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Abstract 11 

Changes in climate may significantly affect how sediment moves through watersheds into 12 

harbors and channels that are dredged for navigation or flood control.  Here we applied a 13 

hydrologic model driven by a large suite of climate change scenarios to simulate both historical 14 

and future sediment yield and transport in two large, adjacent watersheds in the Great Lakes 15 

region.  Using historical dredging expenditure data from the US Army Corps of Engineers 16 

(USACE) we then developed a pair of statistical models that link sediment discharge from each 17 

river to dredging costs at the watershed outlet. While both watersheds show similar slight 18 

decreases in streamflow and sediment yield in the near-term, by mid-century they diverge 19 

substantially.  Dredging costs are projected to change in opposite directions for the two 20 

watersheds; we estimate that future dredging costs will decline in the St. Joseph River by 8-16% 21 

by mid-century but increase by 1-6% in the Maumee River.  Our results show that the impacts of 22 

climate change on sediment yield and dredging may vary significantly by watershed even within 23 

a region, and that agricultural practices will play a large role in determining future streamflow 24 

and sediment loads.  We also show that there are large variations in responses across climate 25 

projections that cause significant uncertainty in sediment and dredging projections. 26 

 27 

  28 

  29 



1 Introduction 30 

Changes in climate have the potential to significantly alter the movement of sediment through 31 

watersheds and directly affect dredging needs in rivers and harbors.  There are over sixty-three 32 

commercial harbors in the Great Lakes and over 600 miles of navigation channel maintained by 33 

the U.S. Army Corps of Engineers (USACE). In 2014, an estimated 132 million tons of 34 

commodities were transported to and from U.S. ports located on the waterways of the Great 35 

Lakes system (USACE, 2014).  Many of the harbors are located at the outlets of rivers that can 36 

convey large amounts of sediment, necessitating periodic dredging to maintain the navigation 37 

channels.  In spite of the importance of this system, previous studies have not examined the 38 

potential impacts of projected future climate changes on both sediment yield (sediment eroded 39 

from the landscape and delivered to the river) and the dredging requirements in this region. 40 

 41 

Current climate change projections generally show increasing temperatures and precipitation in 42 

the Great Lakes region of the United States, although the magnitude and seasonality of these 43 

changes depends on the emissions scenario and climate model (Hayhoe et al., 2010; IPCC, 2014; 44 

Pryor et al., 2013).  Precipitation is expected to increase in the winter and spring, but decline in 45 

the summer; temperatures are projected to increase more in the winter during the early part of the 46 

century, with changes in summer temperatures catching up by mid-century (Hayhoe et al., 2010).  47 

The Third  National Climate Assessment found that extreme rainfall and flooding events, and 48 

their associated erosion, are on an upward trend in the Midwest, including Indiana, Michigan, 49 

and Ohio (Pryor et al., 2014).  50 

 51 



Numerous studies have examined the potential implications of climate change on streamflow and 52 

sediment yield (e.g. Mukundan et al., 2013; Park et al., 2011; Serpa et al., 2015).  In the Upper 53 

Midwest and Great Lakes regions, O'Neal et al. (2005) found that variability in soil loss would 54 

increase due to changes in crops.  Two separate studies looked at climate change effects on 55 

northern Illinois watersheds and found that streamflows would decrease, based on the projected 56 

climate change scenarios (Cherkauer and Sinha, 2010; Chien et al., 2013).  Several Soil and 57 

Water Assessment Tool (SWAT) models of the Maumee River have examined the potential 58 

effects of climate change scenarios.  For example, Bosch et al. (2014) modeled four watersheds 59 

that drain to Lake Erie and projected that flow and sediment yield would increase, based on 60 

climate projections from two emissions scenarios and three General Circulation Models (GCMs).  61 

In contrast, a more narrowly focused study on the Maumee that utilized three GCMs and a single 62 

emissions scenario found that annual average flow and sediment loads will decrease by mid-63 

century (2045 to 2055), although there was significant variability in the monthly sediment loads 64 

(Verma et al., 2015).  As part of a nationwide study of 20 watersheds with SWAT simulations, 65 

Johnson et al. (2015) found that five of their  six climate change scenarios would likely increase 66 

flow and sediment delivery in the Maumee by mid-century (2041 to 2070). 67 

 68 

Dredging quantities are imperfectly correlated to sediment discharge (the sediment delivered to 69 

the mouth of the river) since they depend on downstream water levels (for example, Lake 70 

Michigan levels varied 1.9 m over the last 30 years), the location where the sediment settles out 71 

relative to the navigation channels, and on the amount of funding available to conduct the 72 

dredging operations.  Some studies that discuss dredging in the context of climate change do so 73 

through the lens of rising water levels (Schwartz et al., 2004; Smith, 1991) rather than looking at 74 



changes in delivery of sediment from rivers.  Schwarz et al. (2004) used both future projections 75 

and an arbitrary scenario of Great Lakes water levels to estimate increased dredging costs at 76 

