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Abstract

We use the displacement operator to derive an infinite series of integer order derivatives for the
Griinwald-Letnikov fractional derivative and show its correspondence to the Riemann-Liouville and
Caputo fractional derivatives. We demonstrate that all three definitions of a fractional derivative
lead to the same infinite series of integer order derivatives. We find that functions normally repre-
sented by Taylor series with a finite radius of convergence have a corresponding integer derivative
expansion with an infinite radius of convergence. Specifically, we demonstrate robust convergence
of the integer derivative series for the hyperbolic secant (tangent) function, characterized by a
finite radius of convergence of the Taylor series R = 7/2, which describes bright (dark) soliton
propagation in non-linear media. We also show that for a plane wave, which has a Taylor series
with an infinite radius of convergence, as the number of terms in the integer derivative expan-
sion increases, the truncation error decreases. Finally, we illustrate the utility of the truncated
integer derivative series by solving two linear fractional differential equations, where the fractional
derivative is replaced by an integer derivative series up to the second order derivative. We find
that our numerical results closely approximate the exact solutions given by the Mittag-Leffler and
Fox-Wright functions. Thus, we demonstrate that the truncated expansion is a powerful method

for solving linear fractional differential equations, such as the fractional Schrédinger equation.
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I. INTRODUCTION

Fractional calculus is a powerful tool to describe physical systems characterized by mul-
tiple time and length scales, nonlocality, fractional geometry, non-Gaussian statistics, and
non-Fickian transport [ll, [4]. Anomalous diffusion through disordered media |3, 4], hydro-
geologic treatment of water propagation through soil and rocks H], Lévy flights @], and
turbulence [4] are among the physical phenomena that can be consistently described within
the framework of fractional calculus ‘j . Similarly, certain biological systems, e.g., neu-
ron clusters and heart cell arrays, exhibit multiple time scales that define fractional dynamics
of the biological response to external stimuli E,

The building block of fractional calculus is a fractional derivative. There are multiple
ways to generalize an integer order derivative to fractional order, and in this paper we ex-
clusively concentrate on the Riemann—Liouville, Caputo, and Griinwald-Letnikov definitions

|. The Riemann-Liouville and Caputo definitions are integral forms of the fractional deriva-
tive, especially suitable for solving linear fractional differential equations (FDEs) [, 2]. The
Griinwald-Letnikov derivative is a discrete form of the fractional derivative, represented by a
function summed over its history, and is primarily used in numerical methods to solve linear
FDEs. The Griinwald-Letnikov derivative gives a computationally straightforward way to
find the fractional derivative of an arbitrary function, yet it provides no direction towards
finding its explicit analytical form. Except for a few trivial cases, where a fractional deriva-
tive can be expressed in terms of elementary or special functions, the Riemann—Liouville
and Caputo derivatives also lead to expressions that are implicit or indirect [, [,

Despite the fact that Riemann—Liouville, Caputo, and Griinwald-Letnikov definitions
are three different forms of the fractional derivative, there is a correspondence between
them. Although the Griinwald-Letnikov derivative is a discrete fractional derivative and the
Riemann—Liouville derivative is continuous, it was shown that both definitions are equivalent
in the continuous limit |ll, ]. The Caputo fractional derivative can be obtained from the
Riemann-Liouville fractional derivative by accounting for the initial conditions of a function
at the expansion point. The account of the initial conditions in the Caputo definition leads
to a convergent form of the fractional derivative at the expansion point, in contrast to both

Griinwald-Letnikov and Riemann—Liouville derivatives, which makes it especially suitable

for physical applications B] In this article, we derive the exact analytical formula that casts



the Griinwald-Letnikov fractional derivative into an infinite sum of integer order derivatives.
By representing the fractional derivative as an infinite series of integer order derivatives, we
find a unified description of Riemann-Liouville, Caputo, and Griinwald-Letnikov fractional
derivatives. The only difference in our expansion for the Riemann-Liouville or Griinwald-
Letnikov derivative and the Caputo derivative is in the lower limit of the summation index.

