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Abstract—Most existing array comparative genomic hybridization (array CGH) data processing methods and evaluation models
assumed that the probability density function (pdf) of noise in array CGH data is a Gaussian distribution. However, in practice such
noise distribution is peaky and heavy-tailed. Therefore, a Gaussian pdf is not adequate to approximate the noise in array CGH data
and hence introduces wrong detections of chromosomal aberrations and leads misunderstanding on disease pathogenesis. A more
accurate and suff cient model of noise in array CGH data is necessary and benef cial to the detection of DNA copy number variations.
We analyze the real array CGH data from different platforms and show that the distribution of noise in array CGH data is ftted
very well by generalized Gaussian distribution (GGD). Based on our new noise model, we propose a novel array CGH processing
method combining the advantages of both smoothing and segmentation approaches. The new method uses generalized Gaussian
bivariate shrinkage function and one-directional derivative wavelet scalogram in generalized Gaussian noise. In smoothing step, with
the new generalized Gaussian noise model, we derive the heavy-tailed noise suppression algorithm in stationary wavelet domain. In
segmentation step, the 1D Gaussian derivative wavelet scalogram is employed to detect break points. Both real and simulated array
CGH data with different noises (such as Gaussian noise, GGD noise, and real noise) are used in our experiments. We demonstrate
that our new method outperforms other state-of-the-art methods, in terms of both root mean squared errors and receiver operating

characteristic curves.

Index Terms—Heavy-tailed noise, wavelet, aCGH, DNA copy number variations.

1 INTRODUCTION

Array Comparative Genomic Hybridization (array CGH)
is a recently developed technology based on DNA mi-
croarrays and dedicated to the investigation and map-
ping of changes in DNA copy number. Unlike classical
CGH with limited resolution (10-20Mb), higher through-
put array CGH technology co-hybridizes normal DNA
and tumor to a microarray of thousands of bacterial
artificial chromosomes, cDNA or oligonucleotide probes,
and measures DNA copy number changes in relatively
narrow chromosomal regions.

When designing and evaluating chromosomal aberra-
tion detection algorithms, most researchers assumed that
noise in array CGH follows Gaussian distribution [1],
[2], [3], [4], [5]. However, this important assumption
has been queried and discussed by [6]. Although they
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showed that array CGH noise distribution is heavy-
tailed, they did not make further conclusion on the
kind of distribution. Huang ef. al. [7] assumed array
CGH noise distribution as the Student’s t distribution.
To address this important problem, in this paper, by
considering any deviation from zero values in self-self
test samples as noise (the value of true signal is expected
as zero over whole sample), we propose a new array
CGH noise model, generalized Gaussian distribution
(GGD), which covers both Gaussian and heavy-tailed
distributions. Five real array CGH data sets with differ-
ent resolutions and platforms will be studied to support
our new noise model assumption. Based on our new
noise model, we introduce two new synthetic array
CGH data models using either GGD noise or real noise.
Hybridization bias problem [8] is also considered in our
new synthetic array CGH data models. Compared to
traditional models, the new data models generate better
simulated array CGH data (closer to real array CGH
data) for DNA copy number detection algorithms and
evaluations.

To develop effective methods identifying aberration
regions from array CGH data, the previous research
works mainly utilized one of two key techniques:
smoothing and segmentation. In recent work, Lai ef al. [5]
empirically compared 11 different array CGH analy-
sis algorithms and concluded that segmentation-based
methods perform consistently well, but when the noise
level is high, smoothing-based methods work better.



Smoothing-based methods remove noise in frequency
domain to discover low amplitude aberration regions
and reduce the number of identified false aberration
regions. However, smoothing-based methods cannot de-
tect exactly breakpoints of aberration regions, because
changing points in array CGH are corresponding to
high frequency component which could be suppressed in
denoising process. Segmentation-based methods target
to model data as a series of discrete segments under
certain optimization criterion and directly give out the
final results with visible gain, deletion or normal regions.
The segmentation-based methods could more accurately
detect the boundary points. However, because the small
aberration regions are highly possible to be buried into
its neighbors in high noise case, the false positives
could be easily introduced. It would be very desirable
to develop new methods to process array CGH data
with advantages from both smoothing and segmentation
approaches [6].

