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Abstract

Sparse learning models have shown promising per-
formance in the high dimensional machine learn-
ing regime. The main challenge of sparse learning
models is how to optimize it efficiently. Most ex-
isting methods solve this problem by relaxing it as
a convex problem, incurring large estimation bias.
Recently, the sparse learning model with noncon-
vex constraint has attracted much attention due to
its better performance. But it is difficult to opti-
mize due to the non-convexity. In this paper, we
propose a linearly convergent stochastic second-
order method to optimize this nonconvex problem
for large-scale datasets. The proposed method in-
corporates second-order information to improve the
convergence speed. Theoretical analysis shows that
our proposed method enjoys linear convergence
rate and guarantees to converge to the underlying
true model parameter. Experimental results have
verified the efficiency and correctness of our pro-
posed method.

1 Introduction
Sparse learning models, which play an important role in high
dimensional machine learning applications [Lee et al., 2006;
Gao et al., 2015; 2017], have attracted much attention in the
past decade. Specifically, it assumes that only a few num-
ber of model parameters are responsible for the response.
Thus, a direct way is to enforce sparsity on the model pa-
rameter by the `0-norm constraint, which restricts the number
of non-zero entries in the model parameter. Due to the non-
convexity of `0-norm, most existing works [Tibshirani, 1996;
Van de Geer, 2008; Yuan and Lin, 2006; Friedman et al.,
2008; Banerjee et al., 2008] employ the relaxed `1-norm reg-
ularization to enforce the sparsity of model parameters, since
it is easy to solve due to the convexity of `1-norm. For in-
stance, the well-known Lasso [Tibshirani, 1996] solves a re-
gression term to fit the data and an `1-norm regularization
term to pursue a sparse model parameter. However, such a
convex relaxation usually degenerates the performance of the
model. Thus, it is necessary and challenging to solve the `0-
norm constraint problem directly.

Formally, in this paper, we focus on the following sparsity-
constrained optimization problem:

min
w
F(w) =

1

n

n∑
i=1

fi(w)

s.t.‖w‖0 ≤ s ,
(1)

where F(w) is a smooth and convex function, which mea-
sures how well the model fits the input space. ‖w‖0 ≤ s
denotes the number of nonzero entries in w is not more than
s, controlling the sparsity level of the model parameter. This
model is very common in machine learning area. A represen-
tative case is the sparse linear regression problem, which is
shown as follows:

min
w
F(w) =

1

n

n∑
i=1

(yi − xTi w)2

s.t.‖w‖0 ≤ s ,
(2)

where y = [y1, · · · , yn]T ∈ Rn is the response vector, X =
{x1, · · · ,xn} ∈ Rn×d is the design matrix, and w ∈ Rd is
the model parameter.

The challenge to solve Eq. (1) is the nonconvex sparse con-
straint, which makes Eq. (1) as an NP-hard problem. In the
past few decades, a large family of algorithms [Mallat and
Zhang, 1993; Needell and Tropp, 2009; Tropp and Gilbert,
2007; Zhang, 2011] have been proposed to solve Eq. (1).
Among them, there have been much progress towards the
gradient-based method, such as gradient hard thresholding
pursuit (GraHTP) [Yuan et al., 2014], iterative hard thresh-
olding (IHT) [Blumensath and Davies, 2009] and so on. In
particular, the gradient-based method updates the model pa-
rameter with gradient descent method followed by Hard-
Thresholding. However, with the development of large-scale
data in recent years, these algorithms fail to handle large-scale
datasets. The reason is that they need to compute the gradi-
ent with respect to all data points at each iteration, making
it prohibitive for large-scale datasets. To address this prob-
lem, some researchers resort to stochastic algorithms to solve
Eq. (1) in recent years, such as SGHT [Nguyen et al., 2014],
SVR-GHT [Li et al., 2016], ASBCDHT [Chen and Gu, 2016]
and so on. Unlike the full gradient descent method whose
complexity of each iteration is O(nd), stochastic methods
have only O(d) complexity in each iteration so that they are
efficient for large-scale datasets.