Goderich, Ontario, on Lake Huron, but did not consider the possibility of changing riverine 77 

sediment input to the harbor.  Other authors consider the dredging as either one component of the 78 

overall sediment budget (Morang et al., 2013; Templeton and Jay, 2013) or as a causative effect 79 

of increased sediment delivery (Zhang et al., 2010).  We are not aware of any studies that 80 

directly link projected future riverine sediment delivery to changes in dredging needs. 81 

 82 

In this study, we used SWAT models of two large US watersheds draining into the Great Lakes 83 

to quantify the likely effects of climate change on the streamflow, sediment yield to the river, 84 

and sediment discharge at the mouth of the river.  SWAT-calculated sediment loads are then 85 

input to two different statistical sediment dredging models calculated from historical dredging 86 

costs for each system. We then drive these linked models with both historical climate and future 87 

climate simulations based on downscaled scenarios from the 5th Coupled Model Intercomparison 88 

Project (CMIP5) for both “Contemporary” (~2011-2030) and “Mid-Century” (2031-2050) 89 

periods.  We run the whole suite of 234 climate models ensemble members included in the 90 

CMIP5 dataset to better understand how climate forecast uncertainties will propagate through the 91 

paired SWAT sediment transport and statistical dredging models.  In the body of the paper, we 92 

discuss results for Representative Carbon Pathways (RCPs) 6.0 and 8.5, while results for the 93 

remaining RCPs (2.6 and 4.5) are in the Supporting Information. These results provide both a 94 

more comprehensive view of how climate may impact sediment yield differentially in these 95 

neighboring watersheds and a first quantification of how dredging costs may respond to climate 96 

changes. 97 



 98 

2 Methods 99 

2.1 Study Domain 100 

Two large, adjacent watersheds in the southern Great Lakes were selected for this study: the St. 101 

Joseph River and the Maumee River (Figure 1).  We chose these two watersheds because of their 102 

size, proximity to each other, and dredging requirements at the river mouths in the Great Lakes.  103 

The St. Joseph River watershed covers parts of northern Indiana and southwestern Michigan and 104 

generally flows northwest into Lake Michigan at St. Joseph, MI.  According to the 2006 National 105 

Land Cover Database (NLCD) (Fry et al., 2013), this 12,138 km2  watershed consists of 49.3% 106 

agricultural row crops, 23.8% forest, 13.0% urban, and 12.2% pasture. The average annual flow 107 

at the USGS gage at Niles, MI (#04101500) between 1990 and 2009 was 113.6 cms.  Long-term 108 

sediment data was not available for the St. Joseph River.  The USACE dredges the harbor at St. 109 

Joseph, MI. 110 

 111 

The Maumee River watershed is located in northeastern Indiana, southeastern Michigan, and 112 

northwestern Ohio.  The main channel flows northeast to Toledo, OH and Lake Erie.  This 113 

17,015 km2 watershed is more heavily agricultural and significantly less forested than the St. 114 

Joseph, consisting of 74.7% agricultural row crops, 10.8% urban, 8.2% forest, and 5.2% pasture.  115 

The average annual flow of the Maumee River in Waterville, OH (USGS gage 04193500) 116 

between 1990 and 2009 was 172.6 cms.  The average annual suspended sediment load at this site 117 

between 1990 and 2003 was 1.2 million tonnes.  The USACE performs dredging operations at 118 

both a Maumee River and a Maumee Bay site. 119 



 120 

 121 

Figure 1. Map of the St. Joseph and Maumee River watersheds, subwatersheds, and their 2006 land use/land cover. 122 

 123 

2.2 SWAT Model Development and Calibration 124 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, lumped parameter 125 

hydrologic model developed by researchers at the U.S. Department of Agriculture’s Agricultural 126 

Research Service (USDA-ARS) (Arnold et al., 2012; Neitsch et al., 2011).  It is often used for 127 

sediment yield studies (Alighalehbabakhani et al., 2017; Gassman et al., 2014; Krysanova and 128 

White, 2015) and is increasingly used to examine climate change impacts (Chaplot, 2007; Chien 129 

et al., 2013; Ficklin et al., 2009; Johnson et al., 2015).  SWAT models split their domain into 130 



subwatersheds and then subset these into Hydrologic Response Units (HRUs).  HRUs are the 131 

basic computational units of a SWAT model, which represent all of the area within a 132 

subwatershed with similar soils, slopes, and land uses.   133 

 134 

We developed SWAT models independently for each watershed using the ArcSWAT 135 

2012.10.0.7 plugin for ArcGIS, and used SWAT 2012 rev. 622.  Digital elevation models with a 136 

resolution of 1 arc-second were obtained from the National Elevation Dataset and used to 137 

delineate the watersheds.  The 2006 National Landcover Dataset was used to determine land 138 

use/land cover types and we used the default crop and harvest management parameters from 139 

