# <sup>1</sup> Impacts of Projected Climate Change on

# Sediment Yield and Dredging Costs

- 3 Travis A. Dahl<sup>a, b\*</sup> (Travis.A.Dahl@usace.army.mil), Anthony D. Kendall<sup>b</sup>
- 4 (kendal30@msu.edu), David W. Hyndman<sup>b</sup> (hyndman@msu.edu)
- <sup>a</sup> U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory,
- 6 Vicksburg, MS, USA 39180
- 7 b Department of Earth and Environmental Sciences, Michigan State University, East Lansing,
- 8 MI, USA 48824
- 9 \*Corresponding author (+1-601-634-2371, Travis.A.Dahl@usace.army.mil)

# Abstract

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Changes in climate may significantly affect how sediment moves through watersheds into harbors and channels that are dredged for navigation or flood control. Here we applied a hydrologic model driven by a large suite of climate change scenarios to simulate both historical and future sediment yield and transport in two large, adjacent watersheds in the Great Lakes region. Using historical dredging expenditure data from the US Army Corps of Engineers (USACE) we then developed a pair of statistical models that link sediment discharge from each river to dredging costs at the watershed outlet. While both watersheds show similar slight decreases in streamflow and sediment yield in the near-term, by mid-century they diverge substantially. Dredging costs are projected to change in opposite directions for the two watersheds; we estimate that future dredging costs will decline in the St. Joseph River by 8-16% by mid-century but increase by 1-6% in the Maumee River. Our results show that the impacts of climate change on sediment yield and dredging may vary significantly by watershed even within a region, and that agricultural practices will play a large role in determining future streamflow and sediment loads. We also show that there are large variations in responses across climate projections that cause significant uncertainty in sediment and dredging projections.

# 1 Introduction

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Changes in climate have the potential to significantly alter the movement of sediment through watersheds and directly affect dredging needs in rivers and harbors. There are over sixty-three commercial harbors in the Great Lakes and over 600 miles of navigation channel maintained by the U.S. Army Corps of Engineers (USACE). In 2014, an estimated 132 million tons of commodities were transported to and from U.S. ports located on the waterways of the Great Lakes system (USACE, 2014). Many of the harbors are located at the outlets of rivers that can convey large amounts of sediment, necessitating periodic dredging to maintain the navigation channels. In spite of the importance of this system, previous studies have not examined the potential impacts of projected future climate changes on both sediment yield (sediment eroded from the landscape and delivered to the river) and the dredging requirements in this region. Current climate change projections generally show increasing temperatures and precipitation in the Great Lakes region of the United States, although the magnitude and seasonality of these changes depends on the emissions scenario and climate model (Hayhoe et al., 2010; IPCC, 2014; Pryor et al., 2013). Precipitation is expected to increase in the winter and spring, but decline in the summer; temperatures are projected to increase more in the winter during the early part of the century, with changes in summer temperatures catching up by mid-century (Hayhoe et al., 2010). The Third National Climate Assessment found that extreme rainfall and flooding events, and their associated erosion, are on an upward trend in the Midwest, including Indiana, Michigan, and Ohio (Pryor et al., 2014).

Numerous studies have examined the potential implications of climate change on streamflow and sediment yield (e.g. Mukundan et al., 2013; Park et al., 2011; Serpa et al., 2015). In the Upper Midwest and Great Lakes regions, O'Neal et al. (2005) found that variability in soil loss would increase due to changes in crops. Two separate studies looked at climate change effects on northern Illinois watersheds and found that streamflows would decrease, based on the projected climate change scenarios (Cherkauer and Sinha, 2010; Chien et al., 2013). Several Soil and Water Assessment Tool (SWAT) models of the Maumee River have examined the potential effects of climate change scenarios. For example, Bosch et al. (2014) modeled four watersheds that drain to Lake Erie and projected that flow and sediment yield would increase, based on climate projections from two emissions scenarios and three General Circulation Models (GCMs). In contrast, a more narrowly focused study on the Maumee that utilized three GCMs and a single emissions scenario found that annual average flow and sediment loads will decrease by midcentury (2045 to 2055), although there was significant variability in the monthly sediment loads (Verma et al., 2015). As part of a nationwide study of 20 watersheds with SWAT simulations, Johnson et al. (2015) found that five of their six climate change scenarios would likely increase flow and sediment delivery in the Maumee by mid-century (2041 to 2070). Dredging quantities are imperfectly correlated to sediment discharge (the sediment delivered to the mouth of the river) since they depend on downstream water levels (for example, Lake

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

the mouth of the river) since they depend on downstream water levels (for example, Lake Michigan levels varied 1.9 m over the last 30 years), the location where the sediment settles out relative to the navigation channels, and on the amount of funding available to conduct the dredging operations. Some studies that discuss dredging in the context of climate change do so through the lens of rising water levels (Schwartz et al., 2004; Smith, 1991) rather than looking at

changes in delivery of sediment from rivers. Schwarz et al. (2004) used both future projections and an arbitrary scenario of Great Lakes water levels to estimate increased dredging costs at Goderich, Ontario, on Lake Huron, but did not consider the possibility of changing riverine sediment input to the harbor. Other authors consider the dredging as either one component of the overall sediment budget (Morang et al., 2013; Templeton and Jay, 2013) or as a causative effect of increased sediment delivery (Zhang et al., 2010). We are not aware of any studies that directly link projected future riverine sediment delivery to changes in dredging needs.

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

75

76

77

78

79

80

81

In this study, we used SWAT models of two large US watersheds draining into the Great Lakes to quantify the likely effects of climate change on the streamflow, sediment yield to the river, and sediment discharge at the mouth of the river. SWAT-calculated sediment loads are then input to two different statistical sediment dredging models calculated from historical dredging costs for each system. We then drive these linked models with both historical climate and future climate simulations based on downscaled scenarios from the 5<sup>th</sup> Coupled Model Intercomparison Project (CMIP5) for both "Contemporary" (~2011-2030) and "Mid-Century" (2031-2050) periods. We run the whole suite of 234 climate models ensemble members included in the CMIP5 dataset to better understand how climate forecast uncertainties will propagate through the paired SWAT sediment transport and statistical dredging models. In the body of the paper, we discuss results for Representative Carbon Pathways (RCPs) 6.0 and 8.5, while results for the remaining RCPs (2.6 and 4.5) are in the Supporting Information. These results provide both a more comprehensive view of how climate may impact sediment yield differentially in these neighboring watersheds and a first quantification of how dredging costs may respond to climate changes.

