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Abstract Typical treatments of superconducting or superfluid Josephson junc-
tions rely on mean-field or two-mode models; we explore many-body dynamics
of an isolated, ultracold, Bose-gas long Josephson junction using time-evolving
block decimation simulations. We demonstrate that with increasing repulsive
interaction strength, localized dynamics emerge that influence macroscopic
condensate behavior and can lead to formation of solitons that directly op-
pose the symmetry of the junction. Initial state population and phase yield
insight into dynamic tunneling regimes of a quasi one-dimensional double well
potential, from Josephson oscillations to macroscopic self-trapping. Popula-
tion imbalance simulations reveal substantial deviation of many-body dynam-
ics from mean-field Gross-Pitaevskii predictions, particularly as the barrier
height and interaction strength increase. In addition, the sudden approxima-
tion supports localized particle-hole formation after a diabatic quench, and
correlation measures unveil a new dynamic regime: the Fock flashlight.

Keywords Josephson oscillations; Bose-Einstein condensates; macroscopic
quantum tunneling; quantum phase transitions; superfluidity; optical lattices;
matrix product state simulations; many-body physics.

1 Introduction

Ground states of linear systems comply with the symmetry of their underlying
confining potential. For example, in a one-dimensional double well, the ground
state is symmetric about the barrier and the orthogonal state is antisymmetric.
Spontaneous symmetry breaking in such a potential means that tuning a con-
trol parameter beyond a critical value leaves the system with two concurrent
ground states that no longer conform to the symmetry of the double well: each
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ground state is asymmetric. In an isolated Josephson junction such as that re-
alized in Bose-Einstein condensates (BECs), spontaneous symmetry breaking
can be observed as a Z2 quantum phase transition (QPT) from Josephson
oscillations to a macroscopic self-trapping phase [3,30]. The effect is observed
in many physical systems, particularly nonlinear optics [11,29] and BECs [30,
17] where recent experimental progress has accelerated [8,4,47]. For example,
this symmetry breaking offers coexistent states that can be used in quantum
memory applications such as quantum flip-flops [19,29]. In superconducting
systems, the Coulomb blockade effect occurs when the critical parameter ex-
ceeds that of the external current bias and holds exciting prospects for use as
a noise filter [44,21,18,20]. Superconducting Josephson junctions can be com-
pared for example to driven bosonic Josephson junctions, where the population
imbalance between the left and right wells differs as a result of this external
bias [25]; in this paper we investigate instead an isolated bosonic Josephson
junction. In order for full characterization of such devices, the many-body in-
fluences in dynamic regimes must first be understood, and BECs provide a
promising architecture to do so as precise quantum simulators.

BECs pose a highly-controllable mechanism for probing the many-body
effects that become crucial in high-precision applications: interactions can be
swept over seven orders of magnitude with Feshbach resonance manipulation of
scattering length [22,35]. The advancement of experimental technique in radio
frequency magnetic traps [12] together with improvements in optical traps [49]
enable enhanced control of experiments and provide systems devoid of defects,
which is critical for highly precise characterization of dynamics. In addition,
Bose-Einstein condensates in optical lattices facilitate the measuring and ma-
nipulating of many body quantum states [5,6,41] that remain intractable in
many other experimental platforms. Therefore, BECs such as those formed by
87Rb are an ideal backdrop for investigating the dynamics of a long bosonic
Josephson junction, or a double well with spatial extent. The spatial extent
of the double well is experimentally imposed in a 1D waveguide with an op-
tical lattice, where the transverse degrees of freedom have been suppressed
[57]. This underlying lattice enables precise study of the many-body interac-
tions. We represent the discrete nature of the lattice by the Bose-Hubbard
Hamiltonian (BHH),

ĤBH = − J
∑

〈i,j〉

(b̂†i b̂j + b̂ib̂
†
j) +

1

2
U
∑

i

n̂i(n̂i − 1) +
∑

i

Vin̂i , (1)

where J is the bosonic tunneling strength, U is the interaction strength, b̂†i
and b̂i are bosonic creation and destruction operators, respectively, satisfy-
ing bosonic commutation relations, n̂i is the bosonic number operator, 〈i, j〉
indicates nearest neighbors, and the indices i, jǫ{1, ..., L} run over the 1D lat-
tice of length L. Vi is the height of the external double well potential. While
experimental double wells may be implemented with smoother potentials, by
describing the barrier with a single parameter, the barrier height, we mini-
mize the size of the parameter space and thus increase numerical efficiency.



It is important to note that the shape of the potential may influence the dy-
namics [25], and in our case the barrier is square and thin compared to the
length of the junction, which relates to e.g. the weak link in superconducting
Josephson junctions [59]. This BHH model is applicable when the lattice sites
are sufficiently deep to allow for tight binding and single band approximations
[23].

For unit filling with fixed particle number, the optical lattice introduces a
second quantum phase transition (QPT) to the Josephson junction in addition
to the well-known Z2 transition, a continuous U(1) transition from a Mott
insulator to a superfluid [26,27]. In the BHH for Vi = 0, L → ∞, N → ∞,
N/L = 1, where N is the number of atoms, the crossover from the superfluid
phase to the Mott insulating phase occurs at a J/Ucritical ≈ 0.305 in one
dimension [10], while the mean-field approximation underestimates this at
J/Ucritical ≈ 0.086 [14]. Superfluid behavior manifests for weakly-interacting
systems such that J/U > J/Ucritical; in contrast, the Mott-insulating regime
requires strongly-interacting bosons such that J/U < J/Ucritical. When the
lattice is infinitely deep, or J = 0, the result is a perfect Fock state; in Fock
space notation this state is written | 111...1〉 for unit filling, i.e., the number
of particles is approximately commensurate with the number of lattice sites.
In this paper we focus on 1D optical lattices, which translates to experiment
e.g. via “cigar”-shaped waveguides, where the atoms are contained in one-
dimensional potentials by transverse optical confinement [57].