We examine convergence of the Griinwald-Letnikov fractional derivative, represented by
an infinite series of integer derivatives, by truncating the infinite series and retaining only
the first few terms. We find that functions normally characterized by Taylor series with a
finite radius of convergence have an infinite radius of convergence in the integer derivative
expansion. For physically relevant functions, such as hyperbolic tangent and secant, we
show that by retaining only the first few terms in the infinite series the proposed formula
efficiently approximates the fractional derivative, establishing a firm ground for its use in
numerically solving fractional differential equations. Moreover, we show that for functions
represented by Taylor series with an infinite radius of convergence, the truncation error is
inversely proportional to the number of terms kept in the expansion. Specifically, an integer
derivative expansion of sin(z) with 2 terms achieves an average 1% error, and with a total
of 10 terms, the error decreases down to 0.01%.

Finally, we use the truncated integer derivative series to solve linear fractional differential
equations with both constant and variable coefficients. We find that the fourth-order Runge-
Kutta method applied to truncated fractional differential equations produces numerical so-
lutions which rapidly converge to the exact analytical results, given by the Mittag-Leffler
and generalized Fox-Wright special functions [ll]. Approximating the fractional derivative as
an integer derivative series with the first 3 terms generates around 1% error for the constant
coefficient differential equation, and 10% error for the differential equation with variable co-
efficients. Thus, we show that the truncated expansion provides a robust numerical scheme
for solving linear fractional differential equations, such as the fractional Schrédinger and

fractional diffusion equations



II. EXPRESSING GRUNWALD-LETNIKOV FRACTIONAL DERIVATIVE AS
INTEGER DERIVATIVE SERIES

In this section we derive the infinite integer derivative expansion for the Griinwald-
Letnikov fractional derivative. For simplicity we only consider left-sided derivatives of order
q, with ¢ € C, subject to constraint of Re(q) > 0.

We adopt the following definition of the Griinwald-Letnikov derivative H]

7o) = tiny s S (-17 () fa = i), 0

where N is the number of gridpoints and h is the grid spacing defined as h = x/N. The
infinitesimal step h is a constant until we perform the continuous limit. The generalized

binomial coefficient (;’) valid for non-integer ¢ is defined as [1, 2],

(q) _ I(g+1) _ (=) —q) 2)
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where I'(z) is the Euler gamma function. We note that the function f(x — mh) can _be

expressed in terms of the function f(z) via the finite displacement, or shift, operator [13],

o=t = T 1) = (1= 1, ) S )

which can be verified directly via, e.g., the finite difference method. If we make the substi-
tution, the Griinwald-Letnikov derivative becomes,
GL1¢g : 1 — j q d\J
DY f(w) = lm = > (=17 () (1) (@) @)
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where we applied the Newton binomial formula to the displacement operator and exchanged
the order of the summation. Now we notice that we can perform the summation of the inner

series,

_(_1)j_k j q :(_1)N—k+ll({;]\/‘_]{;) N q . (6)

We point out that below we treat the integer case of ¢ € IN separately (see Eq.([2])). Thus,

we cast the Griinwald-Letnikov derivative into an infinite sum of integer order derivatives,




To perform the limits h — 0 and N — oo, we explore the weight function of the integer

derivative, which we define as,

W(g. k. N) = (=1)N=FL (N — k) hFa (N)(q)’ (8)

q—k k) \N
and expand it for N > 1 in a series in 1/N. We obtain,

1)q_k h*=4 sin [7(N —q)] T(g+1) < 1 k+g+1
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The leading term in this expansion can be simplified to
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Thus, we have performed the expansion of the Griinwald-Letnikov fractional derivative in
terms of integer order derivatives in the limiting case of infinitesimally small grid size h — 0.
Lastly, we obtain our final series,

L1g . = sin [W(q—k)] Dig+1) ., dF B = (q xk—a dk
) Df(x)_z m(qg—Fk) I'(k+1) o dak (z)_z(ls)r(lﬁ—qjul)ﬁ ().
(11)
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We note that for integer ¢ € IN, the expansion reduces to a single term due to the delta-

function behavior of sinc[w(q — k)]. Indeed for integer ¢ = n we have,

sin [7(q — k)]
™ (q—k)

= Onk- (12)

q=nelN
Thus the infinite series of integer order derivatives reduces to a single derivative of n'* order,

) (13)
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III. UNIFIED DESCRIPTION OF FRACTIONAL DERIVATIVES IN TERMS OF
THE INFINITE SERIES OF INTEGER ORDER DERIVATIVES