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

## 2 Methods

2.1 Study Domain

Two large, adjacent watersheds in the southern Great Lakes were selected for this study: the St. Joseph River and the Maumee River (Figure 1). We chose these two watersheds because of their size, proximity to each other, and dredging requirements at the river mouths in the Great Lakes. The St. Joseph River watershed covers parts of northern Indiana and southwestern Michigan and generally flows northwest into Lake Michigan at St. Joseph, MI. According to the 2006 National Land Cover Database (NLCD) (Fry et al., 2013), this 12,138 km<sup>2</sup> watershed consists of 49.3% agricultural row crops, 23.8% forest, 13.0% urban, and 12.2% pasture. The average annual flow at the USGS gage at Niles, MI (#04101500) between 1990 and 2009 was 113.6 cms. Long-term sediment data was not available for the St. Joseph River. The USACE dredges the harbor at St. Joseph, MI. The Maumee River watershed is located in northeastern Indiana, southeastern Michigan, and northwestern Ohio. The main channel flows northeast to Toledo, OH and Lake Erie. This 17,015 km<sup>2</sup> watershed is more heavily agricultural and significantly less forested than the St. Joseph, consisting of 74.7% agricultural row crops, 10.8% urban, 8.2% forest, and 5.2% pasture. The average annual flow of the Maumee River in Waterville, OH (USGS gage 04193500) between 1990 and 2009 was 172.6 cms. The average annual suspended sediment load at this site between 1990 and 2003 was 1.2 million tonnes. The USACE performs dredging operations at both a Maumee River and a Maumee Bay site.

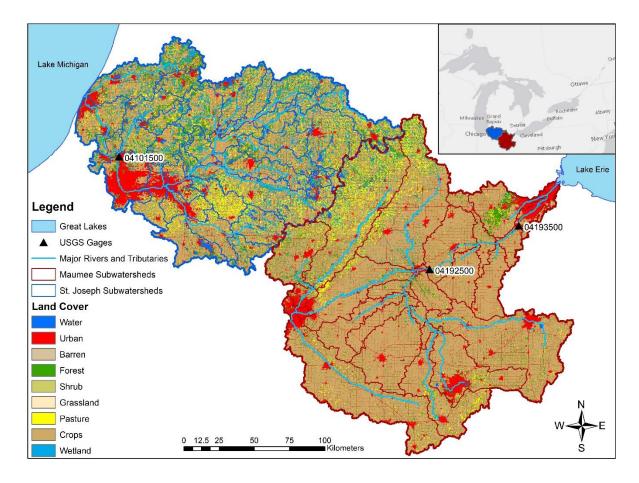



Figure 1. Map of the St. Joseph and Maumee River watersheds, subwatersheds, and their 2006 land use/land cover.

# 2.2 SWAT Model Development and Calibration

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, lumped parameter hydrologic model developed by researchers at the U.S. Department of Agriculture's Agricultural Research Service (USDA-ARS) (Arnold et al., 2012; Neitsch et al., 2011). It is often used for sediment yield studies (Alighalehbabakhani et al., 2017; Gassman et al., 2014; Krysanova and White, 2015) and is increasingly used to examine climate change impacts (Chaplot, 2007; Chien et al., 2013; Ficklin et al., 2009; Johnson et al., 2015). SWAT models split their domain into

subwatersheds and then subset these into Hydrologic Response Units (HRUs). HRUs are the basic computational units of a SWAT model, which represent all of the area within a subwatershed with similar soils, slopes, and land uses.

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

131

132

133

We developed SWAT models independently for each watershed using the ArcSWAT 2012.10.0.7 plugin for ArcGIS, and used SWAT 2012 rev. 622. Digital elevation models with a resolution of 1 arc-second were obtained from the National Elevation Dataset and used to delineate the watersheds. The 2006 National Landcover Dataset was used to determine land use/land cover types and we used the default crop and harvest management parameters from ArcSWAT. Soil types and soil hydraulic properties were determined using the SSURGO database from the Natural Resources Conservation Service. Information on dams in the watersheds was obtained from the National Inventory of Dams maintained by the U.S. Army Corps of Engineers and those we deemed significant because of size or location were included in the models. We selected dams with storage greater than 1,233,000 m<sup>3</sup> for inclusion in the models. We also included the St. Joseph River Dam, in Fort Wayne, IN, which only has a storage of 1,078,000 m<sup>3</sup> while draining over 16% of the Maumee basin. These datasets were all imported into ArcSWAT and used to determine watersheds, subwatersheds for modeling purposes (shown in Figure 1), and HRUs. The St. Joseph SWAT model consisted of 32 subbasins and 278 HRUs, along with 17 dams. The Maumee SWAT model had 24 subbasins, 307 HRUs, and 5 dams.

151

152

153

The United States Department of Agriculture's Agricultural Research Service (ARS) provides weather data, in SWAT format, for all counties across the US. The daily data covers January

1950-December 2009, with the exception of January 2002. January 2002 was filled using SWAT's weather generation routines that create typical weather time series for the location and time period. We included 2002 in our simulations, but to avoid biasing further analyses due to the weather generation routine excluded January 2002 from goodness-of-fit calculations, and excluded the entire 2002 year from the downscaling bias analyses.

After initial set up of the models in ArcSWAT, we calibrated them using the SWAT Calibration and Uncertainty Programs (SWAT-CUP) tool (Abbaspour, 2015). We ran both models from 1980 through 2009, using a daily time step, with at least a five year spin-up period. Monthly outputs from the models were used for all comparisons. We began our calibration by using the Sequential Uncertainty Fitting version 2 algorithm (SUFI2) in SWAT-CUP to determine the sensitivity of the parameters in the SWAT models, based on the full allowable range of each parameter. We then focused our efforts in succeeding calibration iterations on those parameters that had the most significant effect on the model outputs. As a final step in the model parameterization, we tested the removal of each calibration parameter to arrive at a parsimonious set of calibration parameters.

The St. Joseph River model was calibrated to the streamflow at the USGS gage at Niles, MI (#04101500). The model was run from 1985 to 2009, with 1990-1999 used for calibration and 2000-2009 for validation. Sediment discharge was then calibrated and validated for the same periods using a streamflow:sediment discharge curve for the harbor in St. Joseph, MI. This curve was developed for a previous U.S. Army Corps of Engineers study of the St. Joseph River watershed (USACE, 2007).

We calibrated the Maumee River model by first matching the hydrology using the USGS gages at Waterville, OH (#04193500) and Defiance, OH (#04192500). The model was run from 1980 to 2003, with 1991-1999 used for calibration to match up with the period used for the St. Joseph model. The validation period was split between October 1985 to December 1990 and January 2000 to September 2003, based on the availability of USGS sediment discharge data. We calibrated and validated the simulated sediment discharge to data from the USGS Gage at Waterville, OH (#04193500) using periods matching the streamflow.

# 2.3 Dredging Cost Estimation

The U.S. Army Corps of Engineers provided us with dredging quantities for St. Joseph Harbor, the lower Maumee River, and the Maumee Bay (M. Mahoney, personal communication, 20-Sep-2013). We created two models for dredging costs: 1) a linear regression, fit to historical dredging data and simulated modeled sediment fluxes, and; 2) a simpler 1:1 correlation between simulated sediment discharge and dredging costs (or percentage change in each). Our use of two models provides an estimate of cost model structural uncertainty, and allows us to evaluate a range of possible outcomes. To fit each model, dredging data from 1989-2009 was used for St. Joseph Harbor and 1990-2009 for the Maumee River and Maumee Bay dredging sites.

