel is characteristic, all of the sta-
tistical features of a distribution will be preserved by the ker-
nel embedding. Thus, kernel embedding is a good represen-
tation of the probability distribution.

3.2 Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) is a basic tool to con-
duct two-sample test [Gretton et al., 2012]. Specifically,
given two distributions P and Q, two datasets X = {xi}ni=1
and Y = {yi}ni=1 drawn from P and Q respectively. MMD
is to test whether P = Q based on observed samples X and
Y . Formally, MMD is defined as follows:

Definition 1. (Maximum Mean Discrepancy (MMD)) [Gret-
ton et al., 2012] Given the unit ball F ⊂ H, and samples
X and Y drawn from distributions P and Q respectively, the
MMD is

MMD[F , P,Q] := sup
f∈F

(EX [f(X)]− EY [f(Y )]) . (2)

According to [Gretton et al., 2012], under mild conditions,
MMD can be reformulated as the difference of their kernel
embedding:

MMD[F , P,Q] = ‖µP − µQ‖2F . (3)

In practical applications, we can use the empirical kernel em-
bedding to approximate it as follows:

ˆMMD[F , P,Q] = ‖µ̂P − µ̂Q‖2F

= ‖ 1
n

n∑
i=1

φ(xi)−
1

m

m∑
i=1

φ(yi)‖2F

=
1

n2

n∑
i,j

k(xi, xj) +
1

m2

m∑
i,j

k(yi, yj)−
2

mn

n,m∑
i,j

k(xi, yj) ,

(4)
where {xi}ni=1 are drawn i.i.d from P and {yi}mi=1 are drawn
i.i.d from Q. After obtaining the value of MMD, we can con-
clude the two-sample test result according to the following
Theorem.

Theorem 1. [Gretton et al., 2012] For a characteristic kernel
F , MMD[F , P,Q] = 0 ⇐⇒ P = Q.

Thus, MMD is a reasonable metric to measure the similar-
ity of two distributions.

4 Method
In this section, we will present our proposed model, including
a joint generative moment-matching network, and a multi-
modal regularization to guarantee the consistency between
the sample distribution and the latent code distribution.

4.1 Joint Generative Moment-Matching Network
At first, we introduce Joint Maximum Mean Discrepancy
(JMMD), which will be used for computing the distance of
two joint distributions.

Joint Maximum Mean Discrepancy
Similar with kernel embedding of ordinary distributions, we
can define the kernel embedding of joint distributions. For-
mally, for a joint distribution PX,Y , its kernel embedding is
defined as follows:

µP := EX,Y [φ(X)⊗ ψ(Y )] =

∫
φ(x)⊗ ψ(y)dP (x, y) ,

(5)
where⊗ denotes the tensor product, φ(x)⊗ψ(y) denotes the
feature map in the tensor product Hilbert space [Song et al.,
2009; 2010; Long et al., 2016]. Similarly, it has the following
property:

〈φ(x)⊗ ψ(y), φ(x′)⊗ ψ(y′)〉H = kφ(x, x
′)kψ(y, y

′) . (6)

Based on the kernel embedding of joint distributions, we
present Joint Maximum Mean Discrepancy (JMMD).

Definition 2. (Joint Maximum Mean Discrepancy (JMMD))
Given samples (X,Y ) ∼ PX,Y and (X ′, Y ′) ∼ QX′,Y ′ , and
the unit ball F ⊂ H, G ⊂ H in a RKHS, then the JMMD is

JMMD[F ,G, P,Q]

:= sup
f∈F,g∈G

(EX,Y [f(X)g(Y )]− EX′,Y ′ [f(X ′)g(Y ′)]) .

(7)

Moreover, JMMD can be represented by the kernel embed-
ding as follows:

JMMD[F ,G, P,Q] = ‖µP − µQ‖2F⊗G . (8)

For real-world applications, we can compute the empirical
JMMD as follows:c

ˆJMMD[F ,G, P,Q] = ‖µ̂P − µ̂Q‖2F⊗G

= ‖ 1
n

n∑
i=1

φ(xi)⊗ ψ(yi)−
1

m

m∑
i=1

φ(x′i)⊗ ψ(y′i)‖2F⊗G

=
1

n2

n∑
i,j

kφ(xi, xj)kψ(yi, yj) +
1

m2

m∑
i,j

kφ(x
′
i, x
′
j)kψ(y

′
i, y
′
j)

− 2

mn

n,m∑
i,j

kφ(xi, x
′
j)kψ(yi, y

′
j) .

(9)
Afterwards, we can use ˆJMMD[F ,G, P,Q] to compute the
distance of two joint distributions empirically.



