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Abstract
Identifying vehicles across cameras in traffic
surveillance is fundamentally important for public
safety purposes. However, despite some prelimi-
nary work, the rapid vehicle search in large-scale
datasets has not been investigated. Moreover, mod-
elling a view-invariant similarity between vehicle
images from different views is still highly chal-
lenging. To address the problems, in this paper,
we propose a Ranked Semantic Sampling (RSS)
guided binary embedding method for fast cross-
view vehicle Re-IDentification (Re-ID). The search
can be conducted by efficiently computing simi-
larities in the projected space. Unlike previous
methods using random sampling, we design tree-
structured attributes to guide the mini-batch sam-
pling. The ranked pairs of hard samples in the
mini-batch can improve the convergence of opti-
mization. By minimizing a novel ranked semantic
distance loss defined according to the structure, the
learned Hamming distance is view-invariant, which
enables cross-view Re-ID. The experimental results
demonstrate that RSS outperforms the state-of-the-
art approaches and the learned embedding from one
dataset can be transferred to achieve the task of ve-
hicle Re-ID on another dataset.

1 Introduction
Vehicle re-identification (Re-ID) aims at identifying whether
a pair of vehicle images collected from different conditions
(sensors, views or environments) belong to the same object
(Identity) or not. In recent years, a few initial works have
been made [Zapletal and Herout, 2016; Liu et al., 2016b;
Shen et al., 2017; Wang et al., 2017]. However, most existing
methods work on the Euclidean space in which computing
similarities is computationally expensive, especially because
a large-scale gallery is inevitable in the traffic surveillance
system [Zheng and Shao, 2016]. Secondly, most methods
either consider the task of cross-camera Re-ID [Liu et al.,
2016b] (treating all the views equally) or focus solely on one
view. For example, in [Liu et al., 2016a], only the front view
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Figure 1: Ranked semantic sampling and embedding. The ranked
semantic sampling will facilitate to speed up the training while the
preserved ranked semantic distance in embedding can help us dis-
cover the identity features via a series of comparisons.

is mainly investigated. Virtually, the most difficult task of
vehicle Re-ID is in the cross-view setting such as from side
view to front view.

To this end, we focus on learning binary embedding for
tackling the challenging task of fast cross-view vehicle Re-
ID (see Fig. 1). With success of deep learning [Szegedy et
al., 2015], we also adopt a deep architecture as the function
of embedding. Generally, the challenging task can be tackled
by embedding images from different views into a common
code space. Given a sample, the sample of the same identity
would be the one that has the minimum Hamming distance in
the learned space to it. However, most existing deep embed-
ding methods are insufficient to address the challenging task
of cross-view Re-ID, partially because they are specifically
designed for the tasks of recognition and categorization.

To address above problems, we propose a Ranked Seman-
tic Sampling (RSS) guided binary embedding for fast vehi-
cle Re-ID. In this method, according to the semantic hierar-
chies, tree-structured attributes are first constructed to define
the semantic distance. Due to the view-invariant properties
of attributes [Frome et al., 2013; Amid and Ukkonen, 2015],
the relative semantic distance is also view-invariant. Then,
to improve the convergence of SGD optimizer, we adopt the
attribute tree to guide the mini-batch sampling, in which the
samples can be ranked according to the relative semantic dis-
tance. Owning to the ranked samples, more relative relation-
ships can be exploited to reduce the frequencies of access-
ing samples. Furthermore, a probability inequality is derived
to smoothly transfer the discrete optimization into a smooth



problem, in which the SGD optimizer can be used without
risk. The theoretical analysis guarantees that the learned
Hamming distance can directly preserve the relative semantic
distance. Consequently, the proposed RSS enables to effec-
tively measure cross-view similarities and efficiently search
the matched samples in a cross-view setting.

In summary, our main contributions are in four-fold: 1)
We propose a novel deep binary embedding model which en-
ables fast cross-view vehicle Re-ID. 2) The ranked semantic
distance can be preserved so that the learned distance is view-
invariant (shown in Fig. 1). Instead employing random sam-
pling as existing methods, to improve the convergence and
reduce the frequencies of accessing samples, we introduce
a ranked semantic distance guided sampling method. 4) A
probability inequality guarantees the transfer from a discrete
problem to a smooth objective which SGD can be used.

