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Research on the associations between genetic variations and imaging phenotypes is developing
with the advance in high-throughput genotype and brain image techniques. Regression analysis of
single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has
been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent
studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g.
`2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not
enough for representing the correlation between multiple tasks and `2,1-norm regularization is not
robust either. In this paper, we propose a new multi-task learning model to analyze the associations
between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the corre-
lation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis
of SNPs and QTs. Experimental results show that our model is more accurate in prediction than
compared methods and presents new insights of SNPs.
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1. Introduction

Research on the associations between genetic variations and imaging phenotypes is developing with
the advance in high-throughput genotype and brain image techniques.1–4 Alzheimers Disease Neu-
roimaging Initiative (ADNI) provides a suitable dataset for genotype-phenotype study, however it
is still challenging to find out whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), genetic factors such as single nucleotide polymorphisms (SNPs) can be
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combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
Disease (AD). Given these data, researchers did the association study between genetic variation and
imaging measures as quantitative traits (QTs), which was shown to have increased statistical power
and decreased sample size requirements.5 Through the analysis of strong associations between SNPs
and imaging phenotypes, we can also identify candidate genes or loci which are relevant to the bio-
logical etiology of the disease.2

Traditional association studies use univariate or multivariate methods to discover the associa-
tions between single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits
(QTs).6,7 However, these methods treat each regression of imaging phenotype as an independent
task, thus the correlations between SNPs and QTs are lost in this model. To solve this problem, re-
gression analysis of SNPs and QTs has been proposed to identify the quantitative trait loci (QTL) via
multi-task learning models.4,8 In multi-task learning model, multiple tasks are handled jointly and
dependently. For example, by imposing the interlinked structures within SNPs and imaging QTs
through group lasso, e.g. `2,1-norm,9,10 it leads to better predictive results and more insights of the
SNPs.4 This assumption is suitable for the fact that only a small fraction of SNPs are responsible for
the imaging manifestations of complex diseases. However, there are two limitations. Firstly, group
sparsity is not enough for representing the intrinsic correlation between SNPs and imaging QTs.
Apart from group sparsity, we can also benefit from the low-rank structure of the coefficient. Sec-
ondly, although `2,1-norm regularization is common for the group sparsity, it is sensible to outliers.11

For example, the value of `2,1-norm of matrix [[100], [0], [0]] is larger than [[1], [1], [1]], however, the
first matrix is more sparse rather than the second one.

In this paper, we propose a new multi-task learning model to analyze the associations between
SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation
between genetic variations and imaging phenotypes. This assumption is reasonable because different
SNPs may have similar effect on the imaging phenotypes. For example, both APOE SNPs rs429358
and rs7412 are the strongest known genetic risk factors for Alzheimer’s Disease. In order to make
the feature selection robust to outliers, we propose to use capped `2,1-norm regularization in place
of `2,1-norm. We conduct regression analysis of SNPs and QTs from ADNI, and the experimental
results show that our model is more accurate in prediction than compared methods and it presents
new insights of SNPs as well.

2. Data Description

We use the dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). One goal of ADNI is to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and
early AD. These data are obtained from 818 participants. Further information about ADNI can be
found at see www.adni-info.org.

We use the genotype data12 of all non-Hispanic Caucasian participants from the ADNI Phase 1
cohort. They were genotyped using the Human 610-Quad BeadChip. Only SNPs which belong to
the top 40 AD candidate genes listed on the AlzGene database (www.alzgene.org) as of 4/18/201113

were selected after the standard quality control (QC) and imputation steps. The QC criteria for the



SNP data include (1) call rate check per subject and per SNP marker, (2) gender check, (3) sibling
pair identification, (4) the Hardy-Weinberg equilibrium test, (5) marker removal by the minor allele
frequency and (6) population stratification. After that, the quality-controlled SNPs were imputed
using the MaCH software14 to estimate the missing genotypes in the second pre-processing step.
In this paper, we use 3123 SNPs in total. While most of them might be irrelevant to AD, only a
small fraction of them are risk factors for the disease and associated with imaging phenotypes. For
example, gene APOE and TOMM40 are known to be the contributors to AD.

