
CareNet: Building Regulation-compliant
Home-based Healthcare Services with

Software-defined Infrastructure

Peilong Li∗, Chen Xu†, Yan Luo∗
Department of Electrical and

Computer Engineering

University of Massachusetts Lowell

Lowell, MA 01854
∗{peilong li, yan luo}@uml.edu,

†{chen xu}@student.uml.edu

Yu Cao
Department of Computer Science

University of Massachusetts Lowell

Lowell, MA 01854

{yu cao}@uml.edu,

Jomol Mathew‡, Yunsheng Ma§
‡Department of Information Technologies

§Department of Medicine

University of Massachusetts Medical School

Worcester, MA 01655

{jomol.mathew, yunsheng.ma}@umassmed.edu,

Abstract—Healthcare network and computing infrastructure is
rapidly changing from closed environments to open environments
that incorporate new devices and new application scenarios.
Home-based healthcare is such an example of leveraging per-
vasive sensors and analyzing sensor data (often in real-time) to
guide therapy or intervene. In this paper, we address the chal-
lenges in regulatory compliance when designing and deploying
healthcare applications on a heterogeneous cloud environment.
We propose the CareNet framework, consisting of a set of
APIs and secure data transmission mechanisms, to facilitate
the specification of home-based healthcare services running
on the software-defined infrastructure (SDI). This work is a
collaboration among computer scientists, medical researchers,
healthcare IT and healthcare providers, and its goal is to
reduce the gap between the availability of SDI and meeting
regulatory compliance in healthcare applications. Our prototype
demonstrates the feasibility of the framework and serves as
testbed for novel experimental studies of emerging healthcare
applications.

Index Terms—Home-based Healthcare; HIPAA Compliance;
Software-defined Infrastructure; XaaS; CORD;

I. INTRODUCTION

The advances in information technology greatly accelerates

the innovations in healthcare technology recently. In particular,

home-based healthcare services such as rehabilitation, respi-

ratory therapy, telemedicine, and so on are being realized due

to the availability of low-cost sensors, effective data process-

ing capabilities and advanced networking technologies. The

prediction [1] reveals the demands of home-based healthcare

market will keep increasing rapidly by at least 5% per year to

the year of 2020, thanks to the cost savings and the comfort

provided to patients and people in need.

The growing trend of home-based healthcare has introduced

new challenges in data collection, transfer and sharing since

the patients and their care providers are often geographically

distributed. Existing healthcare infrastructures such as the

traditional close-environment healthcare and the emerging

cloud-based healthcare face vital obstacles as follows. Firstly,

traditional healthcare infrastructure, which assumes a closed

environment in a single or multiple fixed location, cannot

efficiently analyze and share the patient data securely to

multiple stakeholders. For example, the sensor data collected

on patient from her residence have to be transferred to a

remote analytics service or to the doctors’ offices for diag-

nosis. Such data transfer over public networks requires both

intensive computing resources and sufficient protection which

are not readily available in traditional healthcare. Secondly,

the reliability of cloud-based healthcare hinges on the data

transmission performance between the end devices and the

cloud. Many emerging home-based mission critical health-

care services that require real-time responses and decisions

demand the network to be low-latency and high-bandwidth.

However, real-world cloud latency ranges from hundreds of

milliseconds to a few seconds because of the structure of the

Internet. Therefore, cloud by itself is not a feasible solution

to home-based healthcare. Thirdly, all patient data related

diagnosis and analytics activities should be supported with an

infrastructure that is regulation compliant. Patient information

must be protected to comply with regulations such as Health

Insurance Portability and Accountability Act (HIPAA) and

Health Information Technology for Economic and Clinical

Health (HITECH).

The emerging software-defined infrastructure (SDI) has

shed light on the challenges in existing healthcare infras-

tructure. While computing resources on cloud platforms are

flexible and cost-effective, there are new resources provisioned

at the network edges for applications requiring high throughput

and low latency. CORD [2] is such an example of edge

based computing platform residing in the central office of

a telco. Paradrop [3] contains programmable resources in

a WiFi router deployed inside a patient’s premises. These

heterogeneous resources at every part of the network (end

point, edge and core) bring both unprecedented opportunities

for application design and challenges of performance and

compliance verification.

There exists a gap between the availability of emerging SDI

2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-4722-2/17 $31.00 © 2017 IEEE

DOI 10.1109/CHASE.2017.22

373

2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)

978-1-5090-4722-2/17 $31.00 © 2017 IEEE

DOI 10.1109/CHASE.2017.121

373

and deploying regulation compliant healthcare services on top

of that. Both technical and non-technical people desire tools

to assist or even automate the design and verification process.

In this paper, we are motivated to achieve the following goals.

(1) We propose a healthcare framework called “CareNet” that

enables the employment of a hybrid home-edge-core cloud

to render high performance and real-time responsiveness for

the home-based healthcare services. (2) We sought to propose

a secure end-to-end data transmission mechanism and an

advanced access control scheme so that every networking

transaction on CareNet has to be compliant with the HIPAA

technical safeguard. (3) We design a suite of high level

Application Programming Interfaces (API) that exploit the

underlying SDI resources to help various stakeholders to

express their workflow and simplify the management of the

healthcare resources without knowing the technical details.

This work is intended to initiate the discussion among network

researchers, medical researchers, healthcare ITs, patients and

clinical staffs.

This paper is organized as follows. Section II provides

the background of the work by describing in detail the

hybrid cloud architecture and performance and regulatory

requirements. Section III and Section IV present the design of

CareNet system and the design of CareNet APIs respectively,

followed by use case study in Section V. We evaluate the

effectiveness of our preliminary CareNet testbed in Section

VI and discuss the limitations of the work in Section VII, and

conclude the paper in Section VIII.