While it is convenient for our research to observe bosons in a Fock or
number basis, often it is more appropriate to use a different framework or
basis, for example in cases of macroscopic phase coherence and Josephson-like
dynamics, the phase basis is often represented as a phase difference between
the two wells of a double well potential. The dictionary in Table 1 gives a flavor
of common models of Josephson junctions and their relation to one another.
The first Hamiltonian is the Bose-Hubbard model; it differs from the other
Hamiltonians in that it is presented as a discretization scheme, where tunneling
strength J and atomic interaction strength U are local and are defined by
integrals over lowest-band Wannier functions centered on periodic lattice sites,
w0(x); alternately, as in our present study, we may take the lattice as an
explicitly imposed potential. The second Hamiltonian, the two-mode model
presented in Table 1(2) is the same as the Bose-Hubbard Hamiltonian, but with
only two lattice sites, one for each well. The general phase and number field
operators are conjugate variables, such that [φ̂, N̂ ] = −i, and the raising and

lowering operators to obtain Table 1(3) and (4) are eiφ̂ and e−iφ̂, respectively.
In the general double well problem, mean-field theory provides a description of
the relative dynamics under certain assumptions: the coherence must be large
and relative phase well-defined. This mean-field approximation is generally
very good in regimes where interactions are weak, such as the superfluid or
superconducting regimes [44,46,20,28].

The tunneling dynamics are underlaid by the interplay of the two QPTs,
Z2 and U(1). This reduces to tuning of the barrier height for the sponta-
neous symmetry breaking transition and tuning of the interaction strength
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Table 1: Translation dictionary of Josephson junction naming conventions. (1) The Bose-
Hubbard Hamiltonian used to describe Fock space number operators on an optical lattice
used as a discretization scheme. (2) The Lipkin-Meshkov-Glick model is a two-mode model,
which as a distinction from the BHH does not capture many-body effects in a long BJJ; it
refers to two macroscopic Wannier functions in a Fock basis, where the tunneling parameter
is the Josephson or double well tunneling energy EDWT, and the the inter-atomic charging
energy, ẼC , is between particles in the same well. (3) The many-body relative number,
relative phase formulation in a phase basis allows for number fluctuations. (4) The mean-
field limit of (3), when the number of particles becomes large, is a semiclassical description
void of number fluctuations. (5) The Hamiltonian for an unbiased Josephson junction in a
superconducting circuit or an atomic gas with an applied current takes an analogous form
as (4), where the change in representation here is the charging energy, 1/[2C], which is the
capacitance between Cooper pairs on opposing sides of the junction. Finally, (6) a phase
qubit Hamiltonian includes the same tunneling and interaction terms as the mean-field
Josephson junction, with the benefit of an added current bias term that tunes the tilt of the
potential in the phase basis.

Double Well
Convention

Hamiltonian Tunneling
Parameter

Interaction Parameter

(1) Bose Hubbard
as Discretization

ĤBH =
−J

∑

i(b̂
†
i b̂i+1 +

h.c.)+ 1
2
U

∑

i n̂i(n̂i−
1) +

∑

i Vin̂i

J = −
∫

dxw∗
0(x −

xi)(− h̄2

2m
∇2 +

Vlatt(x))w0(x −
xi+1)

U = g
∫

dx | w0(xi) |4

(2) Lipkin-
Meshkov-Glick

ĤLMG =
−EDWT(b̂

†
L
b̂R +

b̂Lb̂
†
R
) +

1
2
ẼC(n̂L(n̂L −

1) + n̂R(n̂R − 1))

NEDWT ẼC

(3) Relative
Number/Phase

Ĥ
n̂φ̂

=

−EDWT

√

N(N + 2)− 4〈n̂2〉 cos φ̂+
1
2
ẼC n̂(n̂ − 1)

EDWT ẼC

(4) Semiclassical
Rel. Number/Phase

Hiso =
−EDWT

√
1− n2 cosφ+

ẼC

2
n2

EDWT ẼC

(5) Unbiased Su-
perconducting JJ

ĤJJ =
− IcΦ0

2π
cos φ̂+ 1

2C
Q̂2

IcΦ0/2π
1

4e2C

(6) Superconduct-
ing Phase Qubit

ĤPQ =

− IcΦ0

2π
cos φ̂ +

1
2C

Q̂2 − IbiasΦ0

2π
φ̂

IcΦ0/2π
1

4e2C

for the superfluid-Mott transition. The ultimate goal then is to character-
ize the dynamic tunneling regimes that result, from Josephson oscillations to
self-trapping. Some of these regimes have previously been identified in liter-
ature for weakly-interacting systems [3,28,2,17,30]. In a single-particle limit,
the Rabi frequency is dependent on EDWT, the Josephson tunneling energy,
ωR ∝ 2EDWT/Lh̄, where the frequency decreases with increasing system size
and L is the number of lattice sites [1,50].
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The mean-field equations of motion, from [36], are similar to Josephson’s
equations; the major difference stems from the assumption in Josephson’s
equations that the time derivative of population density is identically the same
in the two wells [42,36]. Relinquishing this restriction elicits the equations of
motion:

n′(t) = −
√

(1− n(t)2) sinφ(t)

φ′(t) = ∆E + ECn(t) +
n(t)

√

1− n(t)2
cosφ(t).