Although the gradient-based method has achieved good
performance when solving Eq. (1), yet it only considers the
first-order information of the objective function, ignoring the
second-order curvature information. As a result, its per-
formance is far from satisfactory in some cases. For in-
stance, when the condition number of the objective function
in Eq. (1) is extremely large, the first-order method will con-
verge very slowly. If incorporating the second-order curva-
ture information of the objective function into the first-order
gradient method, we can obtain a better searching direction
in each iteration, making it converge fast. Thus, it is im-
portant to employ second-order method to solve Eq. (1). In
optimization community, there has been much progress to-
wards the second-order method, such as [Byrd et al., 2016;
Gower et al., 2016; Moritz et al., 2016; Zhao et al., 2017].
But most of them just focus on the convex problem. In [Yuan
and Liu, 2014], a Newton greedy pursuit method was pro-
posed to solve the nonconvex Eq. (1). However, it is not
suitable for large-scale problems since it uses all data points
in each iteration. Recently, some stochastic second-order
methods have been proposed, such as [Moritz et al., 2016;
Gower et al., 2016]. Although these algorithms enjoy good
converging property, the convergence analysis is based on the
strongly convex condition, which is not applicable for the
nonconvex Eq. (1). Thus, employing second-order method
to solve Eq. (1) is necessary and challenging.

To incorporate the second-order curvature information and
address the scalability problem, we propose a stochastic L-
BFGS method to solve the large-scale problem in Eq. (1). In
particular, at each iteration, we first randomly sample a mini-
batch of data points to evaluate the approximated inverse Hes-
sian matrix and the gradient, updating the model parameter
without considering the sparsity constraint and then perform-
ing Hard-Thresholding on the updated model parameter to get
the sparse one. Additionally, due to the stochastic sampling,
the introduced variance will slow down the convergence rate.
To address this problem, we incorporate the variance reduc-
tion technique as [Moritz et al., 2016]. One of the most im-
portant contributions of this paper is that we prove the lin-
ear convergence rate of the second-order stochastic L-BFGS
for solving the nonconvex Eq. (1). As far as we know, this
is the first work which proves stochastic L-BFGS has a lin-
ear convergence rate for the nonconvex problem with sparsity
constraint. Furthermore, the output estimator from our pro-
posed method is guaranteed to converge to the unknown true
model parameter, which is also the first work showing such a
result for stochastic L-BFGS. The experiments on both syn-
thetic and real world datasets have shown the correctness and
effectiveness of our proposed method.

Notation Throughout this paper, the matrix is represented
by uppercase letters, the vector is denoted by bold lowercase
letters, and the scalar is unbold lowercase letters. In partic-
ular, X = {x1, · · · ,xn} ∈ Rn×d denotes the design ma-
trix, y = [y1, · · · , yn]T ∈ Rn denotes the response vector,
and w ∈ Rd denotes the model parameter. For the vector
w ∈ Rd, we define ‖w‖1 =

∑d
i=1 |wi|, ‖w‖2 =

∑n
i=1 w

2
i ,

‖w‖∞ = maxi |wi|. Additionally, supp(w) denotes the in-
dex of nonzero elements in w, and supp(w, s) denotes the

index of the top s elements of w in regard to magnitude. w(t)

denotes the vector in the t-th iteration.

2 Stochastic L-BFGS for Large-Scale
Nonconvex Sparse Learning Models

In this section, we will present the detail of our proposed
method for large-scale nonconvex sparse learning models.

The core idea is employing stochastic L-BFGS to solve
Eq. (1). However, the naive stochastic L-BFGS converges
slowly due to the introduced variance by random sampling.
Inspired by [Moritz et al., 2016], we employ the variance re-
duction technique [Johnson and Zhang, 2013] to accelerate it.
Meanwhile, unlike the traditional stochastic L-BFGS [Moritz
et al., 2016] which is only applicable for strongly convex
problems, our method can successfully handle the nonconvex
problem with sparsity constraint. The details of our proposed
method is summarized in Algorithm 1.

In Algorithm 1, there are two nested loops. In the outer
loop, we calculate the full gradient µ̃ in Line 8 such that we
can use it to reduce the variance of the stochastic gradient. In
the inner loop, our algorithm combines the variance reduced
gradient v(t) and the approximated inverse Hessian matrix
H(r) to update the model parameter. More specifically, the
gradient

v(t) = ∇fB(w(t))−∇fB(w̃) + µ̃ (3)

is an unbiased estimation to ∇F(w(t)) =
1
n

∑n
i=1∇fi(w(t)), where ∇fB(w(t)) =

1
|B|
∑
i∈B∇fi(w(t)). After that, we update the model

parameter without considering the sparsity constraint as
follows:

w̄(t+1) = w(t) − ηH(r)v(t) , (4)
where η is the step size, and w̄(t+1) is the temporary model
parameter. With this updating rule, the second-order curva-
ture is incorporated by H(r). Thus, it will converge faster
than the first order approach. In the following, the Hard-
Thresholding is performed on w̄(t+1) to obtain the solution
satisfying the sparsity constraint as follows:

w(t+1) = H(w̄(t+1), s) , (5)

where s is the sparsity level in Eq. (1), and the Hard-
Thresholding operatorH(·, ·) is defined as follows:

[H(w, s)]i =

{
wi, i ∈ supp(w, s)
0, otherwise

. (6)

In Line 11-19 of Algorithm 1, after every L iterations, we
update the approximated inverse Hessian matrix H(r) by the
L-BFGS schema as follows:

H
(r)
i = (I− ρ(i)s(i)y(i)T )TH

(r)
i−1(I− ρ(i)s(i)y(i)T )

+ ρ(i)s(i)s(i)T ,
(7)

where r − M + 1 ≤ i ≤ r, M is the memory size,
ρ(i) = 1

s(i)Ty(i) , and H
(r)
r−M = s(r)Ty(r)

y(r)Ty(r) I. Then, we set

H(r) = H
(r)
r . Note that unlike traditional L-BFGS method,



we update y(r) = ∇2fB′(θ
(r))s(r) since it works better in the

stochastic setting [Moritz et al., 2016], where∇2fB′(θ
(r)) =

1
|B′|
∑
i∈B′ ∇2fi(θ

(r)).
Practical Acceleration In Algorithm 1, we need to com-

pute the Hessian matrix ∇2fB′(θ
(r)) and its inverse approx-

imation H(r). Both of them require O(d2) storage, which
is prohibitive for high dimensionality problems. Instead of
constructing H(r) explicitly, we employ the two-loop recur-
sion method [Nocedal and Wright, 2006] to directly compute
H(r)v(t) based on the correction pairs {s(i),y(i)}ri=r−M+1.

For the Hessian matrix, we assume it can be represented as
follows:

∇2fB′(θ
(r)) =

1

|B′|
∑
i∈B′

Ai(θ
(r))ATi (θ(r)) . (8)

Actually, it is very common in many machine learning prob-
lems. For example, Ai(θ

(r)) in Eq. (2) is xi so that
∇2fB′(θ

(r)) = 1
|B′|
∑
i∈B′ xix

T
i . Based on this represen-

tation, instead of computing ∇2fB′(θ
(r)) explicitly, we can

directly compute y(r) as follows:

y(r) =
1

|B′|
∑
i∈B′

Ai(θ
(r))[ATi (θ(r))s(r)] , (9)

which will save much storage and computation since no ex-
plicit Hessian matrix needs to store.

Algorithm 1 Stochastic L-BFGS Algorithm for Solving
Eq. (1).

Input: X ∈ Rn×d, Y ∈ Rn, s > 0.
Output: w ∈ Rd

1: Initialize r = 0, H0 = I
2: for k = 0, 1, 2, · · · do
3: w̃ = w̃(k−1), w(0) = w̃(k−1)

4: µ̃ = 1
n

∑n
i=1∇fi(w̃)

5: for t = 0, 1, 2, · · · ,m− 1 do
6: Randomly sample a subset B from {1, 2, · · · , n}
7: Compute gradient v(t) = ∇fB(w(t))−∇fB(w̃)+µ̃
8: Update w̄(t+1) = w(t) − ηH(r)v(t)

9: Hard-Thresholding w(t+1) = H(w̄(t+1), s)
10: if mod(t, L)=0 then
11: r = r + 1
12: θ(r) = 1

L

∑t−1
j=t−L w(j)

13: Randomly sample a subset B′ from {1, 2, · · · , n}
14: Compute∇2fB′(θ

(r))
15: Compute s(r) = θ(r) − θ(r−1)

16: Compute y(r) = ∇2fB′(θ
(r))s(r)

17: Compute H(r) with Eq. (7)
18: end if
19: end for
20: Set w̃(k) as the randomly selected w(i) from

{w(0), · · · ,w(m−1)}
21: end for
22: return w

3 Convergence Analysis
In this section, we will present the convergence analysis about
Algorithm 1, showing its performance theoretically. At first,
we present assumptions that our analysis depends on.