ArcSWAT.  Soil types and soil hydraulic properties were determined using the SSURGO 140 

database from the Natural Resources Conservation Service.  Information on dams in the 141 

watersheds was obtained from the National Inventory of Dams maintained by the U.S. Army 142 

Corps of Engineers and those we deemed significant because of size or location were included in 143 

the models.  We selected dams with storage greater than 1,233,000 m3 for inclusion in the 144 

models.  We also included the St. Joseph River Dam, in Fort Wayne, IN, which only has a 145 

storage of 1,078,000 m3 while draining over 16% of the Maumee basin.  These datasets were all 146 

imported into ArcSWAT and used to determine watersheds, subwatersheds for modeling 147 

purposes (shown in Figure 1), and HRUs.  The St. Joseph SWAT model consisted of 32 148 

subbasins and 278 HRUs, along with 17 dams.  The Maumee SWAT model had 24 subbasins, 149 

307 HRUs, and 5 dams.  150 

 151 

The United States Department of Agriculture’s Agricultural Research Service (ARS) provides 152 

weather data, in SWAT format, for all counties across the US.  The daily data covers January 153 



1950-December 2009, with the exception of January 2002.  January 2002 was filled using 154 

SWAT’s weather generation routines that create typical weather time series for the location and 155 

time period.  We included 2002 in our simulations, but to avoid biasing further analyses due to 156 

the weather generation routine excluded January 2002 from goodness-of-fit calculations, and 157 

excluded the entire 2002 year from the downscaling bias analyses.  158 

 159 

After initial set up of the models in ArcSWAT, we calibrated them using the SWAT Calibration 160 

and Uncertainty Programs (SWAT-CUP) tool (Abbaspour, 2015).  We ran both models from 161 

1980 through 2009, using a daily time step, with at least a five year spin-up period.  Monthly 162 

outputs from the models were used for all comparisons.  We began our calibration by using the 163 

Sequential Uncertainty Fitting version 2 algorithm (SUFI2) in SWAT-CUP to determine the 164 

sensitivity of the parameters in the SWAT models, based on the full allowable range of each 165 

parameter.  We then focused our efforts in succeeding calibration iterations on those parameters 166 

that had the most significant effect on the model outputs.  As a final step in the model 167 

parameterization, we tested the removal of each calibration parameter to arrive at a parsimonious 168 

set of calibration parameters. 169 

 170 

The St. Joseph River model was calibrated to the streamflow at the USGS gage at Niles, MI 171 

(#04101500).  The model was run from 1985 to 2009, with 1990-1999 used for calibration and 172 

2000-2009 for validation.  Sediment discharge was then calibrated and validated for the same 173 

periods using a streamflow:sediment discharge curve for the harbor in St. Joseph, MI.  This 174 

curve was developed for a previous U.S. Army Corps of Engineers study of the St. Joseph River 175 

watershed (USACE, 2007).   176 



 177 

We calibrated the Maumee River model by first matching the hydrology using the USGS gages 178 

at Waterville, OH (#04193500) and Defiance, OH (#04192500).  The model was run from 1980 179 

to 2003, with 1991-1999 used for calibration to match up with the period used for the St. Joseph 180 

model. The validation period was split between October 1985 to December 1990 and January 181 

2000 to September 2003, based on the availability of USGS sediment discharge data.  We 182 

calibrated and validated the simulated sediment discharge to data from the USGS Gage at 183 

Waterville, OH (#04193500) using periods matching the streamflow.   184 

 185 

2.3 Dredging Cost Estimation 186 

The U.S. Army Corps of Engineers provided us with dredging quantities for St. Joseph Harbor, 187 

the lower Maumee River, and the Maumee Bay (M. Mahoney, personal communication, 20-Sep-188 

2013).  We created two models for dredging costs: 1) a linear regression, fit to historical 189 

dredging data and simulated modeled sediment fluxes, and; 2) a simpler 1:1 correlation between 190 

simulated sediment discharge and dredging costs (or percentage change in each). Our use of two 191 

models provides an estimate of cost model structural uncertainty, and allows us to evaluate a 192 

range of possible outcomes. To fit each model, dredging data from 1989-2009 was used for St. 193 

Joseph Harbor and 1990-2009 for the Maumee River and Maumee Bay dredging sites. 194 

 195 

We created linear regression models between the annual dredging costs, converted to 2009 196 

dollars using the U.S. Bureau of Labor Statistics Consumer Price Index data, and the modeled 197 

sediment discharge from the SWAT models run using the historic gage data.  To evaluate 198 

possible time-lagged responses between sediment discharge and dredging, regressions were 199 



tested using simulated sediment results from the same calendar year as the dredging; the same 200 

water year as the dredging; the prior calendar and water years; and one and two year (calendar 201 

and water year) moving averages of sediment discharge.  As there are two dredging sites in the 202 