(2)

The true Rabi or sinusoidal regime occurs when the charging energy is zero,
ẼC = 0, since the charging energy term in the mean-field Hamiltonian (un-
biased JJ (4 and 5) in the Table 1) provides a nonlinear effect that takes
us out of the Rabi and into the Josephson regime [36,3]. Josephson oscilla-

tions have a frequency proportional to ωJ =
√

ẼCEDWT/h̄, where ẼC is an
inter-atomic charging energy between bosonic atoms. A mean-field measure
often used to characterize Josephson dynamics is the relative particle number
between the two wells, or the population imbalance, (nL(t) − nR(t))/Ntot, a
variable that is close to zero in superconducting circuits due to a dominating
external current [13]. The initial population imbalance, n0, and relative overall
phase between the two wells, φ0, provide information to predict the dynamic
tunneling regime. When n0 exceeds a critical threshold, the particles will be
self-trapped on one side of the junction, thus breaking the ground state sym-
metry in a Z2 transition. This out-of-equilibrium phenomenon renormalizes
the energy to a metastable tunneling-suppressed Fock regime [1].

To characterize these dynamic regimes in relation to the superfluid-Mott
phase transition, we annotate the relevant parameter space. First, we have the
BHH describing the underlying optical lattice, with parameters J/U , where
J is the local bosonic tunneling or hopping strength between lattice sites and
U is the local bosonic interaction strength between atoms on the same lattice
site. Next, we have a two-mode model with EDWT the tunneling between
wells, or Josephson energy, and ẼC the interaction between atoms in the same
well, a modified charging energy. EDWT/ẼC parameters together represent
the ratio of tunneling between the two wells and interaction within each well.
EDWT/ẼC reduces to a function of ζ, the effective energy ratio for the two
wells (see Equations (3), (4), (5) below), when the width of the barrier is held
constant. The nature of the two scales of the problem, in addition to system
size, leads to multiscale behavior.

To initialize a state for the dynamics, we run imaginary time propagation
to obtain a ground state of a single well potential as shown in Figure 1(a). The
finite potential on the right in this instance is at the same height as the double
well barrier. Then, we diabatically quench to a symmetric bosonic Josephson
junction by lowering the right side potential before propagating in real time,
as portrayed in Figure 1(b). This protocol is performed both in time-evolving
block decimation (TEBD) and in solving the Gross-Pitaevskii equation (GPE)
as a mean-field approximation for symmetric double wells with a single lattice
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software. We also describe our protocol for numerically solving the GPE and
our analytical sudden approximation calculations, as well as how to access our
open data repository. In the final section 4, we conclude with a brief summary
of our results, apply our findings in a broader context, and suggest future
research direction.

2 Results and Discussion

2.1 Initial state influence on dynamics

While typical treatments of the dynamics of quantum phase transitions focus
on a quench of the parameter space using ground states, the goal of this work
is to characterize the dynamical parameter space associated with macroscopic
quantum tunneling. Using the initial states, we can make many predictions
about the dynamics, though behavior such as soliton creation or number fluc-
tuation propagation do not follow from from initial states alone.

We devise a method that maps out dynamical regimes, both from a many-
body and a mean-field perspective, based on initial state number and phase
information. To quantify the competing energy terms, we define a mean-field
and many-body version of a critical parameter, which is a ratio of tunneling
and interaction energies, to distinguish between Josephson and self-trapping or
Fock regimes. When the energy ratio exceeds one, ζ > 1, the system exhibits
spontaneous symmetry breaking and the particles remain confined on one side
of the potential. The mean-field version is based on an energy ratio suggested
in [42]. For initial population imbalance n0 and initial relative phase φ0, we
define the mean-field (MF) energy ratio from Hamiltonian (4) of Table 1,

ζMF =
n2
0

2(1 +
√

1− n2
0 cosφ0)

(3)

where the initial state has a well-defined relative number and phase.

From Hamiltonian (1) in Table 1, we calculate a many-body (MB) version
of Equation (3), where we have not yet subtracted to obtain the relative phase
and number information,

ζtot =
1
2

∑

j n
(0)
j (n

(0)
j − 1)

∑

〈j,k〉Ajk(exp[iφ
(0)
jk ] + exp[−iφ(0)jk ])

=
1
2

∑

j n
(0)
j (n

(0)
j − 1)