We created linear regression models between the annual dredging costs, converted to 2009 dollars using the U.S. Bureau of Labor Statistics Consumer Price Index data, and the modeled sediment discharge from the SWAT models run using the historic gage data. To evaluate possible time-lagged responses between sediment discharge and dredging, regressions were

tested using simulated sediment results from the same calendar year as the dredging; the same water year as the dredging; the prior calendar and water years; and one and two year (calendar and water year) moving averages of sediment discharge. As there are two dredging sites in the Maumee Watershed, in the River itself and in the bay at its mouth, we examined regressions to the Maumee River and Bay dredging sites both separately and as a combined amount. We also added long-term average monthly water levels of Lakes Michigan and Erie to the regressions for the St. Joseph and Maumee dredging sites respectively.

#### 2.4 Climate Model Scenarios

The analyses presented in the main paper utilized the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) multimodel dataset. We acquired bias-corrected, spatially downscaled versions of these datasets from a publicly available archive created by the United States Bureau of Reclamation and others (Brekke et al., 2013). The temperature and precipitation data in this archive are available at a monthly time step and a spatial resolution of 1/8°. This data needed to be further disaggregated for use with the SWAT models, which use daily data at a single weather gage location for each sub-basin. We utilized all 234 CMIP5 model projections available from the archive. The CMIP5 dataset consists of multiple Representative Carbon Pathways (RCPs), run across a large number of individual models. To consider a larger ensemble, additional analyses were run with 112 CMIP3 scenarios (Meehl et al., 2007) and the results are included in the Supporting Information for this paper.

For brevity, analysis in this paper is limited to CMIP5 RCP 6.0 (Masui et al., 2011; 37 projections) and RCP 8.5 (Riahi et al., 2011; 71 projections), which represent a plausible range of CO<sub>2</sub> emissions given no additional conservation efforts. These RCPs are particularly relevant given the 2011 – 2050 simulation period of this study. RCP 6.0 is most similar to the older B2 Special Report on Emissions Scenarios (SRES; Nakicenovic and Swart, 2000), while RCP8.5 is similar to SRES A2/A1F1 (IPCC, 2014). Results for the other climate change scenarios are presented in the Supporting Information.

Two forecast periods were run: 2011 - 2030, hereafter called the Contemporary period, and; 2031 - 2050, called the Mid-Century period. SWAT model outputs for each period are individually averaged and presented below as both climate ensemble medians and ranges, as stated in figures and tables.

We matched individual, observed gage locations used by the SWAT models with the closest spatial grid cell for the downloaded climate data. These climate datasets were then spatially disaggregated from the grid cells to the individual gages and temporally disaggregated for 1980 to 2050 using the methodology from Maurer and Hidalgo (2008) and Wood et al. (2004) based on the ARS weather data described previously. This procedure involved randomly selecting months from the historical data to serve as a template for temporal distribution. Temperatures at each gage location were adjusted using a monthly additive factor to match the average temperature for each month of the GCM results. The precipitation data were adjusted using a monthly multiplier to match the total monthly precipitation for each month in the GCM results

while maintaining the proportion of monthly rainfall across individual days. The same sequence of reference months was used to downscale each of the climate change scenarios.

To evaluate remaining bias in the climate simulations, we compared the downscaled precipitation and temperature data with the historical gage data. Bias was calculated by comparing the distribution of annual average temperature and total annual precipitation for the downscaled climate scenarios with that of the historical gage data from 1988-2008, excluding 2002. The SWAT models were then run using the historical gage data for 1985-2009, and for each climate model scenario for 1985-2050. To explicitly examine how biases in downscaled climate would propagate through the SWAT model streamflow and sediment discharge predictions, we compared the 1988-2008 (again excluding 2002) period for each scenario run to the same period run using gage data.

# 3 Results and Discussion

#### 3.1 Model Calibration and Validation

Results for the calibration and validation of the SWAT models are shown in Figure 2 and Figure 3, with goodness-of-fit statistics summarized in Table I. Hydrologic calibration and validation of monthly outputs for the St. Joseph River model were both good, with Nash-Sutcliffe efficiencies of 0.78 for calibration and 0.72 for validation. The sediment discharge calibration and validation for the St. Joseph model resulted in biases of -3.2% and +10.5%, respectively, which are both considered very good, based on the percent bias criterion of Moriasi et al. (2007).

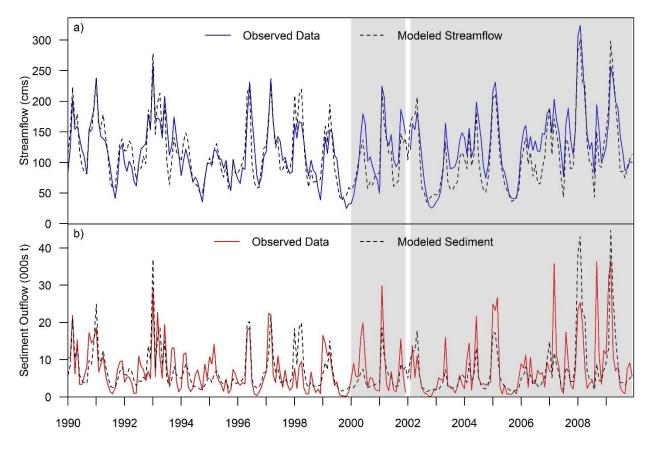



Figure 2. Calibration and validation of St. Joseph River SWAT model for (a) monthly streamflow and (b) monthly sediment discharge. The validation months are indicated by the grey shaded boxes. The gap in the validation period for January 2002 is due to missing weather data.

The calibration of the Maumee River model had nearly identical goodness-of-fit statistics for monthly flows at both stream gage sites. The calibration Nash-Sutcliffe efficiency was 0.79 at Waterville, OH and 0.80 at Defiance, OH (see Figure 1 for locations). Validation Nash-Sutcliffe efficiencies were 0.79 at Waterville and 0.82 at Defiance. Sediment discharge at Waterville produced a very good percent bias both for the calibration period (+4.6%) and the validation period (+2.5%).

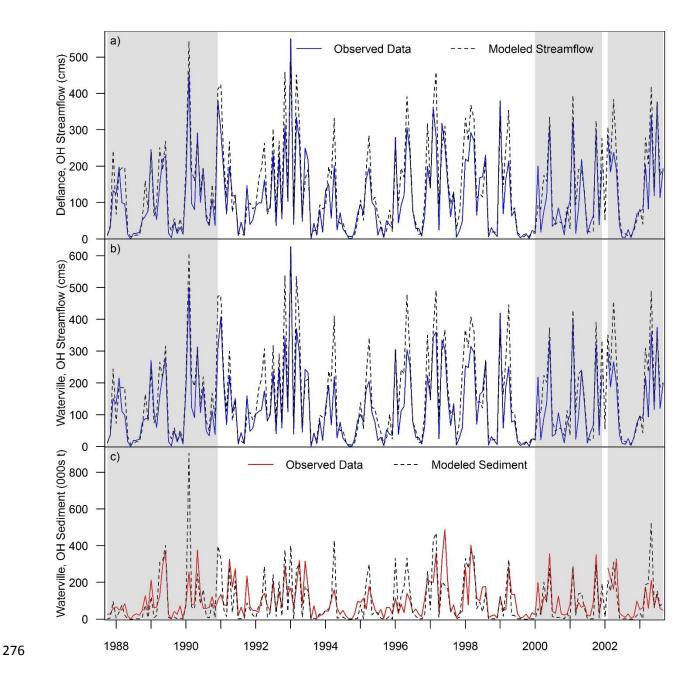



Figure 3. Calibration and validation of Maumee River SWAT model for (a) monthly streamflow at Defiance, OH and (b) at Waterville, OH, and (c) monthly sediment discharge at Waterville, OH. The validation months are indicated by the grey shaded boxes and were selected to maintain a common calibration period with the St. Joseph model while maximizing the use of available sediment data. The gap in the validation period for January 2002 is due to missing weather data.