Two widely employed automated MRI analysis techniques were used to process and extract
imaging phenotypes from scans of ADNI participants as previously described.3 First, Voxel-Based
Morphometry (VBM)15 is performed to define global gray matter (GM) density maps and extract
local GM density values for target regions. Second, automated parcellation via FreeSurfer V416

is conducted to define volumetric and cortical thickness values for regions of interest (ROIs) and
to extract total intracranial volume (ICV). All these measures were adjusted for the baseline ICV
using the regression weights derived from the healthy control (HC) participants. Further details
are available in.3 In this paper, we use 36 ROIs from VBM and 24 ROIs from FreeSurfer which
are known to be related to AD. VBM measures and FreeSurfer measures are treated as QTs for
identifying QTLs independently.

3. Proposed Method

In this section, we propose a new multi-task learning model to study the intrinsic associations be-
tween SNPs and imaging phenotypes. Throughout our paper, we use X ∈ Rd×n to denote the SNP
data of all the ADNI participants, and Y ∈ Rc×n to denote the selected imaging phenotypes, where
n is the number of participants, d is the number of SNPs and c denotes the number of selected imag-
ing phenotypes or QTs. It is a standard regression problem to predict continuous quantities Y using
SNPs data X as follows:

min
W∈Rd×c

‖W TX − Y ‖2F (1)

The learned weight matrixW shows the importance of each SNP to predict imaging phenotypes, e.g.
W j
i denotes the importance of i-th SNP to predict j-th imaging phenotype. There are mainly three

drawbacks of using model (1) as the objective function to learn the coefficient matrix W . Firstly, it
is easy to overfit if there is no regularization, and the learned W is hard to generalize to new data.
Secondly, the learned coefficient matrix W is not sparse. It is intuitive that only a small fraction of
SNPs should be relevant to imaging quantitative traits (QTs), thus sparsity of W is a nontrivial prop-
erty. The last but not the least, the associations within SNPs or imaging phenotypes are overlooked.
Coefficient matrix W should come from a specific domain, we can impose a structured regulariza-
tion on W to represent the intrinsic associations within SNPs or imaging phenotypes. We usually use
l2-norm regularization to avoid overfitting, however, the last two problems are still not solved yet. To
handle these issues, we can treat the regression of each column of Y (each quantitative trait (QT))
as a task, then we can use multi-task learning model to learn multiple tasks jointly. The original
problem (1) can be represented as a multi-task problem as follows:

min
W=[W 1,...,WT ]∈Rd×c

T∑
t=1

nt∑
i=1

‖(W t)Txi,t − yi,t‖22 + Reg(W ) (2)



where T = c (the number of tasks), nt = n,∀t ∈ {1, ..., T} (the number of samples in task t). In
task t, xi,t = Xi, which is the column i of X; yi,t = Y i

t , which is the element of Y at the position of
row t and column i; W t denotes the column t of matrix W . Reg(W ) is the regularization we impose
on the multi-task learning problem, and it represents our assumption of the correlation between
multiple tasks , e.g. low-rank or group sparsity.17,18 In the following context, we propose to impose
two new regularization terms in the multi-task problem to learn the associations between SNPs and
imaging phenotypes, one for genetic association and the other one for quantitative trait loci (QTLs)
identification.