Maumee Watershed, in the River itself and in the bay at its mouth, we examined regressions to 203 

the Maumee River and Bay dredging sites both separately and as a combined amount.  We also 204 

added long-term average monthly water levels of Lakes Michigan and Erie to the regressions for 205 

the St. Joseph and Maumee dredging sites respectively. 206 

 207 

2.4 Climate Model Scenarios 208 

The analyses presented in the main paper utilized the World Climate Research Programme's 209 

(WCRP's) Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) multi-210 

model dataset.  We acquired bias-corrected, spatially downscaled versions of these datasets from 211 

a publicly available archive created by the United States Bureau of Reclamation and others 212 

(Brekke et al., 2013).  The temperature and precipitation data in this archive are available at a 213 

monthly time step and a spatial resolution of 1/8°.  This data needed to be further disaggregated 214 

for use with the SWAT models, which use daily data at a single weather gage location for each 215 

sub-basin.  We utilized all 234 CMIP5 model projections available from the archive.  The 216 

CMIP5 dataset consists of multiple Representative Carbon Pathways (RCPs), run across a large 217 

number of individual models.  To consider a larger ensemble, additional analyses were run with 218 

112 CMIP3 scenarios (Meehl et al., 2007) and the results are included in the Supporting 219 

Information for this paper. 220 

 221 



For brevity, analysis in this paper is limited to CMIP5 RCP 6.0 (Masui et al., 2011; 37 222 

projections) and RCP 8.5 (Riahi et al., 2011; 71 projections), which represent a plausible range 223 

of CO2 emissions given no additional conservation efforts.  These RCPs are particularly relevant 224 

given the 2011 – 2050 simulation period of this study. RCP 6.0 is most similar to the older B2 225 

Special Report on Emissions Scenarios (SRES; Nakicenovic and Swart, 2000), while RCP8.5 is 226 

similar to SRES A2/A1F1 (IPCC, 2014).  Results for the other climate change scenarios are 227 

presented in the Supporting Information. 228 

 229 

Two forecast periods were run: 2011 – 2030, hereafter called the Contemporary period, and; 230 

2031 – 2050, called the Mid-Century period. SWAT model outputs for each period are 231 

individually averaged and presented below as both climate ensemble medians and ranges, as 232 

stated in figures and tables. 233 

 234 

We matched individual, observed gage locations used by the SWAT models with the closest 235 

spatial grid cell for the downloaded climate data.  These climate datasets were then spatially 236 

disaggregated from the grid cells to the individual gages and temporally disaggregated for 1980 237 

to 2050 using the methodology from Maurer and Hidalgo (2008) and Wood et al. (2004) based 238 

on the ARS weather data described previously.  This procedure involved randomly selecting 239 

months from the historical data to serve as a template for temporal distribution. Temperatures at 240 

each gage location were adjusted using a monthly additive factor to match the average 241 

temperature for each month of the GCM results.  The precipitation data were adjusted using a 242 

monthly multiplier to match the total monthly precipitation for each month in the GCM results 243 



while maintaining the proportion of monthly rainfall across individual days.  The same sequence 244 

of reference months was used to downscale each of the climate change scenarios. 245 

 246 

To evaluate remaining bias in the climate simulations, we compared the downscaled 247 

precipitation and temperature data with the historical gage data. Bias was calculated by 248 

comparing the distribution of annual average temperature and total annual precipitation for the 249 

downscaled climate scenarios with that of the historical gage data from 1988-2008, excluding 250 

2002.  The SWAT models were then run using the historical gage data for 1985-2009, and for 251 

each climate model scenario for 1985-2050.  To explicitly examine how biases in downscaled 252 

climate would propagate through the SWAT model streamflow and sediment discharge 253 

predictions, we compared the 1988-2008 (again excluding 2002) period for each scenario run to 254 

the same period run using gage data. 255 

 256 

3 Results and Discussion 257 

3.1 Model Calibration and Validation 258 

Results for the calibration and validation of the SWAT models are shown in Figure 2 and Figure 259 

3, with goodness-of-fit statistics summarized in Table I.  Hydrologic calibration and validation of 260 

monthly outputs for the St. Joseph River model were both good, with Nash-Sutcliffe efficiencies 261 

of 0.78 for calibration and 0.72 for validation.  The sediment discharge calibration and validation 262 

for the St. Joseph model resulted in biases of -3.2% and +10.5%, respectively, which are both 263 

considered very good, based on the percent bias criterion of Moriasi et al. (2007).   264 



 265 

Figure 2. Calibration and validation of St. Joseph River SWAT model for (a) monthly streamflow and (b) monthly 266 

sediment discharge.  The validation months are indicated by the grey shaded boxes. The gap in the validation period 267 

for January 2002 is due to missing weather data. 268 

The calibration of the Maumee River model had nearly identical goodness-of-fit statistics for 269 

monthly flows at both stream gage sites.  The calibration Nash-Sutcliffe efficiency was 0.79 at 270 