Table I. Summary of Calibration and Validation Statistics: R<sup>2</sup>, Nash-Sutcliffe Efficiency (NSE), and % Bias. Note that January 2002 was excluded from the goodness-of-fit calculations due to missing weather data for that month.

|                |                                | Calibration                                                                                                                                                                                               | Validation                           |
|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Calendar Years |                                | 1990-1999                                                                                                                                                                                                 | 2000-2009                            |
| El.            | R <sup>2</sup>                 | 0.78                                                                                                                                                                                                      | 0.83                                 |
| FIOW           | NSE                            | 0.78                                                                                                                                                                                                      | 0.72                                 |
|                | R <sup>2</sup>                 | 0.59                                                                                                                                                                                                      | 0.47                                 |
| Sediment       | NSE                            | 0.52                                                                                                                                                                                                      | 0.29                                 |
|                | % Bias                         | -3.2%                                                                                                                                                                                                     | +10.5%                               |
| Water Years    |                                | 1991-1999                                                                                                                                                                                                 | Oct 1987-Dec 1990, Jan 2000-Sep 2003 |
| Flow           | R <sup>2</sup>                 | 0.86                                                                                                                                                                                                      | 0.86                                 |
|                | NSE                            | 0.79                                                                                                                                                                                                      | 0.79                                 |
|                | R <sup>2</sup>                 | 0.53                                                                                                                                                                                                      | 0.49                                 |
| Sediment       | NSE                            | 0.52                                                                                                                                                                                                      | 0.48                                 |
|                | % Bias                         | +4.6%                                                                                                                                                                                                     | +2.5%                                |
| Flow           | R <sup>2</sup>                 | 0.84                                                                                                                                                                                                      | 0.86                                 |
|                | NSE                            | 0.80                                                                                                                                                                                                      | 0.82                                 |
|                | Flow  Sediment  Flow  Sediment | $\begin{tabular}{lll} Flow & R^2 \\ NSE \\ & R^2 \\ Sediment & NSE \\ & \% Bias \\ \hline Water Years \\ Flow & NSE \\ & R^2 \\ Sediment & NSE \\ & & \% Bias \\ \hline Flow & R^2 \\ \hline \end{array}$ |                                      |

# 3.2 Downscaled Climate Model Bias

We looked at Probability Density Functions (PDFs) of the mean annual temperatures and annual precipitation from both the downscaled climate model historical runs and observed station data (Figure S1 in the Supporting Information) in order to determine if they represented the same distribution as the observed data. The overlap and similarities between the PDFs of the observed data and those of the downscaled climate data indicates that they likely represent the same distribution. When interpreting Figure S1, it is important to understand that the bias correction performed on the climate model data by Brekke et al. (2013) utilized a temperature and

precipitation dataset that was scaled to match long-term (1961-1990) average statistics (Maurer et al., 2002). The downscaled climate model temperatures have a mean annual bias of +0.02 °C and a standard deviation of 0.01 °C for both RCP 6.0 and 8.5, relative to the gage observations. The precipitation values for RCP 6.0 and 8.5 have mean annual biases of -49.5 mm/yr (-5.1% of mean observed precipitation) and -48.9 mm/yr (-5.0%), respectively. The standard deviation of the precipitation values is 25.0 and 29.0 mm/yr for RCP 6.0 and 8.5 respectively. It is also important to note that the sample sizes for the two RCPs discussed are different, as there were 37 RCP 6.0 scenarios and 71 RCP 8.5 scenarios available from the archive.

Biases in the downscaled climate inputs have the potential to propagate into the SWAT model outputs. Figure 4 shows the PDFs of the simulated historical streamflow and sediment discharge at the mouth of each river. Generally, the PDFs all follow similar patterns to the observed data. Potential differences may exist due to the small sample size of the observations. Streamflow and sediment discharge for the St. Joseph River have a slight high bias, while sediment discharge for the Maumee River has a slight low bias. The Maumee streamflow PDFs for the RCP 6.0 and 8.5 scenarios reasonably match the observed PDF. In order to limit the potential influence of this on our analysis, we used anomalies (differences between projected and historical time periods from the same data set) for the remaining analysis. Results for CMIP3 scenarios and additional CMIP5 RCP scenarios are summarized in the Supporting Information of this paper.

The biases in SWAT model outputs, when using the downscaled projections to simulate the historical time period, are most likely due to the biases in the downscaled and disaggregated

Figure 4. Probability density functions of: a) annual average streamflow for the St. Joseph River, b) annual average streamflow for the Maumee River, c) annual average sediment discharge for the St. Joseph River, and d) annual average sediment discharge for the Maumee River. All PDFs are for the historical period (1988-2001, 2003-2008), simulated using observed climate data and downscaled climate data.

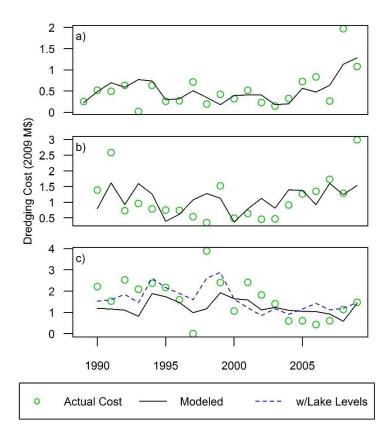



Figure 5. Actual and modeled historical costs using multiple linear regression for: a) St. Joseph Harbor, b) Maumee Bay, and c) Maumee River. The Maumee River modeled historical costs are shown both with and without including Lake Erie levels in the multiple linear regression.

The actual annual dredging expenditures and the modeled costs are shown in Figure 5. Table II shows the fit and parameters for the best linear model of dredging costs at each location, where  $Q_{S, WY}$  is the sediment discharge for the water year of interest,  $Q_{S, WY-1}$  is the sediment discharge for the preceding water year,  $Q_{S, CY-1}$  is the sediment discharge for the preceding calendar year, and  $D_{S, WY}$  is the deposition in the downstream reach of the Maumee River for the current water year. The estimate of St. Joseph Harbor dredging costs had an  $R^2$  of 0.48. The cost of dredging the two sites associated with the Maumee River were estimated as the sum of the Maumee Bay  $(R^2=0.30)$  and Maumee River  $(R^2=0.15)$  costs.

