
Open source Matrix Product States: Opening ways to
simulate entangled many-body quantum systems in one

dimension

Daniel Jaschkea,∗, Michael L. Walla,b,∗∗, Lincoln D. Carra

aDepartment of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
bJILA, NIST and University of Colorado, Boulder, Colorado 80309-0440, USA

Abstract

Numerical simulations are a powerful tool to study quantum systems beyond
exactly solvable systems lacking an analytic expression. For one-dimensional en-
tangled quantum systems, tensor network methods, amongst them Matrix Product
States (MPSs), have attracted interest from different fields of quantum physics
ranging from solid state systems to quantum simulators and quantum computing.
Our open source MPS code provides the community with a toolset to analyze
the statics and dynamics of one-dimensional quantum systems. Here, we present
our open source library, Open Source Matrix Product States (OSMPS), of MPS
methods implemented in Python and Fortran2003. The library includes tools for
ground state calculation and excited states via the variational ansatz. We also
support ground states for infinite systems with translational invariance. Dynam-
ics are simulated with different algorithms, including three algorithms with sup-
port for long-range interactions. Convenient features include built-in support for
fermionic systems and number conservation with rotational U(1) and discrete Z2

symmetries for finite systems, as well as data parallelism with MPI. We explain
the principles and techniques used in this library along with examples of how to
efficiently use the general interfaces to analyze the Ising and Bose-Hubbard mod-
els. This description includes the preparation of simulations as well as dispatching
and post-processing of them.

∗Corresponding author.
E-mail address: djaschke@mines.edu
∗∗Present address: The Johns Hopkins University Applied Physics Laboratory, Laurel, MD,

20723, USA

Preprint submitted to Computer Physics Communications September 15, 2017

ar
X

iv
:1

70
3.

00
38

7v
2

 [c
on

d-
m

at
.q

ua
nt

-g
as

]
14

 S
ep

 2
01

7

Keywords: many-body quantum system; entangled quantum dynamics; Matrix
Product State (MPS); quantum simulator; tensor network method; Density
Matrix Renormalization Group (DMRG)

PROGRAM SUMMARY
Program title: Open Source Matrix Product States (OSMPS), v2.0
Program summary and documentation: http://openmps.sourceforge.io/
Program obtainable from: http://sourceforge.net/p/openmps
Licensing provisions: GNU GPL v3 (Minor parts follow the copyright of the Expokit
package.)
Programming language: Python, Fortran2003, MPI for parallel computing
Compilers (Fortran): gfortran, ifort, g95
Operating system: Linux, Mac OS X, Windows
Supplementary material: We provide programs to reproduce selected figures in the Ap-
pendices.
Nature of the problem: Solving the ground state and dynamics of a many-body entangled
quantum system is a challenging problem; the Hilbert space grows exponentially with
system size. Complete diagonalization of the Hilbert space to floating point precision is
limited to less than forty qubits.
Solution method: Matrix Product States in one spatial dimension overcome the exponen-
tially growing Hilbert space by truncating the least important parts of it. The error can
be well controlled. Local neighboring sites are variationally optimized in order to min-
imize the energy of the complete system. We can target the ground state and low lying
excited states. Moreover, we offer various methods to solve the time evolution follow-
ing the many-body Schrödinger equation. These methods include e.g. the Suzuki-Trotter
decompositions using local propagators or the Krylov method, both approximating the
propagator on the complete Hilbert space.

Contents

1 Introduction 4

2 Basic concepts in tensor network techniques 6

3 Defining systems and variational ground state search 13
3.1 Operators . 14
3.2 Hamiltonians . 16

2

http://openmps.sourceforge.io/
http://sourceforge.net/p/openmps

3.3 Observables . 19
3.4 Fundamentals of the library: Variational ground state search . . . 20
3.5 Running the simulations . 24

4 Highlights of static algorithms 26
4.1 Excited state search . 27
4.2 Infinite systems in the thermodynamic limit 29

5 Time evolution methods 30
5.1 Computational error and convergence 31
5.2 Krylov time evolution . 35
5.3 Sornborger-Stewart decomposition 36
5.4 Time-dependent variational principle 38
5.5 Local Runge-Kutta propagation 39
5.6 Time evolution case study: Bose-Hubbard model in a rotating sad-

dle point potential . 39

6 Future developments 42

7 Conclusions 43

A Convenient features 55

B Convergence studies 60
B.1 Finite size variational algorithms 60
B.2 Time evolution methods for finite size systems 62