In this section we establish a connection between Riemann—Liouville, Caputo, and
Griunwald-Letnikov derivatives. The Riemann-Liouville fractional derivative is defined

as a convolution integral,

1 ar

D) = s [ =), (1)
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where n is the ceiling of the fractional order, n = [¢], given in terms of the integer part [¢] of
q as [q] = [¢]+1. By rewriting the fractional Riemann-Liouville derivative of order ¢ as a se-
quential operation of an integer derivative of order [¢]+1 and a fractional Riemann-Liouville
derivative of order ¢ — [¢], with a subsequent term-by-term fractional differentiation, one
obtains an integer derivative expansion for the Riemann—Liouville fractional derivative [J],
- x — a)k1
D =3 (D= ), (15)
where a is the base point of the Riemann-Liouville derivative. By choosing a zero base
point a = 0 and comparing our formula Eq.([T) for the Griinwald-Letnikov derivative with
the expansion derived for the Riemann-Liouville derivative Eq.([IT), we conclude that the
Griinwald-Letnikov fractional derivative given by Eq.(Il) and the Riemann—Liouville frac-
tional derivative given by Eq.([Id]) are not only equivalent in the continuous limit but also
lead to the very same infinite expansion of integer order derivatives.
In order to obtain a unified description for all three fractional derivatives, we introduce

the Caputo fractional derivative, defined according to [1],

“DIf(x) = ﬁ /: dt (v — t)"_q_l%ff). (16)
First, we refer to the connection between Caputo and Riemann—Liouville fractional deriva-
tives in [},
— /®(a)
‘Df(z) = "D | f(z) - @ a)*|, (17)
k=0

where integer order derivatives are evaluated at the base point a, i.e.

d* f ()

dxk

f®(a) =

r=a

By applying the infinite expansion in Eq.(I]), we obtain,
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We see that Eq.(I]) is versatile because it bundles all three fractional derivatives into a single
expansion, with a simple adjustment on the lower bound for the Caputo derivative series

and a zero base point on the Riemann—Liouville and Caputo fractional derivatives. Thus,
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the integer derivative expansion in Eqs.([), (IT), and Eq.([d) gives a universal formulation
for all three fractional derivatives. This universality is an important consistency test for
fractional calculus. Moreover, the infinite expansion in Eq.(IT]) is particularly convenient

for numerical implementation in linear FDEs, as we present in the following sections.

IV. TRUNCATION, ERROR, AND RADIUS OF CONVERGENCE

In the previous section we obtained the unified description of Grinwald-Letnikov,
Riemann—Liouville, and Caputo fractional derivatives in terms of an infinite series of integer
order derivatives. Even though the infinite expansion of the Riemann-Liouville fractional
derivative was derived previously [2], the numerical applications of the result in Eq.(IT)
and Eq.(I4)), which necessarily rely on the truncation of the infinite series, were missing.
The goal of this section is to truncate the infinite series given by Eq.(Id]) and calculate the
residual truncation error for several physically relevant functions. To determine the error
introduced by truncating the series, we perform multiple case studies in which we consider
functions with both an infinite radius of convergence of the Taylor series, such as plane and
standing waves, Gaussian function, as well as functions with a finite radius of convergence,
e.g., hyperbolic secant (hyperbolic tangent) which describe bright (dark) soliton propaga-
tion. Moreover, we evaluate the minimal number of terms kept in the infinite series which
correspond to a given level of accuracy. In particular, we choose the Caputo fractional

derivative of the order ¢ = 1/2. We calculate relative error by

a(x) — b(x)

O @l + b)) 2
where a(z) = °DYf(x) is the infinite series given by Eq.([[d) and b(z) = D%, f(z) is the trun-
cated series, where ¢ is the order of the fractional differential operator, and N is the number
of terms in the truncated series Eq.[[d). We observe spikes in the log-error, log(|e(z)]),
either in case of real-valued roots of the fractional derivative a(x) or its approximation b(z),
or in the case of a match between the fractional derivative and its approximation. Yet an-
other discontinuity in the error arises if the fractional derivative and its approximation are
of equal magnitude but opposite in sign.