In this paper, we propose a novel derivative wavelet
scalogram based segmentation method (DWSS) to iden-
tify DNA copy number aberrations by integrating both
smoothing and segmentation steps and handling heavy-
tailed noise. Our DWSS method includes two main
steps: heavy-tailed noise suppression and breakpoint
detection. Compared to the state-of-the-art related work,
our method has advantages in three folds. 1) Lai et
al. [5] proposed Wave method using stationary wavelet
transform that works well with Gaussian noise. In-
stead of hard threshold [9], in our work, generalized
Gaussian bivariate shrinkage function is designed in
stationary wavelet domain to suppress both Gaussian
and heavy-tailed noise in array CGH. 2) Ben et al. [10]
proposed HaarSeg algorithm using simple wavelet based
pattern-matching or wavelet footprint to detect break-
points in array CGH. HaarSeg algorithm run fast and
gave promising segmentation results. Inspired by the
pattern-matching idea, we propose Gaussian derivative
wavelet scalogram to segment pre-processed array CGH.
3) Pique-Regi et al. [8], [11] proposed two GADA algo-
rithms in which GADA1 was designed with an unbiased
measurement assumption, and GADA2 worked well
with probe hybridization bias. It is necessary to have
a segmentation method working with both bias and
unbias cases. Thus, we also consider the hybridization
bias problem and design our method to be robust with
bias [8] as well as unbias measurement in array CGH.

We validate our method in both synthetic and real
array CGH data sets. Moreover, in synthetic data, we
introduce two kinds of data by adding real noise and
GGD noise. Both Root Mean Square Errors (RMSE) and
Receiver Operating Characteristic (ROC) curves are cal-
culated to evaluate the performance. In all experimental
results, our new DWSS method consistently outperforms
the state-of-the-art array CGH data processing algo-
rithms, and also shows fast computational time.
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(a) Chromosome 15 (b) Empirical histogram

Fig. 1. An example of array CGH GSM232967 and its
empirical histogram.

Data set Number Platform Number
of Arrays of samples
Lee 2008 array 40 Nimblegen 385K 2
Snijders 2001 array 15 HumArray 1.14 89
Bredel 2005 array 26 Stanford human 26
cDNA microarray
Smith 2007 array 69 Agilent 244K 3
Nicolas 2009 array 23 Custom Nimblegen 2
Kidd 2010 array 22 Agilent 244K 1
Perry 2008 array 66 Agilent 244K 3
Bovee 2008 array 66 Agilent 244K 3
TABLE 1

Eight datasets which are used to analyze noise in array
CGH with many platforms

2 ARRAY CGH NOISE CHARACTERISTIC

In this section, the array CGH noise distribution will
be analyzed using the self-test samples of real array
CGH data, in which the deviations from zero values are
considered as noise. Several possible candidates of noise
models are used to fit the noise and the relative entropy
is used to evaluate the fitting performance. Compared
with all candidates, the generalized Gaussian distribu-
tion (GGD) that covers both Gaussian and heavy-tailed
distributions, has the best fitting results on array CGH
noise.
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We analyze eight real array CGH data such as Lee
2008 array [12], Snijders 2001 array [13], Bredel 2005
array [14], Smith 2007 array [15], Nicolas 2009 array [16],
Kidd 2010 array [17], Perry 2008 array [18] and Bovee
2008 array [19] as shown in Table 1. All of them are avail-
able to the public. Similar to previous related research
[6], we consider the true signal of a normal chromosome
should only include copy two, hence deviations values
from zero (log(2/2) = 0) in real signal of a normal chro-
mosome are the noise in array CGH. Table 1 describes
the details of each data set, including the data platform,
the number of self-self test samples, and the number of
arrays (chromosomes).

In the Lee 2008 array [12] which used Nimblegen
Macaque Whole genome CGH 385K array, there are two

Data Description



self-self test samples (GSM232967, GSM232968) of log2-
transformed ratios (CH1/CH2) with some ten-thousand
probes. Totally we have 40 (2 samples x 20 chromo-
somes) chromosomes. The Snijders 2001 array [13] is
from Stanford University with 15 human cell lines. Each
chromosome in this data only contains around one hun-
dred probes. The Bredel 2005 array [14] data is from
Harvard Medical School. This data includes 26 samples,
and each sample has thousands of probes. With low reso-
lution data, in order to get enough data points for fitting,
we will combine many normal chromosomes of the same
sample together. The Smith 2007 data [15], using Agilent-
015366 Custom Human 244K CGH Microarray, includes
three control self-self hybridization samples, and each
sample has twenty-three chromosomes. For this data, we
have 69 chromosomes with ten-thousand probes each.
Kidd 2010 [17], Perry 2008 [18] and Bovee 2008 [19]
are three other data sets which also used Agilent-015366
Custom Human 244K CGH Microarray. They have seven
self-test samples with 22 chromosomes each. In the
Nicolas 2009 [16] which used Custom Nimblegen array
CGH chip, we have one self-test sample (GSM334824) of
23 chromosomes in for noise analysis.

2.2 Noise Distribution Candidates for Array CGH

After studying these eight data sets, we found the noise
distribution of array CGH is bell-shaped and symmetric.
One example is shown in Fig. 1. It is chromosome 15
of GSM232967 in Fig. 1(a) from the Lee 2008 array
[12]. Fig. 1(b) is the empirical histogram of the signal
in Fig. 1(a). We can see this histogram is bell-shaped
and symmetric. There are four probability distribution
candidates for such noise, including Gaussian distribu-
tion, generalized Gaussian distribution (GGD), Student’s
t distribution, and Cauchy distribution. There is another
bell-shaped distribution, extreme value distribution, but
it is not symmetric.