3.1. Capped Trace Norm Regularization for Genetic Association

In multi-task learning, we assume that the regression tasks between SNPs and imaging phenotypes
are correlated. Then we can benefit from learning multiple tasks jointly. Their correlation can be rep-
resented by imposing a structure on the coefficient matrix W . In this paper, we assume that matrix
W has a low-rank subspace, which is widely used in many applications, such as recommendation
system19,20 and multi-task learning.21,22 This assumption is also fit for the genome-phenotype asso-
ciations, because multiple SNPs may have similar effects on the imaging phenotype. For example,
both APOE SNPs rs429358 and rs7412 are the strongest known genetic risk factors for Alzheimer’s
Disease. The non-convex rank minimization regularization Reg(W ) = rank(W ) is hard to optimize,
for simplicity, trace norm is proposed as the best convex relaxation for the rank minimization regu-
larization as follows23 :

Reg(W ) = ‖W‖∗ =

min{d,c}∑
i=1

σi(W ) (3)

where σi is the singular value of matrix W . However, there is a big gap between rank minimization
regularization and trace norm regularization. When some non-zero singular values of W changes,
the value of trace norm also changes. In contrast, the rank of matrix W keeps constant. Besides,
trace norm is also sensitive to outliers.

In this paper, we propose to use a tighter approximation of rank minimization than trace norm.
Capped trace norm is more general than trace norm and it is represented as follows:

Reg(W ) =

min{d,c}∑
i=1

min{σi(W ), ε1} (4)

where ε1 works as a threshold. If ε1 is large enough, for any i, we have σi(W ) < ε1,
then it is equal to trace norm regularization. When we reduce the value of ε1, where ε1 ∈(
min{σi(W )},max{σi(W )}

)
, it’s obvious that those singular values larger than ε1 will be ignored

in the optimization. So, instead of minimizing the sum of all singular values in the trace norm reg-
ularization, we focus on minimizing these singular values less than ε1 and ignore large singular
values. Therefore, capped trace norm regularization is more robust to outliers.

3.2. Capped `2,1-Norm Regularization for QTLs Identification

There are 3123 SNPs in our dataset, and only a fraction of them is relevant to specific imaging
quantitative traits (QTs). Therefore, W should be structured sparse, where each row of W is treated



as a unit. If SNP i is not important, Wi = 0 ∈ R1×c. `2,0-norm regularization, Reg(W ) = ‖w‖0,
minimizes the number of non-zero elements, where w ∈ Rd×1 and wi = ‖Wi‖2. However, it is a
non-convex problem and hard to optimize. Alternatively, we usually use `2,1-norm regularization
enforce the structured sparsity on the learned coefficient matrix W :4,9

Reg(W ) = ‖W‖2,1 =

d∑
i=1

‖Wi‖2 = ‖w‖1 (5)

where Wi denotes the i-th row of matrix W . Each row of W is treated as a unit, and if SNP i is
negligible, Wi = 0 ∈ R1×c. Although `2,1-norm regularization works fine, there is gap between `2,0-
norm regularization and `2,1-norm regularization. Increasing the value of non-zero elements in w
does not affect the number of its non-zero elements ‖w‖0; on the contrary, ‖w‖1 will increase. In this
paper, we propose to use capped `2,1-norm regularization as an alternative to `2,0-norm as follows:

Reg(W ) =

d∑
i=1

min{‖Wi‖2, ε2} (6)

Capped `2,1-norm regularization is a better approximation of `2,0-norm than `2,1-norm. It treats ‖Wi‖2
equally if it is larger than ε2, hence capped `2,1-norm regularization is more robust to outliers. When
ε2 is large enough, we have min{‖Wi‖2, ε2} = ‖Wi‖2,∀i, thus capped `2,1-norm is equal to `2,1-norm.

To sum up, combining capped trace norm regularization and capped `2,1-norm together makes
our proposed objective function for multi-task learning (7) as follows:

min
W∈Rd×c

T∑
t=1

nt∑
i=1

min ‖(W t)Txi,t − yi,t‖22 + γ1

min{d,c}∑
i=1

min{σi(W ), ε1}+ γ2

d∑
i=1

min{‖Wi‖2, ε2} (7)

where the notations are similar to problem (2). γ1 and γ2 are to balance the importance of two reg-
ularizations. In following sections, we will propose an efficient optimization algorithm for problem
(7) and prove that it is sequence convergent.