∑

〈j,k〉 2Ajk cosφ
(0)
jk

(4)

where n
(0)
j ≡ 〈n̂j(t = 0)〉 is the initial number on site j and φ

(0)
jk is the initial

phase between nearest neighbor sites j and k. The superscript (0) is a label
indicating an initial value. The denominator of Equation (4) is calculated from
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the single particle density matrix (SPDM), ρjk = 〈b̂†j b̂k〉 = Ajk exp(iφjk) be-
tween nearest neighbor sites j and k, which comprises the tunneling term of the
BHH (see Table 1) without the tunneling constant J . The phase is calculated
as follows. We take the eigenvector v(1) associated with the largest eigenvalue
λ1 of the SPDM, where the vector indicates distribution over lattices sites of

the form v
(1)
j , j ∈ {1, . . . , L}. This eigenvector is the closest approximation

to the mean-field in the Landau definition of the superfluid order parameter,

discretized on the lattice as v
(1)
j = ψj =

√
nj exp iφj . The phase is thus taken

as the phase of the dominant eigenmode of the SPDM, and the relative phase
is calculated as the difference between the average phase in the left and right
wells, ∆φ = L−1

leftwell

∑

j∈leftwell φj − L−1
rightwell

∑

j∈rightwell φj with Lleftwell the
number of sites in the left well, and likewise for the right well. Alternately one
can calculate a particular phase difference, e.g. between the sites in the left and
right wells closest to the barrier, respectively. The cosine representation of the
tunneling term is a reminder of the analogies presented in Table 1. Then, the
numerator of Equation (4) comprises the interaction term of the BHH without

the constant U . Next, we define the initial SPDM as ρ
(0)
jk ≡ 〈b̂†j(0)b̂k(0)〉. This

leads to a many-body ratio analogous to the mean-field ratio of Equation (3),
where we calculate the difference of the interaction terms (tunneling terms) of
the BHH between the two wells in the numerator (denominator) of Equation
(5). We express ζMB as these many-body differences between the two wells,

ζMB =

∑⌊L/2⌋
j=1 n

(0)
j (n

(0)
j − 1)−∑L

j=⌊L/2⌋ n
(0)
j (n

(0)
j − 1)

4

(

∑⌊L/2⌋
〈j,k〉=1(ρ

(0)
jk + ρ

(0)∗
jk )−

∑L
〈j,k〉=⌊L/2⌋(ρ

(0)
jk + ρ

(0)∗
jk )

)

(5)

where ρ
(0)
jk is a complex element of the single particle density matrix for lattice

sites j and k at time t = 0 and L is the total number of lattice sites. The

sums
∑⌊L/2⌋

j=1 and
∑⌊L/2⌋

〈j,k〉=1 are sums over the left well, and
∑L

j=⌊L/2⌋ and
∑L

〈j,k〉=⌊L/2⌋ are sums over the right well.
The energy ratio ζ is one way of characterizing distinct dynamical regimes.

The Josephson regime manifests in low-barrier cases, meaning the particles
tunnel or oscillate back and forth between wells in a macroscopic manner.
These are Rabi oscillations when ζ approaches 0 . Above the single particle
limit, for ζ < 1, Josephson or plasma oscillations emerge. The critical point
ζ = 1 marks the phase transition; the high-barrier limit, or ζ > 1, leads
to macroscopic self-trapping of the condensate on one side of the well. The
isolation of the junction, unlike that of superconducting circuits with external
biases, allows for a more tenable parameter space to observe self-trapping [30].
The ratio as a function of interaction strength or lattice depth U/J and barrier
height V0 is represented in Figure 2 for a double well with 15 total sites and
7 total particles. The resolution in U/J is 1, with J = 1 and U from 0 to 15.
The resolution in V0 is 0.5. For small U/J , both ζMB and ζMF experience the
Z2 critical region about V0 = 1. For large interactions U/J , ζMF in Figure
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Fig. 3: Initial bound states through the Mott-superfluid critical point. State initialization
traps the bosons largely in the left well for an optical lattice with 15 sites and 7 total
particles. (a) Beyond the Mott-superfluid critical point, interactions are weak, U = 2, J = 1,
and smooth superfluid behavior aligns more closely with mean-field theory. (b) In the Mott
regime, interactions are strong, U = 15, J = 1, and low-lying excited modes inject deviations
from mean-field theory that provide significant influence even with fluctuations as small as
±0.05 particles.

2.2 Dynamic regimes and Fock measures

The three dynamic regimes previously identified in isolated bosonic Josephson
junctions are Rabi, Josephson, and Fock regimes [3]. For weakly-interacting
systems, where U is small, these regimes are well-characterized with mean-
field theory. In order to see the effects of a Mott insulator on the dynamics,
we must have a number of particles that is approximately commensurate with
the number of sites, though the presence of the barrier influences the Mott
behavior [7]. Due to the nature of our state initialization, choosing a number of
particles that is about half the number of sites gives a filling factor close to one
for the single-well initial potential. This unit filling becomes more important
as we increase interaction strength. For example, in Figure 3, there are a total
of 15 sites with a 1-site barrier, and 7 bosons in one well enables close to unit
filling for larger barriers.