Joint GMMN
Now we are ready to present the Joint Generative Moment-
Matching Network (JGMMN) model and how to train it by
the JMMD metric.

As shown in Figure 1, JGMMN includes two networks: the
generation network and the inference network. Generally, the
generation network works as a generative model to generate
samples. The inference network defines an inference model
to infer latent codes from observed samples. According to
[Dumoulin et al., 2016], this model can be formulated as a
joint distribution matching problem. After matched, the de-
sired distribution can be learned.

Specifically, the generation network works similarly with
the original GMMN [Li et al., 2015] model. The basic idea of
this model is that there is a map gθ between a regularly simple
distribution PZ and a complicated sample distribution QX
such that g(Z) ∼ QX where Z ∼ PZ , and such a map can be
represented by a deep neural network due to its flexibility and
powerful capability on fitting nonlinear functions. Based on
this idea, the generation network starts from a stochastic layer
where each unit independently follows a uniform distribution
as follows [Li et al., 2015]:

PZ(z) =

d∏
i=1

U(zi) , (10)

where U(z) = I(−1 ≤ z ≤ 1) is an uniform distribution in
[−1, 1]. Afterwards, several non-linear hidden layers follow
this stochastic layer, mapping z to a point x̂ in the sample
space as follows:

x̂ = gθ(z), z ∼ PZ(z) , (11)

where x̂ ∈ X̂ is the generated sample. This process defines
the conditional distribution PX|Z . Here, gθ denotes a multi-
layer deep neural network, which is parameterized by θ. Due
to the powerful capability of the deep neural network in fitting
nonlinear functions, this process can characterize PX|Z well.
As a result, we can obtain the joint distribution with respect
to the prior Z and the generated X̂ as follows:

PX,Z = PX|ZPZ . (12)

However, the process defined in Eq. (11) can only gener-
ate samples. In many tasks, we need to infer the latent code
from observed samples X for interpretation and downstream
tasks. Hence, we propose the inference network as shown in
Figure 1. Specifically, the inference network learns a transfor-
mation hβ which maps observed samples X ∼ QX to latent
codes Ẑ ∼ QZ|X . Formally,

ẑ = hβ(x), x ∼ QX(x) . (13)

Then, we will have the joint distribution from the inference
network as follows:

QX,Z = QZ|XQX . (14)

The proposed JGMMN model is to match these two joint
distributions defined in Eq. (12) and Eq. (14). If they are
matched, the corresponding marginal distributions and con-
ditional distributions also can be guaranteed to match [Du-
moulin et al., 2016]. Especially, the conditional distribution

QZ|X defined by the inference network will match the desired
posterior distribution PZ|X .

To match these two joint distributions, we train the gener-
ation and inference network by optimizing the JMMD objec-
tive as follows:

min
θ,β

J1 ,
1

n2

n∑
i,j

kφ(xi, xj)kψ(ẑi, ẑj)

+
1

m2

m∑
i,j

kφ(x̂i, x̂j)kψ(zi, zj)−
2

mn

n,m∑
i,j

kφ(xi, x̂j)kψ(zi, ẑj) ,

(15)
where {(xi, ẑi)}ni=1 ∼ QX,Z is from the inference network,
{(x̂i, zi)}mi=1 ∼ PX,Z is from the generation network. By
optimizing this objective function, we can learn model pa-
rameters for both generation network and inference network
simultaneously. Then, our model will have both generative
and inference capabilities.

4.2 Structural Latent Code
Although matching two joint distributions can guarantee the
match between the conditional distribution QZ|X and the
desired posterior distribution PZ|X , it cannot guarantee the
learned QZ|X consistent with the sample distribution QX .
Specifically, the inferred latent distributionQZ|X should have
similar structures with the sample distribution QX . More
specifically, if the sample distribution QX is a multi-modal
distribution, QZ|X should also be a multi-modal distribution
such that the inferred latent code is a good representation of
observed samples. Additionally, the multi-modal property is
very common in real-world applications. Discovering this
property is helpful for many downstream tasks, such as clus-
tering on the latent code. Thus, it is important to discover this
multi-modal structure and preserve it in the latent space.

To address this problem, we propose an unsupervised
multi-modal regularization to guarantee the consistency be-
tween QX and QZ|X . To this end, we need to discover the
multi-modal distribution in bothQX andQZ|X first, and then
align them. Formally, we define two auxiliary distributions p
and q, where p denotes the modality assignment distribution
of the latent code and q denotes that of observed samples.
Specifically, assume that there are c modalities, then pij de-
notes the probability of the i-th latent code belonging to the
j-th modality, and qij has the same meaning for the i-th ob-
served sample. By matching these two auxiliary distributions
p and q, we can guarantee the consistency between QZ|X
and QX implicitly. To this end, we employ KL-divergence
to match them as follows:

J2 = KL(q||p) = 1

n

n∑
i=1

c∑
j=1

qij log
qij
pij

. (16)

Now, the naturally following question is how to represent p
and q seamlessly with previous networks’ architectures.