4. Optimization Algorithm

In this section, we propose an efficient optimization algorithm to solve problem (7). Optimizing the
non-smooth and non-convex problem (7) directly is very hard. Through re-weighted algorithm,24 in
each step, we can transform our objective function to a smooth and convex relaxed problem, so that
we are able to compute the optimal solution to the new relaxed problem until convergence.

Firstly, we do Singular Value Decomposition (SVD) on the coefficient matrix W and we have
W = UΣV T , where singular values σi(W ) of matrix W are in ascending order. Assuming there are k

singular values smaller than ε1, we defineD = 1
2

k∑
i=1

σ−1i U i(U i)T where U i is the ith column of matrix

U . Therefore, the second term in (7) can be represented as γ1Tr(W TDW ). Secondly, we compute
Zii for each row of matrix W :

Zii =

{
1

2‖Wi‖2 if ‖Wi‖2 < ε2

0 otherwise
(8)



All the non-diagonal elements of matrix Z are 0. Therefore, the third term in (7) can be represented
by γ2Tr(W TZW ). When we fix the values of D and Z, the objective function (7) can be written as a
smooth and convex problem as follows:

min
W=[W 1,...,WT ]

‖W TX − Y ‖2F + γ1Tr(W TDW ) + γ2Tr(W TZW ) (9)

where the loss term is from
T∑
t=1

nt∑
i=1
‖(W t)Txi,t − yi,t‖22 = ‖W TX − Y ‖2F as per the definition of our

variables. Finally, taking the derivative of (9) in terms of W and setting it to zero, we can get the
optimal solution to the problem (9) as follows:

W = (XXT + γ1D + γ2Z)−1XY T (10)

To sum up, our proposed optimization algorithm is presented in Algorithm 1.

Algorithm 1 Algorithm to solve problem (7)
Input: Training data for multiple tasks X ∈ Rd×n, Y ∈ Rc×n

Output: W ∈ Rd×c.
Initialize W .
while not converge do

Compute D and Z via (4) and (8).
Fix D and Z, and compute matrix W via (10).

end while

5. Convergence Analysis

By optimizing our model with Algorithm 1, we can solve the non-smooth and non-convex objective
function (7). In this section, we presents the convergence analysis of our proposed algorithm.

Theorem 1. Through Algorithm 1, the values of objective function (7) are non-increasing monoton-
ically, and it will converge to a local solution.

In order to prove Theorem 1, we need the following Lemmas.

Lemma 1. According to,25 any two hermitian matricesA,B ∈ Rn×n satisfy the following inequality:

n∑
i=1

σi (A)σn−i+1 (B) ≤ Tr
(
ATB

)
≤

n∑
i=1

σi (A)σi (B) (11)

where σi (A), σi (B) are singular values sorted in the same order.

Lemma 2. Let W = UΣV T , Σ is a diagonal matrix and σi are singular values of W in ascending
order. There are k singular values less than ε1. Ŵ is coefficient matrix in next iteration by using
Algorithm 1, and Ŵ = Û Σ̂V̂ T , where σ̂i are singular values of Ŵ in ascending order and U i is the



i-th column of U . There are k̂ singular values less than ε1. So it is true that:

min{d,c}∑
i=1

min{σ̂i, ε1} −
1

2
Tr

( k∑
i=1

σ−1i U i(U i)T ŴŴ T

)
(12)

≤
min{d,c}∑
i=1

min{σi, ε1} −
1

2
Tr

( k∑
i=1

σ−1i U i(U i)TWW T

)
(13)

Proof: It’s obvious that σi − 2σ̂i + σ−1i σ̂i
2 = 1

σi

(
σ2i − 2σiσ̂i + σ̂i

2
)
≥ 0. Thus we have:

k∑
i=1

(
σ̂i −

1

2
σ−1i σ̂2i

)
≤ 1

2

k∑
i=1

σi (14)

Because there are k̂ singular values of Ŵ less than ε1 and they are sorted in ascending order, so first
k̂ singular values σ̂i are less than ε1. Therefore, no matter k̂ ≥ k or k̂ < k, it holds that:

k̂∑
i=1

σ̂i − k̂ε1 ≤
k∑
i=1

σ̂i − kε1 (15)