Fock states or local particle numbers are one type of convenient measure
of ultracold atom experiments. For realistic comparison with experiment, we
characterize local particle densities as a function of time. Figure 4 epitomizes
the real time dynamics of a system with 55 lattice sites, 27 sites in each well,
and 27 total particles, through the Z2 phase transition from Josephson in
Figure 4(a) to Fock in Figure 4(d). The units are scaled by the tunneling pa-
rameter, where J = 1, the units of time are h̄/J , and typical lattice separation
in experiments is ≃ 1/2 micron, with the units chosen such that the lattice
constant ∆x = 1 [10,33]. In this case, the interaction parameter U = 0.3 is
small and the barrier height is increasing from (a) V0 = 0.2, (b) V0 = 0.4,
(c) V0 = 0.6, (d) V0 = 2, where the critical initial population imbalance is
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relative number to determine the dynamic regime with this method. First we
replicate research in [3,42] supporting Josephson and Fock regimes for weakly-
interacting 87Rb bosons from a mean-field perspective. Figure 6(a) reveals the
qualitative agreement of mean-field GPE simulations and many-body TEBD
for dynamics of the population imbalance or relative number for J = 1 and
U = 0.3. The system consists of 27 total lattice sites, 13 sites in each well,
and 14 particles, which enables approximate commensurate filling for one of
the wells plus the barrier. For V0 = 0.2, both mean-field and many-body
simulations are in the Josephson regime as determined by ζMB and ζMF. A
quick method for diagnosing the dynamical regime is to plug the critical ratio
ζ = 1, and relative phase, φ0 ≈ 0, into Equations (5) and (3) and solve for
the critical population imbalance n0. In this instance, the initial population
imbalance n0 ≈ 0.5 is less than the critical value and thus it is in the Josephson
regime. This conclusion supports the dynamical results: Josephson oscillations
occur about the x-axis, so the average value of the function should be close to
zero. This is akin to an average d.c. component of zero, meaning the particles
are tunneling and moving freely across the barrier region.

Additionally, for V0 = 1, 2, and 5, the initial population imbalance n0 = 1 is
greater than the critical value, in this case, for both many-body and mean-field
simulations, suggesting that these systems are in the Fock regime. The next
clue that particles are self-trapping behind the barrier, no longer able to freely
tunnel, is the d.c. component of the relative number, as well as the smaller
magnitude of the a.c. component. As pointed out in [42], there are sub-regimes
within the macroscopic-self trapping region. The farther into the symmetry-
breaking regime, the smaller the amplitude of the oscillations within the left
well. Closer to the Z2 phase transition, the oscillations will resemble critical
damping; the curves for V0 = 1 (solid) demonstrate under-damping close to
the critical damping region. Not coincidentally, V0 ≈ 1 is where we find the
Z2 critical region for small U/J in the energy ratio ζ diagrams of Figure 2.

We apply the same approach to Figure 6(b) using energy ratios. Both ζMB

and ζMF predict Josephson dynamics for V0 = 0.2, 1, and 5, as evidenced by
the small initial population imbalances for TEBD (solid) and GPE (dashed)
simulations. The TEBD solid red curve depicts macroscopic self-trapping for
V0 = 5, which agrees with ζMB in Figure 2(b) for strong interactions. However,
the GPE dashed red curve at the same barrier height falsely depicts Josephson
oscillations with larger magnitudes – a result that corroborates ζMF < 1 for
all barrier heights in Figure 2(a), meaning there is no symmetry breaking
transition. The disparity of MF from MB theory is not surprising, as often
MF theories break down for strongly-interacting systems.

The final figure of our Fock space focuses on what appears to be soliton
formation. Specifically, in the Josephson regime with strong repulsive interac-
tions, particle-hole pairs form as excitations of a Mott insulator, seen as the
bright and dark vertical bands in Figure 7. The very dark band in the center
is a density minimum due to the barrier. For V0 = 0.2, with J = 1, U = 30,
the double well has 27 sites, and the number of particles for each plot is (a)
12, (b) 13, (c) 14, and (d) 15. The magnitude of the quasiparticles, or the
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Fig. 6: Weak interaction similarities and strong interaction disparities: Time-evolving block

decimation and the Gross-Pitaevskii equation. For a system of 27 lattice sites and 14 par-
ticles, GPE (dashed curves) and TEBD (solid curves) simulations show (a) agreement of
dynamical regimes for weak interactions and (b) a GPE failure to predict self-trapping for
strong interactions. (a) Larger barrier heights V0 = 1, 2, and 5 are self-trapped for J = 1
and U = 0.3, and the low barrier V0 = 0.2 is in the Josephson regime. (b) For J = 1 and
U = 30, TEBD results (solid) predict self-trapping for a barrier height of V0 = 5 whereas
GPE results (dashed) predict Josephson oscillations for all barrier heights.

number separation between bright and dark bands, is larger closer to the edge
walls compared with the quasiparticle magnitude in the center of the wells;
we attribute this outcome to the counteraction of the double well boundaries,
which asserts an effect akin to compressing an accordion. The smaller particle
numbers, such as (b) and (c), display greater repulsion from the edge bound-
aries on sites 0 and 54. The larger particle numbers show the opposite effect
and collide more directly with the walls due to the larger superfluid fragment
sloshing between the wells. The solitons form for particle numbers immediately
above or below commensurate filling. In this case, (a) has 12 particles and (d)
has 15 particles, and the 13 and 14 particle cases are both relatively com-
mensurate because of the thin barrier. The commensurate-filling plots do not
demonstrate any soliton behavior, though the 14-particle case, perhaps closest
to unit filling, illustrates the superposition of the superfluid fragment and the
particle-holes when the quasiparticles disappear for brief regions in between
macroscopic sloshing. The solitons in (a), beginning from site 12 in the left
well and 21 in the right well, are 180 degrees out of phase from the solitons in
(d) beginning from sites 5 and 14. Both plots show the same soliton oscillation
magnitude of about 9 sites, indicating there may be number symmetry about
commensurate filling. The antisymmetric nature of the solitons on opposing
sides of the barrier, as they propagate in parallel, provides a striking contrast
to the double well symmetry.