For the modality assignment distribution p of the latent
code, we propose to compute it as follows:

pij =
exp(wTj zi)∑
j′ exp(w

T
j′zi)

, (17)



where zi is the latent code of the i-th samples, wj is the model
parameter associated with the j-th modality which can be
learned jointly with network parameters. Actually, this is a
softmax operation, which predicts the probability of the i-th
latent code belonging to the j-th modality. Interestingly, this
operation is to add a softmax layer on the top of the infer-
ence network, just as shown in Figure 1, which can be learned
jointly with the other two networks’ parameters.

For the modality assignment distribution q of observed
samples, it is usually not available in real-world applications.
Thus, how to find q is challenging. In this paper, we propose
a novel strategy to compute q dynamically. Specifically, since
qij denotes the probability of the i-th sample belonging to the
j-th modality, it can be initialized by K-means. In this way,
each cluster corresponds to one modality, and the clustering
assignment can be viewed as the modality assignment. Note
that we didn’t perform K-means on the original samples. In-
stead, we pretrain the inference network in the layer-by-layer
way, obtaining new representations of observed samples, then
we perform K-means on the new representation to get the de-
sired initialization. Afterward, we refine q iteratively since
such an initialized distribution q is not perfect. Specifically,
after obtaining network parameters and p, we fix them and
optimize Eq. (16) to update q, which is easy to solve by set-
ting the gradient to zero. Then, we fix q to update network
parameters and p.

Finally, the objective function of our model is:

min
θ,β,w,q

J1 + J2, (18)

where θ and β are model parameters of the generation and
inference network respectively, w is the model parameter of
the softmax layer. This model can be optimized easily by
stochastic gradient descent method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: 1st-row: Synthetic Data-1. 2nd-row: Synthetic Data-2. In
each row, they are: Real Samples, Generated Samples, Latent Code
learned without Regularization (i.e. Eq. (15)), Latent Code Learned
with Regularization (i.e. Eq. (18)).

5 Experiments
5.1 Synthetic Data
At first, we conduct two experiments on the synthetic dataset.
Specifically, we construct two synthetic datasets. The first
dataset shown in Figure 2(a) is drawn from a 2D Gaussian

mixture distribution Q1
X which has 4 components. The sec-

ond dataset shown in Figure 2(e) is more complicated than
the first one. It is drawn from a 2D Gaussian mixture distri-
bution Q2

X which has 9 components. For both of them, we
draw 2,000 samples.

Both the generation and inference network of the first
synthetic dataset is a 3-layer MLP: [100, 100, 2]. Simi-
larly, that of the second synthetic dataset is [100, 300, 2].
The activation function employed is ReLU [Nair and Hin-
ton, 2010]. Note that the last layer employs the linear ac-
tivation. The size of mini-batch is set as 500. The ker-
nel employed in JMMD is Gaussian kernel. Here, we use
a mixture of several Gaussian kernels, that is k(xi, xj) =∑M

m=1 km(xi, xj) where different kernels have different
bandwidth parameters. In this paper, the bandwidth employed
is {2.0, 5.0, 10.0, 20.0, 40.0, 80.0}.

The result is shown in Figure 2. From Figure 2(b) and 2(f),
we can find our proposed method can generate similar sam-
ples with the real ones, which means our approach has learned
a good generation network. Figure 2(d) and 2(h) show that
the inferred latent code follows a multi-modal distribution as
the sample distribution. Thus, the inference network learned
from our model can capture the intrinsic latent structure in the
dataset. In Figure 2(c), the latent code is learned without reg-
ularization, that is Eq. (15). While, in Figure 2(d), the latent
code is learned from our proposed method with multi-modal
regularization, that is Eq. (18). Comparing these two figures,
we can find that the latent code learned with regularization
has a better structure than that without regularization. Specif-
ically, the margin among different modalities is larger and
each modality is more compact, which verifies the effective-
ness of our proposed regularization technique. In summary,
all these observations have confirmed the effectiveness of our
proposed JGMMN.