Waterville, OH and 0.80 at Defiance, OH (see Figure 1 for locations).  Validation Nash-Sutcliffe 271 

efficiencies were 0.79 at Waterville and 0.82 at Defiance.  Sediment discharge at Waterville 272 

produced a very good percent bias both for the calibration period (+4.6%) and the validation 273 

period (+2.5%). 274 

 275 



 276 

Figure 3.  Calibration and validation of Maumee River SWAT model for (a) monthly streamflow at Defiance, OH 277 

and (b) at Waterville, OH, and (c) monthly sediment discharge at Waterville, OH.  The validation months are 278 

indicated by the grey shaded boxes and were selected to maintain a common calibration period with the St. Joseph 279 

model while maximizing the use of available sediment data. The gap in the validation period for January 2002 is 280 

due to missing weather data. 281 

  282 



Table I. Summary of Calibration and Validation Statistics: R2, Nash-Sutcliffe Efficiency (NSE), and % Bias.  Note 283 

that January 2002 was excluded from the goodness-of-fit calculations due to missing weather data for that month. 284 

      Calibration Validation 

St. Joseph River at 
Niles, MI 

Calendar Years 1990-1999 2000-2009 

Flow 
R2 0.78 0.83 

NSE 0.78 0.72 

Sediment 

R2 0.59 0.47 

NSE 0.52 0.29 

% Bias -3.2% +10.5% 

Maumee River at 
Waterville, OH 

Water Years 1991-1999 Oct 1987-Dec 1990, Jan 2000-Sep 2003 

Flow 
R2 0.86 0.86 

NSE 0.79 0.79 

Sediment 

R2 0.53 0.49 

NSE 0.52 0.48 

% Bias +4.6% +2.5% 

Maumee River at 
Defiance, OH 

Flow 
R2 0.84 0.86 

NSE 0.80 0.82 

  285 

3.2 Downscaled Climate Model Bias 286 

We looked at Probability Density Functions (PDFs) of the mean annual temperatures and annual 287 

precipitation from both the downscaled climate model historical runs and observed station data 288 

(Figure S1 in the Supporting Information) in order to determine if they represented the same 289 

distribution as the observed data.  The overlap and similarities between the PDFs of the observed 290 

data and those of the downscaled climate data indicates that they likely represent the same 291 

distribution.  When interpreting Figure S1, it is important to understand that the bias correction 292 

performed on the climate model data by Brekke et al. (2013) utilized a temperature and 293 



precipitation dataset that was scaled to match long-term (1961-1990) average statistics (Maurer 294 

et al., 2002).  The downscaled climate model temperatures have a mean annual bias of +0.02 °C 295 

and a standard deviation of 0.01 °C for both RCP 6.0 and 8.5, relative to the gage observations.  296 

The precipitation values for RCP 6.0 and 8.5 have mean annual biases of -49.5 mm/yr (-5.1% of 297 

mean observed precipitation) and -48.9 mm/yr (-5.0%), respectively.  The standard deviation of 298 

the precipitation values is 25.0 and 29.0 mm/yr for RCP 6.0 and 8.5 respectively. It is also 299 

important to note that the sample sizes for the two RCPs discussed are different, as there were 37 300 

RCP 6.0 scenarios and 71 RCP 8.5 scenarios available from the archive.   301 

 302 

Biases in the downscaled climate inputs have the potential to propagate into the SWAT model 303 

outputs.  Figure 4 shows the PDFs of the simulated historical streamflow and sediment discharge 304 

at the mouth of each river.  Generally, the PDFs all follow similar patterns to the observed data.  305 

Potential differences may exist due to the small sample size of the observations.  Streamflow and 306 

sediment discharge for the St. Joseph River have a slight high bias, while sediment discharge for 307 

the Maumee River has a slight low bias. The Maumee streamflow PDFs for the RCP 6.0 and 8.5 308 

scenarios reasonably match the observed PDF.  In order to limit the potential influence of this on 309 

our analysis, we used anomalies (differences between projected and historical time periods from 310 

the same data set) for the remaining analysis.  Results for CMIP3 scenarios and additional 311 

CMIP5 RCP scenarios are summarized in the Supporting Information of this paper. 312 

 313 

The biases in SWAT model outputs, when using the downscaled projections to simulate the 314 

historical time period, are most likely due to the biases in the downscaled and disaggregated 315 



CMIP precipitation and temperature data.  This may be attributed to a combination of the spatial 316 

and temporal disaggregation processes used and the climate models themselves. 317 

 318 

Figure 4. Probability density functions of: a) annual average streamflow for the St. Joseph River, b) annual average 319 

streamflow for the Maumee River, c) annual average sediment discharge for the St. Joseph River, and d) annual 320 

average sediment discharge for the Maumee River. All PDFs are for the historical period (1988-2001, 2003-2008), 321 

simulated using observed climate data and downscaled climate data. 322 



3.3 Dredging Model Results 323 

 324 

Figure 5. Actual and modeled historical costs using multiple linear regression for: a) St. Joseph Harbor, b) Maumee 325 

Bay, and c) Maumee River.  The Maumee River modeled historical costs are shown both with and without including 326 