We will focus on four bell-shaped and symmetric
distribution candidates as shown in Fig. 2. Most previous
works [1], [2], [3], [4], [5], [20] assumed that probability
density function (pdf) of noise in array CGH is zero-
mean Gaussian shown in Fig. 2(a) as follows:

1
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where ¢ is the standard deviation. It then was assumed
in [6], [7] that array CGH noise distribution is heavy-
tailed. One of heavy-tailed distributions is Student’s t [7]

in Fig. 2(c) presented by following pdf
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where v is the number of degrees of freedom and I is
the Gamma function, I'(z) = [~ e~t*~'dt, with z > 0.
Another heavy-tailed distribution in Fig. 2(d) is Cauchy
which has the following pdf
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Fig. 2. Four probability density candidates with zero
mean: (a) Gaussian density with ¢ = 0.2,0.4,0.6; (b)
Generalized Gaussian density with « = 0.1, 8 = 0.5, 1, 2;
(c) Student’s t density with v = 1, 2, 10; (d) Cauchy density
with v = 0.5,1,2

where 7 is the scale parameter.

Generalized Gaussian distribution (GGD) in Fig. 2(b),
which can capture both Gaussian and heavy-tailed, is
presented by
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where T'(.) is the Gamma function. Here « is the stan-

dard deviation, and § is inversely proportional to the

decreasing rate of the peak. « is referred to the scale

parameter and 3 is called as the shape parameter. The

Gaussian and Laplacian pdfs are special cases of GGD

at @« = 2 and « = 1, respectively. The parameters such
as a and 8 can be estimated as in [21]).

In probability theory and information theory,
Kullback-Leibler Divergence (KLD) is the standard
way to measure the difference between two probability
distributions. If we want to calculate KLD between real
probability distribution P and estimated probability
distribution @), we can use the following definition:

AH = Z P(i) log(P(i)/Q(7))- ©)

(4)

The entropy of distribution P can be calculated by:
H(P)="_ P(i)log(P(i)). (6)

We can use 52 to check how the estimated probability
distribution ( fits to real probability distribution P. The



fitting between P and @ is better when 52 is smaller. We
will evaluate the fitting performance of candidates and
then propose GGD to approximate noise distribution in

array CGH data.

2.3 Validation of New Array CGH Data Noise Model

Four candidates including Gaussian, GGD, Student’s t,
and Cauchy are employed to fit noise distribution. The
real noise of array CGH signal is obtained from eight
data sets described above.

To estimate the parameters of Gaussian, Student’s t,
and Cauchy models, the nonlinear curve-fitting method
is used. We calculate AH/H between each model and
empirical noise pdf by Eq. (5) and Eq. (6). This AH/H
value represents the difference between two distribu-
tions devided by the entropy H. A model fits an em-
pirical pdf better than another one when its AH/H is
smaller.

Fitting models results of an example are shown in
Figs. 3. Histogram of GSM232967’s chromosome 15 and
fitting results in Fig. 3 illustrate that the difference be-
tween GGD model and empirical noise pdf is much less
than that of other models. 52 between GGD model and
empirical pdf is 0.0061, while they are 0.0155, 0.0135 and
1.7583 with Gaussian, student’s t and Cauchy models,
respectively. Another example of fitting models is also
shown in supplemental document.

The fitting performance of candidates is evaluated
over eight data sets. We compute AH/H between each
model and individual empirical pdf of each chromosome
from eight data sets and then take the average of these
AH/H in each data source as shown in Table 2.

The difference between the GGD model and noise pdf
is always the smallest (Table. 2) in all data sources with
various platforms. Compared to Gaussian, Student't,
and Cauchy models, GGD model is more accurate and
sufficient for fitting empirical noise pdf in the array CGH
data. Therefore, we propose using GGD model as a new
noise model assumption for array CGH data, and will
develop a smoothing algorithm based on this GGD noise
model. We also notice that both Student’s t and GGD
models fit the noise distribution better than Gaussian
model. Thus the assumption of heavy-tailed noise in
array CGH is true and agrees with the conclusion in

paper [6].