2 Related Work
Vehicle Re-ID: Recently, a few initial works have been made,
including a linear regression model [Zapletal and Herout,
2016], a coarse-to-fine framework [Liu et al., 2016b], a two-
branch deep convolutional network [Liu et al., 2016a], orien-
tation invariant features [Wang et al., 2017] and visual-spatio-
temporal path proposals [Shen et al., 2017]. Moreover, the
two recent works [Zheng and Shao, 2016; Zheng et al., 2016]
focus on improving the efficiency of person Re-ID.
Attribute Learning: Recent works [Ferrari and Zisserman,
2007; Hwang and Sigal, 2014] explicitly demonstrate that
attribute is essentially beneficial to various computer vision
tasks. In [Frome et al., 2013; Hwang and Sigal, 2014], the
semantic knowledge learned in the text domain is transferred
to train a model for visual object recognition. In [Amid and
Ukkonen, 2015], a multi-view triplet embedding is proposed
to produce a number of low-dimensional maps, each corre-
sponding to one of the attributes. [Kukliasnky and Shamir,
2015] can choose and observe a small subset of the attributes
of each training example.
Relative Distance Loss: In earlier years, distance based loss
including contrastive loss [Hadsell et al., 2006] and Kullback-
Leibler divergences over all data points [van der Maaten and
Hinton, 2008] could be used to dimensionality reduction and
visualization. Beyond pair-wise constraints, recently, various
contrastive embedding methods such as triplets [Schroff et
al., 2015] and quadruplets [Song et al., 2016] etc. are pro-
posed to capture the high-order relative distance. To explore
more contrastive information in mini-batches, (N +1)-tuplet
loss [Sohn, 2016] and histogram loss [Ustinova and Lempit-
sky, 2016] are also proposed recently.

3 Proposed Method
Intuitively, in order to learn the optimal binary embedding,
several questions can naturally be asked: Q1) How to make
learning convergence faster? Q2) What types of relationships
(similarities) need to be kept in the learned space?

3.1 Cross-View Binary Embedding
Given a sample xvi ∈ Xv, v = 1, · · · , V of the vth view, we
assume that vector avi ∈ Av ∈ RNa can be used to describe

(a) (b)
Figure 2: (a) The data flowchart of binary embedding in which
GoogLeNet [Szegedy et al., 2015] is used as the shared deep ar-
chitecture. (b) Attribute tree.

its corresponding semantic attributes, where V andNa are the
number of views and attributes, respectively. Xv and Av are
the sample set and attribute set of the vth view, respectively.
In our setup, two samples xui and xvj belong to the same ob-
ject (identity), only if all the corresponding items in the two
attribute vectors aui and avj are the same.

The basic requirement for embedding is that samples col-
lected from any view will be projected onto similar binary
codes if they have similar attributes. Assume that F v is a
hash function from a hypothesis space, then the binary codes
of xvi can be obtained by using yvi = sign(F v(xvi )), y

v
i ∈

{−1, 1}K , where K is the number of binary codes. Obvi-
ously, the ideal objective is that, ∀u, v, if aui ≡ avj , then we
have yvi ≡ yuj and vice versa1.

Once the hash functions F v : v = 1, · · · , V have been
learned, given a sample xui of the uth view in the test stage,
we can obtain the samples of the same object collected from
the vth view by ranking the Hamming distance Dh(y

u
i , y

v
j )

between the binary codes of them:

(xvj )
∗ = min

xv
j

Dh(y
u
i , y

v
j )

= min
xv
j

Dh(sign(F
u(xui )), sign(F

v(xvj ))), (1)

For simplicity, we denote Fu(xui ) as F (xui ). Therefore, the
basic consideration of this paper is to learn a set of hash func-
tions F v : v = 1, · · · , V , one for each view, to achieve cross-
view ranking. The architecture (hypothetical space) shown in
Fig. 2 (a) has a shared deep architecture and V separate fully
connected hierarchy will be considered hash functions.

