2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)

CareNet: Building Regulation-compliant
Home-based Healthcare Services with
Software-defined Infrastructure

Peilong Li*, Chen Xu', Yan Luo*
Department of Electrical and
Computer Engineering
University of Massachusetts Lowell
Lowell, MA 01854
*{peilong_li, yan_luo} @uml.edu,
t{chen_zu} @student.uml.edu

Yu Cao

Abstract—Healthcare network and computing infrastructure is
rapidly changing from closed environments to open environments
that incorporate new devices and new application scenarios.
Home-based healthcare is such an example of leveraging per-
vasive sensors and analyzing sensor data (often in real-time) to
guide therapy or intervene. In this paper, we address the chal-
lenges in regulatory compliance when designing and deploying
healthcare applications on a heterogeneous cloud environment.
We propose the CareNet framework, consisting of a set of
APIs and secure data transmission mechanisms, to facilitate
the specification of home-based healthcare services running
on the software-defined infrastructure (SDI). This work is a
collaboration among computer scientists, medical researchers,
healthcare IT and healthcare providers, and its goal is to
reduce the gap between the availability of SDI and meeting
regulatory compliance in healthcare applications. Our prototype
demonstrates the feasibility of the framework and serves as
testbed for novel experimental studies of emerging healthcare
applications.

Index Terms—Home-based Healthcare; HIPAA Compliance;
Software-defined Infrastructure; XaaS; CORD;

I. INTRODUCTION

The advances in information technology greatly accelerates
the innovations in healthcare technology recently. In particular,
home-based healthcare services such as rehabilitation, respi-
ratory therapy, telemedicine, and so on are being realized due
to the availability of low-cost sensors, effective data process-
ing capabilities and advanced networking technologies. The
prediction [1] reveals the demands of home-based healthcare
market will keep increasing rapidly by at least 5% per year to
the year of 2020, thanks to the cost savings and the comfort
provided to patients and people in need.

The growing trend of home-based healthcare has introduced
new challenges in data collection, transfer and sharing since
the patients and their care providers are often geographically
distributed. Existing healthcare infrastructures such as the
traditional close-environment healthcare and the emerging
cloud-based healthcare face vital obstacles as follows. Firstly,
traditional healthcare infrastructure, which assumes a closed

978-1-5090-4722-2/17 $31.00 © 2017 IEEE
DOI 10.1109/CHASE.2017.121

Department of Computer Science
University of Massachusetts Lowell
Lowell, MA 01854
{yu_cao}@uml.edu,

373

Jomol Mathew?, Yunsheng Ma?
iDepartment of Information Technologies
§Department of Medicine
University of Massachusetts Medical School
Worcester, MA 01655
{jomol.mathew, yunsheng.ma}@umassmed.edu,

environment in a single or multiple fixed location, cannot
efficiently analyze and share the patient data securely to
multiple stakeholders. For example, the sensor data collected
on patient from her residence have to be transferred to a
remote analytics service or to the doctors’ offices for diag-
nosis. Such data transfer over public networks requires both
intensive computing resources and sufficient protection which
are not readily available in traditional healthcare. Secondly,
the reliability of cloud-based healthcare hinges on the data
transmission performance between the end devices and the
cloud. Many emerging home-based mission critical health-
care services that require real-time responses and decisions
demand the network to be low-latency and high-bandwidth.
However, real-world cloud latency ranges from hundreds of
milliseconds to a few seconds because of the structure of the
Internet. Therefore, cloud by itself is not a feasible solution
to home-based healthcare. Thirdly, all patient data related
diagnosis and analytics activities should be supported with an
infrastructure that is regulation compliant. Patient information
must be protected to comply with regulations such as Health
Insurance Portability and Accountability Act (HIPAA) and
Health Information Technology for Economic and Clinical
Health (HITECH).

The emerging software-defined infrastructure (SDI) has
shed light on the challenges in existing healthcare infras-
tructure. While computing resources on cloud platforms are
flexible and cost-effective, there are new resources provisioned
at the network edges for applications requiring high throughput
and low latency. CORD [2] is such an example of edge
based computing platform residing in the central office of
a telco. Paradrop [3] contains programmable resources in
a WiFi router deployed inside a patient’s premises. These
heterogeneous resources at every part of the network (end
point, edge and core) bring both unprecedented opportunities
for application design and challenges of performance and
compliance verification.

There exists a gap between the availability of emerging SDI

@) CO‘ pute
1(!) I
& SOCIety

and deploying regulation compliant healthcare services on top
of that. Both technical and non-technical people desire tools
to assist or even automate the design and verification process.
In this paper, we are motivated to achieve the following goals.
(1) We propose a healthcare framework called “CareNet” that
enables the employment of a hybrid home-edge-core cloud
to render high performance and real-time responsiveness for
the home-based healthcare services. (2) We sought to propose
a secure end-to-end data transmission mechanism and an
advanced access control scheme so that every networking
transaction on CareNet has to be compliant with the HIPAA
technical safeguard. (3) We design a suite of high level
Application Programming Interfaces (API) that exploit the
underlying SDI resources to help various stakeholders to
express their workflow and simplify the management of the
healthcare resources without knowing the technical details.
This work is intended to initiate the discussion among network
researchers, medical researchers, healthcare ITs, patients and
clinical staffs.

This paper is organized as follows. Section II provides
the background of the work by describing in detail the
hybrid cloud architecture and performance and regulatory
requirements. Section III and Section IV present the design of
CareNet system and the design of CareNet APIs respectively,
followed by use case study in Section V. We evaluate the
effectiveness of our preliminary CareNet testbed in Section
VI and discuss the limitations of the work in Section VII, and
conclude the paper in Section VIII.