We identify these excitations as solitons because (i) they move at a velocity
of about half the sound speed, (ii) they survive multiple collisions with the
barrier as well as motion in the effective potential created by the accordion-
like compression of the particle-hole background, and (iii) they occur only
for particle numbers incommensurate with the number of lattice sites in the
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depletion is quantized, which is a signature of strong interatomic interactions.
The energy ratio ζMB confirms the highly-depleted states of V0 = 4 and 5
are self-trapped, and even the Josephson V0 = 0.1 dynamics are substantially
depleted due to the Mott influence.

The remaining figures demonstrate second order correlations via the g(2)

measure, which we choose due to its accessibility in experiments [43]. The g(2)

correlators quantify the fluctuation of particles for lattice sites i and j such

that g
(2)
ij = 〈n̂in̂j〉−〈n̂i〉〈n̂j〉. A positive g(2) means that the expectation value

of measuring two particles simultaneously at sites i and j is larger than that
of measuring the individual particles sequentially and vice versa. All g(2) plots
have a minimum resolution of a single lattice site. These fluctuations are an
important measure for determining limits of mean-field theory and provide
insight into the overlapping nature of the two phase transitions. We use the
standard normalization for optical lattices as opposed to quantum optics. In
lattices because only a small number of on-site number states are allowed, and
the average occupation 〈n̂j〉 can be very small in places, one can get near-
divergences in the usual normalized quantum optics g(2).A detailed discussion
of this choice can be found in [58].

Figure 9 delineates half of a period of Josephson oscillation in the weakly-
interacting regime for a larger system size with 55 lattice sites, 27 particles,
V0 = 0.2, J = 1 and U = 0.3; in the first panel (a) at time t = 1, fluctuations
are, unsurprisingly, strongest in the left well where the condensate is initial-
ized and decrease smoothly into the right well prior to collision with the far
right wall. After this reflection, (b) a diffraction pattern emerges at t = 5 for
fluctuations g(2) ≈ 4 − 9. The reflected fluctuations (c) at t = 10 create in-
terference patterns both for the more highly-entangled regions within the two
wells when g(2) > 0, and the non-entangled correlations between the two wells
when g(2) < 0. (d) As the BEC begins to macroscopically tunnel to the right
well at t = 20, the negative fluctuations of the off-diagonals deepen, while the
off-diagonals near the far left and right walls approach zero. (e) This trend
continues for t = 40 as the BEC collides with the right wall: the contrast of
the off-diagonal pattern deepens from g(2) = −10 to 6. These positive fluctu-
ations for correlations between sites ∼ 42 − 54 and ∼ 0 − 18 are likely due
to momentary accumulation along the outer walls. Finally, (f) for t = 60, the
BEC largely occupies the right well, completing a half-period of the Josephson
oscillation.

The next series of g(2) plots in Figure 10 portray the time evolution for
a self-trapped BEC as the transmitted fluctuations interact with the barrier,
which is at site 26. The system size, particle number, and J and U values are
the same as in the previous Figure 9, the difference being the barrier has been
raised to 1 and the condensate is in the Fock regime. The BEC is initially
trapped in the left well (a) at t = 1; then, transmission of the fluctuations
through the barrier region produces diffraction patterns seen (b) at t = 5 and
(c) at t = 10. The final panel (d) t = 20 reveals an additional interference and
more intense fluctuations from the rebound off the far right wall.
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propagate symmetrically from the barrier toward the walls at (d) t = 20. For
(e) t = 30, they have reflected off the external potential walls and by (f)
t = 60 they have begun to dissipate except directly along the barrier and the
walls, where they have accumulated. The junction is smaller, 27 sites and 14
particles, because the strong interactions and high barrier required to observe
this regime required a large bond dimension in TEBD, as we determined from
convergence studies, so the larger system size was computationally intractable.

3 Materials and Methods

3.1 Time-evolving block decimation (openTEBD)

Figure 1 depicts the method we use to simulate a reproducible initial state for
double well dynamics. We first run imaginary time propagation using time-
evolving block decimation (openTEBD) [45]; the right well of the potential is
raised as shown in Figure 1(a). This provides an exponential decay in imagi-
nary time rotations of the unitary operator that allows the high energy states
to decay quickly, leaving us with the ground state of the potential largely oc-
cupying the left well. We then lower the right side of the double well at time
t = 0 as in Figure 1(a), so we no longer have a stationary state, and propagate
forward in real time. We choose this protocol for similarities with experiment
[10] and for easier reproducibility.

The total error from the simulations can be written ǫ = ǫmethod + ǫχ,
where ǫmethod is due to a combination of errors, the largest of which are the
errors due to Trotter decomposition as well as that due to local dimension
restrictions. ǫχ stems from the Schmidt truncation, which is due to truncation
of the Hilbert space. From detailed convergence studies, we estimated the
local dimension, d = max filling + 1, the bond dimension χ, and the real and
imaginary timesteps. We studied convergence of the dynamics as a function of
local dimension, bond dimension, and time step. The low-barrier regime with
weak interactions required small time steps, on the order of 10−4, and the
high-barrier regime with strong interactions required large bond dimension,
on the order of χ = 100 for the 27-site system. This slow convergence for the
strongly-interacting Fock regime appears to indicate high entanglement that
pushes the limits of matrix product state simulations.