3.2 Ranked Semantic Sampling
In order to ensure that the learned binary code can represent
a large number of relationships between semantic entities, a
distance measure Ds(a

u
i , a

v
j ) needs to be established to de-

scribe the difference between two attribute vectors aui and avj
of any two samples.

Tree-structured attributes
Generally, we can create structures of attributes with the help
of WordNet [Fellbaum, 2000], which provides the semantic
hierarchy of nouns. When building large-scale dataset such
as ImageNet [Deng et al., 2009], we can also learn attributes
from datasets. In order to accomplish the task of cross-view

1≡ means all corresponding items are the same.



Re-ID, we construct an attribute tree as shown in Fig. 2 (b)
based on the semantic hierarchy and working scope of at-
tributes. a(1) represents the attribute of a leaf node (lowest
level) in the tree. The larger the index l in an attribute a(l) is,
the higher the semantic levels of this attribute is. If l < m,
then we can call attribute a(m) as the parent attribute of the
attribute a(l).

Simply, we can divide the attributes into two groups based
on the working scope: shared attributes and non-shared at-
tributes. Shared attributes are global variables, so that sam-
ples with the same values of these attributes can have different
parent attributes, such as type, door number and color. If two
samples share a common shared attribute (e.g. color), they
may have the same or different parent attributes. However,
if two samples share a common non-shared attribute (e.g.
model), then they must have the same parent attribute (e.g.
car make). In general, the attributes with higher hierarchies
are closer to the concept of super-categories (label) whilst the
ones with lower hierarchies are closer to the identity. In a
word, two samples of the same identity definitely have the
identical attributes. Hierarchies can be used to describe the
semantic differences between two samples at a high level of
understanding. Given two samples xui and xvj with attribute
vectors aui and avj , we can define the semantic distance be-
tween them as:

Ds(a
u
i , a

v
j ) =

∑
l≤lij

N(a(l)) +
∑
l≤lij

I(aui (l) 6= avj (l))I(a(l)),

(2)
where lij (1 ≤ lij ≤ Na) is the index of lowest hierar-
chy where the two samples have different lij th attributes but
share all the same parent attributes above the lij th hierarchy.
N(a(l)) denotes that a(l) hasN(a(l)) child nodes (sub-tree).
I is an indicative function where I(aui (l) 6= avj (l)) = 1 if
aui (l) and avj (l) are not the same and I(a(l)) = 1 if a(l) is a
shared attribute. Obviously, we have Ds(a

u
i , a

v
j ) = 0 when

they have the same value at leaf node.

Semantic sampling
Given a training data set X with corresponding semantic at-
tribute setA, a small batch of samples can be selected accord-
ing to the semantic structure T , so that the complex relation-
ships of samples in this mini-batch can be fully explored to
guide the learning of embedding.

The sampling process is as follows: First, we randomly se-
lect a pair of samples xu1 and xv2 with the same attributes from
two views u and v at random. Obviously, there is au1 = av2
and l12 = 0. In general, sample xu1 is considered as an anchor
(reference) and xv2 is considered as a positive sample. Next,
we randomly select a sample xv3 from the view v as the first
negative sample by adding one step l13 = 1. This example
is somewhat similar to an anchor, but with only a different
attribute. Then, in order to select more negative samples, we
can perform the sampling step to the root of the tree by gradu-
ally incrementing l1j . At high hierarchies, when we increase
l1j each time, all the shared attributes of the lower hierar-
chies should be reconsidered. By changing one at a time in∑
l≤l1j I(a

u
1 (l) 6= avj (l))I(a(l)), we select samples which

has exactly the same shared attributes to the anchor sample,

up to a sample with a completely different shared attribute.
Finally, we obtain a mini-batch XB , where the first sample is
an anchor, second one is a positive sample and all others are
sorted negative samples.

The characteristics of the sampled mini-batch are distinc-
tive. On the one hand, the adjacent two samples are the hard
pairs (To answer the first question Q1: considering hard pairs
will make faster convergence). On the other hand, the seman-
tic distance between the anchor and samples from the sec-
ond to the last one in the mini-batch is monotonically non-
decreasing.