II. BACKGROUND
A. Software Defined Infrastructure for Healthcare

Healthcare organizations are gradually adopting cost-
effective hybrid cloud services for both administrative tasks
and clinical data [4]. For instance, the clinical data could be
stored on a private cloud, whereas the equipment inventory
data could be hosted on a public cloud. However, as the sensor-
rich home-based care environment becomes particularly help-
ful for caring patients with chronic diseases, the sensor data
originates from patients’ premises and penetrates across the
boundary of the conventional healthcare networks. The sensor
data (e.g. video) is to be processed by medical researchers
and then the analytical results are consumed by doctors, in
real-time in most cases, to guide therapy or intervention.
The transfer and processing of the data require much more
networking and computing resources than simple medical
history data. Such application scenarios are quite new to all the
stakeholders, who are required to ensure the performance and
compliance of the system hardware and software architecture.

Recently, the technology to exploit abundant computing and
networking resources at telco central offices on the network
edge, has enabled the feasible development of an interactive
home-based healthcare model for care providers. As depicted
in Figure 1, a home-based healthcare model consists of three
major components: 1) edge - at homes, patients’ sensor data
are collected by various monitoring devices and the sensor
data are transmitted and aggregated on a computing device

374

(called “HomeNode”) such as an enhanced WiFi router at the
premise. At the network edge, telcos provide computing racks
and white box switches [2] to support flexible data processing
right after the data streams leave patients’ homes. It is vital to
keep computing resource at the edge of the network to support
latency-sensitive applications and services. The edge nodes can
also support intensive computation and stream mining, which
process the data and reduce the data volume at a very early
stage, thus cutting down delays and saving network bandwidth;
2) hospital private cloud - only hospital ITs and doctors can
access private cloud. The private cloud serves as an enterprise
scale data center and can be used to store and process patient
medical records. But the private cloud is not a viable option
for some care providers such as rural clinics; 3) public cloud
- both patients and doctors can access the public cloud. The
public cloud provides extra richer computation and storage for
data analytics, and hosts REST service for mobile and web

applications.

Data
Center

Webcam ((

s

b4

)

HomeNode

Patient
o0

1=

Smart
Phone/Tablet

Edge Cloud

Gateway

Hospital Private Cloud

Fig. 1. Home-based Healthcare

The techniques of SDI is fundamental of the proposed
home-based infrastructure, thanks to the programmability of
network with software-defined networking (SDN) and the
feasibility of resource management in cloud with OpenStack.
Recently, the novel Everything-as-a-Service Operating Sys-
tem (XOS) emerges to provide a set of abstractions so
that application builders can fully leverage the underlying
programmable infrastructure. As depicted in Figure 2, XOS
defines a coherent framework that consists of both OpenStack
and OpenNetwork Operation System (ONOS) for combining
SDN, network function virtualization, and cloud services, all
running on commodity hardware, to build a cost effective and
agile cloud infrastructure.

Aooess-ce Subscriber- Internet- CDN Monitoring-

X0S

4//‘/‘/
MMW
‘ OpenStack / Docker !

J e %“J VOLT vRoular]

ONOS

Fig. 2. Relationship between XOS, OpenStack and ONOS [5]

B. Regulatory Compliance Requirements

We hereby attempt to provide an overview of requirements
on the healthcare regulatory compliance, with the understand-
ing that healthcare regulations are very complex and broad. We
consulted with medical researchers, healthcare ITs and doctors
who work with patients on a daily basis, and try to understand
the implications on networking technology. We learn that there
are three major components in complying with the US HIPAA
standards: Administrative, Physical, and Technical [6]. These
guidelines stipulate that all medical practices must ensure that
all necessary measures are in place while saving, accessing
and sharing any electronic medical data to keep patient data
secure. Lack of compliance to the HIPAA security standards
could lead to large fines and in extreme cases even loss
of medical licenses. While the administrative and physical
safeguard guidelines pertain mostly for employees’ security
awareness and training, and facility related access control and
security, the technical safeguard regulates the data storage and
retrieval and the security of the network, which is addressable
with computer techniques. We therefore only focus on the
technical safeguard in this paper.

Technical safeguards are becoming increasingly important
due to technology advancements in healthcare. Care providers
are faced with the challenge of protecting electronic protected
health information (ePHI), such as electronic health records,
from various internal and external risks. To reduce risks to
ePHI, covered entities must implement technical safeguards as
good business practices. Table I lists a collection of Technical
Safeguard standards and certain implementation specifications,
which includes 4 regulation sections: access control, integrity,
person/entity authentication, and transmission security. A cov-
ered entity may use appropriate security measures that allow
it to reasonably implement the standards.

TABLE I
TECHNICAL SAFEGUARD REQUIREMENTS

Standards
Access Control

Sections I tation Specifications
§164.312(a)(1) Unique User Identification (avoid disclosure
of user information)

Emergency Access Procedure: procedures for
obtaining necessary ePHI during an emer-
gency (privilege endorsement)

Encryption and Decryption: a mechanism to
encrypt and decrypt ePHI

Mechanism to Authenticate ePHI

Implement procedures to verify that a person
or entity seeking access to ePHI is the one
claimed

Integrity Controls: the security measures to
ensure that electronically transmitted ePHI
is not improperly modified without detection
until disposed of

Encryption: a mechanism to encrypt ePHI
whenever deemed appropriate.

Integrity
Person/Entity
Authentication

§164.312(c)(1)
§164.312(d)

Transmission
Security

§164.312(e)(1)

C. Prior Work on Healthcare IT

Employing advanced computer techniques to facilitate the
management of healthcare IT has been a hot and concerning
topic across ITs, medical researchers, network professionals,
care-providers, and the government [7], [8], [9]. Now with the
dawning of the age of Cloud and Xaa$, it’s rather demanding

375

to have collaborative cloud-based platforms and tools for
easy, fast, efficient, and regulation-compliant management of
healthcare IT.

ASTM International first proposes F2761-09 [7] as standard
that defines the patient-centric Integrated Clinical Environment
(ICE). F2761-09 intends to improve medical device error
resistance and improved patient safety by providing capabili-
ties such as comprehensive data acquisition for the electronic
medical records, the integration of devices to enable real-time
decision support, safety interlocks, and closed-loop control.