Assumption 1. (Restricted Strong Convexity) Function F
satisfies restricted λs̃-strong convexity condition at sparse
level s̃. Formally, we have

F(w) ≥ F(w′) +∇F(w′)T (w −w′) +
λs̃
2
||w −w′||22

(10)
for all w, w′ such that ||w −w′||0 ≤ s, and λs̃ > 0.

Assumption 2. (Restricted Strong Smoothness) Function fi
satisfies restricted Ls̃-strong smoothness condition at sparse
level s̃.Formally, we have

fi(w) ≤ fi(w′)+∇fi(w′)T (w−w′)+
Ls̃
2
||w−w′||22 (11)

for all w, w′ such that ||w −w′||0 ≤ s, and Ls̃ > 0.

The two assumptions indicate thatF(w) is strongly convex
and fi(w) is smooth on the sparse space. Additionally, based
on the two assumptions, we can define the restricted condition
number as κs̃ = Ls̃

λs̃
.

Assumption 3. The gradient is bounded as follows:

E[‖∇fi(w)‖22] ≤ G2. (12)

In the following, we present the lemma for proving the
main theorem.

Lemma 1. Suppose Assumption 1 and 2 satisfy with the spar-
sity level s̃ = 2s + s∗. Then, for the sparse vector w∗ ∈ Rd
such that ||w∗||0 ≤ s∗, and the sparse vector w(t) ∈ Rd such
that ||w(t)||0 ≤ s, we have

E||v(t)
S ||

2
2 ≤ 12Ls̃[F(w(t))−F(w∗) + F(w̃)−F(w∗)]

+ 3||∇SF(w∗)||22 ,
(13)

where S ⊇ (supp(w∗) ∪ supp(w(t))).

This lemma bounds the variance of stochastic gradient
v

(t)
S . The proof can be found in Lemma 3.5 [Li et al., 2016].

Thus, we do not include it due to the space limitation.

Lemma 2. Given the sparse vector w∗ ∈ Rd such that
||w∗||0 ≤ s∗, for s > s∗ and any w ∈ Rd, we have

‖H(w, s)−w∗‖22 ≤ (1 +
2
√
s∗√

s− s∗
)‖w,w∗‖22 . (14)

This lemma actually presents the projection error bound for
the Hard-Thresholding operator. The proof can be referred to
Lemma 3.3 [Li et al., 2016].

Lemma 3. If Assumption 1 and 2 hold, the estimation of in-
verse Hessian matrix H(r) (for all r ≥ 1) is bounded by

γI � H(r) � ΓI (15)

where 0 < γ ≤ Γ.



This is a common condition for stochastic L-BFGS
method, and the detailed proof can be found from Lemma
4 in [Moritz et al., 2016].

Based on these assumptions and lemmas, we turn to
present the main result of our proposed method.

Theorem 1. Suppose Assumption 1 and 2 satisfy with the
sparsity level s̃ = 2s + s∗. Denote w∗ as the unknown
true model parameter such that ||w∗||0 ≤ s∗. By choosing
C2

Γ2Ls̃
≤ η ≤ C3

Γ2Ls̃
, C4κ

2
ss
∗ > s ≥ C1κ

2
ss
∗ with valid con-

stants C1, C2, C3 and C4 and large m, such that

θ =
6ηΓ2Ls̃

1− 6ηΓ2Ls̃
+

βm(1 + η)(β − 1)

λs̃η(1− 6ηΓ2Ls̃)(βm − 1)
< 1 ,

where β = (1 + 2
√
s∗√

s−s∗ )(1 + η). Then, for all k ≥ 0, we have

E[F(w̃(k))−F(w∗)] ≤ θkE[F(w̃(0))−F(w∗)]

+
3ηΓ2||∇SF(w∗)||22 + Γ2G2

2(1− 6ηΓ2Ls̃)(1− θ)
.

(16)

In the following, we present the detailed proof about The-
orem 1.