3 METHOD

How to reduce heavy-tailed noise and how to detect
breakpoints of array CGH data are two central problems
in array CGH data processing. In this section, we pro-
pose methods to solve for them. First, the generalized
Gaussian bivariate shrinkage function based denoising
procedure in wavelet domain will be introduced. After
that, wavelet derivative scalogram in 1D will be de-
fined to detect breakpoints which mark changing points
of segments in array CGH. Finally, we will propose

Data Gausstan | GGD | Studentt | Cauchy
Lee 2008 0.0200 0.0083 0.0172 0.8846
Snijders 2001 0.0471 0.0216 0.0252 0.3154
Bredel 2005 0.0846 0.0227 0.0588 0.5770
Smith 2007 0.0298 0.0184 0.0259 0.7997
Nicolas 2009 0.0311 0.0243 0.0461 0.4238
Kidd 2010 0.0467 0.0347 0.0434 1.3228
Perry 2008 0.0183 0.0144 0.0156 0.9512
Bovee 2008 0.0304 0.0166 0.0228 0.7270
TABLE 2

Average AH/H of four distributions. Samples from eight
data sets with various platforms in Table 1 are used for
f tting noise models.

our main method which is a combination of heavy-
tailed noise suppression and wavelet pattern-matching
for breakpoint detection.

3.1

As discussed above, generalized Gaussian is a better
noise assumption than Gaussian and the other candi-
dates. With this new noise assumption, denoising be-
comes a challenging problem. According to empirical
comparisons in [5], with Gaussian noise assumption,
Wave [9] using stationary wavelet transform (SWT) and
hard thresholding showed very good performance. Thus,
SWT is still used to reduce noise in this work. However,
the hard threshold based estimator is replaced by a new
estimator which is designed to operate with heavy-tailed
noise.

A simple denoising algorithm via wavelet trans-
form need three steps: decompose the noisy signal by
wavelet transform, denoise the noisy wavelet coeffi-
cients according to rules, and take the inverse wavelet
transform from the denoised coefficients. To estimate
wavelet coefficients, the most well-known rules are uni-
versal thresholding, soft thresholding [22], [23], [24], and
BayesShrink [25]. In these algorithms, the authors as-
sumed that wavelet coefficients are independent. Sendur
and Selesnick [26] recently exploited the dependency
between coefficients and proposed a non-Gaussian bi-
variate pdf for the child coefficient w. and its parent
wp in the complex wavelet transform domain. Huang
et al. [27] and Nguyen ef al. [28] applied that function
in the complex wavelet transform domain to recover
array CGH data with Gaussian noise successfully and
got promising results. However, the noise distribution
in array CGH that has been proved in previous section
is generalized Gaussian rather than Gaussian. Thus, we
have to build a new algorithm for new GGD noise model
in SWT. Generally we assume that we get the array CGH
data Y which includes the deterministic signal D and the
independent generalized Gaussian noise N. We have

Y =D+ N. 7)

Heavy-Tailed Noise Suppression

After decomposing the data Y by the SWT, we get the
coefficients y, and those coefficients can be formulated
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Fig. 3. The AH/H between the histogram of the chromosome 15 of GSM232967 and four distribution candidates
such as (a) Gaussian: AH/H = 0.0155, (b) Generalized Gaussian: AH/H = 0.0061, (c) student’s t: AH/H = 0.0135,

and (d) Cauchy: AH/H = 1.7583.
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Fig. 4. The histograms computed from true array CGH
signal. (a) Histogram of w; , (b) Histogram of ws.

as

Y1 =Wi1+1n1, Yy2=Wz2+nyg, 8)

where y; and y2 are noisy wavelet coefficients, wy and
wg are true coefficients. The joint pdf of noise n; and n»
should follow:

n1|? + na|?
pn(n) = K (o, §)exp(~ L0 )
where K(a, ) = W The standard MAP estima-

tor [26]) of w from y is followed as:

w(y) = arg max[log(pn(y-w)) + log(pw(w))]. ~ (10)

Fig. 4 illustrates the histogram of wy (child) and w»
(parent). The w; and ws are computed from array CGH
data without noise by using the SWT. Fig. 5 (a) shows the
joint distribution of w and wo. We are going to propose
one pdf to fit that joint distribution.

We imitate the idea from [26] and propose a non-
Gaussian bivariate pdf for w; and w» as

3 V3
pw (W) = s exp(———/[wi[? + Jwz]?).

The pdf in Eq. (11) is sketched in Fig. 5 (b). With this pdf,
two variables wy and wy are dependent. Let us define

(11)

3

F(w) = log(Pu(w)) = log(5-—) — =

lwi]? + [wa?. (12)

The joint distribution histogram of w1 and w2

The proposed pdf of w1 and w2
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Fig. 5. (a) The joint distribution of w; and w, created from
decomposition of true array CGH signal. (b) The proposed
pdf with two variables: w; and ws.

Using Eq. (9), Eq. (10) becomes

S ly1 — wi|® + |y2 — wo|”
w(y) = argmax[log(K (e, §))— G

(13)
Solving Eq. (13) is equivalent to solving two following
equations

_ B-1 3
sign(p—wn)xpx Tl VIn gy,

o oy/|wi]? + |wa?

— -1 3
sign(ya—wsa) X B v u;Q' = V3w, . (15)

o oy/|wi]? + |wa?