Combining (14) and (15), we get the following inequality:

k̂∑
i=1

σ̂i −
1

2

k∑
i=1

σ−1i σ̂2i − k̂ε1 ≤
1

2

k∑
i=1

σi − kε1 (16)

Suppose there are n = min{d, c} singular values in total, adding nε2 on both sides, we are able to get
the following inequality:

k̂∑
i=1

σ̂i +
(
n− k̂

)
ε1 − 1

2

k∑
i=1

σ−1i σ̂2i ≤
k∑
i=1

σi + (n− k) ε1 − 1
2

k∑
i=1

σi (17)

According to the definition of matrix D in (4), the following equality holds that:

1

2
Tr(W TDW ) =

1

2
Tr

(
k∑
i=1

σ−1i U i(U i)TWW T

)
=

1

2
Tr
(
UΛUTUΣ2UT

)
=

1

2

k∑
i=1

σi (18)

where Λ is the diagonal matrix where its first k elements are σ−1i , i ∈ {1, ..., k} and other elements
are 0. Via Lemma 1, we have:

1
2 Tr

(
k∑
i=1

σ−1i U i(U i)T ŴŴ T

)
= 1

2 Tr
(
UΛUT Û Σ̂2ÛT

)
≥ 1

2

k∑
i=1

σ−1i σ̂2i (19)

Substituting (18) and (19) in the inequality (17), it is satisfied that:

k̂∑
i=1

σ̂i +
(
n− k̂

)
ε1 −

1

2
Tr

( k∑
i=1

σ−1i U i(U i)T ŴŴ T

)

≤
k∑
i=1

σi +

(
n− k

)
ε1 −

1

2
Tr

( k∑
i=1

σ−1i U i(U i)TWW T

)
(20)



Finally, the following inequality holds that:

min{d,c}∑
i=1

min{σ̂i, ε1} −
1

2
Tr

( k∑
i=1

σ−1i U i(U i)T ŴŴ T

)

≤
min{d,c}∑
i=1

min{σi, ε1} −
1

2
Tr

( k∑
i=1

σ−1i U i(U i)TWW T

)
(21)

Lemma 3. We define z =

{
1

2|e| if |e| < ε2

0 otherwise
, then the inequality holds that min{|ê|, ε2} − zê2 ≤

min{|e|, ε2} − ze2.

Proof: If |e| < ε2, we have z = 1
2|e| . Via Lemma 2, let W and Ŵ be scalars |e| and |ê| respectively,

thus σ(|e|) = |e| and σ(|ê|) = |ê|. We substitute W , Ŵ and z in the inequality (21), it holds that:

min{|ê|, ε2} − zê2 ≤ min{|e|, ε2} − ze2 (22)

On the other hand, if |e| ≥ ε2, we have z = 0. The following inequality always holds:

min{|ê|, ε2} ≤ min{|e|, ε2} (23)

Right now, we are able to prove Theorem 1 by using Lemma 2 and Lemma 3 above.
Proof: According to the step 2 in Algorithm 1, matrixW denotes the current values of our model,

after we obtain the analysis solution Ŵ of function (9) through (10) . Therefore, it is guaranteed that:

‖Ŵ TX − Y ‖2F + γ1Tr(Ŵ TDŴ ) + γ2Tr(Ŵ TZŴ )

≤ ‖W TX − Y ‖2F + γ1Tr(W TDW ) + γ2Tr(W TZW ) (24)

We define, |e| = ‖Wi‖2, |ê| = ‖Ŵi‖2 and zi = Zii. after substituting the value of |e| in Lemma 3,
we have:

min{‖Ŵi‖2, ε2} − Zii‖Ŵi‖22 ≤ min{‖Wi‖, ε2} − Zii‖Wi‖22 (25)

By summing up from i = 1 to d, and multiplying both sides with γ2, then the following inequality
holds that:

γ2

d∑
i=1

min{‖Ŵi‖2, ε2} − γ2Tr(Ŵ TZŴ ) ≤ γ2
d∑
i=1

min{‖Wi‖2, ε2} − γ2Tr(W TZW ) (26)

where
d∑
i=1

Zii‖Wi‖22 = Tr(W TZW ).