C Scaling of computational resources 66

D Error bounds for static simulations 68
D.1 Bounding εwith the variance delivered by open source

Matrix Product States . 69
D.2 Bounding observables 71
D.3 Density matrices and their bounds 72
D.4 Bound for the trace distance 74
D.5 Bound on the bond entropy 74

E Bounding measurement with the trace distance 75

3

F Details of the Krylov method 77

G Auxiliary calculations 79

H Supplemental Material 80

1. Introduction

Numerical methods have been widely used to study physical systems in quan-
tum mechanics that are not exactly solvable. In many-body systems we encounter
with the exponentially growing Hilbert space a challenge to develop methods
which can still simulate quantum systems on a classical computer. Starting with
the Density Matrix Renormalization Group (DMRG) [1, 2], a wide range of tensor
network methods have been developed. Especially in one dimension, where nu-
merical scaling and conditioning are best, such methods offer strong alternatives
to other methods such as Quantum Monte Carlo [3, 4] and the Truncated Wigner
approximation [5, 6]. Applications include solid state systems, ultracold atoms
and molecules, Rydberg atoms, quantum information and quantum computing,
and Josephson junction-based superconducting electro-mechanical nano devices.
Matrix Product States (MPSs) [7, 8, 9, 10] define the tensor network at the foun-
dation of the DMRG method. MPSs themselves represent a pure quantum state
constructed on local Hilbert spaces of lattice sites or discretized systems. They
handle the exponentially growing Hilbert space by limiting the entanglement be-
tween any two parts of the system. Numerical methods using MPSs support static
results such as ground states and time evolution of pure states. In principle, highly
entangled states can be represented as MPSs, but due to the upper bound of en-
tanglement set as a parameter, they are only accurate as long as the entanglement
does not exceed this bound guaranteeing feasible computation times. This point is
addressed in the main part of this paper in detail. Moreover, MPSs can exploit in-
trinsic characteristics of the systems such as symmetries [11, 12]. Beyond MPSs,
tensor network methods are extended for multiple purposes such as 2D systems
via Projected Entangled Pair States (PEPS) [13], tree tensor networks (TTNs)
[14], open systems with quantum trajectories (QT) [15, 16] or Matrix Product
Density Operators (MPDOs) [17, 18]. Although there have been many develop-
ments in many-body quantum simulation over the last ten to twenty years [19],
from multi-scale entanglement renormalization ansatz (MERA) [20] to minimally
entangled typical thermal states (METTS) [21] to dynamical mean-field theory
[22] to time-dependent density functional theory (TDDFT) [23, 24], MPS meth-

4

ods are the most often used and well-established for strongly correlated quantum
systems and appropriate for large-scale open source development. The impact of
these methods is represented by the large number of open source packages for
MPS and DMRG [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], not
counting proprietary efforts of multiple other groups.

We present in this paper our open source Matrix Product State (OSMPS) li-
brary, which is available on SourceForge [40]. We have over 2300 downloads
since its initial release in January 2014. The library or a derivative of the library
has been used in various publications [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56]. Our implementations cover features such as variational ground and
excited state searches and real time evolution for finite systems as well as ground
states of infinite systems [57]. We provide built-in features such as support for
symmetries, e.g. rotational U(1) symmetry used for number conservation in the
Bose-Hubbard model and discrete Z2 symmetry occurring in the quantum Ising
model, and present them in the case studies of this article. These symmetries lead
to a speedup in terms of computation time and allow us to address specific states.
Our libraries also support data parallel execution via Message Passing Interface
(MPI) to utilize modern high performance computing resources efficiently. We
illustrate the algorithms in our library together with examples of models.