As an open extension to ICE, Plourde et al. [8], [9] recently
design an open-source prototype called OpenICE to create a
community implementation of an Integrated Clinical Environ-
ment. The design of OpenICE framework aims to integrate
both healthcare devices and clinical applications to existing
Healthcare IT ecosystems. For example, the OpenlCE works
as a distributed data aggregation and processing system that
enables users to convert heterogeneous medical device data
from supported devices into a predefined data model, and to
exchange that data with demonstration clinical applications on
a different machine (or machines).

However, none of these prior arts address three critical
emerging issues in home-based healthcare. Firstly, existing
arts such as OpenlICE are designed for hospital-based clinical
applications. However, home-based healthcare involves lots of
more emerging issues such as remote monitoring, collabora-
tive data sharing, and user access control, etc. Secondly, as
traditional IT infrastructure is outdated by flexible and on-
demand cloud services, how should a collaborative healthcare
IT framework look like to take advantage of the ubiquitous
cloud resources (edge, private, and public, etc.)? Thirdly,
since healthcare IT requires regulatory compliance everywhere
that involves with patients’ data, how can a management
framework enforce compliance for the system manager au-
tomatically?

With the aforementioned questions, we are motivated to
explore the solutions with our proposed CareNet framework
in the following sections.

III. SYSTEM DESIGN

To leverage the emerging SDI technologies in a regulation
compliant manner, we propose in this section the CareNet,
a heterogeneous computing and networking framework for
providing effective healthcare to people living in a home
setting equipped with advanced and versatile sensors. The
goal of this section is to present the high level architec-
ture of CareNet, and describe the key components in this
framework. We also outline a comprehensive patient data
processing/accessing/sharing mechanism that is part of the
CareNet framework to enforce the regulation compliance.

A. The CareNet Framework

A high-level overview of CareNet framework is shown in
Figure 3. The major distinctions between the conventional
healthcare network and CareNet are the deployment of sen-
sors at patients’ premises and the presence of heterogeneous

edge/cloud computing resources at different segments of the
system.

We explain the architecture of the system with the run-
ning flow of sensor data as follows. Firstly, in this human-
centric framework, the healthcare activities are driven by
sensor data generated around patients. Abundant body sensors
and monitoring devices are installed on patient’s body or at
patient’s home. Then, the heterogeneous sensor data stream is
aggregated and preprocessed at an enhanced WiFi router or a
small compute system called “HomeNode”. The HomeNode
runs a daemon process to associate each data stream from the
sensors to an isolated application in a docker container for
processing. Secondly, the container applications communicate
with the CORD edge cloud at telco’s central office that is
equipped with rich software-defined compute, storage, and
network resources. Leveraging such edge computing resources
greatly reduces raw data volume that needs to be transferred,
and highly reduces the response latency for some time-
sensitive applications. The CareNet API, as a higher level
abstraction of XOS running on CORD, renders the interface
to manage the underlying edge resources. Every CareNet API
call must be authenticated with the methods described in
the next subsection to ensure regulatory compliance. Thirdly,
the preprocessed data will be encrypted and then reach to
the hybrid cloud domain via the Internet for more powerful
and scalable computing and storage. The hybrid cloud also
hosts RESTful service for all parties to access the information
from their web or mobile applications. A prototype web-based
CareNet application is hosted on our demonstration website
[10].