Via Lemma 2, we can easily know that:

γ1

min{d,c}∑
i=1

min{σ̂i, ε1} −
γ1
2

Tr

( k∑
i=1

σ−1i U i(U i)T ŴŴ T

)

≤ γ1
min{d,c}∑
i=1

min{σi, ε1} −
γ1
2

Tr

( k∑
i=1

σ−1i U i(U i)TWW T

)
(27)



Finally, we combine inequalities (18), (24), (26) and (27), then we know that the objective value
sequence is monotonically non-increasing:

T∑
t=1

nt∑
i=1

‖(Ŵ t)Txi,t − yi,t‖22 + γ1

min{d,c}∑
i=1

min{σi(Ŵ ), ε1}+ γ2

d∑
i=1

min{‖Ŵi‖2, ε2}

≤
T∑
t=1

nt∑
i=1

‖(W t)Txi,t − yi,t‖22 + γ1

min{d,c}∑
i=1

min{σi(W ), ε1}+ γ2

d∑
i=1

min{‖Wi‖2, ε2} (28)

After several iterations, Ŵ ≈ W , the derivative of the objective function (9) is close to zero.
So far, it is clear that the values of our proposed objective function will not increase by using our
optimization algorithm, so we prove Theorem 1 that our optimization algorithm is non-increasing
monotonically. We also know that the objective function (7) is lower bounded. We can conclude that
our optimization algorithm is sequence convergent.

6. Experimental Results and Discussions

In this section, we evaluated our proposed model with other multi-task learning methods. The exper-
imental dataset is from the ADNI cohort. Our goal is to select a subset of SNPs to predict the imag-
ing phenotypes accurately. We conduct our experiments on two imaging phenotypes, FreeSurfer and
VBM separately. There are two compared methods, multi-task learning with joint feature selection
(MTFL)9 and multi-task learning with trace norm regularization (MTTN),26 both of them use least
square loss to do regression. It is easy to observe that MTFL and MTTN can be represented by our
proposed model. If γ2 = 0 and ε1 =∞, it is MTFL; if γ1 = 0 and ε2 =∞, it is MTTN.

We conduct 5-fold cross-validation, where 4 folds are training data and 1-fold is testing data.
Then we perform internal 5-fold cross-validation on the training data, and tune parameters γ1 and γ2
in the range of {10−4, 10−3, ..., 103, 104}. Through the learned coefficient matrix W , we compute the
weight of ith SNP over all tasks by using

∑c
j=1 |W

j
i |. Then, we pick up the top {10, 20, ..., 90, 100}

SNPs to predict the regression responses of the testing data. For our method, although there are two
other parameters ε1 and ε2 in the objective function (7), their values are set automatically during
the optimization. In the first 5 iterations, ε1 is set to be the 5th largest singular value in σi(W ) and
ε2 is set to bet the 5th largest value of SNP weight ‖Wi‖2. After that, we fix the values of ε1 and
ε2 until convergence. In our experiments, we always stop our algorithm 1 after 20 iterations. The
performance of compared method is evaluated by Root Mean Square Error (RMSE), which is a
widely used measurement for regression analysis.

6.1. Improved Phenotype Prediction

The experimental results are presented in Figure 1. It shows the mean and standard deviation of
the RMSEs obtained from 5 trails. In Figure 1, we observe that our proposed method consistently
outperforms other two compared methods in both VBM phenotypes and FreeSurfer phenotypes.
When we change the number of selected SNPs in our experiments, we can find out that models with
joint feature selection regularization, `2,1-norm or capped `2,1-norm, are more stable. On the contrary,
MTTN is very sensitive to the number of selected SNPs, and its performance is far worse when the
number of SNPs is small. We can also observe that when the number of selected SNPs is larger than
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Fig. 1. Experimental results of three compared methods on two phenotypes. Average values are taken from
five cross-validation and each error bar denotes ± standard deviation. Figure 1(a) shows the results of VBM
phenotypes, Figure 1(b) shows the results of Freesurer phenotypes.