First, in special case of beta, if this is Gaussian noise
2
(8 = 2 and 0, = %), according to [26], the MAP
estimator can be formulated as

2
(VI + Jy2? — LTy,

wi (B =2) = Y1, (16)
VIl + lyz2]?
: (VP P — %),
wo(B =2) = = Y2, 17)
VYL + [y2]?
where (u)4 is defined by
0, if u<0,
(u)y = { u, otherwise. (18)
In Eq. (16) and Eq. (17), ¢ can be estimated by
6= \[(62 - 21, (19)

+f(w)].



where &, is the noise deviation which is estimated
from the finest scale wavelet coefficients using a robust
median estimator [23] as follows

- _ median(|y)
O, = ————— -

" 0.6745 ’
gy is the deviation of observation signal estimated by

52 % Z |yi|2a

Y EN(4)

(20)

1)

Q>

where M is the size of the neighborhood N (i).

Next, in general case of 3, we use the successive substi-
tution method to get solution. The parameter estimation
procedure is summarized as follows:

Step 1 Initialize ;" = (8 = 2) and w,”
atk=0
Calculate r{ ¥l

= w(B = 2)

Step 2 and ;¥ using

r K = \/(ugl[k])z + (W2 ™)2|yy — M) P sign (yy —, *).

segmentation results and algorithm speed. However,
Haar wavelet is so sensitive to heavy-tailed noise. In
this paper, Gaussian wavelet is used instead of Haar
wavelet to make sure that our method is robust to noise.
Therefore, 0,(t) can be written as follows:

0.(6) = ~—eap(- 1) @)
Vs s°
Taking convolution f; * 6, we get result as:
meﬁ)_Aix/+m;Le“J$dt 28)
to; VS
Wif(u,s) = —A; x /s x (37(%7“”)2 (29)

Wi f(u,s) (the first derivative of W) gets maximum at
u = tg;. The scalogram in 2D is obtained by

Wl{} ))
WS (u,s) =100 x N (Wi
i=1 Vs

(30)

However, breakpoint detection using wavelet pattern-
matching could not be finished easily in 2D scalogram.
So, we change scalogram from 2D to 1D by two fol-

(22)
rolFl = \/(ugl[k])z + (u? ) |y — 165 [k ]|(B I)Slgn(yg—wg[k]).
. (23)
Step 3 Find " = B";—l and " = ﬂ;’ﬂf
Step 4 Find the differences ¢, = w0, * —,* and e, =
PRSI
Step 5 If both - and <2 are small ( less than a threshold),

then termmate the iteration. Otherwise, set k = k +
1, go to step 2. In theory of successive substitution
method, if threshold is less than 10~" with n > 3,
iteration algorithm can be called convergent. In this
work, we choose the threshold of 0.001

3.2 One-Directional Derivative Wavelet Scalogram
After noise suppression step, breakpoints in processed
array CGH will be detected by a new 1D scalogram
method [29], [30], [31], [32]. True array CGH can be
considered as a mixture of unit step functions h(?)
(h =1 when t >=0, h =0 when t < 0) as follows:

N N

The continuous wavelet transform can be written as a
convolution product in Eq. (25):

(24)

+oo —u
Wi = [ po—zr e e

o NG s
where * is the conjugate, s is scale and u is position in
wavelet domain. According to §6 in [33]), the wavelet
transform in Eq. (25) can be re-written as a multi-scale
differential operator in Eq. (26):

ar _
(e B(0) w),

where * is convolution. In HaarSeg method [10], the
simple derivative wavelet (Haar filters) was used. The
results of HaarSeg method are promising because of both

Wi f(u,s) =s" (26)

lowing steps. First, ridge lines [33] are identified by
linking the local maxima of 2D scalogram at each scale
level. Ly and U(u) represent linking line length and a
vector including linked maxima position with u at scale
one. In this step, ridge line with length smaller than a
certain threshold will be set to zero. The step one can be
formulated as

u={ "
up U - -
(31)

In the second step, 1D scalogram is built as follows:

if Lr <threshold ,
otherwise.

Usrmaz s

0, if U =0,
Zueu WS(u,s), otherwise,

(32)
Ut u2;— e Usmoz ¢ is scale and u
max

WSip(u) = {

where = U(u) =
is wavelet position.

3.3 Derivative Wavelet Scalogram Based Segmenta-
tion (DWSS) Method

Our new DWSS method is based on two following steps:
Step 1: Noise Suppression. First, heavy-tailed noise
in array CGH signal is removed by generalized Gaus-
sian bivariate shrinkage function in stationary wavelet
domain. After array CGH is decomposed by SWT,
noise suppression will be done by five steps in Section
“Heavy-Tailed Noise Suppression”. Only high frequency
scales are applied to remove noise. Approximation scales
are kept to make sure that true signal will not be re-
moved in denoising process. After that, noise suppressed
array CGH signal is recovered by inverse SWT.