One motivation for the development of OSMPS is our focus on ultracold
molecules and other quantum simulator architectures incorporating long-range in-
teracting synthetic quantum matter. Where some MPS-based algorithms are lim-
ited to nearest neighbor terms in one-dimensional systems, molecules and many
other systems have long-range interactions, e.g. due to dipolar effects. In order
to treat such systems, many of the algorithms in OSMPS, including dynamics
algorithms, feature support for long-range interactions.

This paper is intended for two audiences: First, tensor network methods and
our interfaces are introduced for researchers not familiar with such methods, but
in need of numerical simulations of correlations, entanglement, and dynamics in
many-body systems. On the other hand, experienced researchers within the tensor
networks community should have a clear way to understand the concrete and use-
ful details of our implementations. The paper is organized as follows. In Sec. 2,
we introduce the general idea of tensor networks, and provide in addition appro-
priate references for further reading. We continue with the example of the Ising
model in Sec. 3 to demonstrate the variational ground state search including the
general setup of systems and then highlight the other algorithms in the follow-
ing sections. Section 4 describes the variational search for excited states and the
infinite MPS (iMPS) for the thermodynamic limit. The time evolution methods

5

including Krylov, Time-Evolving Block Decimation (TEBD), Time-Dependent
Variational Principle (TDVP), and local Runge-Kutta follow in Sec. 5. We de-
scribe future developments ahead of the conclusion in Sec. 7. The appendices
cover topics such as convergence studies for the algorithms, convenient features,
and technical information for installation and the scope of the open source project.

2. Basic concepts in tensor network techniques

In this section, we briefly review the concepts of tensor network techniques.
Readers familiar with MPS algorithms can continue on to Sec. 3 discussing the
design of simulations specifically for OSMPS. The MPS algorithms rely heavily
on the Schmidt decomposition of a quantum system, which can be explained best
in the case of two subsystems 1 and 2 and their wave function |ψ1,2〉. Each subsys-
tem is defined on a local Hilbert space Hk of dimension dk, and is spanned by an
orthonormal basis of states {|ik〉}. The joint Hilbert space of subsystem 1 and 2 is
formed via the tensor productH = H1,2 = H1⊗H2 and has a dimension d1×d2.

The Schmidt decomposition is then based on a set of local wave functions
∣∣∣ψ[1]

α

〉
and

∣∣∣ψ[2]
α

〉
|ψ1,2〉 =

χmax∑
α=1

λα|ψ[1]
α 〉|ψ[2]

α 〉 . (1)

The Schmidt decomposition corresponds to a singular value decomposition (SVD)
where the singular values are the λα. The number of non-zero singular values
serves as a coarse measure of entanglement between the systems 1 and 2, known
as the Schmidt number or Schmidt rank. We dub the maximal number of singular
values as χmax. Tracing out over either of the subsystems, we obtain the reduced
density matrix of the other subsystem. This demonstrates that the eigenvalues of
the reduced density matrices ρ1 = Tr2|ψ1,2〉〈ψ1,2| and ρ2 = Tr1|ψ1,2〉〈ψ1,2| are
{λ2

α} [58].
The Schmidt decomposition is unique up to rotations within subspaces of de-

generate singular values for a chosen basis. Local unitary transformations such
as basis transformations affecting each half of the bipartition separately are possi-
ble in general, because they do not change the entanglement, i.e., the number and
value of non-zero singular values. MPSs generalize the Schmidt decomposition
by allowing for rotations within the Schmidt bases |ψ[k]

α 〉 that keep the amount of

6

A
[1]i1
α1

A
[2]i2
α1,α2

A
[3]i3
α2,α3

A
[4]i4
α3,α4

A
[5]i5
α4

i1
i2

i3
i4 i5

α1

α2

α3
α4

Figure 1: Tensor network representation of an MPS of five sites for open boundary conditions. The
state is decomposed into local tensors representing each site. These tensors are connected to their
nearest neighbors via the Schmidt decomposition where singular values are truncated to maintain
feasible run times for larger systems. The indices for the local Hilbert space ik are connected for
measurements, e.g. for the norm 〈ψ|ψ〉, with their complex conjugated counterpart.

bipartite entanglement between the two subsystems fixed:

|ψ1,2〉 =

χmax∑
α=1

d1∑
i1=1

d2∑
i2=1

A[1]i1
α A[2]i2

α |i1〉 |i2〉 . (2)

In addition, while the Schmidt decomposition is only defined for a bipartite sys-
tem, the MPS form can be extended to any number of degrees of freedom.