Table II. Dredging cost linear models for each dredging location

|                   |                      |                   |   | Equation             |   |                                      |
|-------------------|----------------------|-------------------|---|----------------------|---|--------------------------------------|
| Dredging Location | Model R <sup>2</sup> | Intercept, b (\$) |   | Slope, <i>m</i> (\$) |   | Predictor Variables                  |
| St. Joseph Harbor | 0.48                 | -693,700          | + | 14.30                | * | $\left(Q_{S,WY}+Q_{S,WY-1}\right)/2$ |
| Maumee Bay        | 0.30                 | -859,800          | + | 1.26                 | * | $Q_{S,CY-1}$                         |
| Maumee River      | 0.15                 | 3,519,000         | + | 16.88                | * | $D_{S,WY}$                           |

The multiple linear regressions including water levels showed no significant improvement over the simple linear regression for either the St. Joseph Harbor or the Maumee Bay dredging sites. Inclusion of Lake Erie water levels did improve the model fit for the Maumee River site (R<sup>2</sup>=0.38). This improved estimate is shown as the dashed blue line in Figure 5c. While climate change will affect future lake levels, it is unclear what the effect will be and we opted not to include it in our estimates of future dredging.

# 3.4 Effects of Climate Change on Streamflow, Sediment Yield, Sediment Discharge, and Dredging

The SWAT results are reported for three relevant outputs: streamflow at the river mouth, sediment yield from the entire watershed to the river, and sediment discharge at the river mouth. The SWAT outputs for the Contemporary (scenario years 2011-2030) and Mid-Century (scenario years 2031-2050) climate change scenarios are summarized in the Supporting Information in Tables S1 and S2, respectively.

The median streamflow values from the summary tables show small differences from the current climate. In contrast, the box plots in Figure 6 illustrate that the changes in median monthly

streamflow are small relative to the variability across climate scenarios for the Contemporary period. This is also true for the St. Joseph River in the Mid-Century period. However, the Mid-Century Maumee streamflows have a median increase of 6.1 cms for the RCP 6.0 scenarios and 3.9 cms for the RCP 8.5 scenarios.

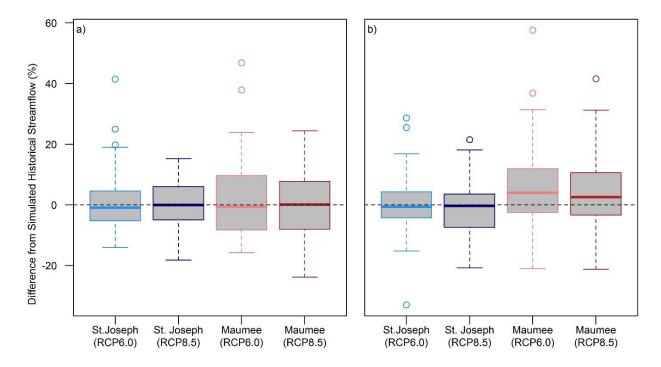



Figure 6. Differences in modeled streamflow between current (1989-2008), and both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios.

Median sediment yield estimates for both the St. Joseph and Maumee appear to decrease slightly in the Contemporary scenarios, as seen in Figure 7. Sediment yields in the St. Joseph watershed continue to decrease during the Mid-Century scenarios. In contrast, there is a slight increase in the Mid-Century sediment yields for the Maumee River under both RCP 6.0 and 8.5 scenarios.

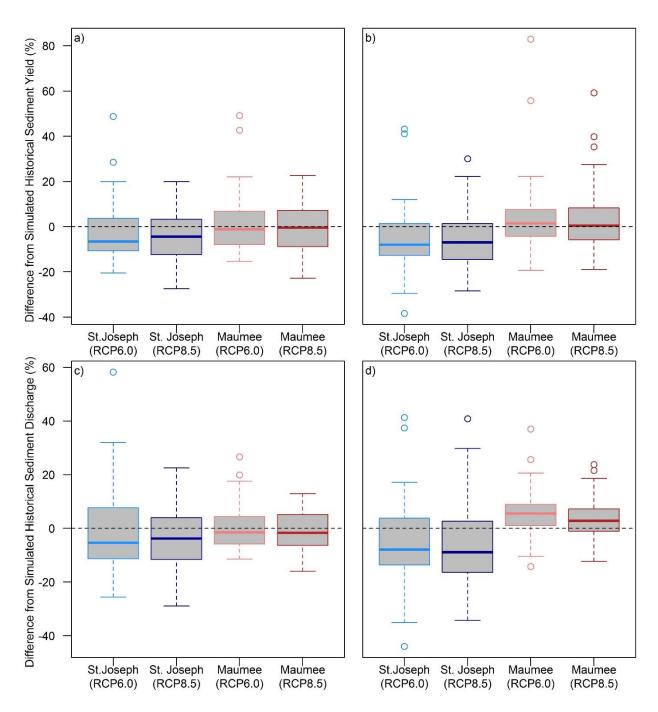



Figure 7. The top row shows differences in modeled sediment yield between historical (1989-2008) and both Contemporary (a, 2011-2030) and Mid-Century (b, 2031-2050) CMIP5 scenarios. The bottom row presents the differences in modeled sediment discharge between historical and Contemporary (c) and Mid-Century (d) CMIP5 scenarios.

Sediment discharge follows the same patterns as the sediment yield (Figure 7). The most significant difference is that over 75% of RCP 6.0 scenarios show an increase in sediment discharge for the Maumee relative to the current values. The percentage changes in the sediment discharge for the Maumee are similar to the simulated changes in streamflow. The sediment discharge changes in the St. Joseph, however more closely resemble the changes in sediment yield. There is a large amount of variability in these results and, with the exception of the Maumee RCP 6.0 sediment discharge, at least 25% of the scenarios fall on the opposite side of the no change line.

Several other studies have examined climate change in the Maumee River, although they used the CMIP3 climate scenarios and had differences in methodologies and study periods. Results from both Johnson et al. (2015) and Cherkauer and Sinha (2010) suggested little change in the average flows by mid-century, while Bosch (2014) projected a 6-18% increase in flow; these results are within the middle two quartiles of those presented here. Verma et al. (2015) projected a reduction in flow of 8.5%, which would be in the lowest quartile of our results. The sediment results from these studies are similar to those projected for streamflows, with Johnson et al. (2015) projecting very small (0.6%) increases in TSS, Bosch et al. (2014) projecting larger increases of 8-32%, and Verma et al. (2015) projecting decreases of 10.4%. With the exception of the high estimate of 32% from Bosch et al., these estimates are within the range of our results, with the results from Johnson et al. (2015) being closest to our median.

The responses of the two adjacent watersheds are similar, with the exception of the Mid-Century period in which median streamflow, sediment yield, and sediment discharge all start to increase in the Maumee River watershed, while they continue to decline in the St. Joseph River

watershed. A deeper investigation of model outputs revealed that this difference is due to the much greater proportion of agricultural land in the Maumee (Figure 1). Sediment yield from agricultural land can be significantly affected by the cover practices used, with low or no-till practices and cover crops significantly reducing the soil erosion. This also implies that the timing of large precipitation events that coincide with periods of bare ground can produce a large proportion of the annual sediment yield. The effects of climate change will depend on the coincident timing of these precipitation events and conditions, also suggesting that management will be important to mitigate the effects of climate change on sediment yield in agricultural watersheds.