50, the improvement of prediction is small. Thus, we can draw a conclusion that our assumption
of sparsity of coefficient matrix is correct. Although there are 3123 SNPs in our experiment, only a
fraction of them is responsible for the imaging phenotypes.

We also conduct ablation study of our method by setting γ1 = 0 or γ2 = 0 respectively. Table
1 presents the performance of compared methods when we select 20, 40 and 60 SNPs to predict
imaging phenotypes. Firstly, we set γ2 = 0, and our model becomes least square loss with capped
trace norm regularization. We compare this model with MTTN, and experimental results demon-
strate the effectiveness of capped trace norm. We also set γ1 = 0, and our model is least square loss
with capped `2,1-norm regularization. We compare this model with MTFL, and it is clear that our
method is more accurate in the prediction of imaging phenotypes. When we combine both of these
two terms, γ1 6= 0 and γ2 6= 0, our model obtain the best results. We can draw a conclusion that
although the performance of our method when γ2 = 0 is much worse than the performance when
γ1 = 0, imposing low-rank structure on coefficient matrix is still beneficial to the regression analysis.
Therefore, it is consistent with the fact that multiple SNPs may have similar effects on the imaging
phenotypes.

Table 1. Ablation study of our method measured by RMSE. Value: RMSE, (comparison with corre-
sponding method), e.g RMSE of capped `2,1-norm (RMSE of capped `2,1-norm − RMSE of MTFL)

Phenotype Method 20 40 60

VBM capped trace norm (γ2 = 0) 0.4566 (-0.0075) 0.3754 (-0.0105) 0.3398(-0.0120)
capped `2,1 (γ1 = 0) 0.3381 (-0.0255) 0.3124 (-0.0067) 0.3066(-0.0242)

Our Method 0.3049 0.3027 0.2875

FreeSurfer capped trace norm (γ2 = 0) 2.8623 (-0.0756) 2.2043(-0.0511) 1.9677 (-0.1047)
capped `2,1 (γ1 = 0) 2.2030 (-0.2646) 1.8747 (-0.3883) 1.6389 (-0.4215 )

Our Method 1.9653 1.7869 1.5934
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Fig. 2. Heat maps of regression coefficients learned genetic variations and quantitative traits (QTs). Top
10 selected SNPs of each matrix are visualized. Figure 2(a) shows the results from the regression of VBM
measures, Figure 2(b) shows the results from the regression of FreeSurfer measures.

6.2. Gene Selection

Figure 2 visualizes the coefficient of top selected 10 SNPs. APOE is known to have relationship
with the Alzheimer’s disease (AD). Similar to previous research,3,8 we find that APOE rs429358
shows the strongest associations with all imaging quantitative traits (QTs), especially in Figure 2(b).
Clearly, our propose model is able to identify important quantitative trait loci (QTL) via joint re-
gression analysis. Besides, we also observe that RFTN1 rs11128791 also takes important role in the
imaging phenotypes, which is not identified in previous methods. These newly identified SNPs are
highly correlated with the imaging phenotypes which are related to AD. They all have potential to
serve as a useful generic risk factor for AD.

7. Conclusion

In this paper, we propose a new multi-task learning model with capped trace norm and capped
`2,1-norm regularizations. Capped trace norm helps to discover intrinsic structures within SNPs and
imaging phenotypes; capped `2,1-norm is more robust to select important SNPs. We propose efficient



algorithm to solve our model and provide convergence analysis. Finally, we conduct experiments on
genotype-phenotype dataset from ADNI. Experimental results show that (1) our model works better
in imaging phenotype prediction and (2) it helps to identify important quantitative trait loci (QTLs),
which would be useful for the investigation of the generic risk factor for AD.
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