We take the example of a two-site system to illustrate the connection between
the Schmidt and MPS decompositions. Subsystem 1 is the site with k = 1 and
subsystem two corresponds to the site with k = 2. The MPS decomposition
of such a system is described in Eq. (2). We rewrite any state |ψα〉 in Eq. (1)
as a matrix of complex numbers ci1i2 and its corresponding basis states, that is∑

i1i2
ci1i2|i1〉|i2〉. In Eq. (1), each dimension k is spanned by χmax orthonormal

vectors. We can rewrite the sets of these vectors as matrices (rank-two tensors),
where each column of the matrix represents a vector in the case of site 1, and
each row is filled with one vector for site 2. Then, the matrix A[k] in Eq. (2)
represents a rank-2 tensor for site k and the singular values are contained in either
A[k]. A single element of the matrix A[k] can be written as A[k]jk

α =
〈
jk

∣∣∣ψ[k]
α

〉
in

the two-site case above. Thus, the indices of the tensors A[k] correspond to the
local Hilbert space ik and the singular values of the Schmidt decomposition α.
Throughout the paper we note the site index of a tensor in brackets, i.e., the k in
A[k].

In order to generalize this decomposition for a system with L sites, successive

7

SVDs lead to one tensor per site where the tensors are now rank-2 at the bound-
aries and rank-3 in the bulk of the system, as shown in the representation as a
tensor network in Fig. 1:

|ψ1,...,L〉 =
∑

α1···αL−1

∑
i1···iL

A[1]i1
α1

A[2]i2
α1,α2

· · ·A[L−1]iL−1
αL−2,αL−1

A[L]iL
αL−1
|i1〉 · · · |iL〉 . (3)

If we allow the indices αj to run over exponentially large values ∼ dL/2 (d = dk
the local dimension, assumed uniform for simplicity), such a representation is
exact, but manipulating this exact representation also scales exponentially with
the system size and we do not gain anything over exact diagonalization methods.

We now introduce the key approximation in the MPS algorithm, that is the
truncation of the Hilbert space according to the singular values from the Schmidt
decomposition. The essential idea here is to replace the number of singular values
χmax with a reduced number χ: for instance, if there are singular values less than
10−16 there is no reason to count them toward the amount of entanglement be-
tween the two subsystems. Thus χ becomes the reduced Schmidt rank, the major
convergence parameter of the whole MPS algorithm, as we will show. We obtain
these singular values for any splitting in two connected subsystems, and the trun-
cation is encoded in the maximum range of the auxiliary indices αi. Considering
an approximated state |ψ′〉 truncated to the first χ singular values at some partic-
ular bond of the normalized state |ψ〉 with χmax singular values at that bond, the
overlap between the two states is

〈ψ′|ψ〉 =

∑χ
i=1 λ

2
i√∑χ

i=1 λ
2
i

=

√√√√ χ∑
i=1

λ2
i . (4)

We prefer the overlap instead of the 2-norm of the overlap since it allows us to
relate our result to the quantum fidelity in our case of pure states with real overlaps
as F = 〈ψ |ψ′〉. We define the truncation error made in this step as εlocal =
1− 〈ψ |ψ′〉 and obtain

εlocal = 1−

√√√√ χ∑
i=1

λ2
i ≤

χmax∑
i=χ+1

λ2
i . (5)

This upper bound is useful since it relates directly to the truncated singular values.
Such a truncation corresponds to a truncation of entanglement through two entan-
glement measures: the Schmidt rank χ and the von Neumann entropy S. The

8

Si
ze

lo
g 10

(L
)

0.5
1.0

1.5
2.0
2.5
3.0
3.5

External field g
0.40.60.81.01.21.41.6

B
ond

entropy
S

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

B
on

d
en

tr
op

y
S

Figure 2: The compression of the quantum state in the MPS acts on the singular values of the
Schmidt decomposition in Eq. (1). The bond entropy or von Neumann entropy at the center bond
for the nearest-neighbor quantum Ising model H = −J∑σz

kσ
z
k+1 − Jg

∑
σx
k , defined later in

Eq. (15), peaks around the critical point for increasing system sizes.