Ranked semantic distance loss
Most existing contrastive methods [Schroff et al., 2015;
Huang et al., 2016] have some potential limitations in sample
sampling: 1) Triplets can only be defined by labels, so fine-
gained categories or attributes are not modelled and therefore
can not handle more challenging issues, such as identifica-
tion and verification. 2) Hard samples can only be selected
from mini-batches, so selectivity is limited. 3) In most mod-
els, mini-batches are randomly generated. Then, in order to
learn more triplets or quads, most models must add mini-
batch sampling, which can be computationally expensive.

Therefore, in order to improve the efficiency of sampling,
this paper proposes a ranked semantic distance loss on the
mini-batch to guide the leaning of embedding (To answer the
second question Q2: ranked semantic distance shown in Fg.
1). Given a mini-batch XB sampled according to the seman-
tic structure, we define the ranked semantic distance loss as:

R(XB) =
∑
i

∑
j>i

[Dh(y
u
1 , y

v
i )−Dh(y

u
1 , y

v
j )

+Ds(a
u
1 , a

v
j )−Ds(a

u
1 , a

v
i )]+, (3)

where [· ]+ operation indicates the hinge function. Minimiz-
ing the above loss can guarantee that, in the learned Hamming
space, the relative semantic distances between the anchor, the
positive and negative samples are preserved. Due to j > i, we
haveDs(a

u
1 , a

v
j )−Ds(a

u
1 , a

v
i ) > 0 according to the semantic

structure. Here are a few simple conclusions to be drawn: 1)
If i = 2, xvi is a positive sample and Ds(a

u
1 , a

v
i ) = 0. 2) Fur-

thermore, if there are only two negative samples in the mini-
batch, then the proposed loss is the quadruplet loss [Huang
et al., 2016]. 3) If there is only one negative sample in the
mini-batch and the semantic distance is fixed by a value as
well, then it becomes a triplet loss [Schroff et al., 2015].

The above loss is defined when the anchor is immobilized
on the first sample of the mini-batch. In fact, when we use
the following samples as anchors, we can also explore the
indirect relationships implied in the semantic structure.
Theorem 1. Given three samples avi , avj and avk in the mini-
batch XB in which samples are sorted and sampled accord-
ing to the semantic tree, if l1i < l1j < l1k, then the following
distance inequality2 holds:

Ds(a
v
i , a

v
j ) < Ds(a

v
i , a

v
k). (4)

This theory means that more comparative relationships
would be discovered based on the ranked semantic sampling.

2All proofs will be provided in supplementary materials.



Hence, the additional information can further facilitate train-
ing of the model and mining of comparative features without
adding sample access. R(XB) considers the explicit relation-
ships in mini-batch sampling. While based on Theory 1, the
implied relationships in the mini-batch XB can be explored
as well. Therefore, we need to minimize the following loss:

R+(XB) =
∑

l1i<l1j<l1k

[Dh(y
v
i , y

v
j )−Dh(y

v
i , y

v
k)

+Ds(a
v
i , a

v
k)−Ds(a

v
i , a

v
j )]+. (5)

4 Optimization
In order to find the best function to preserve the semantic dis-
tance, we need to minimize the quantityR+(XB)+R(XB).
Unfortunately, however, the Hamming distance is a discrete
variable that is defined based on a sign function that is not
differentiable at zero. The most straightforward way is to re-
place the sign function directly with the auxiliary continu-
ous variable F (x), regardless of the difference between y and
F (x). The basic problem of this strategy is that the gap is
likely to destroy the properties preserved by F (x). In this
paper, we solve this problem by minimizing the difference
between the Hamming distance and the Euclidean distance in
the learning space F (x).

4.1 Quantization Loss
An auxiliary Euclidean distance between xui and xvj is de-
fined as D2

e(F (x
u
i ), F (x

v
j )) = ||F (xui ) − F (xvj )||22 in the

learned Euclidean space. Obviously, De(F (x
u
i ), F (x

v
j ))

is differentiable. The following theory provides an upper
bound of a quantization loss between the Hamming distance
4Dh(y

u
i , y

v
j ) and the auxiliary distance D2

e(F (x
u
i ), F (x

v
j )).