II. BACKGROUND

A. Software Defined Infrastructure for Healthcare

Healthcare organizations are gradually adopting cost-

effective hybrid cloud services for both administrative tasks

and clinical data [4]. For instance, the clinical data could be

stored on a private cloud, whereas the equipment inventory

data could be hosted on a public cloud. However, as the sensor-

rich home-based care environment becomes particularly help-

ful for caring patients with chronic diseases, the sensor data

originates from patients’ premises and penetrates across the

boundary of the conventional healthcare networks. The sensor

data (e.g. video) is to be processed by medical researchers

and then the analytical results are consumed by doctors, in

real-time in most cases, to guide therapy or intervention.

The transfer and processing of the data require much more

networking and computing resources than simple medical

history data. Such application scenarios are quite new to all the

stakeholders, who are required to ensure the performance and

compliance of the system hardware and software architecture.

Recently, the technology to exploit abundant computing and

networking resources at telco central offices on the network

edge, has enabled the feasible development of an interactive

home-based healthcare model for care providers. As depicted

in Figure 1, a home-based healthcare model consists of three

major components: 1) edge - at homes, patients’ sensor data

are collected by various monitoring devices and the sensor

data are transmitted and aggregated on a computing device

(called “HomeNode”) such as an enhanced WiFi router at the

premise. At the network edge, telcos provide computing racks

and white box switches [2] to support flexible data processing

right after the data streams leave patients’ homes. It is vital to

keep computing resource at the edge of the network to support

latency-sensitive applications and services. The edge nodes can

also support intensive computation and stream mining, which

process the data and reduce the data volume at a very early

stage, thus cutting down delays and saving network bandwidth;

2) hospital private cloud - only hospital ITs and doctors can

access private cloud. The private cloud serves as an enterprise

scale data center and can be used to store and process patient

medical records. But the private cloud is not a viable option

for some care providers such as rural clinics; 3) public cloud
- both patients and doctors can access the public cloud. The

public cloud provides extra richer computation and storage for

data analytics, and hosts REST service for mobile and web

applications.

Fig. 1. Home-based Healthcare

The techniques of SDI is fundamental of the proposed

home-based infrastructure, thanks to the programmability of

network with software-defined networking (SDN) and the

feasibility of resource management in cloud with OpenStack.

Recently, the novel Everything-as-a-Service Operating Sys-

tem (XOS) emerges to provide a set of abstractions so

that application builders can fully leverage the underlying

programmable infrastructure. As depicted in Figure 2, XOS

defines a coherent framework that consists of both OpenStack

and OpenNetwork Operation System (ONOS) for combining

SDN, network function virtualization, and cloud services, all

running on commodity hardware, to build a cost effective and

agile cloud infrastructure.

Fig. 2. Relationship between XOS, OpenStack and ONOS [5]

374374

B. Regulatory Compliance Requirements

We hereby attempt to provide an overview of requirements

on the healthcare regulatory compliance, with the understand-

ing that healthcare regulations are very complex and broad. We

consulted with medical researchers, healthcare ITs and doctors

who work with patients on a daily basis, and try to understand

the implications on networking technology. We learn that there

are three major components in complying with the US HIPAA

standards: Administrative, Physical, and Technical [6]. These

guidelines stipulate that all medical practices must ensure that

all necessary measures are in place while saving, accessing

and sharing any electronic medical data to keep patient data

secure. Lack of compliance to the HIPAA security standards

could lead to large fines and in extreme cases even loss

of medical licenses. While the administrative and physical

safeguard guidelines pertain mostly for employees’ security

awareness and training, and facility related access control and

security, the technical safeguard regulates the data storage and

retrieval and the security of the network, which is addressable

with computer techniques. We therefore only focus on the

technical safeguard in this paper.

Technical safeguards are becoming increasingly important

due to technology advancements in healthcare. Care providers

are faced with the challenge of protecting electronic protected

health information (ePHI), such as electronic health records,

from various internal and external risks. To reduce risks to

ePHI, covered entities must implement technical safeguards as

good business practices. Table I lists a collection of Technical

Safeguard standards and certain implementation specifications,

which includes 4 regulation sections: access control, integrity,

person/entity authentication, and transmission security. A cov-

ered entity may use appropriate security measures that allow

it to reasonably implement the standards.

TABLE I
TECHNICAL SAFEGUARD REQUIREMENTS

Standards Sections Implementation Specifications
Access Control §164.312(a)(1) Unique User Identification (avoid disclosure

of user information)
Emergency Access Procedure: procedures for
obtaining necessary ePHI during an emer-
gency (privilege endorsement)
Encryption and Decryption: a mechanism to
encrypt and decrypt ePHI

Integrity §164.312(c)(1) Mechanism to Authenticate ePHI

Person/Entity
Authentication

§164.312(d) Implement procedures to verify that a person
or entity seeking access to ePHI is the one
claimed

Transmission
Security

§164.312(e)(1) Integrity Controls: the security measures to
ensure that electronically transmitted ePHI
is not improperly modified without detection
until disposed of
Encryption: a mechanism to encrypt ePHI
whenever deemed appropriate.

C. Prior Work on Healthcare IT

Employing advanced computer techniques to facilitate the

management of healthcare IT has been a hot and concerning

topic across ITs, medical researchers, network professionals,

care-providers, and the government [7], [8], [9]. Now with the

dawning of the age of Cloud and XaaS, it’s rather demanding

to have collaborative cloud-based platforms and tools for

easy, fast, efficient, and regulation-compliant management of

healthcare IT.