former is simply the number of non-zero singular values, and is an entanglement
monotone. The von Neumann entropy, or bond entropy, S is given as

S = −
χ∑
i=1

λ2
i log(λ2

i) . (6)

In Fig. 2 we show the bond entropy for the bipartition at the center bond for the
quantum Ising model with transverse field as a function of the system size and
external field. Errors in the MPS approach originate in high entanglement; there-
fore, simulations for increasing system sizes and around the quantum critical point
are more vulnerable to smaller cutoffs χ. The quantum critical point for the Ising
model is hc = 1.0 and becomes visible as a red ridge in Fig. 2 for large system
sizes. The ground state of the ferromagnetic phase in the limit of zero external
field, also called the Greenberger-Horne-Zeilinger (GHZ) state, is the superpo-
sition of all spins up and all spins down, i.e. (| ↑ · · · ↑〉+ | ↓ · · · ↓〉) /

√
2. We

expect an entropy of S = − log(0.5) ≈ 0.69, which agrees well with the results
in the Fig. 2. For gapped 1D systems with short-range interactions, the so-called
area law for entanglement [59] states that the entanglement at any bipartition is in-
dependent of the length of the subsystems (and hence of the system size L). Since
the bond entropy is an entanglement measure, this upper bound can be used as
the gap opens away from the critical point. At the critical point, the entanglement

9

grows logarithmically with the subsystem size.
We introduce a list of basic operations that can be performed on tensor net-

works, and explain the orthogonality center, an isometrization or gauge, used in
the OSMPS algorithms. For these linear algebra operations on tensors, we sup-
press the basis kets of the quantum states for simplicity throughout the paper. One
key feature of every MPS with open boundary conditions is that introducing an
orthogonality center leads to faster local measurements and error reduction in the
truncation [60]. We introduce the left and right canonical form of tensors accord-
ing to

A[k]ik
αk−1,αk

= L[k]ik
αk−1,αk

if

{
A[j] = L[j] ∀ j < k

and
∑

αk−1,ik
A

[k]ik
αk−1,αk(A

[k]ik
αk−1,α

′
k
)∗ = Iαk,α

′
k
,

A[k]ik
αk−1,αk

= R[k]ik
αk−1,αk

if

{
A[j] = R[j] ∀ j > k

and
∑

αk,ik
A

[k]ik
αk−1,αk(A

[k]ik
α′k−1,αk

)∗ = Iαk−1,α
′
k−1

.
(7)

The left (right) canonical forms L[k]
(
R[k]
)

are unitary matrices, e.g. from the
SVD obtained from the Schmidt decomposition in Eq. (1). These conditions ap-
ply if the singular values have not been multiplied into the tensor. We define the
orthogonality center as the site which has only left orthogonal tensors on the left
side and right orthogonal tensor on the right side. This feature becomes beneficial
for measurements as the contractions in the condition of Eq. (7) do not have to be
calculated knowing that the result is the identity I. Stated equivalently, the tensor
of the orthogonality center A[k]ik

αβ consists of the coefficients of the wave function
in the orthonormal basis spanned by the local states |ik〉 and the left and right
Schmidt vectors given by products of the other MPS tensors. With these defini-
tions, we can derive the overlap from Eq. (4). We assume that we truncate singular
values at the bond of the sites k and k + 1 and the sites up to and including site k
are of the form L[j≤k] and the tensors beginning on site k+ 1 are of type R[j≥k+1].
The truncation does not affect any of the tensors L[j≤k] or R[j≥k+1]. Contract-
ing these tensors for the overlap with their complex conjugated counterparts, we
obtain identities on all sites and 〈ψ′′|ψ〉 simplifies to

〈ψ′|ψ〉 =
∑

αk−1,αk

λαk−1,αk
λ′αk−1,αk

, (8)

where |ψ′′〉 is the unnormalized truncated state and |ψ′〉 the truncated normalized
state. The diagonal structure of the matrices λ containing the singular values leads

10

to 〈ψ′|ψ〉 =
∑

α λαλ
′
α. Since the smallest singular values in λ′ are set to zero, the

result is the sum of the squared singular values in λ′. The additional term in the
denominator in Eq. (4) originates in the normalization of |ψ′′〉. We emphasize
that this procedure only works if the sites are completely in the form of L[j≤k] and
R[j≥k+1] since otherwise, the contraction with the complex conjugated tensor does
not lead to an identity.