The open source openTEBD software can be downloaded from source-
forge.net [45], however, the authors strongly encourage consideration of open
source matrix product state methods (OSMPS), also available on source-
forge.net [32] as a more up-to-date simulation tool [48,39,40].

3.2 Gross-Pitaevskii equation (GPE)

The Gross-Pitaevskii equation is a mean-field description of cold and dilute
Bose gases. This description assumes a perfectly condensed state, ignoring
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fluctuations about the mean such that the depletion is always zero. A quasi-
1D GPE is given by,

ih̄
∂

∂t
Ψ(x, t) =

[−h̄2
2m

∂2

∂x2
+ V (x, t) + g1D|Ψ(x, t)|2

]

Ψ(x, t). (6)

where tight harmonic confinement has been assumed in the transverse direc-
tions [9]. The order parameter, Ψ , corresponds to the single-particle wave func-
tion. The nonlinear interaction parameter, g1D, is proportional to the s-wave
scattering length, and results from assuming binary contact between atoms;
note, from Table 1, g1D = g/2πℓ2⊥, with transverse harmonic oscillator length

ℓ⊥ =
√

h̄/mω⊥, where h̄ is the reduced Plank constant, m is the atomic mass,
and ω⊥ is the transverse confining angular frequency.

Numerics are computed on a discretized version of Equation (6), called the
Discrete Nonlinear Schrodigner Equation (DNLS),

ih̄
d

dt
ψi = −J(ψi+1 + ψi−1) + g1D|ψi|2ψi + Viψi, (7)

where J , Vi, and g1D = U correspond to the values given in Table 1. In the
DNLS, |ψi|2 corresponds to the expectation value of 〈n̂i〉 on site i, we normalize

to the number of particles
∑L

i=1 |ψi|2 = N , and L is the number of lattice sites.
The DNLS can also be derived from a mean-field approximation of the BHH,
or a direct discretization of the GPE [31].

Similar to many-body dynamics, an initial ground state is calculated using
imaginary time propagation on a single potential well, Figure 1(a), and real
time propagation with the barrier well dropped as in Figure 1(b). Imaginary
time propagation is calculated using the fourth-order Runge-Kutta method,
and real time propagation is performed with the LSODA implementation in
SciPy [24], as originally described in [34]. This algorithm automatically chooses
between the Adams-Bashforth method (an explicit numerical method) for non-
stiff time evolution and backward differential formula (BDF) method (an im-
plicit numerical method) for stiff evolution. This scheme was used because the
dynamics for larger U , V0, and, N occasionally require time-steps so small
as to be computationally restrictive for explicit methods, in other words the
problem behaves as a stiff differential equation. Because it is difficult to know
when exactly the equations are stiff, the automatic selection scheme only uses
the computationally more intensive BDF method when necessary.

3.3 Sudden Approximation

For strongly-interacting systems in the Josephson regime, particle-hole pairs
form immediately as bright and dark bands. They form too quickly for atoms
to propagate across the lattice, and they are instead due to the diabatic quench
of the potential from a single to a double well. To support this hypothesis, we
perform analytical sudden approximation calculations using exact diagonal-
ization together with second-order perturbation theory. The calculations also
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support an analogous phenomenon that occurs in the Fock regime: the sudden
projection of the single well ground state to the double well excites macroscopic
modes of the double well.

We perform the calculations on manageably small system sizes for both
even and odd numbers of sites, one for 2 particles on 4 sites and the other
3 particles on 5 sites. We implement the sudden quench by projecting the
Fock basis of 2 sites onto 4 sites and 3 sites onto 5 sites. The purpose is to
demonstrate the immediate response of the initial state to such a quench. For
example, for the 4-site case, we do the calculation three ways: (i) we use the
ground state of the 2-site system for J = 0, or an initial state | 1 1 0 0 〉, (ii) we
use a ground state that is a superposition of the possible states for the 2-site
system, α1| 2 0 〉+α2| 1 1 〉+α3| 2 0 〉 for small, finite J ; (iii) we use degenerate
perturbation theory for pertubative tunneling, which agrees with the exact
diagonalization of method (ii). In all cases, we take J = 1 and U = 30 so as
to focus on the strongly interacting regime.

In the 4-site case for method (ii), we first calculate the eigenvectors for the
L = 4, N = 2 system and the ground state of the L = 2, N = 2 system using
exact diagonalization, which provides a good initial state for the dynamics.
Then for unitary time evolution, the only non-zero elements are from L = 4
eigenvectors that have any superposition with the initial state, which in the
new basis is a superposition of | 2 0 0 0 〉, | 1 1 0 0 〉, and | 0 2 0 0 〉. We project
the eigenvectors of the 10-dimensional L = 4 Hilbert space onto the basis
vectors to create number density vectors for each of the 4 lattice sites, which
provides a common ground for comparison with TEBD simulations. The error
in the calculations is due to the approximation itself, which assumes a perfect
projection from the L = 2 basis to the L = 4 basis; this simple projection does
provide insight into the diabatic quench in TEBD and its influence on exciting
modes in the dynamics. These modes manifest as Fock states | 1 0 1 0 〉 and
| 0 1 0 1〉 and can be seen in Figure 13 as the smaller, nonlinear spikes between
the larger oscillations. These Fock states, while by definition are not particle-
hole pairs due to the limited particle number, support the propensity for the
formation of local states of the same symmetries such as those in Figures 5(a)
and (b) and Figure 7 – i.e. particle-hole pairs. In method (iii), we calculate the
eingenvectors instead with perturbation theory in the large U limit and obtain
qualitatively the same result. Method (i) was unsuccessful in demonstrating
the dynamics because the initial state was purely the Mott ground state of
the 2-site system | 1 1 0 0 〉; this approximation is insufficient because the
accordion-like excitations will only form for non-zero J .