ASTM International first proposes F2761-09 [7] as standard

that defines the patient-centric Integrated Clinical Environment

(ICE). F2761-09 intends to improve medical device error

resistance and improved patient safety by providing capabili-

ties such as comprehensive data acquisition for the electronic

medical records, the integration of devices to enable real-time

decision support, safety interlocks, and closed-loop control.

As an open extension to ICE, Plourde et al. [8], [9] recently

design an open-source prototype called OpenICE to create a

community implementation of an Integrated Clinical Environ-

ment. The design of OpenICE framework aims to integrate

both healthcare devices and clinical applications to existing

Healthcare IT ecosystems. For example, the OpenICE works

as a distributed data aggregation and processing system that

enables users to convert heterogeneous medical device data

from supported devices into a predefined data model, and to

exchange that data with demonstration clinical applications on

a different machine (or machines).

However, none of these prior arts address three critical

emerging issues in home-based healthcare. Firstly, existing

arts such as OpenICE are designed for hospital-based clinical

applications. However, home-based healthcare involves lots of

more emerging issues such as remote monitoring, collabora-

tive data sharing, and user access control, etc. Secondly, as

traditional IT infrastructure is outdated by flexible and on-

demand cloud services, how should a collaborative healthcare

IT framework look like to take advantage of the ubiquitous

cloud resources (edge, private, and public, etc.)? Thirdly,

since healthcare IT requires regulatory compliance everywhere

that involves with patients’ data, how can a management

framework enforce compliance for the system manager au-

tomatically?

With the aforementioned questions, we are motivated to

explore the solutions with our proposed CareNet framework

in the following sections.

III. SYSTEM DESIGN

To leverage the emerging SDI technologies in a regulation

compliant manner, we propose in this section the CareNet,

a heterogeneous computing and networking framework for

providing effective healthcare to people living in a home

setting equipped with advanced and versatile sensors. The

goal of this section is to present the high level architec-

ture of CareNet, and describe the key components in this

framework. We also outline a comprehensive patient data

processing/accessing/sharing mechanism that is part of the

CareNet framework to enforce the regulation compliance.

A. The CareNet Framework

A high-level overview of CareNet framework is shown in

Figure 3. The major distinctions between the conventional

healthcare network and CareNet are the deployment of sen-

sors at patients’ premises and the presence of heterogeneous

375375

edge/cloud computing resources at different segments of the

system.

We explain the architecture of the system with the run-

ning flow of sensor data as follows. Firstly, in this human-

centric framework, the healthcare activities are driven by

sensor data generated around patients. Abundant body sensors

and monitoring devices are installed on patient’s body or at

patient’s home. Then, the heterogeneous sensor data stream is

aggregated and preprocessed at an enhanced WiFi router or a

small compute system called “HomeNode”. The HomeNode

runs a daemon process to associate each data stream from the

sensors to an isolated application in a docker container for

processing. Secondly, the container applications communicate

with the CORD edge cloud at telco’s central office that is

equipped with rich software-defined compute, storage, and

network resources. Leveraging such edge computing resources

greatly reduces raw data volume that needs to be transferred,

and highly reduces the response latency for some time-

sensitive applications. The CareNet API, as a higher level

abstraction of XOS running on CORD, renders the interface

to manage the underlying edge resources. Every CareNet API

call must be authenticated with the methods described in

the next subsection to ensure regulatory compliance. Thirdly,

the preprocessed data will be encrypted and then reach to

the hybrid cloud domain via the Internet for more powerful

and scalable computing and storage. The hybrid cloud also

hosts RESTful service for all parties to access the information

from their web or mobile applications. A prototype web-based

CareNet application is hosted on our demonstration website

[10].

Fig. 3. Architecture of CareNet

B. Patient Data Security

The security of patient-data storage and outsourcing is a

major concern of any cloud-based healthcare platform [11].

Existing works [12], [13], [14], [15] in this area have looked

into two important data security issues in this area: 1) the

security of distributed data storage for patient data across

multiple segments of the network, and 2) the fine-grained

access control for the collaborative sharing of private patient

medical data. However, as regulatory compliance and hetero-

geneous computing resources are introduced into the proposed

infrastructure, we have to consider more emerging issues on

data security as follows.

Firstly, how to design a secure end-to-end network frame-

work that consists of all the CareNet components - the

HomeNode, the edge cloud and the core cloud, as regulated by

HIPAA transmission security (164.312 (e))? We propose the

secured networking architecture in Figure 4. From left to right,

the solid arrows represent the data flow. Security-sensitive

network flows that come from HomeNode will pass through

an Internet Protocol Security (IPsec) protected network link

to avoid wiretapping, while other flows from HomeNode such

as entertainment streaming, gaming, etc. will stay in the non-

protected path to reduce the encryption/decryption cost. Such

network data filtering is controlled by the SDN controller

residing at telco’s central office. The layer 3 IPsec security

method can potentially be replaced by layer 2 solutions such

as Media Access Control Security (MACsec) for less latency

overhead but higher CAPEX. Once data is processed after

arriving at telco’s CORD cloud, it will be encrypted before

going into the untrusted network domain. For clients to access

the processed data, they need to acquire a proper security

key managed by the authentication system that comes with

the CareNet API. It is worth noticing that data only flows

from trusted domain to untrusted domain in one direction

so that patient information won’t be tampered by malicious

information. From right to left on Figure 4, the dotted arrows

elaborate the management flow. Commands and requests from

clients’ side have to pass through a double authentication

scheme before entering the trusted domain. First of all, to

establish the connection between clients and CareNet server at

CORD over the Transport Layer Security (TSL) tunnel, clients

need to acquire a proper certificate such as a SSH certificate.