P 2Z
Sensors | ”*‘,_ Qg Ioz-
| ==
| = — =
Wired/
Wireless | (((T))) k
Network | CORD at ISP Edge
] HomeNode ———
| GUI v
|] CareNet API
Aggregaﬁonl % Authentication 'ﬁ
Gateway on £ S
Edge | 9 X0S Pol |
| 5 OpenStack | ONOS —
Pl 3 Aalaal =6 ISP IT
8 28|28 58 Staffs
! HEHE AR
| on (Pl 20
|
|
Internet | Internet
| Hospital Private
. Public Cloud
|
| Cloud) p.g (4
! RestT || 7 . A[ResT
| A Hospital IT
. PP Staffs App
Hybrid Cloud | Interface [¥-.. - .- F| Interface
Infrastructurel L@
I as |
Cloud Doctors - Cloud
| Resources . Resources
|
End Users/
~~~~~~~~~ > Control Path Patients
——> Data Path

Fig. 3. Architecture of CareNet

376

B. Patient Data Security

The security of patient-data storage and outsourcing is a
major concern of any cloud-based healthcare platform [11].
Existing works [12], [13], [14], [15] in this area have looked
into two important data security issues in this area: 1) the
security of distributed data storage for patient data across
multiple segments of the network, and 2) the fine-grained
access control for the collaborative sharing of private patient
medical data. However, as regulatory compliance and hetero-
geneous computing resources are introduced into the proposed
infrastructure, we have to consider more emerging issues on
data security as follows.

Firstly, how to design a secure end-to-end network frame-
work that consists of all the CareNet components - the
HomeNode, the edge cloud and the core cloud, as regulated by
HIPAA transmission security (164.312 (e))? We propose the
secured networking architecture in Figure 4. From left to right,
the solid arrows represent the data flow. Security-sensitive
network flows that come from HomeNode will pass through
an Internet Protocol Security (IPsec) protected network link
to avoid wiretapping, while other flows from HomeNode such
as entertainment streaming, gaming, etc. will stay in the non-
protected path to reduce the encryption/decryption cost. Such
network data filtering is controlled by the SDN controller
residing at telco’s central office. The layer 3 IPsec security
method can potentially be replaced by layer 2 solutions such
as Media Access Control Security (MACsec) for less latency
overhead but higher CAPEX. Once data is processed after
arriving at telco’s CORD cloud, it will be encrypted before
going into the untrusted network domain. For clients to access
the processed data, they need to acquire a proper security
key managed by the authentication system that comes with
the CareNet API. It is worth noticing that data only flows
from trusted domain to untrusted domain in one direction
so that patient information won’t be tampered by malicious
information. From right to left on Figure 4, the dotted arrows
elaborate the management flow. Commands and requests from
clients’ side have to pass through a double authentication
scheme before entering the trusted domain. First of all, to
establish the connection between clients and CareNet server at
CORD over the Transport Layer Security (TSL) tunnel, clients
need to acquire a proper certificate such as a SSH certificate.
Second of all, requests made by calling the CareNet API will
need to be authenticated. The authentication process will be
elaborated in detail in the next point. The double authentication
scheme ensures both network connection and access control
are secure.

— Data Flow v o

----# Management | CareNetAPI

Flow

Private Cloud

|
: i
Port | !
Forwarding; | . Request
H |
i N

o D
IPsec H \\ f

Upstream Router . ,,,‘_/'

i
CORD at ISP : -~ Request
Trusted Domain |

Untrusted Domain Public Cloud

Fig. 4. The Transmission Security Compliant Network Framework



Secondly, HIPAA regulates another three important stan-
dards in technical safeguard: access control (164.312 (a)),
integrity (164.312 (c)), and person or entity authentication
(164.312 (d)), which require the integrity and protection of
ePHI under the agreement with multiple parties. Specifically,
patients have the right to delegate permissions to different
data consumers and the permissions are subject to change
in different situations such as time-out and security key
revocation. Therefore, based on the idea of dividing the system
into public/private domains [14], we propose the data access
control system in Figure 5.

The system involves different parties as the participant:
e.g., the data owner, who generates the data and controls the
authorized user list and the associated attributes; authorized
users, who access the health information based on access
policy; and public users, who can access the patient data upon
the attribute agreement. When a user registers with personal
details and a password, the user is provided with a Global
Identifier (GID), which uniquely identifies the user in the
system. In the private domain, the users can then login using
the GID and password combinations by which the users are
authenticated. The authenticated users can send requests to
data owner to request the access to the information. If the
users are not granted with the access, they can only view
the data based on the roles the user plays in the system.
For the users come under public domain, they should firstly
(D request the data. If (2) the access privilege of the user
satisfies the access policy, then the (4) Attribute Authority
(AA) generates the key by (3 replacing the GID with tickets
from the Ticket Generator. Thereafter, the generated private
key and the encrypted data are shown to the user as they
provide the key password. The data is then (5) decrypted using
the private key and displayed.

There are 3 major advantages of the proposed data access
control mechanism which differ from the traditional role-based
access control (RBAC) [16]: 1) the authentication + ticket
generation mechanism enhances the identity authentication
process. The usage of ticket sessions instead of GID reduces
the risks of GID leak, which protects patient information
from being hacked. This mechanism enables the authentica-
tion system to be collusion resistant against users, attribute
authorities and between user and authorities; 2) user revocation
can be easily conducted by updating authorized user list and
attribute storage in both private and public domain. Data owner
therefore retains the use and disclosure rights of the protected
PHI to other users as required by HIPAA privacy practice; 3)
the proposed data protection model matches the CareNet API
abstraction which is going to be discussed in Section IV, so
that one can effectively express the data access requirements
to authorized list and attribute storage by using the API.

IV. THE CARENET API

To facilitate the usability of CareNet framework, we need
well-defined and high-level APIs whereby both technical peo-
ple like network operators and application developers, and
non-technical people such as care providers and patients can

371

Public Users Data
(Doctors, ITs, etc.) Owner
e @ e ————— Generate
R I LN
A hN ’
@ A 8 /
+ ! o
Authentication /@ Public Private | ./
Service & Domain Domain | , . Authorized
enerated ; Users
Private Key ’ 4
' 17 a8
® Attributes Storage /,/ iKey
(2
; @ : Key-
3 Attribute Attribute \l Authorized 5 Policy
Authority 1 Authority N User List ABE
Firewall
Expire
Tickef Key
G;ikr::or Gerlft(:l},ator |<<— Revocation & Update
Regeneration
Delegate ¢
Key Backup Key
Storage Storage
® Tickets
| ~~~~~~ > Data flow —-—->Authentification Control —> Execution Flow

Fig. 5. Patient-Data Access Control

express their requirements on data collection, sharing and
processing. In this section, we first introduce the abstraction