Moreover, we introduce the following actions on tensors in our MPS library:

• Contractions over two tensors are defined as the summation over one (or
more) common indices, and hence generalize matrix-matrix multiplication
to higher-rank tensors. A commonly used example would be to contract
two neighboring tensors of an MPS, A[k]ik

αk−1,αk and A[k+1]ik+1
αk,αk+1 , to one tensor

representing the sites k and k + 1. The summation is in this case over the
index αk and we obtain a tensor Θ

[k,k+1]ik,ik+1
αk−1,αk+1 .

• Splitting of a tensor is the reverse action of a contraction. The indices of the
tensor form two subgroups where the splitting is enacted between those two
groups. Taking the two site tensor Θ

[k,k+1]ik,ik+1
αk−1,αk+1 as an example, we group

αk−1, ik together and ik+1, αk+1 in order to obtain two single site tensors, up
to a possible truncation. The splitting can be achieved via three possibilities:

◦ An SVD splits the tensor directly into two unitary tensors and the sin-
gular values, described by

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

λαk
R[k+1]ik+1
αk,αk+1

, (9)

where the singular values λαk
allow us to truncate the state to a certain

χ. The maximal bond dimension is defined as min (χk−1dk, dk+1χk+1).

◦ The eigenvalue decomposition is related to the singular value decom-
position, which is the reason the eigenvalue decomposition can replace
the SVD. If the SVD decomposes A into UλV , the eigendecomposi-
tion E(·) is set up as follows:

E(AA†) = E
(
UλV V †λU †

)
= E

(
Uλ2U †

)
= Uλ2U † . (10)

The eigendecomposition of AA†, which is built from a matrix-matrix
multiplication, returns a unitary matrix and the singular values squared.
To obtain the right matrix, we multiply U † with the original matrix A
leading to

U †A = U †UλV = λV , (11)

11

which already contains the singular values. After completing the series
of steps, we obtain

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

A[k+1]ik+1
αk,αk+1

, (12)

where the truncation is possible due to the knowledge of λ2 in the in-
termediate step of Eq. (10), although the singular values do not appear
in the previous equation (12). As in the case of the SVD, the max-
imal bond dimension is min(χk−1dk, dk+1χk+1). The unitary matrix
can be obtained for the right side starting with A†A. This procedure is
generally faster than the SVD.

◦ The QR decomposition decomposes a matrix into a unitary matrix and
an upper triangular matrix T . If the unitary matrix is on the right
side, it may be referred to as RQ decomposition. It does not allow for
truncation as the singular values are not calculated. The example for
the QR is

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

T [k+1]ik+1
αk,αk+1

. (13)

Therefore, the new bond dimension is the maximal one, χ = χmax =
min(χk−1dk, dk+1χk+1). The fact that the QR scenario is not rank
revealing is the reason for not using it in the splitting of two sites in
the library, but it is used for shifting as explained in the following.

The different options for splitting a tensor are summarized in Fig. 3. We
choose the SVD to obtain the singular values and two unitary matrices.
In contrast, the eigenvalue decomposition yields a unitary matrix and the
singular values. The QR decomposition differs from the first two methods
as it does not reveal the singular values and returns only one unitary matrix.
Therefore, the QR is computationally less expensive than the approach with
the eigenvalue decomposition. The SVD is computationally more costly
than both other algorithms.

12

L[k]
λ

χ ≤ χmax

R[k+1]

SVD

L[k]

χ ≤ χmax

A[k+1]

E

L[k]

χmax

A[k+1]

QR

αk−1

ik

Θ[k,k+1]

ik+1

αk+1

(a) (b) (c)

Figure 3: Methods for splitting a two site tensor into two one site tensors include (a)
an SVD decomposition, (b) an eigenvalue decomposition E in combination with matrix
multiplications, and (c) a QR decomposition.