Proof. Due to w̄(t+1) = w(t) − ηH(r)v(t), conditioning on
w(t), we have

E||w̄(t+1) −w∗||22
= E||w(t) − ηH(r)v(t) −w∗||22
= E||w(t) −w∗||22 + η2E||H(r)v

(t)
S ||

2
2

+ 2η〈w∗ −w(t), E[H(r)v
(t)
S ]〉

= E||w(t) −w∗||22 + η2E||H(r)v
(t)
S ||

2
2

+ 2η〈w∗ −w(t),∇SF(w(t))〉
+ 2η〈w∗ −w(t), H(r)∇SF(w(t))−∇SF(w(t))〉

≤ (1 + η)E||w(t) −w∗||22 + η2Γ2E||v(t)
S ||

2
2

− 2η[F(w(t))−F(w(∗))] + ηΓ2||∇SF(w(t))||22
≤ (1 + η)E||w(t) −w∗||22 − 2η[F(w(t))−F(w(∗))]

+ 12η2Γ2Ls̃[F(w(t))−F(w∗) + F(w̃)−F(w∗)]

+ ηΓ2G2 + 3η2Γ2||∇SF(w∗)||22
= (1 + η)E||w(t) −w∗||22 + 3η2Γ2||∇SF(w∗)||22
− 2η(1− 6ηΓ2Ls̃)[F(w(t))−F(w∗)]

+ ηΓ2G2 + 12η2Γ2Ls̃[F(w̃)−F(w∗)] ,
(17)

where S = supp(w∗) ∪ supp(w(t)) ∪ supp(w(t+1)). The
third step is due to E[H(r)v

(t)
S ] = H(r)∇SF(w(t)). The

fourth step follows from Assumption 1, Lemma 3 and the
fact 2ab ≤ a2 + b2. The fifth step is due to Lemma 1.

According to Lemma 2, we have

E||w(t+1) −w∗||22
≤ α(1 + η)E||w(t) −w∗||22 + 3αη2Γ2||∇SF(w∗)||22
− 2αη(1− 6ηΓ2Ls̃)[F(w(t))−F(w∗)]

+ αηΓ2G2 + 12αη2Γ2Ls̃[F(w̃)−F(w∗)]

≤ βE||w(t) −w∗||22 + β
3η2Γ2

1 + η
||∇SF(w∗)||22 + β

ηΓ2

1 + η
G2

− β 2η(1− 6ηΓ2Ls̃)

1 + η
[F(w(t))−F(w∗)]

+ β
12η2Γ2Ls̃

1 + η
[F(w̃)−F(w∗)] ,

(18)
where β = α(1 + η) and α = 1 + 2

√
s∗√

s−s∗ . By summing over
t = 0, · · · ,m− 1, we have

E||w(m) −w∗||22

+
2η(1− 6ηΓ2Ls̃)(β

m − 1)

(1 + η)(β − 1)
E[F(w̃(k))−F(w∗)]

≤ βmE||w̃(k−1) −w∗||22

+
12η2Γ2Ls̃(β

m − 1)

(1 + η)(β − 1)
E[F(w̃(k−1))−F(w∗)]

+
3η2Γ2(βm − 1)

(1 + η)(β − 1)
||∇SF(w∗)||22 +

ηΓ2(βm − 1)

(1 + η)(β − 1)
G2

≤ 2βm

λs̃
E[F(w̃(k−1))−F(w∗)]

+
12η2Γ2Ls̃(β

m − 1)

(1 + η)(β − 1)
E[F(w̃(k−1))−F(w∗)]

+
3η2Γ2(βm − 1)

(1 + η)(β − 1)
||∇SF(w∗)||22 +

ηΓ2(βm − 1)

(1 + η)(β − 1)
G2 .

(19)
By rearrange the above inequality, we have

E[F(w̃(k))−F(w∗)]

≤
( 6ηΓ2Ls̃

1− 6ηΓ2Ls̃
+

βm(1 + η)(β − 1)

λs̃η(1− 6ηΓ2Ls̃)(βm − 1)

)
E[F(w̃(k−1))

−F(w∗)] +
3ηΓ2

2(1− 6ηΓ2Ls̃)
||∇SF(w∗)||22 +

Γ2

2(1− 6ηΓ2Ls̃)
G2 .