Lake Erie levels in the multiple linear regression. 327 

The actual annual dredging expenditures and the modeled costs are shown in Figure 5.  Table II 328 

shows the fit and parameters for the best linear model of dredging costs at each location, where 329 

QS, WY is the sediment discharge for the water year of interest, QS, WY-1 is the sediment discharge 330 

for the preceding water year, QS, CY-1 is the sediment discharge for the preceding calendar year, 331 

and DS, WY is the deposition in the downstream reach of the Maumee River for the current water 332 

year.  The estimate of St. Joseph Harbor dredging costs had an R2 of 0.48.  The cost of dredging 333 

the two sites associated with the Maumee River were estimated as the sum of the Maumee Bay 334 

(R2=0.30) and Maumee River (R2=0.15) costs. 335 



 336 

Table II. Dredging cost linear models for each dredging location 337 

Dredging Location Model R2 

Equation 

Intercept, b ($)  Slope, m ($)  Predictor Variables 

St. Joseph Harbor 0.48 -693,700 + 14.30 * (𝑄𝑆,𝑊𝑌 + 𝑄𝑆,𝑊𝑌−1) 2⁄  

Maumee Bay 0.30 -859,800 + 1.26 * 𝑄𝑆,𝐶𝑌−1 

Maumee River 0.15 3,519,000 + 16.88 * 𝐷𝑆,𝑊𝑌 

 338 

The multiple linear regressions including water levels showed no significant improvement over 339 

the simple linear regression for either the St. Joseph Harbor or the Maumee Bay dredging sites.  340 

Inclusion of Lake Erie water levels did improve the model fit for the Maumee River site 341 

(R2=0.38).  This improved estimate is shown as the dashed blue line in Figure 5c.  While climate 342 

change will affect future lake levels, it is unclear what the effect will be and we opted not to 343 

include it in our estimates of future dredging.  344 

3.4 Effects of Climate Change on Streamflow, Sediment Yield, Sediment Discharge, 345 

and Dredging 346 

The SWAT results are reported for three relevant outputs: streamflow at the river mouth, 347 

sediment yield from the entire watershed to the river, and sediment discharge at the river mouth.  348 

The SWAT outputs for the Contemporary (scenario years 2011-2030) and Mid-Century 349 

(scenario years 2031-2050) climate change scenarios are summarized in the Supporting 350 

Information in Tables S1 and S2, respectively.   351 

 352 

The median streamflow values from the summary tables show small differences from the current 353 

climate.  In contrast, the box plots in Figure 6 illustrate that the changes in median monthly 354 



streamflow are small relative to the variability across climate scenarios for the Contemporary 355 

period. This is also true for the St. Joseph River in the Mid-Century period.  However, the Mid-356 

Century Maumee streamflows have a median increase of 6.1 cms for the RCP 6.0 scenarios and 357 

3.9 cms for the RCP 8.5 scenarios. 358 

 359 

 360 

Figure 6. Differences in modeled streamflow between current (1989-2008), and both Contemporary (a, 2011-2030) 361 

and Mid-Century (b, 2031-2050) CMIP5 scenarios. 362 

Median sediment yield estimates for both the St. Joseph and Maumee appear to decrease slightly 363 

in the Contemporary scenarios, as seen in Figure 7.  Sediment yields in the St. Joseph watershed 364 

continue to decrease during the Mid-Century scenarios.  In contrast, there is a slight increase in 365 

the Mid-Century sediment yields for the Maumee River under both RCP 6.0 and 8.5 scenarios. 366 



 367 

Figure 7. The top row shows differences in modeled sediment yield between historical (1989-2008) and both 368 

Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios.  The bottom row presents the 369 

differences in modeled sediment discharge between historical and Contemporary (c) and Mid-Century (d) CMIP5 370 

scenarios. 371 



Sediment discharge follows the same patterns as the sediment yield (Figure 7).  The most 372 

significant difference is that over 75% of RCP 6.0 scenarios show an increase in sediment 373 

discharge for the Maumee relative to the current values. The percentage changes in the sediment 374 

discharge for the Maumee are similar to the simulated changes in streamflow.  The sediment 375 

discharge changes in the St. Joseph, however more closely resemble the changes in sediment 376 

yield.  There is a large amount of variability in these results and, with the exception of the 377 

Maumee RCP 6.0 sediment discharge, at least 25% of the scenarios fall on the opposite side of 378 

the no change line.   379 

 380 

Several other studies have examined climate change in the Maumee River, although they used 381 

the CMIP3 climate scenarios and had differences in methodologies and study periods.  Results 382 

from both Johnson et al. (2015) and Cherkauer and Sinha (2010) suggested little change in the 383 

average flows by mid-century, while Bosch (2014) projected a 6-18% increase in flow; these 384 

results are within the middle two quartiles of those presented here.  Verma et al. (2015) projected 385 

a reduction in flow of 8.5%, which would be in the lowest quartile of our results.  The sediment 386 

results from these studies are similar to those projected for streamflows, with Johnson et al. 387 