Step 2: Breakpoint Detection. The 1D Gaussian deriva-
tive wavelet scalogram is used to detect breakpoints in
noise suppressed array CGH. Mean value of processed
signal in each segment will be considered as log2ratio of
that segment.

Fig. 6 (a) illustrates two steps of DWSS using a
synthetic sample with real noise. First, only outliers
with high confidence (high frequency in wavelet do-
main) are removed. Some noise around true signal is
still kept to avoid removing true signal. Because of
the simple denoising step, our algorithm can run fast.
Gaussian derivative wavelet scalogram in 2D is built
from denoised signal. We use 96 scales to build this
scalogram. Although footprints of breakpoints are visible
in 2D scalogram, breakpoints could not be detected
easily. Thus, scalogram in 1D is defined and used to
detect breakpoints. The 1D Gaussian derivative wavelet
scalogram made our method to be robust with any
hybridization bias level of any platform. Signal of hy-
bridization bias can be represented by sin function [8]
so it has single frequency which only appears at a
few scales (dis-connected line in 2D scalogram). Our
method, a wavelet method with 96 scales, removed
breakpoints caused by hybridization bias very easily.
Only real breakpoints whose frequency bands are very
long appear in many scales or all scales (continuous
lines 2D scalogram). We demonstrate that 1D scalo-
gram has high values at positions corresponding to
breakpoints in array CGH in the fourth sub-figure of
Fig. 6 (a). The final segmentation results of DWSS in
this example are shown in Fig. 6 (b) in red points. The
black line represents true signal (some of them overlap
with red color detected segments) and blue points are
noisy array CGH data. Our software is available at
http:/ /www.nhanguyen.naaan.org/software.html. Eval-
uations of our method will be discussed in next section.

4 EXPERIMENTS AND DISCUSSIONS

In this section, we first improve array CGH synthetic
data model. Next, comparisons between our method and
previous works will be performed by using RMSE and
ROC curves.

4.1 Improved Synthetic Data Model

Synthetic array CGH data is very important for ar-
ray CGH study and algorithm evaluation. Because the
ground truth of aberration regions is known in syn-
thetic array CGH data, the performances of different
smoothing or segmentation algorithms can be measured.
However, if the synthetic data model cannot correctly
represent the natural properties of real array CGH data,
the evaluation results based on them will mislead the
array CGH studies. So far, the most commonly used
synthetic array CGH data model was proposed by Wil-
lenbrock and Fridlyand [4] in 2005. They segmented a
primary tumor data set of 145 samples using DNA copy
number levels from the empirical distribution of segment
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(b) Segmentation result by DWSS on one sample

Fig. 6. One example using DWSS method: the sample
is generated by adding real noise into a synthetic array
CGH (thus known the ground truth of segments: two
normals, one deletion and one gain) with bias of 0.2.
Noise suppression step and breakpoint detection step are
illustrated in (a). DWSS detects exactly four segments
(two normals, one deletion and one gain) in this sample
in (b).



Data Source «

Lee 2008 (40 arrays) 0.1998 — 0.3032
Smith 2007 (69 arrays) 0.1221 — 0.2010
Nicolas 2009 (23 arrays) | 0.2547 — 0.3032

B
1.165 — 1.9109
1.0538 — 1.7342
1.7841 — 2.3764

Kidd 2010 (22 arrays) 0.04 — 0.064 1.0793 — 1.5167
Perry 2008 (66 arrays) 0.043 — 0.06 1.2037 — 1.763
Bovee 2008 (66 arrays) 0.049 — 0.1 1.0296 — 2.302
TABLE 3
Estimated values for the parameters «, S of real array
CGH noises

mean values. They got results such as copy number
probabilities and the distributions of segment length.
The expected log2ratio for each clone was computed as
logy( W) where c¢ is the assigned copy number
with P; is a proportion of tumor cells whose values are
from a uniform distribution between 0.3 and 0.7.

Following this standard model, we create true array
CGH signal without noise. In order to improve the
model [4], we first add the probe hybridization bias
to true signal that was proposed in [8]. The simulated
signal can be written as:

Y=D+R+WN, (33)

where D is the true signal, R is the hybridization bias
and N is the noise. We use a parameter b whose value is
from zero to one to adjust bias value in simulated data
as follows

R = b x (0.5sin(270.001m) + Gaussian(0,0.25)), (34)

where m is the length of simulated signal and b is the
bias value. The old model in [4], Gaussian noise is added
to the true signal. In this work, we introduce two kinds
of synthetic data by adding real noise or GGD noise into
true signal.