The higher temperatures in the Mid-Century scenarios lead to simulated faster crop growth, producing earlier and larger harvests. This increase in agricultural production can be seen in Figure 8, which shows the change in harvested yield per hectare. A similar increase in future crop yield due to longer growing seasons has been identified as a potential effect of climate change (Pryor et al., 2014). In the model, once a crop is harvested, the land lays fallow, with little to no transpiration, until the next growing season. This allows small increases in the modeled sediment yield (due to erosion from the bare earth) as well as increased runoff that translates into increased streamflow and sediment discharge. This model phenomenon, as evidenced by a shift in evapotranspiration earlier in the year, was also noted by Ficklin et al. (2009) for a SWAT model of a highly agricultural watershed in California. This example shows the importance of looking closely at both the model results and the underlying processes.

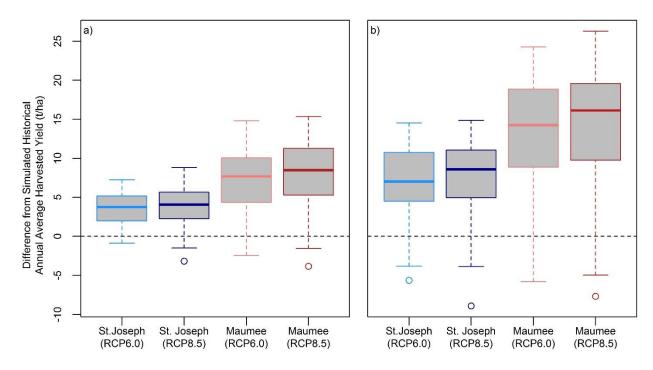



Figure 8. Difference in annual harvested yield per hectare estimated by the SWAT models for a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) time periods. As harvested yield increases, more land is left fallow in the SWAT models, leading to increased runoff and sediment yield. Note that the values of the change in harvested yield are reflective of both area of cultivation, which is much greater in the Maumee, and increasing temperatures under climate change scenarios. In our models, once the crops were harvested, SWAT treated the land as fallow, allowing increased runoff and sediment yield.

It is possible that this phenomenon would be more limited in the real world. If crops are harvested early enough, farmers may plant a second crop, increasing evapotranspiration and offsetting the effects on sediment and streamflow. Alternatively, they may start to plant longer season crops that benefit from the increased temperatures. Both possibilities would also likely be accompanied by the use of additional fertilizers and possibly increased irrigation from groundwater.

Whatever the outcome of future management decisions, these results point to the sensitivity of sediment yield and discharge to agricultural management. Research is needed to quantify the likely effects of climate changes and to translate scientific results into potential policies to adapt to a changing climate. While hydrologists and atmospheric scientists are prepared to discuss the physical aspects of the water cycle, agricultural specialists and social scientists can better predict how farmers will respond to the changing climatic conditions.

Recent (1989-2009) dredging of St. Joseph Harbor averaged \$517k per year (in 2009 dollars). Relative to modeled historical dredging costs, median estimates using the regression equation decline 5-13% in the Contemporary scenario and 14-16% in the Mid-Century time period (Error! Reference source not found., Figure 9). (The upper quartiles ranged from +6-12% in the Contemporary and +2-6% in the Mid-Century while the lower quartiles were -18% in the Contemporary and -25-28% in the Mid-Century.) The decreases in median dredging costs estimated using the 1:1 sediment discharge:dredging cost relationship were only about half as much, 4-5% in the Contemporary and 8-9% in the Mid-Century time periods. (The upper quartiles for the 1:1 cost relationship ranged from +4-8% in the Contemporary and +3-4% in the Mid-Century while the lower quartiles were -11-12% in the Contemporary and -14-16% in the Mid-Century.)

The average dredging cost for the combination of the Maumee River and Maumee Bay sites between 1990 and 2009 was \$2.7M (in 2009 \$). The median estimated future dredging costs (Table S3, Figure 9) based on the regression equation estimates show an increase of 1% or less for both the Contemporary and Mid-Century scenarios, with upper quartiles of 1-2% and lower

quartiles of 0%. The estimates that are based on the 1:1 sediment discharge:dredging cost relationship are more variable, with median decreases of 2% in the Contemporary and 3-6% increases in the Mid-Century time period. The upper quartiles for the 1:1 relationship are 4-5% in the Contemporary and 7-9% in the Mid-Century time periods, while the lower quartiles indicate a decrease of 6% in the Contemporary and a change of  $\pm 1\%$  by Mid-Century.

The changes in dredging costs vary between the two watersheds, the modeled time periods, across the climate models, and between the two different estimates of costs. Of note is that, for the St. Joseph River, the regression equation estimates show greater changes and variability than the 1:1 sediment discharge:dredging cost relationship, while the opposite is true for the Maumee. This difference in response between the two approaches to estimating the future dredging costs indicates the potential importance of examining multiple approaches when using empirical models.

The historical dredging was not driven solely by the amount of sediment being delivered by the river. The areas dredged are coastal harbors on the Great Lakes and are affected by longshore transport of sediment, short time period seiche events (over hours to days), and variations in lake levels on seasonal, annual, and decadal time scales (Gronewold & Stow, 2014; Quinn, 2002). In particular, our modeling shows that the Maumee River site dredging appears to be driven by lake level variations on Lake Erie (Figure 5c). Dredged volumes are also affected by the limited budget available to the U.S. Army Corps of Engineers in any given year; there is a backlog of dredging need across the Great Lakes (USACE, 2015).

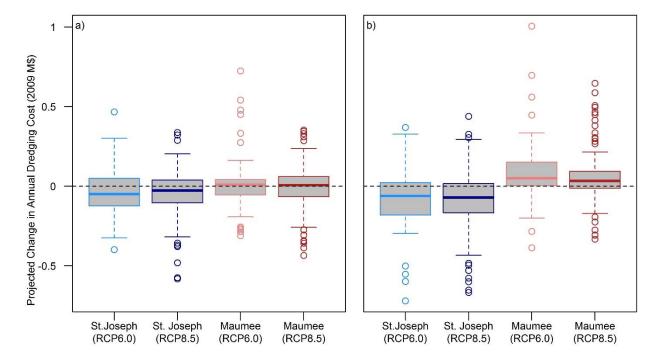



Figure 9. Projected changes in dredging costs for: a) Contemporary (2011-2030) and b) Mid-Century (2031-2050) scenarios, relative to historical (1989-2008) costs. Data shown includes both cost estimation methods, which are given equal weight, doubling the sample size.

# 4 Conclusions

We modeled future conditions in two large watersheds, the Maumee and St. Joseph Rivers, using 108 different sets of climate change inputs representing a plausible range of CO<sub>2</sub> emissions. In general, the median results suggest small decreases in streamflow in both watersheds, with similar decreases in sediment delivery to the river mouths. The exception to this is the Mid-Century scenario (2031-2050) for the Maumee River Watershed, where its managed agricultural landscapes are likely to drive the sediment and streamflow response of the watershed. This implies that the response of farmers to the changing climate will significantly impact the streamflow and sediment yield in agricultural areas.