Theorem 2. Given a functional hypotheses space F and a
small value ε, for any two samples xui and xvj , the following
probability inequality holds:

P (|D2
e(F (x

u
i ), F (x

v
j ))− 4Dh(y

u
i , y

v
j )| > ε)

<
2

3KEF∈F (L(F (xui )) + L(F (xvj ))) + C

ln ε2
, (6)

where C = 2
3 ln 2 + 2 ln 3 + 2 lnK and L(F (x)) =

eTK ln(F (x) ◦ F (x) − eK)2. The symbol ◦ denotes the
Hadamard product of entry-wise multiplication, ln(·)2 is an
element-wise operator on each entry of x and eK in which all
items are one is a column vector of length K.

Obviously, searching for a function in the hypothesis space
by minimizing L(F (xui )) and L(F (xvj )) can reduce the right
term of the probability inequality. The smaller the items on
the right, the greater the probability that the difference be-
tween the two distancesD2

e(F (x
u
i ), F (x

v
j )) and 4Dh(y

u
i , y

v
j )

will be within a smaller value ε. This means that mini-
mizing the right item makes D2

e(F (x
u
i ), F (x

v
j )) closer to

4Dh(y
u
i , y

v
j ). In fact, L(F (xui )) is a quantization loss de-

fined on F which projects xui into yui . When all the items of
F (xui ) are either 1 or −1, L(F (xui )) will reach its minimum.

4.2 Overall Objective
Therefore, we can optimize R+(XB) + R(XB)
by substituting the auxiliary distance De/4 for
the Hamming distance Dh. Hence, we obtain
R(XB) =

∑
i

∑
j>i[De(F (x

u
1 ), F (x

v
i ))/4 −

De(F (x
u
1 ), F (x

v
j ))/4 + Ds(a

u
1 , a

v
j ) − Ds(a

u
1 , a

v
i )]+

and R+(XB) =
∑

l1i<l1j<l1k
[De(F (x

v
i ), F (x

v
j ))/4 −

De(F (x
v
i ), F (x

v
k))/4 + Ds(a

v
i , a

v
k) − Ds(a

v
i , a

v
j )]+. To

guarantee the learned Hamming distance, the quantization
loss L(F (x)) of all samples in the mini-batch XB should be
minimized, simultaneously. Totally, our overall objective can
be defined as:

{F}∗ = argmin
F
O(F)

= argmin
F

∑
XB

(λL(XB) +R+(XB) +R(XB)), (7)

where L(XB) = L(F (xu1 )) +
∑
j≥2 L(F (xvj )) and λ is a

balance parameter. Importantly, the objective function is dif-
ferentiable, so an optimal hash function can be searched di-
rectly using a stochastic gradient descent (SGD) based on the
mini-batch of structural sampling. The derivatives of O w.r.t
F are discussed in the supplementary material. Finally, the
derivative of objective O w.r.t the parameter θ of function F
can be obtained using the chain rule: ∂O∂θ = ∂O

∂F
∂F
∂θ . θ will be

updated during the training stage by using the derivatives on
the mini-batches.

Figure 3: Two datasets: first and second rows - CompCars [Yang et
al., 2015]; Third and fourth rows - VeRi [Liu et al., 2016b].

5 Experimental Results
To evaluate the proposed RSS for cross-view vehicle Re-ID,
we test RSS on the two recently published vehicle datasets:
CompCars [Yang et al., 2015] and VeRi [Liu et al., 2016b]
shown in Fig. 3. The balance parameter in the RSS model is
set to 0.1. As with most Re-ID methods, Cumulative Match
Characteristics (CMC) curves are used to assess performance.
The Area Under Curve (AUC) is used to rank the performance
of the different methods.