• Shifting the orthogonality center can be done with local operations, mean-
ing that the operations act only at one site at a time and do not use any two
site tensors. Running an SVD or QR (RQ) decomposition for site k on a
single rank-3 tensor with dimensions χk−1, d, and χk, we reshape the tensor
as a χld×χr (χl×dχr) matrix and obtain a left-canonical (right-canonical)
unitary tensor for site k and an additional matrix. The additional matrix con-
sists of the singular values contracted into a unitary matrix when choosing
an SVD. For the QR (RQ) decomposition we obtain a left (right) canonical
unitary and an additional upper triangular matrix. This additional matrix
can be contracted to the corresponding neighboring site k ± 1, resulting in
that site becoming the new orthogonality center. We note in this case that
the QR and RQ decomposition does not change the ranks of the matrices,
and is roughly a factor of two faster than the SVD.

With the knowledge of the basic features of an MPS, we introduce in the next
chapter how a model is defined in the OSMPS library and how we obtain results
as in Fig. 2.

3. Defining systems and variational ground state search

We now outline the definition of systems in OSMPS. As an example we con-
sider finding the ground state of the finite size quantum Ising model. The 1D

13

long-range transverse field Ising Hamiltonian is [61, 62]

H = −J
∑
i<j≤L

σzi σ
z
j

(j − i)α − Jg
L∑
i=1

σxi , (14)

where the operators are defined over the Pauli matrices {σxi , σyi , σzi } acting on a
site i in the system. The interactions between the spins at different sites decay
following a power-law introduced in the first term of the Hamiltonian governed
by α, the distance |j − i|, and the overall energy scale J . The external field is
governed by the dimensionless g appearing in the second term of the Hamiltonian.
The number of sites is L. We focus in this section on the nearest neighbor case
HNN obtained for the limit α → ∞, commonly called the transverse quantum
Ising model,

HNN = −J
L−1∑
i=1

σzi σ
z
i+1 − Jg

L∑
i=1

σxi . (15)

The overall approach to OSMPS is a user-friendly Python environment calling a
Fortran core for the actual calculations. This scheme is depicted in Fig. 4. Thus,
we guide the reader through the simulation with a corresponding summary of
the Python files; the complete files are contained in supplemental material, see
Appendix H.

From a quantum mechanical point of view the following steps are necessary
to describe a system. First, we have to generate the operators which are acting
on the local Hilbert space, described in Sec. 3.1. Once we have the operators, we
build the Hamiltonian out of rule sets in Sec. 3.2. Then, we set up the measure-
ments to be carried out in Sec. 3.3. This procedure completes the definition of the
quantum system, but we have two more tasks with regards to the numerics. In the
fourth step we define the convergence parameters of the algorithm, where Sec. 3.4
describes this step for the variational ground state search. Finally, the simulation
is set up and executed in Sec. 3.5.

One general comment remains before starting with a detailed description of
the simulation setup. Every simulation in OSMPS is represented by a Python
dictionary, which contains observables and convergence parameters as well as
general parameters such as the system size.

3.1. Operators
OSMPS comes with predefined sets of operators for three different physical

systems to facilitate the setup of simulations. These predefined sets of opera-

14

H.AddMPOTerm(

 ‘site’, ‘sx’, hparam=‘g’)

...

(a)

Python 001001011101
010101001010
101001000101
000101010101
010010101010
101010101010
101110010100 !

(b)

Fortran

102 103

System size L

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
ri

ti
ca

lfi
el

d
g c

gc(L)

gc = 1.0011 (FSS)

(c)

Python

Figure 4: OSMPS flow chart for a simulation. The OSMPS library combines a user-friendly
interface in Python with a computationally powerful core written in Fortran. (a) The simulation
setup is done in Python. (b) A write function provides the files for Fortran and a corresponding
read function imports the results from Fortran to Python (blue arrows). (c) The Python front end
then takes care of the evaluation of the data. The plot in the flow charts shows the critical value of
the external field in the Ising model as a function of the system size L evaluated via the maximum
of the bond entropy. Finite size scaling (FSS) delivers the critical field in the thermodynamic limit
for L→∞.

tors are returned by the corresponding functions for bosonic systems such as the
Bose-Hubbard model, fermionic systems including their phase operators origi-
nating from the Jordan-Wigner transformation, or spin operators. We use the
last set in the example for the quantum Ising model. The corresponding func-
tion BuildSpinOperators returns the set of operators {σ+, σ−, Sz, I}. In
order to obtain the Pauli operators σx and σz from the spin lowering and raising
operators σ± and the spin operator Sz, we suggest following the prescription in
Listing 1.