4.1.1 GGD Noise:

As discussed in previous section, GGD fits noise pdf
in array CGH data very well. Parameters « and (3 are
estimated as shown in Table 3. From Table 3, we observe
that the parameter a ranges from 0.12 to 0.3 and the
parameter 8 ranges from 1.05 to 2.38. Therefore, GGD
noise model with « and § values in Table. 3 will be used
for synthetic array CGH data generation.

4.1.2 Real Noise:

We extract the real noise from array CGH data by
following steps. First, we calculate the histogram of DNA
copy numbers of a chromosome from the real self-self
test array CGH data as shown in Fig. 7 (a), i.e. the
noise histogram. From this histogram, a discrete pdf with
64 bins is formed as Fig. 7 (b). Then we interpolate
the 64 bins-pdf and normalize to get a new pdf with
some thousands of bins as Fig. 7 (c). Finally a new
random noise vector will be created from this pdf. In
this experiment, we use 286 arrays with ten thousands
probes from various data sets as shown in Table 3, which

contain noise only. Therefore, we have 286 pdfs to create
thousands of random noise vectors which are added to
true signal to create real noise based simulated array
CGH data. The whole procedure to extract real noise is
illustrated in Fig. 7.

After adding noise, we create unequally spaced probes
suggested by [3]. The intuition of this step is that the
distances between probe k and probe k+1 are randomly
and the best way to get these distances from the real
array CGH data, such as Lee 2008 array [12] for high
resolution data. We then place unequally spaced probes
on chromosomes. The number of probes can be low,
high and very high. Now, we generate many artificial
chromosomes of length 200 Mbase with three resolutions
and two kinds of noise including generalized Gaussian
noise and real noise.

4.2 Performance Evaluations of DWSS Method

We compare our DWSS method to other state-of-the-art
methods, including Lowess [5], Wave [9], Smoothseg [7],
HaarSeg [10], CBS [2], GADAL [11], and GADA2 [8]. We
used R package smoothseg for smoothseg, and waveslim
for Wave. With Lowess, HaarSeg, GADA1, GADA2, CBS
and our method, MATLAB implementations are used.
HaarSeg, GADA1, and GADAZ2’s implementations are
downloaded from sharing links in [8], [10].

4.2.1 RMSE Comparisons:

For each of three noise models (Gaussian, GGD with
heavy-tail, and real noise), we create one thousand
high resolution chromosomes. For every 1000 generated
chromosomes, bias of 0.2, 0.4 and 0.8 are applied re-
spectively to obtain 3000 chromosomes. After applying
each method to the simulated data, we use the root
mean square errors (RMSEs) to measure the differences
between ground truth and segmentation results of all
methods. All averaged results are shown in Fig. 8 (a) and
the DWSS method has the best performance. The DWSS
outperforms averagely the Lowess by 78%, the Wave by
77%, the Smoothseg by 82%, the HaarSeg by 51%, the
CBS by 78%, the GADA1 by 78%, and the GADA2 by
40% in terms of the RMSEs. For all noise models, the
DWSS consistently achieves much better results than the
others.

Real array CGH data is also used to evaluate per-
formances of eight above methods. Lee 2008 array [12]
array including 40 samples, Smith2007 array including
69 samples and Nicolas 2009 including 23 samples are
three real data with the known ground truth. In Fig.
8 (a), the performance of our DWSS method is much
better than that of others. Average RSME of our method
is smaller than SmoothSeg by 5.7 times, Lowess, CBS
and GADA1 by 4.5 times, Wave by 4.3 times, HaarSeg
by 2 times and GADA2 by 1.7 times.

In general, if we consider both simulated and real data,
our method improved previous methods 41% to 77%.



Fig. 7. The procedure to create real noise from chromosome 19 of GSM232967. (a) Histogram with 64 bins, (b) pdf
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RMSE.



4.2.2 ROC Curve Comparisons:

A comparison of array CGH detection algorithms was
studied by [5]. They used the ROC curve to evaluate
11 algorithms with aberration widths of 5, 10, 20 and
40, and signal-to-noise ratios (SNRs) of 1, 2, 3 and 4.
Many synthetic chromosomes consisting of 100 probes
are created from four templates with Gaussian noise and
square-wave signal at the center of chromosome. In 2007,
Huang et al. [7] improved this setting by decreasing the
width of the center square-wave and increasing the noise
level. In [10], Ben and Eldar proposed using very high
resolution data and real noise to improve the quality of
evaluation. In this paper, we evaluate the performance
of all methods not only at the middle of signal but also
at the border of signal. Therefore, we use four templates
with the aberrations at the center and four more tem-
plates with the aberrations at the border. The aberration
widths used in this paper are 5%, 10%, 15% and 20% of
whole chromosome length. Both Gaussian and real noise
are used to evaluate all methods. The real noise from
forty self-self test arrays of Lee 2008 array [12] is also
add to these templates. In all cases, bias of 0.8 will be
added to make problem harder. Using all eight genomic
templates, 100 noisy arrays are generated with unequally
spaced probes. We test segmentation performance of all
methods on three true segment amplitudes of 1092%,
loga3 and logz 2. The ROC curves of eight methods using
four different data are plotted in Fig. 9.