The binary deep architecture shown in Fig. 2 consists
of three components: a shared deep architecture based on
the GoogLeNet [Szegedy et al., 2015] style Inception mod-
els, a view-specific fully connected layer, and a binarization
layer. The view-specific embedding layer consists of 640
cells, which are fully connected to the previous layer. The 640
units are divided into 5 groups, each of 128 units corresponds
to a view. In the learning phase, the first two components



need to be updated using objective in 7. Batch normalization
is used for each mini-batch. In the testing phase, the binary
code is obtained by binarizing the embedded values. With
effective Boolean operations, efficient vehicle search can be
achieved in the learning Hamming space.
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Figure 4: (a) CMC comparison between 7 methods at ranks from 1
to 100. (b) CMC comparison on VeRi. ‘RSS-Cross view’ denotes
that the scores are the results of cross-view Re-ID by RSS.

5.1 Cross-View Vehicle Re-ID
CompCars [Yang et al., 2015] is originally collected for the
tasks of fine-grained categorization and verification. This
dataset contains a total of 135, 846 images capturing the en-
tire cars from 2, 004 car models. All images have been la-
belled as one of views including front (V1), rear (V2), side
(V3), front-side (V4) and rear-side (V5). Fortunately, three
hierarchies of attributes including make, model and year and
the shared attributes between different models including max-
imum speed, displacement, door number, seat number and
type are given. To make the dataset more suitable to the task
of Re-ID, we carefully label each image using the 12 kinds of
colors which are not offered but important for identification.
In total, we select six attributes including make, model, type,
door number, color and year to construct the tree shown as
2 (b). 2, 000 images of each view are randomly selected for
testing and the remaining samples are used for training.

We compare our proposed RSS based binary embedding
with the original work in [Yang et al., 2015] based on CNN
[LeCun et al., 1989] and 4 state-of-the-art cross-modal hash-
ing methods, including CMFH [Ding et al., 2014], CVH [Ku-
mar and Udupa, 2011], PDH [Rastegari et al., 2013] and
CMSSH [Bronstein and Bronstein, 2010].

Our method can learn the embeddings for all views at the
same time. However, since all other hashing methods can
handle only two view problems, we implement these meth-
ods separately for all pairs of views. The CNN features will
be considered as input to all other hashing methods. In addi-
tion to learning directly from images (ie, RSS), we also inves-
tigate the performance of our model with linear embeddings
and CNN features [Yang et al., 2015] (Linear-RSS+CNN).
From the Fig. 4 (a), we can see that RSS and Linear-RSS
+ CNN have always outperformed other methods and RSS
achieves better results than that of Linear-RSS+CNN. More-
over, we observe that the original model [Yang et al., 2015]
can hardly directly address the challenging task of cross-view
Re-ID, but performance can be greatly improved by mod-
elling cross-view relationships. This clearly shows that in or-

der to deal with cross-view tasks, it is necessary to model the
view-invariant distance.

The detailed results of cross-view Re-ID are shown in Ta-
ble 1. We arrive at the same conclusion that the proposed
RSS performs the best for cross-view Re-ID at 20 different
settings. From this table, we can also see that the rear-side
view (V5) seems to be easy to recognize, and most of the
methods get better results in both settings: 1) rear-side and
rear views, 2) front-side and front views than others.

5.2 Knowledge Transfer for Real-World Re-ID
VeRi [Liu et al., 2016b] is collected from real-world urban
surveillance scenes and contains a total of 776 vehicles taken
by 19 cameras. 37,778 images from 576 vehicles are used
for training while the remaining 13,257 images from the 200
vehicles were used for testing. Our experimental setup is the
same as the original report in [Liu et al., 2016b], but we use
only images without regard to license plate recognition. In
this section, we focus on the task of acquiring the knowledge
transfer capability of RSS from the large-scale dataset Com-
pCars to solve the vehicle Re-ID on the real-world dataset
VeRi. The basic RSS model is first trained on CompCars and
then fine-tuned on the training set of VeRi.