There is a large amount of variation in the climate change model projections that drive similarly large variations in the predicted sediment yield and sediment discharge response. Even though averages across climate model ensembles tend to show little change, the variance is large. Of note, the differences between RCP 6.0 and RCP 8.5 scenarios are smaller than the variation across models within each scenario. The responses will also vary between watersheds depending on the dominance of agricultural lands, farming practices, soil types, and other factors.

We also estimated dredging costs using two methods and, in general, they decrease slightly at St. Joseph, MI (~ 4-8% median decrease in the Contemporary, 8-18% median decrease in the Mid-Century). The Maumee dredging costs are likely to remain near the current range in the Contemporary, but are projected to increase slightly in the Mid-Century period (median increase of 1-6% in the Mid-Century). This will depend on the responses of farmers in the watershed to climate change. The model variance also indicates a significant uncertainty in outcomes.

This study focused on the aggregated effects of a large number of downscaled climate scenarios but only a single sediment modeling framework using SWAT. Our understanding of the potential impacts of climate change could benefit by extending this research to include other sediment models and to examine the differences and variability within the CMIP5 projections. There is also a need to explore the likely responses of farmers to lengthening growing seasons and the impacts of climate-induced changes in agricultural and management practices on the sediment regime of watersheds.

**Supporting Information** 

Interested readers may view additional model results in the Supporting Information accompanying this paper. Figure S1 shows the PDFs of observed and downscaled temperature and precipitation. Figure S2 shows the PDFs of mean annual temperature and precipitation for both the CMIP3 and CMIP5 scenarios. We have provided the results for all of the CMIP3 scenarios modeled and the A1b scenarios as Figures S3 to S7. CMIP5 results for all RCPs combined, as well as for RCPs 2.6 and 4.5 are presented in Figures S8 to S12. Tables S1 and S2 report the SWAT model outputs for the Contemporary and Mid-Century periods, respectively. Table S3 reports the estimated change in dredging costs.

## Acknowledgements

Portions of this work were funded by a U.S. Army Corps of Engineers (USACE) Institute of Water Resources (IWR) Responses to Climate Change Pilot Project, USDA NIFA Water CAP grant 2015-68007-23133, and a Food Energy and Water supplement to the KBS LTER project, NSF grant #1637653. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the USDA National Institute of Food and Agriculture.

We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

| 539 | 5 References                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------|
| 540 | Abbaspour, K. C. (2015). SWAT-CUP: SWAT Calibration and Uncertainty Programs: Eawag.                |
| 541 | Alighalehbabakhani, F., Miller, C. J., Selegean, J. P., Barkach, J., Sadatiyan, S. M., Dahl, T. A., |
| 542 | & Baskaran, M. (2017). Estimates of Sediment Trapping Rates for Two Reservoirs in the               |
| 543 | Lake Erie Watershed: Past and Present Scenarios. Journal of Hydrology, 544, 147-155.                |
| 544 | doi:10.1016/j.jhydrol.2016.11.032                                                                   |
| 545 | Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L.       |
| 546 | (2012). Soil and Water Assessment Tool Input/Output Documentation Version 2012.                     |
| 547 | Retrieved from College Station, TX:                                                                 |
| 548 | Bosch, N. S., Evans, M. A., Scavia, D., & Allan, J. D. (2014). Interacting effects of climate       |
| 549 | change and agricultural BMPs on nutrient runoff entering Lake Erie. Journal of Great                |
| 550 | Lakes Research, 40(3), 581-589. doi:10.1016/j.jglr.2014.04.011                                      |
| 551 | Brekke, L., Thrasher, B. L., Maurer, E. P., & Pruitt, T. (2013). Downscaled CMIP3 and CMIP5         |
| 552 | Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections,                 |
| 553 | Comparison with preceding Information, and Summary of User Needs. Retrieved from                    |
| 554 | Chaplot, V. (2007). Water and soil resources response to rising levels of atmospheric CO2           |
| 555 | concentration and to changes in precipitation and air temperature. Journal of Hydrology,            |
| 556 | 337(1-2), 159-171. doi:10.1016/j.jhydrol.2007.01.026                                                |
| 557 | Cherkauer, K. A., & Sinha, T. (2010). Hydrologic impacts of projected future climate change in      |
| 558 | the Lake Michigan region. Journal of Great Lakes Research, 36, 33-50.                               |
| 559 | doi:10.1016/j.jglr.2009.11.012                                                                      |

560 Chien, H. C., Yeh, P. J. F., & Knouft, J. H. (2013). Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. 561 Journal of Hydrology, 491, 73-88. doi:10.1016/j.jhydrol.2013.03.026 562 Ficklin, D. L., Luo, Y. Z., Luedeling, E., & Zhang, M. H. (2009). Climate change sensitivity 563 assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 564 565 374(1-2), 16-29. doi:10.1016/j.jhydrol.2009.05.016 Fry, J. A., Xian, G., Jin, S., Dewitz, J. A., Homer, C. G., Yang, L., ... Wickham, J. D. (2013). 566 Completion of the 2006 National Land Cover Database for the Conterminous United 567 States. Photogrammetric Engineering & Remote Sensing, 130, 294-304. 568 Gassman, P. W., Balmer, C., Siemers, M., & Srinivasan, R. (2014). The SWAT Literature 569 Database: Overview of Database Structure and Key SWAT Literature Trends. Paper 570 presented at the SWAT 2014 Conference, Pernambuco, Brazil. 571 Gronewold, A. D., & Stow, C. A. (2014). Water Loss from the Great Lakes. Science, 343(6175), 572 1084-1085. doi:10.1126/science.1249978 573 Hayhoe, K., VanDorn, J., Croley Ii, T., Schlegal, N., & Wuebbles, D. (2010). Regional climate 574 change projections for Chicago and the US Great Lakes. Journal of Great Lakes 575 576 Research, 36, Supplement 2, 7-21. doi:http://dx.doi.org/10.1016/j.jglr.2010.03.012 IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 577 578 and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 579 *Change.* Retrieved from Geneva, Switzerland: 580 Johnson, T., Butcher, J., Deb, D., Faizullabhoy, M., Hummel, P., Kittle, J., . . . Witt, J. (2015). 581 Modeling Streamflow and Water Quality Sensitivity to Climate Change and Urban