Second of all, requests made by calling the CareNet API will

need to be authenticated. The authentication process will be

elaborated in detail in the next point. The double authentication

scheme ensures both network connection and access control

are secure.

Fig. 4. The Transmission Security Compliant Network Framework

376376

Secondly, HIPAA regulates another three important stan-

dards in technical safeguard: access control (164.312 (a)),

integrity (164.312 (c)), and person or entity authentication

(164.312 (d)), which require the integrity and protection of

ePHI under the agreement with multiple parties. Specifically,

patients have the right to delegate permissions to different

data consumers and the permissions are subject to change

in different situations such as time-out and security key

revocation. Therefore, based on the idea of dividing the system

into public/private domains [14], we propose the data access

control system in Figure 5.

The system involves different parties as the participant:

e.g., the data owner, who generates the data and controls the

authorized user list and the associated attributes; authorized

users, who access the health information based on access

policy; and public users, who can access the patient data upon

the attribute agreement. When a user registers with personal

details and a password, the user is provided with a Global

Identifier (GID), which uniquely identifies the user in the

system. In the private domain, the users can then login using

the GID and password combinations by which the users are

authenticated. The authenticated users can send requests to

data owner to request the access to the information. If the

users are not granted with the access, they can only view

the data based on the roles the user plays in the system.

For the users come under public domain, they should firstly
1© request the data. If 2© the access privilege of the user

satisfies the access policy, then the 4© Attribute Authority

(AA) generates the key by 3© replacing the GID with tickets

from the Ticket Generator. Thereafter, the generated private

key and the encrypted data are shown to the user as they

provide the key password. The data is then 5© decrypted using

the private key and displayed.

There are 3 major advantages of the proposed data access

control mechanism which differ from the traditional role-based

access control (RBAC) [16]: 1) the authentication + ticket

generation mechanism enhances the identity authentication

process. The usage of ticket sessions instead of GID reduces

the risks of GID leak, which protects patient information

from being hacked. This mechanism enables the authentica-

tion system to be collusion resistant against users, attribute

authorities and between user and authorities; 2) user revocation

can be easily conducted by updating authorized user list and

attribute storage in both private and public domain. Data owner

therefore retains the use and disclosure rights of the protected

PHI to other users as required by HIPAA privacy practice; 3)

the proposed data protection model matches the CareNet API

abstraction which is going to be discussed in Section IV, so

that one can effectively express the data access requirements

to authorized list and attribute storage by using the API.

IV. THE CARENET API

To facilitate the usability of CareNet framework, we need

well-defined and high-level APIs whereby both technical peo-

ple like network operators and application developers, and

non-technical people such as care providers and patients can

�

�

�

�

�

Fig. 5. Patient-Data Access Control

express their requirements on data collection, sharing and

processing. In this section, we first introduce the abstraction

model in CareNet framework, and then present the APIs and

explain their usage in details.

A. CareNet Abstraction

The high-level abstraction of CareNet framework aims to

explain the major roles of objects and how they may interact

with each other to express the workflow. The overall abstrac-

tion is illustrated in Figure 6, and we explain the meaning of

each component as follows.

Fig. 6. API Abstraction

• Abstraction 1 - Patients: For a human-centric infras-

tructure, the fundamental elements in the abstraction

are the patients that can benefit from various services.

To map the many-to-many relationship between patients

and care-providers, our proposed abstraction provides the

flexibility that each patient can access different services,

377377

and different patients (e.g. family members) can access

the same service. Patients are the data sources in our

model, and they have the ultimate authority to grant

access policies to various data users.

• Abstraction 2 - Services: The “Services” presents an

abstraction for the applications and the associated daemon

processes that run across the CareNet framework. As the

design of regulation compliant IoT applications requires

data privacy preservation at endpoint, we employ Docker

containerization technique to isolate IoT applications into

a self-contained service. Each service consists of one or

multiple running application(s), data exchange method

among the applications, communication interfaces with

the CareNet daemon, and the generated data stream.

When initiated by the CareNet API, each service is given

a unique service name and ID.

• Abstraction 3 - Groups: The API abstraction intro-

duces the “Groups” concept that represents a collec-

tion of services with the associated patients and effi-

ciently describes the service-service, patient-service inter-

relationship properties. Services in the same group have

to follow the same policy to be processed and to access

the resources. The “Group” abstraction renders a clean

and effective generalization to map the high-level require-

ments to the underlying constructs in XOS framework,

and facilitates the scalable design of patient-side applica-

tions.

• Abstraction 4 - Resources: Since the CareNet infrastruc-

ture consists of both edge and core cloud computing re-

sources, we can treat CareNet as a resource-rich platform

where each service group can maintain a configuration

of its accessible resources. To be specific, resources in

the CareNet infrastructure include micro applications and

services that build upon the underlying virtualized hard-

ware. For example, we can opt for compute pools with

various CPU models/numbers and memory sizes, block

(Cinder) or object (Swift) data storage, and high/low

bandwidth high/low latency network paths with various

service chains, etc.

• Abstraction 5 - Users: “Users” abstracts the parties that

are involved in the CareNet infrastructure management.

Users can be telco ITs, doctors, nurses, hospital ITs,

patients, patient’s relatives, etc., and they are in charge

of designing various policies on demand, such as au-

thentication policies, and resource assignment policies for

services, etc.. It’s worth noting that users have different

levels of priority, which will determine the priorities of

the policies written by users. For example, patients has

the root priority of defining data access control by default

and (s)he must assign the attribute authority as described

in subsection .