In Fig. 9 (d), when real noise simulated data which has
gain segmentation amplitude of log, 3 is used, the perfor-
mances of DWSS and GADA? are the best. HaarSeg and
CBS work well and their ROC curves are very close to
each other. Wave method also works well. The next ones
are GADA1, SmoothSeg, and Lowess. The gain segment
amplitude is further reduced to log, 3. With copy of three
in Figs. 9 (a)(c) and (b), all methods get worse results.
However, DWSS is still the best one. The next ones are
HaarSeg and GADAZ2. These results are consistent with
the above results using RMSEs as evaluation metric.

By using both RMSEs and ROC curves, we can con-
clude that DWSS has the best performance. GADA2
and HaarSeg are good methods being robust with bias.
GADAZ2 is more robust with heavy-tailed than HaarSeg.
HaarSeg detects segments which have small signal-noise
ratio better than GADA2. GADA1 and CBS are compara-
ble. About algorithm speed, DWSS runs faster than CBS
by 2.96 times (Table 4 in supplemental doc).

4.3 DISCUSSIONS

Based on the experimental results in Fig. 9, we fur-
ther investigate all eight methods and also list their
results by different bias levels in Fig. 8 (b). Lowess
method [5] is robust to heavy-tail, but very sensitive
to bias. In general, the performance of Lowess is not
good. Wave method [9] should be used with Gaussian
noise and without bias, because it was only designed
for Gaussian noise. With small SNR, the performance
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of Wave method is comparable with CBS and GADA1
methods. SmoothSeg method [7] is designed for heavy-
tailed noise, hence it operates well with generalized
Gaussian noise. However, compared to other methods,
SmoothSeg method has a worse performance. HaarSeg
method [10] uses wavelet based pattern matching so that
it is robust to bias. However, since Haar filter is used in
stationary wavelet domain, it is sensitive to outlier or
it is not robust to heavy-tailed noise. Overall HaarSeg
still gives promising results. It is better than denoising
method and two segmentation methods such as CBS and
GADAL. If compared by ROC curves, HaarSeg works
even better than GADA?2 in case of small SNR.

CBS method [2] is the second best in case without bias.
That means CBS is robust to heavy-tailed noise. How-
ever, it is very sensitive to bias. Thus, it gets much worse
results if signal has bias. GADA1 method [11] is compa-
rable with CBS and is less robust to heavy-tailed noise
than CBS. This method can run much faster than CBS. It
also has problem with bias as CBS. GADA2 method [8]
was designed to operate with probe hybridization bias. It
is also robust to heavy-tailed noise. This method is better
than GADA1, CBS, HaarSeg and all denoising methods.
However, because it was designed to be robust with
hybridization bias, this method loses some segments
with small energy. With small SNR segments, GADA2
works worse than DWSS and HaarSeg. Except for this
disadvantage, GADA2 was the best method so far.

In general, Lowess, Wave, SmoothSeg, GADA1 and
CBS methods are sensitive to bias. Our DWSS method
always shows the best performance in all different con-
ditions. GADA2 and HaarSeg have the second best
performance.

5 CONCLUSION

In this paper, we examined noise distribution in array
CGH data using eight real data sets in many platforms
with different resolutions. When compared with other
distributions used in previous research such as Gaussian
and Student’s t distributions, the generalized Gaussian
distribution fits very well noise pdf in array CGH data.
Therefore we proposed using GGD for modeling noise
distribution in the array CGH data and developed a
novel smoothing-segmentation method based on this
generalized Gaussian noise. Bivariate shrinkage func-
tion’s theory in SWT is built with an approach to sup-
press heavy-tailed noise in array CGH. One-directional
Gaussian wavelet derivative scalogram is defined and
proposed to detect breakpoints in array CGH. Because
the ground truth aberration regions are not clear in
real array CGH data sets, synthetic array CGH data
plays an important role in array CGH analysis algorithm
evaluation. By using generalized Gaussian noise and real
noise, we also improved the synthetic array CGH data
models which are closer to the real array CGH data
than the most commonly used standard [4] and [8]. Both
synthetic data and real data are used to evaluate the
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Fig. 9. Results on one hundred simulated samples with true abnormal segments amplitude of logQ% and log, g
respectively. Bias of 0.8 is used. ROC curves are obtained from arrays which are generated from 8 genomic templates
and both Gaussian and real noise sources. In four different conditions, DWSS gives the best performance. The second

one is HaarSeg.

performance of our method, DWSS. We demonstrated
our new method outperforms other most commonly
used algorithms in array CGH literature both in terms
of RMSE and ROC curve.
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