| 582 | Development in 20 US Watersheds. Journal of the American Water Resources                          |
|-----|---------------------------------------------------------------------------------------------------|
| 583 | Association, 51(5), 1321-1341. doi:10.1111/1752-1688.12308                                        |
| 584 | Krysanova, V., & White, M. (2015). Advances in water resources assessment with SWAT-an            |
| 585 | overview. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 60(5),                |
| 586 | 771-783. doi:10.1080/02626667.2015.1029482                                                        |
| 587 | Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari, S., Kainuma,        |
| 588 | M. (2011). An emission pathway for stabilization at 6 Wm(-2) radiative forcing. Climatic          |
| 589 | Change, 109(1-2), 59-76. doi:10.1007/s10584-011-0150-5                                            |
| 590 | Maurer, E. P., & Hidalgo, H. G. (2008). Utility of daily vs. monthly large-scale climate data: an |
| 591 | intercomparison of two statistical downscaling methods. Hydrology and Earth System                |
| 592 | Sciences, 12(2), 551-563.                                                                         |
| 593 | Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002). A long-term    |
| 594 | hydrologically based dataset of land surface fluxes and states for the conterminous United        |
| 595 | States. Journal of Climate, 15(22), 3237-3251. doi:10.1175/1520-                                  |
| 596 | 0442(2002)015<3237:althbd>2.0.co;2                                                                |
| 597 | Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Taylor,       |
| 598 | K. E. (2007). The WCRP CMIP3 multimodel dataset - A new era in climate change                     |
| 599 | research. Bulletin of the American Meteorological Society, 88(9), 1383-1394.                      |
| 600 | doi:10.1175/bams-88-9-1383                                                                        |
| 601 | Morang, A., Rosati, J. D., & King, D. B. (2013). Regional Sediment Processes, Sediment            |
| 602 | Supply, and Their Impact on the Louisiana Coast. Journal of Coastal Research, 141-165.            |
| 603 | doi:10.2112/si63-013.1                                                                            |

- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L.
- 605 (2007). Model evaluation guidelines for systematic quantification of accuracy in
- watershed simulations. *Transactions of the Asabe*, 50(3), 885-900.
- Mukundan, R., Pradhanang, S. M., Schneiderman, E. M., Pierson, D. C., Anandhi, A., Zion, M.
- S., ... Steenhuis, T. S. (2013). Suspended sediment source areas and future climate
- impact on soil erosion and sediment yield in a New York City water supply watershed,
- USA. Geomorphology, 183, 110-119. doi:10.1016/j.geomorph.2012.06.021
- Nakicenovic, N., & Swart, R. (2000). Special report on emissions scenarios. Retrieved from
- 612 Cambridge, UK:
- Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment
- 614 Tool Theoretical Documentation Version 2009 (TR-406). Retrieved from College
- 615 Station, TX:
- 616 O'Neal, M. R., Nearing, M. A., Vining, R. C., Southworth, J., & Pfeifer, R. A. (2005). Climate
- change impacts on soil erosion in Midwest United States with changes in crop
- 618 management. *Catena*, 61(2-3), 165-184. doi:10.1016/j.catena.2005.03.003
- 619 Park, J. Y., Park, M. J., Ahn, S. R., Park, G. A., Yi, J. E., Kim, G. S., . . . Kim, S. J. (2011).
- Assessment of Future Climate Change Impacts on Water Quantity and Quality for a
- Mountainous Dam Watershed Using SWAT. Transactions of the Asabe, 54(5), 1725-
- 622 1737.
- Pryor, S. C., Barthelmie, R. J., & Schoof, J. T. (2013). High-resolution projections of climate-
- related risks for the Midwestern USA. *Climate Research*, 56(1), 61-79.
- Pryor, S. C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R., . . . Robertson, G. P.
- 626 (2014). Ch. 18: Midwest. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.),

| 627 | Climate Change Impacts in the United States: The Third National Climate Assessment               |
|-----|--------------------------------------------------------------------------------------------------|
| 628 | (pp. 418-440): U.S. Global Change Research Program.                                              |
| 629 | Quinn, F. H. (2002). Secular changes in Great Lakes water level seasonal cycles. Journal of      |
| 630 | Great Lakes Research, 28(3), 451-465.                                                            |
| 631 | Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Rafaj, P. (2011). RCP 8.5-A     |
| 632 | scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2),              |
| 633 | 33-57. doi:10.1007/s10584-011-0149-y                                                             |
| 634 | Schwartz, R. C., Deadman, P. J., Scott, D. J., & Mortsch, L. D. (2004). Modeling the impacts of  |
| 635 | water level changes on a Great Lakes community. Journal of the American Water                    |
| 636 | Resources Association, 40(3), 647-662. doi:10.1111/j.1752-1688.2004.tb04450.x                    |
| 637 | Serpa, D., Nunes, J. P., Santos, J., Sampaio, E., Jacinto, R., Veiga, S., Abrantes, N. (2015).   |
| 638 | Impacts of climate and land use changes on the hydrological and erosion processes of two         |
| 639 | contrasting Mediterranean catchments. Science of the Total Environment, 538, 64-77.              |
| 640 | doi:10.1016/j.scitotenv.2015.08.033                                                              |
| 641 | Smith, J. B. (1991). The Potential Impacts of Climate Change on the Great Lakes. Bulletin of the |
| 642 | American Meteorological Society, 72(1), 21-28. doi:10.1175/1520-                                 |
| 643 | 0477(1991)072<0021:tpiocc>2.0.co;2                                                               |
| 644 | Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the              |
| 645 | Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485-498.              |
| 646 | doi:10.1175/bams-d-11-00094.1                                                                    |
| 647 | Templeton, W. J., & Jay, D. A. (2013). Lower Columbia River Sand Supply and Removal:             |
| 648 | Estimates of Two Sand Budget Components. Journal of Waterway Port Coastal and                    |
| 649 | Ocean Engineering, 139(5), 383-392. doi:10.1061/(asce)ww.1943-5460.0000188                       |

| 650 | USACE. (2007). St. Joseph River Sediment Transport Modeling Study. Corps of Engineers        |
|-----|----------------------------------------------------------------------------------------------|
| 651 | Detroit District. Retrieved from Detroit, MI:                                                |
| 652 | http://greatlakestributarymodeling.net/models/st-joseph-river-mi-in/                         |
| 653 | USACE. (2014). Waterborne Commerce of the United States, Calendar Year 2014, Part 3 -        |
| 654 | Waterways and Harbors Great Lakes. (IWR-WCUS-14-3). Corps of Engineers Institute             |
| 655 | for Water Resources.                                                                         |
| 656 | USACE. (2015). Great Lakes Navigation System Update. Retrieved from                          |
| 657 | http://www.lre.usace.army.mil/Portals/69/docs/Navigation/FY2015/GLNav2015CongVis             |
| 658 | <u>its.pdf</u>                                                                               |
| 659 | Verma, S., Bhattarai, R., Bosch, N. S., Cooke, R. C., Kalita, P. K., & Markus, M. (2015).    |
| 660 | Climate Change Impacts on Flow, Sediment and Nutrient Export in a Great Lakes                |
| 661 | Watershed Using SWAT. Clean-Soil Air Water, 43(11), 1464-1474.                               |
| 662 | doi:10.1002/clen.201400724                                                                   |
| 663 | Zhang, Q., Jiang, T., Chen, Y. D., & Chen, X. H. (2010). Changing properties of hydrological |
| 664 | extremes in south China: natural variations or human influences? Hydrological                |
| 665 | Processes, 24(11), 1421-1432. doi:10.1002/hyp.7599                                           |
|     |                                                                                              |