(20)
Now, we need to verify that θ = 6ηΓ2Ls̃

1−6ηΓ2Ls̃
+

βm(1+η)(β−1)
λs̃η(1−6ηΓ2Ls̃)(βm−1) < 1. At first, assume η ≤ C3

Γ2Ls̃
≤

1
18Γ2Ls̃

, then

6ηΓ2Ls̃
1− 6ηΓ2Ls̃

≤ 1

2
. (21)

Furthermore, assume C4κ
2
ss
∗ > s ≥ C1κ

2
ss
∗ where C4 >

C1, then 1 + 2
κs
√
C4
≤ α ≤ 1 + 2

κs
√
C1−1

. Additionally,



assume η ≥ C2

Γ2Ls̃
where C2 ≤ C3, we have

βm(1 + η)(β − 1)

λs̃η(1− 6ηΓ2Ls̃)(βm − 1)
≤ (1 + η)(β − 1)

2C2

3Γ2κs
(1− β−m)

≤ 1

a(1− (1 + 2C2(κs
√
C4+1)+2Γ2Ls̃

Γ2Ls̃κs
√
C4

)−m)
,

(22)

where

a =
2C2Γ2L2

s̃

√
C1 − 1

a1 − a2
,

a1 = 3(C3 + Γ2Ls̃)
2(κs

√
C1 − 1 + 2) ,

a2 = 3κsΓ
2Ls̃
√
C1 − 1(C3 + Γ2Ls̃) .

(23)

To guarantee it less than 1
2 , we can choose m such that

m ≥ log
1+

2C2(κs
√
C4+1)+2Γ2Ls̃

Γ2Ls̃κs
√
C4

C2Γ2L2
s̃

√
C1 − 1

b1 − b2 + b3
, (24)

where

b1 = C2Γ2L2
s̃

√
C1 − 1 ,

b2 = 3(C3 + Γ2Ls̃)
2(κs

√
C1 − 1 + 2) ,

b3 = 3κsΓ
2Ls̃
√
C1 − 1(C3 + Γ2Ls̃) ,

(25)

Therefore, we have θ < 1. By recursively applying Eq. (20),
we can get the desired result, which completes the proof.

Remark 1. Theorem 1 indicates a linear convergence rate.
In particular, to get a pre-defined accuracy ε > 0 with re-
spect to the function value gap, we need O(log(1/ε)) outer
iterations. Additionally, to have linear convergence rate, m
should be set sufficiently large as in Eq. (24).

In the following, we present the approximation error bound
for the estimator from Algorithm 1.

Corollary 1. (Approximation Error) With the same condi-
tions as Theorem 1, for all k > 0, we have the error bound
for the estimator w̃(k) as follows:

E||w̃(k) −w∗||2 ≤

√
2θk[F(w̃(0))−F(w∗)]

λs̃

+

√
Γ2

λs̃(1− 6ηΓ2Ls̃)(1− θ))
G

+

(
2

λs̃
+

√
3ηΓ2

λs̃(1− 6ηΓ2Ls̃)(1− θ)

)√
s̃||∇F(w∗)||∞ .

(26)

Proof. Due to Assumption 1, we have

F(w∗) ≤ F(w̃(k))+∇F(w∗)T (w∗−w̃(k))−λs̃
2
||w∗−w̃(k)||22 .

(27)

Denote

Σ = θk[F(w̃(0))−F(w∗)] +
Γ2G2 + 3ηΓ2||∇SF(w∗)||22

2(1− 6ηΓ2Ls̃)(1− θ)
,

(28)
then based on Eq. (16), we have

E[F(w̃(k))− Σ] ≤ F(w∗)

≤ E[F(w̃(k)) +∇F(w∗)T (w∗ − w̃(k))− λs̃
2
||w∗ − w̃(k)||22] .

(29)
Furthermore, we have

E[∇F(w∗)T (w∗ − w̃(k))] ≤ ||∇F(w∗)||∞E||w∗ − w̃(k)||1
≤
√
s̃||∇F(w∗)||∞E||w∗ − w̃(k)||2 .

(30)
Put Eq. (30) into Eq. (29), we have

λs̃
2

(E||w∗−w̃(k)||2)2 ≤
√
s̃||∇F(w∗)||∞E||w∗−w̃(k)||2+Σ .

(31)
By solving this inequality with respect to E||w∗ − w̃(k)||2,
we can obtain the desired result.

Remark 2. The approximation error bound for the estimator
consists of three terms. The first term corresponds to the op-
timization error, the second term is a constant, and the third
term corresponds to the statistical error. After sufficient it-
erations, the first term will approach to zero. Therefore, our
algorithm can always converge to the unknown true parame-
ter w∗, up to the statistical error and a constant value.

4 Experiments
In this section, we will present the performance of our pro-
posed method on both synthetic and real-world datasets.