• Abstraction 6 - Policy: “Policy” defines the CareNet

infrastructure management behavior - it directs differ-

ent service groups to access different resources by the

policy defined configuration. Different users design their

collection of policies for a service group to serve for

their purposes. For example, patients has the right to

specify the authorized user list and the attribute authority

as required by HIPPA regulation. Application developers

need to declare what services for the patient data require

low network latency for effectiveness. ITs are responsible

for defining the optimal network configuration for the

overall system.

Policies offer a clean method to describe how service

groups utilize resources in non-technical terms. It’s im-

portant to notice that policies are designed to be reusable.

Once a user creates a policy for a certain group, (s)he can

reuse it repetitively for other groups. More efficiently,

users other than the patients can share their policies

to others in the CareNet community, since only pa-

tients’ policies involve HIPPA compliance concern. The

reusability highly reduces the labor to update and rewrite

policies, thus improves portability, accuracy, and agility.

• Abstraction 7 - Policy Repository: The design of

“Policy Repository” contributes another charm in our

API abstraction. Repository allows different policies to

co-exist and work together based on different roles of

the policy writer. If still using the same example in

policy for instance, three parities - patients, doctors, and

ITs can design policies from different aspects to work

for the same service group. This abstraction enables

a highly collaborative management fashion so that all

parties in CareNet infrastructure can participate to enforce

regulatory compliance and improve system efficiency.

B. CareNet APIs

We propose a list of APIs to facilitate the management of

CareNet with the aforementioned abstractions. The APIs fall

into three categories: 1) service management - in CareNet

framework, services created for the IoT endpoint devices

must be containerized to maintain service isolation. A set of

APIs are used to create and terminate containerized services.

Moreover, clinic or hospital trusted third party application can

be installed/removed with the agreement between patients and

the care-providers; 2) performance related management -

the network flows from different services have different perfor-

mance requirements determined with the knowledge from both

doctors and technical ITs. Some example requirements are:

health-critical traffic (low latency requirement) versus regular

bio-sensing traffic (no latency requirement); block storage for

databases, file-exchange, etc. versus object storage for video

processing and data backup, etc.; and high versus low perfor-

mance computing resources etc.; and 3) policy enforcement:
services in the same group have to follow the same policies in

the policy repository. For example, to write the access control

policy for Service A, patients need to first define the authorized

user list, and assign different attribute authorities to different

users. Then doctors will specify what kind of requirement they

need for this service in order to guarantee the timeliness and

effectiveness of the service results. ITs then need to look at

the technical requirements of the service so that the service

runs smoothly in the system. All the policies will finally merge

378378

together in the same repository to work collaboratively with

different levels of priority.

The detailed API definition and description are depicted in

Table II and we demonstrate a concrete use case by leveraging

the APIs in Section V. The design of the APIs renders a unified

interface for care providers to manage the proposed CareNet

framework and promotes the flexibility of policy specification

and compliance enforcement.

C. CORD Configuration with CareNet APIs

We design an automatic CareNet API conversion mecha-

nism to help translate commands written with CareNet APIs

into CORD hardware configurations. As demonstrated in

Figure 7, the CareNet system allows users to first specify

their requirements through the CareNet APIs or use web/app

graphic user interfaces that are built upon the CareNet APIs.

We call this step the requirement submission. Then the user

requirement submission that are written with CareNet API

will be fed into our designed API parser. The API parser

applies regular expression (RegEx) technique to extract the

keywords from requirement submission and find the argument

domains within each API function to generate a JSON-

formatted intermediate representation (IR). After obtaining the

JSON IR, we use a translator to map the key-value pairs in

IR to a Topology and Orchestration Specification for Cloud

Applications (TOSCA) [17] formatted configuration file. Since

TOSCA file is used as the interface configuration to the XOS

system, our mapped TOSCA configuration can then eventually

configure the CORD hardware.

Fig. 7. Configure CORD Hardware with CareNet APIs

V. CASE STUDY

The CareNet framework and the APIs can address several

research problems of strong clinical importance and urgency.

These problems arise from real-world scenarios where the

patient risks can be identified and the timely intervention and

interaction between care providers and patients will facilitate

speedy recovery. We have identified an essential real-world

home-based stroke recovery use case that can leverage the

proposed work. We present for the use case the significance of

employing CareNet framework, and the simplicity and agility

of regulation compliant management with CareNet APIs.

Use Case: Kinect-based Real-time In-Home Stroke Reha-
bilitation

While it is a general consensus that post-stroke rehabilita-

tion can substantially help people achieve the best possible

long-term outcome, the economic cost associated with in-

patient post-stroke rehabilitation could be devastating for many

stroke victims. To help the stroke survivor to reduce the cost

without sacrificing healthcare quality, home rehabilitation has

emerged as a valuable supplement to high cost outpatient

facilities and/or nursing facilities. In addition to cost saving,

home rehabilitation offers great flexibility, which allows the

patients to tailor their rehabilitation program and to follow

their own schedules.