(2015) projecting very small (0.6%) increases in TSS, Bosch et al. (2014) projecting larger 388 

increases of 8-32%, and Verma et al. (2015) projecting decreases of 10.4%.  With the exception 389 

of the high estimate of 32% from Bosch et al., these estimates are within the range of our results, 390 

with the results from Johnson et al. (2015) being closest to our median. 391 

 392 

The responses of the two adjacent watersheds are similar, with the exception of the Mid-Century 393 

period in which median streamflow, sediment yield, and sediment discharge all start to increase 394 

in the Maumee River watershed, while they continue to decline in the St. Joseph River 395 



watershed.  A deeper investigation of model outputs revealed that this difference is due to the 396 

much greater proportion of agricultural land in the Maumee (Figure 1).  Sediment yield from 397 

agricultural land can be significantly affected by the cover practices used, with low or no-till 398 

practices and cover crops significantly reducing the soil erosion. This also implies that the timing 399 

of large precipitation events that coincide with periods of bare ground can produce a large 400 

proportion of the annual sediment yield.  The effects of climate change will depend on the 401 

coincident timing of these precipitation events and conditions, also suggesting that management 402 

will be important to mitigate the effects of climate change on sediment yield in agricultural 403 

watersheds. 404 

 405 

The higher temperatures in the Mid-Century scenarios lead to simulated faster crop growth, 406 

producing earlier and larger harvests.  This increase in agricultural production can be seen in 407 

Figure 8, which shows the change in harvested yield per hectare.  A similar increase in future 408 

crop yield due to longer growing seasons has been identified as a potential effect of climate 409 

change (Pryor et al., 2014). In the model, once a crop is harvested, the land lays fallow, with 410 

little to no transpiration, until the next growing season.  This allows small increases in the 411 

modeled sediment yield (due to erosion from the bare earth) as well as increased runoff that 412 

translates into increased streamflow and sediment discharge.  This model phenomenon, as 413 

evidenced by a shift in evapotranspiration earlier in the year, was also noted by Ficklin et al. 414 

(2009) for a SWAT model of a highly agricultural watershed in California.  This example shows 415 

the importance of looking closely at both the model results and the underlying processes.   416 

 417 



 418 

Figure 8. Difference in annual harvested yield per hectare estimated by the SWAT models for a) Contemporary 419 

(2011-2030) and b) Mid-Century (2031-2050) time periods.  As harvested yield increases, more land is left fallow in 420 

the SWAT models, leading to increased runoff and sediment yield.  Note that the values of the change in harvested 421 

yield are reflective of both area of cultivation, which is much greater in the Maumee, and increasing temperatures 422 

under climate change scenarios.  In our models, once the crops were harvested, SWAT treated the land as fallow, 423 

allowing increased runoff and sediment yield. 424 

It is possible that this phenomenon would be more limited in the real world.  If crops are 425 

harvested early enough, farmers may plant a second crop, increasing evapotranspiration and 426 

offsetting the effects on sediment and streamflow.  Alternatively, they may start to plant longer 427 

season crops that benefit from the increased temperatures.  Both possibilities would also likely 428 

be accompanied by the use of additional fertilizers and possibly increased irrigation from 429 

groundwater.  430 

 431 



Whatever the outcome of future management decisions, these results point to the sensitivity of 432 

sediment yield and discharge to agricultural management.  Research is needed to quantify the 433 

likely effects of climate changes and to translate scientific results into potential policies to adapt 434 

to a changing climate.  While hydrologists and atmospheric scientists are prepared to discuss the 435 

physical aspects of the water cycle, agricultural specialists and social scientists can better predict 436 

how farmers will respond to the changing climatic conditions. 437 

 438 

Recent (1989-2009) dredging of St. Joseph Harbor averaged $517k per year (in 2009 dollars).  439 

Relative to modeled historical dredging costs, median estimates using the regression equation 440 

decline 5-13% in the Contemporary scenario and 14-16% in the Mid-Century time period 441 

(Error! Reference source not found., Figure 9).  (The upper quartiles ranged from +6-12% in 442 

the Contemporary and +2-6% in the Mid-Century while the lower quartiles were -18% in the 443 

Contemporary and -25-28% in the Mid-Century.)  The decreases in median dredging costs 444 

estimated using the 1:1 sediment discharge:dredging cost relationship were only about half as 445 

much, 4-5% in the Contemporary and 8-9% in the Mid-Century time periods. (The upper 446 

quartiles for the 1:1 cost relationship ranged from +4-8% in the Contemporary and +3-4% in the 447 

Mid-Century while the lower quartiles were -11-12% in the Contemporary and -14-16% in the 448 

Mid-Century.) 449 

 450 

The average dredging cost for the combination of the Maumee River and Maumee Bay sites 451 

between 1990 and 2009 was $2.7M (in 2009 $).  The median estimated future dredging costs 452 