In order to make VeRi suitable for cross-view Re-ID, we
carefully label the camera view of the VeRi dataset followed
the setting of the CompCars dataset. Then, by using the fine-
tuned model, the binary code of the image can be obtained
directly. The three methods of GoogLeNet [Szegedy et al.,
2015], FACT [Liu et al., 2016b], and AlexNet [Krizhevsky et
al., 2012] are used to compare the performance of cross-view
Re-ID without considering the same view pairs. In addition
to the cross-Re-ID, we also conduct cross-camera Re-ID un-
der the same settings in [Liu et al., 2016b] and select two
other models including Bow-SIFT [Lowe, 1999] and Bow-
CN [van de Weijer et al., 2007] from the original VeRi pa-
per [Liu et al., 2016b]. From Fig. 4 (b), we can see that
RSS consistently achieves better results than other methods in
both cross-view and cross-camera setups. In particular, RSS
can outperform FACT, which combines three features, by ex-
ploiting the ranked semantic distance. The intrinsic reason is
that the ranked semantic distance can help us discover iden-
tity features through a series of comparisons. Furthermore,
we can observe that the cross-camera Re-ID tasks are much
easier than cross-view tasks, regardless of the method used.
The potential reason is that most cameras have similar views,
and samples from two similar views are easily identified. For
example, in the second row of Fig. 3, 10 images of the same
car were taken by 10 cameras, but the appearances of the first
and fourth images were very similar. In conclusion, experi-
ments show that ranked semantic distances do benefit mining
of identity features and can be used to implement actual Re-
IDs in both cross-view and cross-camera settings.

5.3 Complexity Analysis of Re-ID
Matching efficiency is the most important factor in a real-
world system because CCTV cameras can automatically col-
lect millions of images. However, almost all existing vehicle
Re-ID algorithms are mainly focused on improving perfor-
mance by integrating various complex modules. To the best



Table 1: AUC comparison of cross-view Re-ID between different methods. The largest value is 100(%), when the best results are achieved.
To better show the comparisons, we use ‘M[i]’ refers to ith method, in which M[1]-‘RSS’, M[2]-‘Linear-RSS+CNN’, M[3]-‘CMFH+CNN’,
M[4]-‘CVH+CNN’, M[5]-‘PDH+CNN’, M[6]-‘CMSSH+CNN’ and M[7]-‘CNN’. V1-2 denotes that the probe is from the front view (V1)
and the gallery is from the rear view (V2).

Cross-view M[1] M[2] M[3] M[4] M[5] M[6] M[7] Cross-view M[1] M[2] M[3] M[4] M[5] M[6] M[7]
V1-2 90.7 81.4 76.6 80.3 67.3 53.4 3.6 V3-4 95.7 92.9 89.6 91.9 87.8 78.9 9.0
V1-3 86.6 84.5 76.8 82.1 58.2 53.5 4.9 V3-5 97.7 93.0 92.3 92.5 88.4 86.4 6.2
V1-4 98.8 97.5 96.4 96.4 94.6 93.2 9.8 V4-1 95.8 96.0 93.0 93.9 90.3 89.8 11.4
V1-5 88.6 88.5 73.2 78.7 61.5 52.5 6.6 V4-2 89.3 88.8 76.1 84.5 66.4 59.5 4.9
V2-1 86.3 84.2 76.5 82.9 65.6 55.7 4.7 V4-3 92.0 90.0 84.0 86.2 76.5 76.0 9.5
V2-3 86.0 80.3 77.7 80.2 67.3 62.2 3.7 V4-5 94.7 91.8 85.7 85.5 79.7 75.8 7.6
V2-4 88.8 89.7 83.0 82.4 70.9 61.4 1.2 V5-1 88.7 85.5 71.7 79.3 63.2 56.2 4.2
V2-5 96.6 95.8 94.7 94.9 93.9 92.3 2.5 V5-2 95.0 95.6 91.8 92.8 88.8 88.7 4.4
V3-1 86.4 83.4 71.2 81.5 51.4 57.1 4.4 V5-3 93.2 90.8 86.9 88.8 79.7 82.3 6.0
V3-2 91.1 86.9 74.8 83.1 61.7 59.0 2.7 V5-4 95.1 92.7 79.9 88.0 73.6 78.0 5.6

Table 2: The comparison results of CMC scores (%) at 1 and 5. ‘Additional’ denotes some additional processes which are required by the
corresponding methods, × in this table denotes the real-value multiplication, ‘-’ means no module is used in the methods and N is the number
of samples in gallery. Other abbreviations: ‘ST’ refers to the spatial-temporal modules, ‘AT’ means average time of matching for each pair,
‘XOR’ refers to the boolean operation, ‘Bow’ mentions the bag of words method for quantization and ‘CB’ means codebooks.