One of the promising solutions is to develop a new in-

home stroke rehabilitation system using new gaming consoles,

such as the Microsoft Xbox Kinect. By capturing raw data

from the Xbox Kinect sensors, we can track skeletal positions

of the patient as they attempt physical rehabilitation exer-

cises, evaluate how the patient is accomplishing the exercises,

and score them accordingly. However, there are two major

concerns for the care providers to render HIPAA/HITECH

compliant interactive healthcare. (1) Security: because of the

limited computation power of a clinic/hospital, the patient’s

video stream need to be transmitted over a public network

and then to a computing platform (e.g. private hospital cloud

or public cloud) for processing. Therefore, patient’s data must

be encrypted at network edge. In addition, before reaching the

computing facility, care providers have to ensure that electron-

ically transmitted patient data is not improperly modified as

required by the HIPPA “integrity control”. (2) Performance:

a typical Kinect user scenario has a data generation rate at

300 Mbps (640x480 32-bit RGB images are generated at a

30 frames per second (fps)). Therefore, significant bandwidth

is required to transfer such a large volume of video stream.

In practice, patients also have to wear body sensors, such

as a smart watch to collect the accelerometer data and life

characteristics (e.g., heartbeat, blood pressure). The data from

body sensors are usually given low latency network priority

over the Kinect video stream since bio-sensor data is often

utilized to issue health-critical warning events, such as fall

detection.

There are 3 major steps that leverage the proposed frame-

work and APIs to express the use case workflow. The first

step is the creation of services for different IoT sources. As

suggested by regulatory compliance, “security at endpoint”

is the key resort to build a secure IoT environment. There-

fore, care providers need to create logically isolated services

for each endpoint device. Besides, the service creation API

permits the service dependency, which greatly facilitates the

form of service chaining. The second step is to write different

policies for different services, as the allocated resources for

each service must meet the performance requirements by the

care-providers. Thirdly, CareNet APIs offer the capability to

validate the data integrity at any time of the data processing

and issue early warnings for data discrepancy.

We demonstrate the pseudo code as follows.

/*
* Psuedo Code Demo For Stroke Rehabilitation

*/

379379

TABLE II
API SPECIFICATION

No. API Explanation
1 bool createService (char* serviceTemplate, char* cmd, unsigned int

hostPort, unsigned int containerPort, char* serviceName, Depen-
dentService deplist)

Spawns a container to run a specific application from the CORD service template named
“serviceTemplate”. DependentService is a data structure that list all existing dependent services
for the current service. The function returns true if the container was successfully created,
otherwise the function returns false.

2 bool removeService (char* serviceName, unsigned int delay) Removes the service with the given service name. Waits up to delay seconds before sending
SIGKILL signal to container. The function returns true if the container was successfully removed,
otherwise the function returns false.

3 unsigned int createPatient (PatientInfo patient ServiceList serlist) Creates a patient with the provided patient information and the patient’s associated services.
PatientInfo is a JSON-formated key-value data structure. ServiceList is a list of service names.
Returns the patients unique ID.

4 bool removePatient (unsigned int patID) Removes a patient with the provided patient ID. Returns boolean value indication success or
fail.

5 unsigned int createRes (ResourceList rlist) Creates an accessible list of resources for certain service groups on the provided infrastructure.
ResourceList is a JSON-formated key-value data structure. Returns the resource list ID.

6 bool removeRes (ResourceList rlist, unsigned int resID) Removes a sub-list of resources rlist from the original resource list with ID=resID. Returns
boolean indicator.

7 unsigned int createUser (UserInfo user) Creates a user by using the provided user information. Returns a unique user ID.

8 bool removeUser (unsigned int uID) Removes a user by using the provided user ID. Returns boolean indicator.

9 unsigned int createPolicy (Policy p) Policy is a JSON-formatted data structure that contains multiple key-value fields. Some important
key fields include “resource”, “authentication list”, “attribute authority”, etc. This function
creates a new policy with the field of data indicated in Policy “p”. Returns the policy ID.

10 unsigned int createRepo (PolicyList polist) Creates a new policy repository with a list of policy IDs. Returns the repository ID.

11 unsigned int createGroup (ServiceList serlist, unsigned int repoID) Creates a service group with the provided service list and a policy repository ID.

12 void addServiceToGroup (char* serviceName, unsigned int gID) Add an existing service to a service group with ID=gID.

13 void rmServiceFromGroup (char* serviceName, unsigned int gID) Remove an existing service from a service group with ID=gID.

14 bool validateService (unsigned int gID, char* key) Used for services that need to talk to public cloud. Validate the given service group ID to check
if encrypted data has been modified. Returns true if data is safe.

// Step 1: Create the encryption, Kinect and watch service,
// add service dependency.
createService ("AES-Template", "initiate", hostPort1,

containerPort1, "Encryption", NULL);
createService ("Kinect-Template", "initiate", hostPort2,

containerPort2, "Kinect", "Encryption");
createService ("Watch-Template", "initiate", hostPort3,

containerPort3, "Watch", "Encryption");

// Step 2: Allocate system resources to the services; create
// policy and policy repository; create service group.
resKinect = createRes (..., "max_delay_ms": "auto",

"bandwidth": 300);
resWatch = createRes (..., "max_delay_ms": 3,

"bandwidth": "auto");
resEncrypt = createRes (..., "max_delay_ms": "auto",

"bandwidth": "auto");

policyKinect = createPolicy ("resource": resKinect);
policyWatch = createPolicy ("resource": resWatch);
policyEncrypt = createPolicy ("resource": resEncrypt);
repoRehab = createRepo ({policyKinect, policyWatch,

policyEncrypt});

groupKinect = createGroup ({"Kinect", "Encryption"},
userlist);

groupWatch = createGroup ({"Watch", "Encryption"},
userlist);

// Step 3: Validate the integrity of data before
// reaching the computing facility.
if (! validateService (groupKinect, key))

issueWarning ("Kinect data discrepancy\n");
if (! validateService (groupWatch, key))

issueWarning ("Watch data discrepancy\n");

VI. EVALUATION

In this section, we demonstrate the implementation of the

CareNet prototype and the effectiveness of the design with

preliminary experiment results for the use case.