model in CareNet framework, and then present the APIs and
explain their usage in details.

A. CareNet Abstraction

The high-level abstraction of CareNet framework aims to
explain the major roles of objects and how they may interact
with each other to express the workflow. The overall abstrac-
tion is illustrated in Figure 6, and we explain the meaning of
each component as follows.

Policy Repository 1

Patients ~ _-
- Service 1

Container B

Service 2

. Policy Repository M

Policy 1

0 Q000

'\
N User
W

Fig. 6. API Abstraction
o Abstraction 1 - Patients: For a human-centric infras-
tructure, the fundamental elements in the abstraction
are the patients that can benefit from various services.
To map the many-to-many relationship between patients
and care-providers, our proposed abstraction provides the
flexibility that each patient can access different services,



and different patients (e.g. family members) can access
the same service. Patients are the data sources in our
model, and they have the ultimate authority to grant
access policies to various data users.

Abstraction 2 - Services: The “Services” presents an
abstraction for the applications and the associated daemon
processes that run across the CareNet framework. As the
design of regulation compliant IoT applications requires
data privacy preservation at endpoint, we employ Docker
containerization technique to isolate IoT applications into
a self-contained service. Each service consists of one or
multiple running application(s), data exchange method
among the applications, communication interfaces with
the CareNet daemon, and the generated data stream.
When initiated by the CareNet API, each service is given
a unique service name and ID.

Abstraction 3 - Groups: The API abstraction intro-
duces the “Groups” concept that represents a collec-
tion of services with the associated patients and effi-
ciently describes the service-service, patient-service inter-
relationship properties. Services in the same group have
to follow the same policy to be processed and to access
the resources. The “Group” abstraction renders a clean
and effective generalization to map the high-level require-
ments to the underlying constructs in XOS framework,
and facilitates the scalable design of patient-side applica-
tions.

Abstraction 4 - Resources: Since the CareNet infrastruc-
ture consists of both edge and core cloud computing re-
sources, we can treat CareNet as a resource-rich platform
where each service group can maintain a configuration
of its accessible resources. To be specific, resources in
the CareNet infrastructure include micro applications and
services that build upon the underlying virtualized hard-
ware. For example, we can opt for compute pools with
various CPU models/numbers and memory sizes, block
(Cinder) or object (Swift) data storage, and high/low
bandwidth high/low latency network paths with various
service chains, etc.

Abstraction 5 - Users: “Users” abstracts the parties that
are involved in the CareNet infrastructure management.
Users can be telco ITs, doctors, nurses, hospital ITs,
patients, patient’s relatives, etc., and they are in charge
of designing various policies on demand, such as au-
thentication policies, and resource assignment policies for
services, etc.. It’s worth noting that users have different
levels of priority, which will determine the priorities of
the policies written by users. For example, patients has
the root priority of defining data access control by default
and (s)he must assign the attribute authority as described
in subsection .

Abstraction 6 - Policy: “Policy” defines the CareNet
infrastructure management behavior - it directs differ-
ent service groups to access different resources by the
policy defined configuration. Different users design their
collection of policies for a service group to serve for

378

their purposes. For example, patients has the right to
specify the authorized user list and the attribute authority
as required by HIPPA regulation. Application developers
need to declare what services for the patient data require
low network latency for effectiveness. ITs are responsible
for defining the optimal network configuration for the
overall system.
Policies offer a clean method to describe how service
groups utilize resources in non-technical terms. It’s im-
portant to notice that policies are designed to be reusable.
Once a user creates a policy for a certain group, (s)he can
reuse it repetitively for other groups. More efficiently,
users other than the patients can share their policies
to others in the CareNet community, since only pa-
tients’ policies involve HIPPA compliance concern. The
reusability highly reduces the labor to update and rewrite
policies, thus improves portability, accuracy, and agility.
o Abstraction 7 - Policy Repository: The design of
“Policy Repository” contributes another charm in our
API abstraction. Repository allows different policies to
co-exist and work together based on different roles of
the policy writer. If still using the same example in
policy for instance, three parities - patients, doctors, and
ITs can design policies from different aspects to work
for the same service group. This abstraction enables
a highly collaborative management fashion so that all
parties in CareNet infrastructure can participate to enforce
regulatory compliance and improve system efficiency.

B. CareNet APIs

We propose a list of APIs to facilitate the management of
CareNet with the aforementioned abstractions. The APIs fall
into three categories: 1) service management - in CareNet
framework, services created for the IoT endpoint devices
must be containerized to maintain service isolation. A set of
APIs are used to create and terminate containerized services.
Moreover, clinic or hospital trusted third party application can
be installed/removed with the agreement between patients and
the care-providers; 2) performance related management -
the network flows from different services have different perfor-
mance requirements determined with the knowledge from both
doctors and technical ITs. Some example requirements are:
health-critical traffic (low latency requirement) versus regular
bio-sensing traffic (no latency requirement); block storage for
databases, file-exchange, etc. versus object storage for video
processing and data backup, etc.; and high versus low perfor-
mance computing resources etc.; and 3) policy enforcement:
services in the same group have to follow the same policies in
the policy repository. For example, to write the access control
policy for Service A, patients need to first define the authorized
user list, and assign different attribute authorities to different
users. Then doctors will specify what kind of requirement they
need for this service in order to guarantee the timeliness and
effectiveness of the service results. ITs then need to look at
the technical requirements of the service so that the service
runs smoothly in the system. All the policies will finally merge



together in the same repository to work collaboratively with
different levels of priority.

The detailed API definition and description are depicted in
Table II and we demonstrate a concrete use case by leveraging
the APIs in Section V. The design of the APIs renders a unified
interface for care providers to manage the proposed CareNet
framework and promotes the flexibility of policy specification
and compliance enforcement.

C. CORD Configuration with CareNet APIs

We design an automatic CareNet API conversion mecha-
nism to help translate commands written with CareNet APIs