Throughout the experiments, we compare it with two state-
of-the-art methods. They are SGHT [Nguyen et al., 2014]
and SVR-GHT [Li et al., 2016]. Specifically, SGHT employs
stochastic gradient to update the model parameter and then
performs Hard-Thresholding on the obtained model parame-
ter.. SVR-GHT adopts the variance reduced stochastic gra-
dient to update the model parameter. All of these methods
belong to the stochastic method so that they are suitable for
large-scale problems. Additionally, we set L = 10, M = 10,
|B| = 10, and |B′| = 50. The step length of each method is
chosen to achieve the best performance.

4.1 Synthetic Data
In this experiment, we focus on the sparse linear regression
problem, just as shown in Eq. (2). For the synthetic data,
each row of the design matrix X ∈ Rn×d is independently
generated from a multivariate Gaussian distribution N(0,Σ)
where Σ ∈ Rd×d. For the sparse regression coefficient w∗,
the nonzero entries are independently generated from a uni-
form distribution in [−1, 1]. The response vector is con-
structed by y = Xw∗+ε, where the noise ε is generated from
a Gaussian distribution N(0, σ2I), and we set σ2 = 0.01.
With these settings, we construct two synthetic datasets. Toy-
1 is with n = 20000, d = 2000, s∗ = 100, s = 200, Σ = I.



Toy-2 is with n = 50000, d = 5000, s∗ = 500, s = 1000,
and diagonal entries of the covariance matrix Σ are set as 1,
the other entries are set as 0.1.
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Figure 1: The objective value and estimation error of the model pa-
rameter about two synthetic dataset.

In Figure 1, we show the logarithm of the objective func-
tion value and the estimation error over the number of gradi-
ent evaluations. From Figure 1, we can find that our method
converges faster than the state-of-the-art methods in terms of
objective function value and the estimation error. In particu-
lar, although all these methods are theoretically shown with
linear convergence rate for the sparse linear regression prob-
lem [Li et al., 2016], our method and SVR-GHT have better
performance than SGHT due to the incorporation of the vari-
ance reduction technique. Furthermore, our method incorpo-
rates the second-order information so that it converges faster
than SVR-GHT, which is consistent with the motivation of
our method.

4.2 Real-World Data
In this experiment, we will evaluate the performance of the
sparse linear regression defined in Eq. (2) and the sparse
logistic regression on the real-world data. Specifically, the
sparse logistic regression is defined as follows:

minF(w) =
1

n

n∑
i=1

(−yixTi w + log(1 + exp(xTi w)))

s.t.‖w‖0 ≤ s ,
(32)

where yi ∈ {0, 1} is the class label.
For the sparse linear regression model, we evaluate its per-

formance on E2006-TFIDF dataset , which includes 16,087
training data points, 3,308 testing data points and 150,360
features. Instead of using all features, we randomly select
20,000 features for both training set and testing set. Addition-
ally, the sparsity level s is set as 2000. For the sparse logistic
regression model, we evaluate its classification performance

on the RCV1-Binary dataset , which includes 20,242 training
samples and 677,399 testing samples from two classes. Addi-
tionally, it has 47,236 features totally. Here, we choose 5000
samples from each class of the testing samples as our testing
set. At last, we set the sparsity level s as 500. Note that both
datasets are available at the LIBSVM website 1.

In Figure 2(a) and 2(b), we show the logarithm of the
sparse linear regression’s objective function value on the
training set and testing set. We can find the similar result with
the synthetic dataset. In particular, our method converges
faster than the other state-of-the-art methods and has better
performance on the testing set, which further confirms the ef-
fectiveness of our proposed method. In Figure 2(c) and 2(d),
we show the classification accuracy of the sparse logistic re-
gression on both training set and testing set. We can find that
our method achieves the best classification result consistently
during iterations. Additionally, the improvement is signifi-
cant. In conclusion, our method converges fast and has good
generalization performance.
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Figure 2: (a-b) show the logarithm of the sparse linear regression’s
objective function value. (c-d) show the classification accuracy of
the sparse logistic regression.

5 Conclusion

In this paper, we propose a stochastic L-BFGS method for
solving large-scale nonconvex sparse learning problems. By
theoretical analysis, the proposed method has shown a linear
convergence rate for this kind of nonconvex problems. Mean-
while, it can guarantee to converge the underlying true model
parameters. The extensive experiments have verified the effi-
ciency of the proposed method. Thus, it can be applied to the
real-world nonconvex large-scale problems.

1https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets
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