While working towards building a self-operated CORD

testbed, we are currently testing our prototype on CloudLab

[18], which offers transparent control and visibility of the

cloud down to the bare metal. As demonstrated in Figure 8, we

use virtual machines to emulate the HomeNode (for patients),

provision the CORD (for networking and edge computing),

and design the interconnection in between the HomeNode

and CORD. The whole system is then connected to the

Internet, so that the system can access the untrusted domain,

i.e. Amazon AWS public cloud, for intensive computation.

The specifications of hardware, virtual machines, and software

versions are listed in Table III for reference.

Fig. 8. Experiment Platform

TABLE III
TESTBED SPECIFICATIONS

Item Specifications
Host CPU 2 x Intel E5-2630 v3 8-core CPUs at 2.40 GHz

(Haswell w/ EM64T)

Host Memory 128GB ECC Memory (8x 16 GB DDR4 1866 MHz
dual rank RDIMMs)

VM CPU 6-core QEMU Virtual CPU version 2.0.0 proces-
sors at 2.4 GHz

VM Memory 16 GB

VM Disk 256 GB

Host OS Ubuntu 14.04.4

XOS version branch “cord-1.0”

CORD version branch “cord-1.0”

ONOS version 1.8.0

As described in the previous use case, we want to demon-

strate how to configure the service chain with the two services

380380

“Kinect”+“Encryption” on our CareNet framework in Figure

9. Users firstly specify their requirements by using CareNet

APIs as shown in the use case. Then the requirement submis-

sion is fed into the conversion tool in Figure 7 to generate

the TOSCA configuration file. The following code snippet

shows a portion of the converted TOSCA configuration file

that is used to configure the CORD hardware. After the service

configuration, we then need to call the XOS APIs to create

services, slices, and instances etc. as described in the XOS

literature [5].

Fig. 9. An Example of SDI Framework

/*
* Configuration file snippet for CORD Services

*/

// Part of s1.config
addresses_kinect:
type: tosca.nodes.AddressPool
properties:
addresses: 10.193.30.1/25
gateway_ip: 10.193.30.1
gateway_mac: 02:42:0a:a8:00:01

// Create the Kinect service
// Add service dependency to Encryption service
service#kinect:
...
requirements:
node: service#encryption
relationship: tosca.relationships.TenantOfService

...

// Part of s2.config
// Create the Encryption service
// Add service dependency to Kinect Service
service#service2:
...
requirements:
- addresses_kinect:

node: addresses_kinect
relationship: tosca.relationships.ProvidesAddresses

...

To test the service performance on CORD, we bring up

another two services - Virtual Subscriber Gateway (vSG), and

the official “Example Service,” offered by CORD community.

For all three services, we initiate user requests from HomeN-

ode to CORD to generate the network traffic, and test their

performance.

The vSG service functions as a Consumer Premises Equip-

ment (CPE) that runs a bundle of subscriber-selected func-

tions such as access restriction, access diagnosis, firewall and

bandwidth metering, etc. The vSG service resembles L4-7

network service chaining that may be required by ITs who

operate on both ISP edge and hospital private cloud. The

Example Service works as a simple HTTP server - it responds

with human-readable strings upon user requests. We employ

Example Service to resemble the wearable watch service in the

use case, because a doctor need to request for the real-time

patient bio-metrics and life-critical warning signals through

the HTTP protocol. The Video Processing Service is deployed

to encrypt the video stream in use case using Advanced

Encryption Standard (AES) [19]. We employ Video Processing

service to protect the patient’s identity especially when the

information is transmitting on the Internet.

We measure three performance metrics of the 3 tested

services - network round trip time (RTT), service network

bandwidth allocation, and the service delay. RTT indicates

the network link delay of the service environment; bandwidth

allocation stands for the network bandwidth utilization of a

service; and service delay denotes the computation time for the

service application. As shown in Figure 10, Example Service

only endures less than 2 ms of RTT, while retains 5 times

more network bandwidth than the other two services since

Example service is given low network latency links and we

do not specify the bandwidth requirements. The vSG service

observes the lowest service delay because it is less compute

intensive. Since we do not specify the network speed and

bandwidth for vSG, the system will automatically choose

the most available resources for it. The Video Processing

Service causes 32x more traffic delay than Example Service

because of the computation complexity and has almost the

same bandwidth as vSG. Although Video Processing Service

has a relatively higher service delay comparing with the other

two services, 7.81 ms is still considered as very low comparing

with the popular cloud applications running with hundreds and

thousands of milliseconds. The service delay of the chained

Video Processing Service can be divided to two parts: 1)

transmission/processing delay around 8.708 milliseconds; and

2) encryption delay around 0.0015 milliseconds. It’s worth

noting that the service startup time (the time for a service

to get on-board) is about a few minutes, because a service

needs download the required dependencies from the Internet

and configures the VM images. Luckily, the service startup

time is a one-time investment, therefore should not affect the

user experience.