into CORD hardware configurations. As demonstrated in
Figure 7, the CareNet system allows users to first specify
their requirements through the CareNet APIs or use web/app
graphic user interfaces that are built upon the CareNet APIs.
We call this step the requirement submission. Then the user
requirement submission that are written with CareNet API
will be fed into our designed API parser. The API parser
applies regular expression (RegEx) technique to extract the
keywords from requirement submission and find the argument
domains within each API function to generate a JSON-
formatted intermediate representation (IR). After obtaining the
JSON IR, we use a translator to map the key-value pairs in
IR to a Topology and Orchestration Specification for Cloud
Applications (TOSCA) [17] formatted configuration file. Since
TOSCA file is used as the interface configuration to the XOS
system, our mapped TOSCA configuration can then eventually
configure the CORD hardware.

Command
written with
CareNet API

CareNet Ap| | YSON format | rangjator onfigure

Parser

XOS TOSCA
configuration

CORD
Hardware

Representation

Q
addresses_servicel:
properties:

v v
createService
("video", "initiate",
123, 888, "service1")

addresses: 10.192.30.1
host_port: 123
client_port: 888

"service": "video",
"operati itiate",
"host-port": 123,

"container-port": 888,
"dependency":
{"service0"}

service#servicel:
image: "video"
requirements:

node: service#service@

Fig. 7. Configure CORD Hardware with CareNet APIs
V. CASE STUDY

The CareNet framework and the APIs can address several
research problems of strong clinical importance and urgency.
These problems arise from real-world scenarios where the
patient risks can be identified and the timely intervention and
interaction between care providers and patients will facilitate
speedy recovery. We have identified an essential real-world
home-based stroke recovery use case that can leverage the
proposed work. We present for the use case the significance of
employing CareNet framework, and the simplicity and agility
of regulation compliant management with CareNet APIs.
Use Case: Kinect-based Real-time In-Home Stroke Reha-
bilitation

While it is a general consensus that post-stroke rehabilita-
tion can substantially help people achieve the best possible

379

long-term outcome, the economic cost associated with in-
patient post-stroke rehabilitation could be devastating for many
stroke victims. To help the stroke survivor to reduce the cost
without sacrificing healthcare quality, home rehabilitation has
emerged as a valuable supplement to high cost outpatient
facilities and/or nursing facilities. In addition to cost saving,
home rehabilitation offers great flexibility, which allows the
patients to tailor their rehabilitation program and to follow
their own schedules.

One of the promising solutions is to develop a new in-
home stroke rehabilitation system using new gaming consoles,
such as the Microsoft Xbox Kinect. By capturing raw data
from the Xbox Kinect sensors, we can track skeletal positions
of the patient as they attempt physical rehabilitation exer-
cises, evaluate how the patient is accomplishing the exercises,
and score them accordingly. However, there are two major
concerns for the care providers to render HIPAA/HITECH
compliant interactive healthcare. (1) Security: because of the
limited computation power of a clinic/hospital, the patient’s
video stream need to be transmitted over a public network
and then to a computing platform (e.g. private hospital cloud
or public cloud) for processing. Therefore, patient’s data must
be encrypted at network edge. In addition, before reaching the
computing facility, care providers have to ensure that electron-
ically transmitted patient data is not improperly modified as
required by the HIPPA “integrity control”. (2) Performance:
a typical Kinect user scenario has a data generation rate at
300 Mbps (640x480 32-bit RGB images are generated at a
30 frames per second (fps)). Therefore, significant bandwidth
is required to transfer such a large volume of video stream.
In practice, patients also have to wear body sensors, such
as a smart watch to collect the accelerometer data and life
characteristics (e.g., heartbeat, blood pressure). The data from
body sensors are usually given low latency network priority
over the Kinect video stream since bio-sensor data is often
utilized to issue health-critical warning events, such as fall
detection.

There are 3 major steps that leverage the proposed frame-
work and APIs to express the use case workflow. The first
step is the creation of services for different IoT sources. As
suggested by regulatory compliance, “security at endpoint”
is the key resort to build a secure IoT environment. There-
fore, care providers need to create logically isolated services
for each endpoint device. Besides, the service creation API
permits the service dependency, which greatly facilitates the
form of service chaining. The second step is to write different
policies for different services, as the allocated resources for
each service must meet the performance requirements by the
care-providers. Thirdly, CareNet APIs offer the capability to
validate the data integrity at any time of the data processing
and issue early warnings for data discrepancy.

We demonstrate the pseudo code as follows.

//*
* Psuedo Code Demo For Stroke Rehabilitation
x/



TABLE II

API SPECIFICATION

No. | API

Explanation

1 bool createService (char* serviceTemplate, char* cmd, unsigned int
hostPort, unsigned int containerPort, char* serviceName, Depen-
dentService deplist)

Spawns a container to run a specific application from the CORD service template named
“serviceTemplate”. DependentService is a data structure that list all existing dependent services
for the current service. The function returns true if the container was successfully created,
otherwise the function returns false.

2 bool removeService (char* serviceName, unsigned int delay) Removes the service with the given service name. Waits up to delay seconds before sending
SIGKILL signal to container. The function returns true if the container was successfully removed,
otherwise the function returns false.

3 unsigned int createPatient (PatientInfo patient ServiceList serlist) Creates a patient with the provided patient information and the patient’s associated services.
PatientInfo is a JSON-formated key-value data structure. ServiceList is a list of service names.
Returns the patients unique ID.

4 bool removePatient (unsigned int patID) Removes a patient with the provided patient ID. Returns boolean value indication success or
fail.

5 unsigned int createRes (ResourceList rlist) Creates an accessible list of resources for certain service groups on the provided infrastructure.
ResourceList is a JSON-formated key-value data structure. Returns the resource list ID.

6 bool removeRes (ResourceList rlist, unsigned int resID) Removes a sub-list of resources rlist from the original resource list with ID=resID. Returns
boolean indicator.

7 unsigned int createUser (UserInfo user) Creates a user by using the provided user information. Returns a unique user ID.

8 bool removeUser (unsigned int ulD) Removes a user by using the provided user ID. Returns boolean indicator.

9 unsigned int createPolicy (Policy p) Policy is a JSON-formatted data structure that contains multiple key-value fields. Some important

key fields include ‘“resource”, “authentication_list”, “attribute_authority”, etc. This function