Methods CMC@1 CMC@5 ST Plate Additional Projection Time-s Matching AT-e−5s Storage
RSS 54.6 77.6 - - - GoogLeNet 0.106 N*128 XOR 0.003 1
Bow-SIFT 2.81 5.82 - - SIFT Bow(10000 CB) 1.228 N*10000× 4.634 2500
Bow-CN 46.56 61.88 - - CN 16*Bow(350 CB) 11.213 N*5600× 2.214 1400
AlexNet 42.39 55.09 - - - AlexNet 0.090 N*4096× 1.525 1024
GoogLeNet 49.82 71.16 - - - GoogLeNet 0.106 N*1024× 0.402 256
FACT 50.95 73.48 - - SIFT+CN GoogLeNet+2Bow 12.502 N*16624× 8.182 4156
FACT++ 61.44 78.78 STR SNN Plate Detection FACT+SNN 12.635 N*17624× 9.704 4406
OIFE+ST 68.3 89.7 ST - 20*Key Points 5*CNN 4.735 N*256× 0.125 64
CNN+LSTM 83.49 90.04 LSTM - Chain MRF 2*VGG16 1.894 O(MK2) 1600 500

of our knowledge, we are the first efficient algorithm to im-
plement fast vehicle Re-ID and achieve competitive results.

In order to study the complexity of matching, we compared
RSS with the above five methods and the other three models:
FACT++ [Liu et al., 2016b], OIFE+ST [Wang et al., 2017]
and CNN+LSTM [Shen et al., 2017]3. This is almost all of
the validations on the VeRi dataset, which we can find. With
the exception of RSS, GoogLeNet and AlexNet these end-
to-end algorithms do not have additional modules, the other
methods are very complex systems that use multiple CNNs
and spatial-temporal regularization. These extra modules are
often very computationally expensive. For example, plate
detection and recognition using tens of thousands of sliding
windows is a daunting task in itself. In order to focus on
Re-ID, the position of the tablet in the VeRi dataset is manu-
ally annotated. In general, given an unseen probe image, the
matching consists of two steps: sample projection and simi-
larity calculation to the samples in the gallery.

Table 2 gives a comparison of the time complexity of pro-
jection and matching as well as a comparison of storage re-
quirements. It is worth noting that the computation time
for the hand features of the BOW-SIFT and BOW-CN is in-
cluded, but for simplicity, the calculation time of additional
models required by other methods is excluded. From this ta-
ble, first, we can see that RSS can be much faster than other
methods4 except for two models with similar deep architec-

3We refer the complexity analysis to [Shen et al., 2017].
4Quantization in handicraft features is very computationally ex-

ture. Especially for those using multiple CNNs, the bene-
fits of RSS are even clearer. Second, more importantly, most
of them are even hundreds of times more than RSS, except
OIFE+ST, which has a matching time of at least 42 times. In
fact, the overall efficiency depends mainly on the number of
samples N in the gallery, but it is usually huge in practice. In
short, if Re-ID tasks can be done in less than an hour via RSS,
it takes nearly two days or more by other means. Finally, the
advantages of RSS in storage are also significant, as all other
methods require at least 64x capacity to store the features.

6 Conclusion

In this paper, a new binary deep embedding method is
proposed for the challenge task of cross-view vehicle re-
identification. Its significant advantage is that through a se-
ries of comparisons, the ranked semantic distance is view-
invariant, which helps us to discover identity features that can
be preserved in the learned Hamming space. The validation
results show that the preserved semantic distance enables to
achieve better results and can transfer the deep architecture
learned on one dataset to achieve a real-world vehicle Re-ID.
In the future, the ranked semantic distance can be applied to
many other areas of computer vision, such as object classifi-
cation and validation. Moreover, theoretically, one can derive
more compact upper bound of inequality in Theorem 2.

pensive when the codebook is huge.
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