Fig. 10. RTT, Bandwidth, and Service Delay Measurement Results

VII. DISCUSSION

We would like to point out some limitations of this work

and a few future directions. First, the proposed abstraction

381381

and APIs are not a comprehensive coverage of the regulatory

requirements. As the healthcare related laws are complex, it

is extremely difficult to express all requirements of a health-

care application especially when persons such as healthcare

providers are not proficient with technologies in computing

and networking. There should be a close collaboration among

networking researchers, medical researchers and healthcare

and clinic personnel, who together can refine the APIs and

learn from using the APIs in real clinical settings. Second, the

mapping of the APIs to underlying SDI is still an undergoing

work. We are able to identify some critical API functions that

are sophisticated enough to express the workflow in some

known use cases. However, the list of APIs tend to grow

larger while the research is on the way of addressing more

comprehensive real-world clinical use cases. There exist a

good number of related research projects on programming

languages to express the performance and other attributes of

a network and applications [20], [21], [22]. Yet, these prior

works are not the best fit in describing the needs in the SDI

environment. In contrast, we focus primarily on the abstraction

of the resource and control requirements for the abundant

home-edge-cloud resources. We see a good synergy between

our effort and the prior works, and we plan to explore a more

modularized compiler design in the near future.

VIII. CONCLUSION

In this work we aim to address the challenges in regulatory

compliance of healthcare applications on emerging software

defined infrastructure. As the network architecture and com-

puting paradigm have changed significantly, we propose a

holistic framework called CareNet for healthcare IT to support

the specification of regulation-compliant data sharing/process-

ing requirements, and further the mapping of such require-

ments to heterogeneous compute/network resources available

at different segments of the data path spanning from homes

to cloud. Our initial prototype and experimental results have

demonstrated the feasibility and performance. Going beyond

emulation experiments, our future work will focus on im-

plementing the case study in a real home environment that

is connected to an operational CORD deployment and cloud

platforms.

REFERENCES

[1] G. V. R. Inc., “Home healthcare market analysis by product (therapeutic,
diagnostic equipment, mobility assist, diabetes monitor, intravenous
pumps, holter monitors, heart rate meters, wheel chairs), by service
(rehabilitation services, unskilled home care, respiratory therapy,
infusion therapy, telemetry) and segment forecast to 2020,” Sep.
2014. [Online]. Available: http://www.grandviewresearch.com/industry-
analysis/home-healthcare-industry

[2] L. Peterson, “Cord: Central office re-architected as a datacenter,”
Nov. 2015. [Online]. Available: http://sdn.ieee.org/newsletter/november-
2015/cord-central-office-re-architected-as-a-datacenter

[3] “Paradrop official website,” 2015. [Online]. Available:
https://www.paradrop.io/

[4] L. Columbus, “83% of healthcare organizations are
using cloud-based apps today,” Jul. 2014. [Online].
Available: http://www.forbes.com/sites/louiscolumbus/2014/07/17/83-
of-healthcare-organizations-are-using-cloud-based-apps-today

[5] “XOS: Service Orchestration for CORD,” pp. 1–11, Jun. 2015.

[6] HHS, “Summary of the hipaa security rule,” 2017. [Online]. Available:
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/

[7] ASTM-F2761-09(2013), “Medical devices and medical systems -
essential safety requirements for equipment comprising the patient-
centric integrated clinical environment (ice) - part 1: General
requirements and conceptual model,” Sept 2009. [Online]. Available:
http://www.astm.org/cgi-bin/resolver.cgi?F2761-09(2013)

[8] “Openice: An open-source integrated clinical environment,” 2015.
[Online]. Available: https://www.openice.info/

[9] J. Plourde, D. Arney, and J. M. Goldman, “Openice: An open, interop-
erable platform for medical cyber-physical systems,” in ICCPS, 2014.

[10] C. Xu, “Carenet web-based demostration application,” 2017. [Online].
Available: https://acanets.github.io/index.html

[11] H. A. K. Khattak, H. Abbass, A. Naeem, K. Saleem, and W. Iqbal,
“Security concerns of cloud-based healthcare systems: A perspective of
moving from single-cloud to a multi-cloud infrastructure,” in 2015 17th
International Conference on E-health Networking, Application Services
(HealthCom), Oct 2015, pp. 61–67.

[12] D. B. Hoang and L. Chen, “Mobile cloud for assistive healthcare
(mocash),” in Services Computing Conference (APSCC), 2010 IEEE
Asia-Pacific, Dec 2010, pp. 325–332.

[13] J. Wan, C. Zou, S. Ullah, C. F. Lai, M. Zhou, and X. Wang, “Cloud-
enabled wireless body area networks for pervasive healthcare,” IEEE
Network, vol. 27, no. 5, pp. 56–61, September 2013.

[14] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and
secure sharing of personal health records in cloud computing
using attribute-based encryption,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 1, pp. 131–143, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2012.97

[15] A. Abbas and S. U. Khan, “A review on the state-of-the-art privacy-
preserving approaches in the e-health clouds,” IEEE Journal of Biomed-
ical and Health Informatics, vol. 18, no. 4, pp. 1431–1441, July 2014.

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, Feb
1996.

[17] O. A. open standards for the information society),
“Tosca simple profile in yaml version 1.0,” 2016.
[Online]. Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf

[18] “Cloudlab: Build your own cloud,” 2014. [Online]. Available:
https://www.cloudlab.us/

[19] “Advanced encryption standard.” [Online]. Available:
https://en.wikipedia.org/wiki/Advanced Encryption Standard

[20] A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi,
“Participatory networking,” in Proceedings of the 2Nd USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, ser. Hot-ICE’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228283.2228286

[21] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola,
and D. Walker, “Frenetic: A high-level language for openflow
networks,” in Proceedings of the Workshop on Programmable Routers
for Extensible Services of Tomorrow, ser. PRESTO ’10. New
York, NY, USA: ACM, 2010, pp. 6:1–6:6. [Online]. Available:
http://doi.acm.org/10.1145/1921151.1921160

[22] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT
’14. New York, NY, USA: ACM, 2014, pp. 213–226. [Online].
Available: http://doi.acm.org/10.1145/2674005.2674989

382382