creates a new policy with the field of data indicated in Policy “p”. Returns the policy ID.

10 unsigned int createRepo (PolicyList polist)

Creates a new policy repository with a list of policy IDs. Returns the repository ID.

11 unsigned int createGroup (ServiceList serlist, unsigned int repolD) Creates a service group with the provided service list and a policy repository ID.
12 void addServiceToGroup (char* serviceName, unsigned int gID) Add an existing service to a service group with ID=gID.
13 void rmServiceFromGroup (char* serviceName, unsigned int gID) Remove an existing service from a service group with ID=gID.

14 bool validateService (unsigned int gID, char* key)

Used for services that need to talk to public cloud. Validate the given service group ID to check
if encrypted data has been modified. Returns true if data is safe.

// Step 1: Create the encryption, Kinect
// add service dependency.
createService ("AES-Template",
containerPortl, "Encryption",
createService ("Kinect-Template", "initiate",
containerPort2, "Kinect", "Encryption");
createService ("Watch-Template", "initiate",
containerPort3, "Watch", "Encryption");

"initiate", hostPortl,
NULL) ;

// Step 2:
// policy

Allocate system resources to the services;

and policy repository; create service group.

resKinect = createRes (..., "max_delay ms": "auto",
"bandwidth": 300);

resWatch = createRes (..., "max_delay ms": 3,
"bandwidth": "auto");

resEncrypt = createRes (..., "max_delay_ms": "auto",
"bandwidth": "auto");

policyKinect = createPolicy ("resource": resKinect);

policyWatch = createPolicy ("resource": resWatch);

policyEncrypt = createPolicy ("resource": resEncrypt);

repoRehab = createRepo ({policyKinect,
policyEncrypt});

policyWatch,

groupKinect = createGroup "Encryption"},
userlist);
groupWatch = createGroup

userlist);

({"Kinect",

({"Watch", "Encryption"},

// Step 3: Validate the integrity of data before

// reaching the computing facility.

if ( ! validateService (groupKinect, key) )
issueWarning ("Kinect data discrepancy\n");

if ( ! validateService (groupWatch, key) )
issueWarning ("Watch data discrepancy\n");

and watch service,

hostPort2,

hostPort3,

Create

versions are listed in Table III for reference.

Host Machine on Cloudlab
CORD powered by XOS

I
1=}
3]
@
z
19
a
@

J08UL02IBU|
pajeInw3

Fig. 8. Experiment Platform

TABLE III
TESTBED SPECIFICATIONS
Ttem [ Specifications |
Host CPU 2 x Intel E5-2630 v3 8-core CPUs at 2.40 GHz

(Haswell w/ EM64T)
128GB ECC Memory (8x 16 GB DDR4 1866 MHz
dual rank RDIMMs)

Host Memory

VI. EVALUATION

In this section, we demonstrate the implementation of the
CareNet prototype and the effectiveness of the design with

preliminary experiment results for the use case.

While working towards building a self-operated CORD

VM CPU 6-core QEMU Virtual CPU version 2.0.0 proces-
sors at 2.4 GHz
VM Memory 16 GB
VM Disk 256 GB
Host OS Ubuntu 14.04.4

XOS version
CORD version
ONOS version

branch “cord-1.0"
branch “cord-1.0"
1.8.0

use virtual machines to emulate the HomeNode (for patients),
provision the CORD (for networking and edge computing),
and design the interconnection in between the HomeNode
and CORD. The whole system is then connected to the
Internet, so that the system can access the untrusted domain,
i.e. Amazon AWS public cloud, for intensive computation.
The specifications of hardware, virtual machines, and software

testbed, we are currently testing our prototype on CloudLab
[18], which offers transparent control and visibility of the
cloud down to the bare metal. As demonstrated in Figure 8, we

As described in the previous use case, we want to demon-
strate how to configure the service chain with the two services

380



“Kinect”+“Encryption” on our CareNet framework in Figure
9. Users firstly specify their requirements by using CareNet
APIs as shown in the use case. Then the requirement submis-
sion is fed into the conversion tool in Figure 7 to generate
the TOSCA configuration file. The following code snippet
shows a portion of the converted TOSCA configuration file
that is used to configure the CORD hardware. After the service
configuration, we then need to call the XOS APIs to create
services, slices, and instances etc. as described in the XOS
literature [5].

i IP: 10.193.30.2 IP:10.193.30.1 |
| Gateway: 10.193.30.1 Gateway: default!
v

Fig. 9. An Example of SDI Framework

/*
« Configuration file snippet for CORD Services

k/

// Part of sl.config
addresses_kinect:

type: tosca.nodes.AddressPool
properties:
addresses: 10.193.30.1/25

10.193.30.1
02:42:0a:a28:00:01

gateway_ip:
gateway_mac:

// Create the Kinect service

// Add service dependency to Encryption service
service#kinect:
requirements:
node: service#encryption

relationship: tosca.relationships.TenantOfService

// Part of s2.config

// C e the Encryption s
// Add service dependency to Kinect
service#service2:

ce

Service

requirements:
— addresses_kinect:
node: addresses_kinect
relationship: tosca.relationships.ProvidesAddresses

To test the service performance on CORD, we bring up
another two services - Virtual Subscriber Gateway (vSG), and
the official “Example Service,” offered by CORD community.
For all three services, we initiate user requests from HomeN-
ode to CORD to generate the network traffic, and test their
performance.

The vSG service functions as a Consumer Premises Equip-
ment (CPE) that runs a bundle of subscriber-selected func-
tions such as access restriction, access diagnosis, firewall and
bandwidth metering, etc. The vSG service resembles L4-7
network service chaining that may be required by ITs who
operate on both ISP edge and hospital private cloud. The
Example Service works as a simple HTTP server - it responds
with human-readable strings upon user requests. We employ

381

Example Service to resemble the wearable watch service in the
use case, because a doctor need to request for the real-time
patient bio-metrics and life-critical warning signals through
the HTTP protocol. The Video Processing Service is deployed
to encrypt the video stream in use case using Advanced
Encryption Standard (AES) [19]. We employ Video Processing
service to protect the patient’s identity especially when the
information is transmitting on the Internet.

We measure three performance metrics of the 3 tested
services - network round trip time (RTT), service network
bandwidth allocation, and the service delay. RTT indicates
the network link delay of the service environment; bandwidth
allocation stands for the network bandwidth utilization of a
service; and service delay denotes the computation time for the
service application. As shown in Figure 10, Example Service
only endures less than 2 ms of RTT, while retains 5 times
more network bandwidth than the other two services since
Example service is given low network latency links and we
do not specify the bandwidth requirements. The vSG service
observes the lowest service delay because it is less compute
intensive. Since we do not specify the network speed and
bandwidth for vSG, the system will automatically choose
the most available resources for it. The Video Processing
Service causes 32x more traffic delay than Example Service
because of the computation complexity and has almost the
same bandwidth as vSG. Although Video Processing Service
has a relatively higher service delay comparing with the other
two services, 7.81 ms is still considered as very low comparing
with the popular cloud applications running with hundreds and
thousands of milliseconds. The service delay of the chained
Video Processing Service can be divided to two parts: 1)