To approximate the fractional derivative of hyperbolic secant to within 10%, we need to

keep only the first three terms, as can be seen in Fig.([2)). We note that a traditional approach
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in the evaluation of a fractional derivative of hyperbolic secant (tangent) relies on the Taylor
series expansion, which diverges at R = 7/2 due to a pole in the complex plane [16]. The
divergence of the Taylor series results in the divergence of Riemann-Liouville and Caputo
fractional derivatives if it is directly used in the integration process. However, the infinite
series representation of the fractional derivative of sech(z) and tanh(z) given by Eq.([I) is
formulated in terms of integer derivatives of the original function, and does not depend on
the properties of the Taylor series. Thus, the integer derivative series for the Grinwald-
Letnikov fractional derivative of hyperbolic secant and hyperbolic tangent functions has an
infinite radius of convergence, as can be seen in Fig.([l). The log-linear plot of truncation
error in the fractional derivative of sech(z) and tanh(z) is shown in Fig.([).

For functions described by Taylor series with an infinite radius of convergence, e.g., sin(x)
and cos(x), the number of terms needed to reach a given level of accuracy depends on the
distance away from the base point used in the integer derivative expansion. For example, to
approximate the Caputo fractional derivative on cos(z), we need to retain the first 15 terms
to reach 10% accuracy in the same domain as for the fractional derivative on the hyperbolic
secant, as can be seen in Fig.(B]).

While for a certain class of functions the integer derivative series given by Eq.([[l) im-
proves the fractional derivative approximation with every additional term, the integer deriva-
tive expansion of a fractional derivative of a Gaussian function diverges for finite orders of
N, as we show below in Fig.([]). We note that the finite sum is convergent only in a vicinity
around the origin and at infinity due to the Gaussian envelope. Indeed, our integer deriva-
tive expansion given by Eq.([I) for the Griinwald-Letnikov fractional derivative of exp(—x?)

can be expressed in terms of Hermite polynomials Hy(z), i.e.

i ooy = S S [ra =R T+ 1) o, d e
SDle ]—k:O w(q—k) F(l{:+1)x datC T (21)
_ I sin (g — k) T(g+1) U
=L TR —h TG Hi(=2)

This sum inherits large oscillations from the Hermite polynomials for both large values of its
argument = and its index k. These oscillations result in a divergence of the integer derivative

expansion, and thus, establish limits of the universality of the main result Eq. ().
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FIG. 1: Fractional derivative of hyperbolic secant and tangent functions. (a)
Riemann—Liouville fractional derivative (blue curve) and Caputo fractional derivative
(green curve) of order ¢ = 3/2 evaluated via Taylor expansion of hyperbolic secant function
are divergent at R = m/2 due to finite radius of convergence of the Taylor series. However,
our representation of Riemann-Liouville fractional derivative (orange curve) and Caputo
fractional derivative (red curve) in terms of an infinite series of integer derivatives of the
original function given by Eq.([IT]) does not rely on properties of its Taylor series and, thus,
leads to an infinite radius of convergence. (b) Infinite series representation of the Caputo
derivative of hyperbolic secant is convergent for a whole range of fractional orders

1/4 < ¢ < 2 (shown in the legend) beyond the radius of convergence of its Taylor series

R =7/2. (c) Same as (a) but for hyperbolic tangent. (d) Same as (b) but for hyperbolic

tangent.
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FIG. 2: Log-linear plot of the truncation error in the fractional derivative of (a)
f(x) =sech(x) and (b) f(z) = tanh(z) as a function of fractional order ¢, and number of

terms N kept in the infinite expansion Eq.(Il), shown in the legend.
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FIG. 3: Caputo fractional derivative of (a) sin(z) and (b) cos(z) as a function of position x
and fractional order ¢ in the range 0 < ¢ <1 (shown in legend). Log-linear plot of the
truncation error in the fractional derivative of (c) sin(x) and (d) cos(x) as a function of
fractional order ¢, and number of terms N kept in the infinite expansion Eq.(T]), shown in

the legend.
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FIG. 4: Fractional derivative of a Gaussian function. (a) Riemann—Liouville fractional

derivative (blue curve) and Caputo fractional derivative (green curve) of order ¢ = 3/2,

evaluated via a Taylor expansion of a Gaussian function. As we take more terms in the