5.2 Real-World Data
To further show the performance of our proposed model, we
conduct experiments on five real-world datasets, which in-
cludes 3 image datasets: MNIST [LeCun et al., 1998], USPS
[Cai et al., 2011] , ExtendYaleB (EYB), and 2 text datatsets:
Reuters-10K [Xie et al., 2016], 20News1. We summarize the
statistics of these datasets in Table 2. The network architec-
tures (from the 2nd layer) for these datasets are summarized
in Table 3. Both the generation and the inference network
consist of a 4-layer MLP. In our experiments, the generation
network employs ReLU in all layers except the last layer. Sig-
moid activation function is used in the last layer. The infer-
ence network also utilizes ReLU in all layers other than the
last layer. The linear activation function is used in its last
layer. The number of modalities c is set as the number of
classes. The used kernels are same as those of the synthetic
dataset.

The Generative Network: In Figure 3, we show the real
and generated samples of three image datasets. Specifically,
the fourth column in Figure 3 is the generated samples of our
proposed JGMMN. The second and third columns are those
of ALI [Dumoulin et al., 2016] and GMMN [Li et al., 2015]

1http://qwone.com/˜jason/20Newsgroups/



Table 1: Clustering performance of different methods

Methods MNIST USPS EYB Reuters-10K 20News
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Kmeans 0.5323 0.4997 0.6743 0.6148 0.0994 0.1300 0.5487 0.42902 0.4055 0.3975
AE+Kmeans 0.8212 0.7546 0.7348 0.7105 0.3318 0.5009 0.7156 0.4809 0.4752 0.4479
VAE+Kmeans 0.7281 0.6094 0.4432 0.3667 0.1700 0.3631 0.6590 0.3975 0.3830 0.4147
DEC 0.8588 0.8261 0.7713 0.7925 0.3144 0.4533 0.6990 0.5108 0.4392 0.4593
JGMMN 0.8667 0.8434 0.7714 0.7913 0.3417 0.5077 0.7454 0.5577 0.5020 0.4776

Table 2: The description of real-world datasets.

Dataset #Samples #Classes #Features
MNIST 70,000 10 28× 28× 1
USPS 9,298 10 16× 16× 1
EYB 2,414 38 32× 32× 1
Reuters-10K 10,000 4 2000
20News 18,774 20 2000

Table 3: The network architecture of real-world datasets.

Dataset Generation Inference
MNIST [64, 256, 256, 784] [500, 500, 2000, 10]
USPS [64, 256, 256, 256] [100, 100, 500, 10]
EYB [64, 256, 256, 1024] [100, 100, 500, 10]
Reuters-10K [64, 256, 256, 2000] [500, 500, 2000, 10]
20News [64, 256, 256, 2000] [500, 500, 2000, 20]

respectively. Although the generated samples of GMMN and
JGMMN is a little obscure than those of ALI due to the in-
trinsic property of kernels [Li et al., 2017], most generated
samples of JGMMN are very similar with real samples and
those of baseline methods, which confirm the correctness of
our JGMMN.

The Inference Network: To show the performance of the
inference network of JGMMN, we perform clustering on the
obtained latent code. Here, we directly use the output of
the softmax layer defined in Eq. (17) as the clustering re-
sult. Then, we compare our method with four baseline meth-
ods: K-means, AE+K-means which performs K-means on
the learned feature from autoencoder, VAE+K-means which
performsK-means on the learned feature from variational au-
toencoder and DEC [Xie et al., 2016]. Note that, to make a
fair comparison, we didn’t compare it with those CNN-based
deep clustering methods. Here, we only focus on the DNN
structure and ensure these DNN-based methods have consis-
tent network architecture. Here, we use Clustering Accuracy
(ACC) and Normalized Mutual Information (NMI) to eval-
uate the performance the clustering performance. From Ta-
ble 1, we can find our proposed JGMMN has achieved the
best result for most cases. In conclusion, the inference net-
work of our proposed JGMMN can learn meaningful latent
code from samples.

Additionally, to verify the effect of the multi-modal regu-
larization, we compare our method with JGMMN-NR which
corresponds to Eq.(15). The clustering result is shown in Fig-
ure 4. Here, we only show the result of MNIST dataset. The
other datasets have similar results. We can find that JGMMN-
NR has very bad clustering performance, which means that

Real ALI GMMN JGMMN

Figure 3: 1st-row: MNIST. 2nd-row: USPS. 3rd-row: EYB.

its inference network fails to learn discriminative latent rep-
resentations. Thus, the proposed modal regularization is very
critical to learn a good inference network.
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Figure 4: ACC and NMI of JGMMN and JGMMN-NR for MNIST.

6 Conclusion
In this paper, we propose a novel Joint Generative Moment-
Matching Network, which can simultaneously learn a genera-
tive network and an inference one. To learn them, we employ
the Joint Maximum Mean Discrepancy to match two joint
distributions. Furthermore, we propose a novel multi-modal
regularization to enforce the latent distribution to be consis-
tent with the sample distribution. Extensive experiments have
verified the effectiveness and correctness of our proposed JG-
MMN model.
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