(Table S3, Figure 9) based on the regression equation estimates show an increase of 1% or less 453 

for both the Contemporary and Mid-Century scenarios, with upper quartiles of 1-2% and lower 454 



quartiles of 0%.  The estimates that are based on the 1:1 sediment discharge:dredging cost 455 

relationship are more variable, with median decreases of 2% in the Contemporary and 3-6% 456 

increases in the Mid-Century time period.  The upper quartiles for the 1:1 relationship are 4-5% 457 

in the Contemporary and 7-9% in the Mid-Century time periods, while the lower quartiles 458 

indicate a decrease of 6% in the Contemporary and a change of ±1% by Mid-Century. 459 

 460 

The changes in dredging costs vary between the two watersheds, the modeled time periods, 461 

across the climate models, and between the two different estimates of costs.  Of note is that, for 462 

the St. Joseph River, the regression equation estimates show greater changes and variability than 463 

the 1:1 sediment discharge:dredging cost relationship, while the opposite is true for the Maumee.  464 

This difference in response between the two approaches to estimating the future dredging costs 465 

indicates the potential importance of examining multiple approaches when using empirical 466 

models. 467 

 468 

The historical dredging was not driven solely by the amount of sediment being delivered by the 469 

river.  The areas dredged are coastal harbors on the Great Lakes and are affected by longshore 470 

transport of sediment, short time period seiche events (over hours to days), and  variations in lake 471 

levels on seasonal, annual, and decadal time scales (Gronewold & Stow, 2014; Quinn, 2002). In 472 

particular, our modeling shows that the Maumee River site dredging appears to be driven by lake 473 

level variations on Lake Erie (Figure 5c). Dredged volumes are also affected by the limited 474 

budget available to the U.S. Army Corps of Engineers in any given year; there is a backlog of 475 

dredging need across the Great Lakes (USACE, 2015).   476 



 477 

 478 

Figure 9. Projected changes in dredging costs for: a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) 479 

scenarios, relative to historical (1989-2008) costs.  Data shown includes both cost estimation methods, which are 480 

given equal weight, doubling the sample size. 481 

4 Conclusions 482 

We modeled future conditions in two large watersheds, the Maumee and St. Joseph Rivers, using 483 

108 different sets of climate change inputs representing a plausible range of CO2 emissions.  In 484 

general, the median results suggest small decreases in streamflow in both watersheds, with 485 

similar decreases in sediment delivery to the river mouths. The exception to this is the Mid-486 

Century scenario (2031-2050) for the Maumee River Watershed, where its managed agricultural 487 

landscapes are likely to drive the sediment and streamflow response of the watershed.  This 488 

implies that the response of farmers to the changing climate will significantly impact the 489 

streamflow and sediment yield in agricultural areas. 490 

 491 



There is a large amount of variation in the climate change model projections that drive similarly 492 

large variations in the predicted sediment yield and sediment discharge response.  Even though 493 

averages across climate model ensembles tend to show little change, the variance is large.  Of 494 

note, the differences between RCP 6.0 and RCP 8.5 scenarios are smaller than the variation 495 

across models within each scenario. The responses will also vary between watersheds depending 496 

on the dominance of agricultural lands, farming practices, soil types, and other factors. 497 

 498 

We also estimated dredging costs using two methods and, in general, they decrease slightly at St. 499 

Joseph, MI (~ 4-8% median decrease in the Contemporary, 8-18% median decrease in the Mid-500 

Century).  The Maumee dredging costs are likely to remain near the current range in the 501 

Contemporary, but are projected to increase slightly in the Mid-Century period (median increase 502 

of 1-6% in the Mid-Century).  This will depend on the responses of farmers in the watershed to 503 

climate change.   The model variance also indicates a significant uncertainty in outcomes. 504 

 505 

This study focused on the aggregated effects of a large number of downscaled climate scenarios 506 

but only a single sediment modeling framework using SWAT.  Our understanding of the 507 

potential impacts of climate change could benefit by extending this research to include other 508 

sediment models and to examine the differences and variability within the CMIP5 projections.  509 

There is also a need to explore the likely responses of farmers to lengthening growing seasons 510 

and the impacts of climate-induced changes in agricultural and management practices on the 511 

sediment regime of watersheds. 512 

 513 

Supporting Information 514 



Interested readers may view additional model results in the Supporting Information 515 

accompanying this paper.  Figure S1 shows the PDFs of observed and downscaled temperature 516 

and precipitation.  Figure S2 shows the PDFs of mean annual temperature and precipitation for 517 

both the CMIP3 and CMIP5 scenarios.  We have provided the results for all of the CMIP3 518 

scenarios modeled and the A1b scenarios as Figures S3 to S7.  CMIP5 results for all RCPs 519 

combined, as well as for RCPs 2.6 and 4.5 are presented in Figures S8 to S12.  Tables S1 and S2 520 

report the SWAT model outputs for the Contemporary and Mid-Century periods, respectively.  521 

Table S3 reports the estimated change in dredging costs. 522 
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