Taylor expansion for exp(—x?), the Riemann-Liouville and Caputo fractional derivatives
converge to the orange and red curves, respectively, calculated by the integer derivative
series in Eq.([[d). (b) The truncated expansion Eq.([I) of the Caputo fractional derivative
of a Gaussian function with only N = 3 terms. The integer derivative series for a Gaussian
function (see Eq.(2I])) can be written in terms of Hermite polynomials H,(x) which
oscillate and grow factorially with n — oco. As a consequence, the integer derivative
expansion Eq.([[d) for a Gaussian with N > ¢ is divergent as can be directly seen in (c)

which shows the truncated expansion with N = 20 terms and (d) N = 40 terms.
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V. SOLVING LINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH
CONSTANT AND VARIABLE COEFFICIENTS USING TRUNCATED SERIES

fx) Logllé(x)]
1.0p 109+
0.8 101}
0.6f 10-2f
0.4- 108l
0.2r 1074}
0 5 10 15 0.1 010 1 10"
(a) (b)

FIG. 5: The application of the infinite integer derivative series for solving a linear
fractional differential equation with constant coefficients. (a) Exact solution of the linear
fractional differential equation, given in terms of the Mittag-Leffler function (solid red
curve), is compared to the numerical solution (dotted blue curve) obtained by the
fourth-order Runge-Kutta iterative method. The numerical solution is obtained by
truncating the integer derivative expansion in Eq.(I9) for ¢ = 1/2 and retaining only the
first three terms (N = 3). (b) The log-log plot of the relative truncation error defined in

Eq.@0) shows that truncating at N = 3 results in sub one per-cent error.

In the previous section we established convergence of the Griinwald-Letnikov fractional
derivative by truncating the infinite integer derivative series and retaining only the first three
terms. The goal of this section is to apply the truncated expansion of a fractional derivative
to solve linear fractional differential equations (FDEs) with constant and variable coefficients.
We choose two simplest non-trivial FDEs, which have solutions in terms of special functions,
e.g. Mittag-LefHler and generalized Fox-Wright functions. The comparison of the numerical
approximation to the exact analytic result provides a direct test for the robustness of the
numerical scheme based on the truncated expansion of a fractional derivative.

The simplest form of the linear fractional differential equation with constant coefficients

is given by
“Df(x) = =M f(x), (22)
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where A is a real-valued constant. The exact solution of Eq.([22) is given in terms of the

generalized Mittag-Leffler function [l defined as
=D (23)
—~T ak: Tk + 4]

Specifically, the solution to Eq.([22) is given by [12]
f(z) = Ey(—Ax?) = E 1 (—A\x). (24)

By adopting the Caputo fractional derivative, which ensures a solution convergent at the
origin, and retaining the first N = 3 terms in the integer derivative expansion, Eq.(d), for

a fractional order ¢ = 1/2, we obtain a second order differential equation,

e ") + (1) + VEIAF() + f(@) — F(0) =0 (25)

The solution of the transformed differential equation is subject to the boundary conditions,

f(0)=1 (26)
lim f(x) =

T—00

The numerical solution of Eq.([2H) is readily obtained via a fourth-order Runge-Kutta it-
erative method, shown in Fig.([@) along with the relative truncation error e(x) defined in
Eq.(@0).

Next we turn to a linear fractional differential equation with variable coefficients,

M(x)

D f(@) = -4

(27)

The exact solution to the fractional differential equation Eq.([27) is given in terms of the

generalized Fox-Wright function [,

(al,Al) (&Q,Ag) (ap,
(b1, B1) (b2, Ba) .. (bq,B

Hk 1 Dlay + Agn) 2"
Z bl + Bm) n' (28>

pP=q

In particular, the solution to Eq.([2T) is given by

)\xa—l

l—«

f(x) = Cx* 1o,y ; (29)

(o,a0 — 1)
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FIG. 6: The application of the infinite integer derivative series for solving a linear
fractional differential equation with variable coefficients. (a) The exact solution to the
linear fractional differential equation with variable coefficients can be expressed in terms of
the generalized Fox-Wright function (solid red curve) which is compared to the numerical
solution (dotted blue curve) obtained via a fourth-order Runge-Kutta iterative method.
The numerical solution is obtained by truncating the integer derivative expansion in
Eq.[[) for ¢ = 1/2 and retaining only the first N = 3 terms. (b) The log-log plot of the
relative truncation error defined in Eq.([20) shows that truncating at N = 3 results in sub

ten per-cent error for x < 10.