The same methods were applied to the L = 5 case. The odd number
of sites case makes an important difference in the dynamical excitations as
compared to the L = 4 case: even without an explicit barrier, we see mode
formation on two distinct sides of the single well. The Fock state | 0 3 0 0 0 〉
is clearly an excited mode of the first 3 sites, with an even symmetry among
these 3 sites. Although this state is energetically improbable, the overlap of
the 3-site basis with the 5-site basis places a weight on the first 3 sites that
over-emphasizes this projection compared with TEBD. However, the presence
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to a sudden quench of the potential and can act as signatures of QPTs - even
in mesoscopic systems experimentally accessible on present quantum simulator
platforms [15]. Other many-body signatures include soliton formation in the
Josephson regime and the g(2) Fock flashlight in the self-trapping regime: these
effects manifest in quantities that are measurable experimentally in architec-
tures ranging from cold atoms to nonlinear optics to superconductors. While
our present study is discrete by nature of the optical lattice, future work can
build on the results in the strongly interacting case by systematically increas-
ing the number of lattice sites toward the continuum limit, for instance in a
Tonks-Girardeau gas [53,52,51,54]. Further extensions of this research would
incorporate fermions for a more encompassing unification with superconduc-
tors [55,56]. With the number of applications relying on two-mode models
of the double well, the present study encourages investigation of cold atom
double well experiments with optical lattices as highly-controllable quantum
simulators of many-body effects in systems previously assumed to be mean-
field.
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53. Sascha Zöllner, Hans-Dieter Meyer, and Peter Schmelcher. Tunneling dynamics of a few
bosons in a double well. Phys. Rev. A, 78:013621, 2008. DOI 10.1103/PhysRevA.78.
013621. URL https://link.aps.org/doi/10.1103/PhysRevA.78.013621.

54. Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene. Quantum simulations with
ultracold quantum gases. Nature Physics, 8:267–276, 2012. DOI 10.1038/nphys2259.
URL https://www.nature.com/articles/nphys2259.

55. Giacomo Valtolina, Alessia Burchianti, Andrea Amico, Elettra Neri, Klejdja Xhani,
Jorge Amin Seman, Andrea Trombettoni, Augusto Smerzi, Matteo Zaccanti, Massimo
Inguscio, and Giacomo Roati. Josephson effect in fermionic superfluids across the bec-
bcs crossover. Science, 350:1505–1508, 2015. DOI 10.1126/science.aac9725. URL http:

//science.sciencemag.org/content/350/6267/1505.

56. A. Burchianti, F. Scazza, A. Amico, G. Valtolina, J. A. Seman, C. Fort, M. Za-
ccanti, M. Inguscio, and G. Roati. Connecting dissipation and phase slips in a
josephson junction between fermionic superfluids. Phys. Rev. Lett., 120:025302, 2018.
DOI 10.1103/PhysRevLett.120.025302. URL https://link.aps.org/doi/10.1103/

PhysRevLett.120.025302.

57. M. Olshanii. Atomic Scattering in the Presence of an External Confinement and a Gas
of Impenetrable Bosons. Phys. Rev. Lett., 81:938–941, 1998. DOI 10.1103/PhysRevLett.
81.938. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.938.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.4950
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.4950
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.012405
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.140506
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.70.140506
https://sourceforge.net/projects/opentebd/
https://sourceforge.net/projects/opentebd/
https://www.nature.com/articles/nphys3743?WT.feed_name=subjects_physics
https://www.nature.com/articles/nphys3743?WT.feed_name=subjects_physics
http://stacks.iop.org/1367-2630/14/i=12/a=125015
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.025302
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.025302
http://science.sciencemag.org/content/296/5569/889
http://www.pnas.org/content/109/34/13521
http://www.pnas.org/content/109/34/13521
http://stacks.iop.org/0953-4075/42/i=4/a=044018
https://link.aps.org/doi/10.1103/PhysRevA.78.013621
https://www.nature.com/articles/nphys2259
http://science.sciencemag.org/content/350/6267/1505
http://science.sciencemag.org/content/350/6267/1505
https://link.aps.org/doi/10.1103/PhysRevLett.120.025302
https://link.aps.org/doi/10.1103/PhysRevLett.120.025302
https://link.aps.org/doi/10.1103/PhysRevLett.81.938


30 Marie A. McLain et al.

58. R.V. Mishmash. Quantum many-body dynamics of ultracold bosons in one-dimensional
lattices: Theoretical aspects, simulation methods, and soliton formation and stability.
Master’s thesis, Colorado School of Mines, 2008.

59. Paul D Dresselhaus, Michael M Elsbury, David Olaya, Charles J Burroughs, and
Samuel P Benz. 10 volt programmable Josephson voltage standard circuits using NbSi-
barrier junctions. IEEE Transactions on Applied Superconductivity, 21:693–696, 2011.


	1 Introduction
	2 Results and Discussion
	3 Materials and Methods
	4 Conclusions