transmission/processing delay around 8.708 milliseconds; and
2) encryption delay around 0.0015 milliseconds. It’s worth
noting that the service startup time (the time for a service
to get on-board) is about a few minutes, because a service
needs download the required dependencies from the Internet
and configures the VM images. Luckily, the service startup
time is a one-time investment, therefore should not affect the
user experience.

200 RTT, Bandwidth and Service Delay

® Example Service 252

250 -
% VSG Service

200 # Video Processing Service
150

100

43.636 50 52.9 52.85

50 o Wy,
w9 . '

. 1547 % - %2 0403 004 7EL
RTT (ms) Bandwidth (Mb/s) Service Delay (ms)

Fig. 10. RTT, Bandwidth, and Service Delay Measurement Results

VII. DISCUSSION

We would like to point out some limitations of this work
and a few future directions. First, the proposed abstraction



and APIs are not a comprehensive coverage of the regulatory
requirements. As the healthcare related laws are complex, it
is extremely difficult to express all requirements of a health-
care application especially when persons such as healthcare
providers are not proficient with technologies in computing
and networking. There should be a close collaboration among
networking researchers, medical researchers and healthcare
and clinic personnel, who together can refine the APIs and
learn from using the APIs in real clinical settings. Second, the
mapping of the APIs to underlying SDI is still an undergoing
work. We are able to identify some critical API functions that
are sophisticated enough to express the workflow in some
known use cases. However, the list of APIs tend to grow
larger while the research is on the way of addressing more
comprehensive real-world clinical use cases. There exist a
good number of related research projects on programming
languages to express the performance and other attributes of
a network and applications [20], [21], [22]. Yet, these prior
works are not the best fit in describing the needs in the SDI
environment. In contrast, we focus primarily on the abstraction
of the resource and control requirements for the abundant
home-edge-cloud resources. We see a good synergy between
our effort and the prior works, and we plan to explore a more
modularized compiler design in the near future.

VIII. CONCLUSION

In this work we aim to address the challenges in regulatory
compliance of healthcare applications on emerging software
defined infrastructure. As the network architecture and com-
puting paradigm have changed significantly, we propose a
holistic framework called CareNet for healthcare IT to support
the specification of regulation-compliant data sharing/process-
ing requirements, and further the mapping of such require-
ments to heterogeneous compute/network resources available
at different segments of the data path spanning from homes
to cloud. Our initial prototype and experimental results have
demonstrated the feasibility and performance. Going beyond
emulation experiments, our future work will focus on im-
plementing the case study in a real home environment that
is connected to an operational CORD deployment and cloud
platforms.

REFERENCES

[1]1 G. V.R.Inc., “Home healthcare market analysis by product (therapeutic,
diagnostic equipment, mobility assist, diabetes monitor, intravenous
pumps, holter monitors, heart rate meters, wheel chairs), by service
(rehabilitation services, unskilled home care, respiratory therapy,
infusion therapy, telemetry) and segment forecast to 2020, Sep.
2014. [Online]. Available: http://www.grandviewresearch.com/industry-
analysis/home-healthcare-industry

L. Peterson, “Cord: Central office re-architected as a datacenter,”
Nov. 2015. [Online]. Available: http://sdn.ieee.org/newsletter/november-
2015/cord-central-office-re-architected-as-a-datacenter
“Paradrop official website,” 2015. [Online].
https://www.paradrop.io/

L. Columbus, “83% healthcare organizations are
using  cloud-based  apps  today,”  Jul. 2014. [Online].
Available:  http://www.forbes.com/sites/louiscolumbus/2014/07/17/83-
of-healthcare-organizations-are-using-cloud-based-apps-today

“XO0S: Service Orchestration for CORD,” pp. 1-11, Jun. 2015.

Available:

of

382

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[22]

HHS, “Summary of the hipaa security rule,” 2017. [Online]. Available:
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/
ASTM-F2761-09(2013), “Medical devices and medical systems -
essential safety requirements for equipment comprising the patient-
centric integrated clinical environment (ice) - part 1: General
requirements and conceptual model,” Sept 2009. [Online]. Available:
http://www.astm.org/cgi-bin/resolver.cgi?F2761-09(2013)

“Openice: An open-source integrated clinical environment,” 2015.
[Online]. Available: https://www.openice.info/

J. Plourde, D. Arney, and J. M. Goldman, “Openice: An open, interop-
erable platform for medical cyber-physical systems,” in /CCPS, 2014.
C. Xu, “Carenet web-based demostration application,” 2017. [Online].
Available: https://acanets.github.io/index.html

H. A. K. Khattak, H. Abbass, A. Naeem, K. Saleem, and W. Igbal,
“Security concerns of cloud-based healthcare systems: A perspective of
moving from single-cloud to a multi-cloud infrastructure,” in 2015 17th
International Conference on E-health Networking, Application Services
(HealthCom), Oct 2015, pp. 61-67.

D. B. Hoang and L. Chen, “Mobile cloud for assistive healthcare
(mocash),” in Services Computing Conference (APSCC), 2010 IEEE
Asia-Pacific, Dec 2010, pp. 325-332.

J. Wan, C. Zou, S. Ullah, C. F. Lai, M. Zhou, and X. Wang, “Cloud-
enabled wireless body area networks for pervasive healthcare,” IEEE
Network, vol. 27, no. 5, pp. 56-61, September 2013.

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and
secure sharing of personal health records in cloud computing
using attribute-based encryption,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 1, pp. 131-143, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2012.97

A. Abbas and S. U. Khan, “A review on the state-of-the-art privacy-
preserving approaches in the e-health clouds,” IEEE Journal of Biomed-
ical and Health Informatics, vol. 18, no. 4, pp. 1431-1441, July 2014.
R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 3847, Feb
1996.

O. A. open standards for the information society),
“Tosca  simple profile in yaml version 1.0, 2016.
[Online]. Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-

Profile-YAML/v1.0/cs01/TOSCA-Simple-Profile-YAML-v1.0-csO1.pdf

“Cloudlab: Build your own cloud,” 2014. [Online]. Available:
https://www.cloudlab.us/
“Advanced encryption standard.” [Online]. Available:

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

A. D. Ferguson, A. Guha, J. Place, R. Fonseca, and S. Krishnamurthi,
“Participatory networking,” in Proceedings of the 2Nd USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, ser. Hot-ICE’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2-2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228283.2228286

N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola,
and D. Walker, “Frenetic: A high-level language for openflow
networks,” in Proceedings of the Workshop on Programmable Routers
for Extensible Services of Tomorrow, ser. PRESTO ’10. New
York, NY, USA: ACM, 2010, pp. 6:1-6:6. [Online]. Available:
http://doi.acm.org/10.1145/1921151.1921160

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CONEXT
’14. New York, NY, USA: ACM, 2014, pp. 213-226. [Online].
Available: http://doi.acm.org/10.1145/2674005.2674989