where C' is an arbitrary real constant. In the special case of the fractional order a = 1/2

the generalized Fox-Wright function is reduced to a Gaussian function,

1
v = — —2%/4). 30
01(1_1)2 ﬁexp(z/) (30)
2072
. — exp(—2*/4) (31)
z| = —exp(—2z
oY1 ( 1 l) N p
272
where “—" in the argument of the Fox-Wright function stands for an absent argument.

As a result the solution to the fractional differential equation Eq.([21) in the special case

of a =1/2is

f(x) = %exp<—A2/x>. (32)

If we further specify f(1) = 1, we fix the constant C' and obtain the exact solution to Eq.([21),

_exp(A? = N?/x)

(33)
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By retaining the first N = 3 terms in the integer derivative expansion Eq.([[d), we acquire,

—%at?’f”(:z) +2°f'(z) + f(z) (z + V7zX) = f(0)z = 0. (34)

If we change variables according to z = 1/y, we obtain a transformed differential equation,

v 1" (y) + 8y f'(y) — 6(y/my + 1) fy) = 0. (35)

We specify the initial conditions as,

f(0)=0 (36)

and apply a fourth-order Runge-Kutta iterative method to find the numerical solution of
Eq.@B5). The result along with the relative truncation error is shown in Fig. ().

In this section, we successfully demonstrated that expanding a fractional derivative in
terms of integer order derivatives is a robust method for solving linear fractional differential
equations with both constant and variable coefficients. In the special case of a differential
equation with variable coefficients, the truncated series with only the first N = 3 terms
leads to a 10% error, while the very same truncation applied to a differential equation with
constant coefficients results in a 1% error. Although this method cannot be exhaustively
tested for all possible fractional orders of differential operators and all types of FDEs, linear
FDESs, considered in this work, constitute a large sample that can be used in many physical
applications where the response of a system is proportional to a fractional order parameter
EjD . Thus, the numerical scheme based on the truncated integer derivative expansion is

a powerful method for solving a broad range of linear FDEs.
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VI. CONCLUSIONS

In this paper we expressed the Griinwald-Letnikov fractional derivative as an infinite sum
of integer order derivatives. We compared the obtained infinite expansion with the corre-
sponding series produced by the Riemann—Liouville and Caputo definitions of a fractional
derivative. We found that all three definitions are represented by the very same infinite
series, with the exception of the lower index of summation for the Caputo fractional deriva-
tive which accounts for the initial conditions at the expansion point. Thus, we have shown
that the integer derivative series representation provides a unified description for various
definitions of a fractional derivative.

By truncating the infinite expansion and retaining only the first few terms, we demon-
strated the convergence of the Griinwald-Letnikov fractional derivative. We have shown that
for functions represented by Taylor series with an infinite radius of convergence, the trun-
cation error decreases with an increasing number of terms kept in the truncated expansion.
We emphasized that the infinite expansion does not rely on the properties of the Taylor
series, which has profound consequences for the functions characterized by a finite radius of
convergence of the corresponding Taylor series. Specifically, we have shown that the infinite
series of integer order derivatives for hyperbolic secant and tangent functions has an infinite
radius of convergence, compared to the corresponding Taylor series with a finite radius of
convergence of m/2. However, for a Gaussian function we found that the infinite expansion
is divergent due to the factorial growth and oscillatory nature of the Hermite polynomials.
Thus, the Gaussian function establishes limits of the universality of the infinite expansion
of the Griinwald-Letnikov fractional derivative in terms of integer order derivatives.

Finally, we applied the truncated series for a fractional derivative to solve linear frac-
tional differential equations with both constant and variable coefficients. We found that
the fourth-order Runge-Kutta method applied to truncated fractional differential equations
results in numerical solutions that rapidly converge to the exact solutions given in terms of
Mittag-Leffler and generalized Fox-Wright special functions. Thus, we concluded that the
integer derivative expansion can be adapted to a robust numerical method for solving linear
fractional differential equations, such as the fractional Schrodinger and fractional diffusion

equations.
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