Listing 1: Defining the operators of the quantum Ising model overwriting SZ with σZ .

38 # These are rotated Pauli operators to obtain a
39 # diagonal generator for Z2
40 Operators = mps.BuildSpinOperators(spin=0.5)
41 Operators[’sx’] = 2 * Operators[’sz’]
42 Operators[’sz’] = - (Operators[’splus’]
43 + Operators[’sminus’])
44 Operators[’gen’] = np.array([[0, 0], [0, 1.]])

15

3.2. Hamiltonians
Through these operators, stored in a dictionary-like Python class, we define

the Hamiltonian and later on the observables. The Hamiltonian is described as
a matrix product operator (MPO), which is effectively an MPS with rank-four
tensors instead of rank-three tensors:

H =
∑
i1,...,iL

∑
i′1,...,i

′
L

∑
α1,...,αL−1

M [1]i′1,i1
α1

M [2]i′2,i2
α1,α2

· · ·M [L]i′L,iL
αL−1 |i′1〉 〈i1| · · · |i′L〉 〈iL| . (16)

A key property is that an MPO acting on an MPS can be written as another MPS,
generally with a larger bond dimension. The physical indices ik act on the physical
indices of an MPS and take them to new physical indices i′k. The auxiliary indices
α of the MPO are fused with the corresponding auxiliary indices in the MPS. For
most physical operators, this structure of rank-4 tensors is sparse and therefore we
rather seek for an efficient implementation in terms of MPO-matrices M [k] than
in rank-4 tensors. The MPO matrix M [k] including the iteration over all indices
for one site representing the rule sets [63, 53] for local terms, bond terms for the
interaction of nearest neighbors, and exponential rules for long-range interactions
between two sites takes the form

M [k] =


A

[k]
αk−1=1,αk=1 0 0 0

A
[k]
αk−1=2,αk=1 A

[k]
αk−1=2,αk=2 0 0

A
[k]
αk−1=3,αk=1 0 A

[k]
αk−1=3,αk=3 0

A
[k]
αk−1=4,αk=1 A

[k]
αk−1=4,αk=2 A

[k]
αk−1=4,αk=3 A

[k]
αk−1=4,αk=4

 ,(17)

where k = 2, 3, . . . , L − 1. The matrix structure in Eq. (17) corresponds to the
auxiliary indices. Each element within this structureAαk−1,αk

is a matrix acting on
the local Hilbert space of site k, e.g. the Pauli matrix σzk. Thus the auxiliary indices
α of the rank-4 tensor encode the row and column of M [k], while the indices ik
and i′k are related to the local Hilbert space are located in the rows and columns of
the matrices Aαk−1,αk

. We now illustrate the meaning of the matrices depending
on their position in M [k]. In order to build the MPO for the Hamiltonian for the
long-range Ising model, we only need the first column, last row, and the diagonal
of M [k] and store it as a sparse structure. Matrices in the first column (last row)
of M [k] are multiplied with identity operators on the right (left) side of site k, i.e.,
they do not interact with any sites right (left) of themselves. Diagonal elements
propagate operators through the system and are completed by other operators to
the left and right of site k, and hence represent long-range interactions. For the

16

(a) (b) (c)

(d) (e)
f(|i− j|, O1, O2)

f(|i− j|, O1, O2)

O1 O2 O3

Figure 5: Rules for building a Hamiltonian. (a) Local terms; (b) bond terms acting on two neigh-
boring sites; (c) finite range terms of two operators O1, O2 and a coupling depending on the
distance. The coupling function f(x) is a finite sum of a limited number of neighboring sites. (d)
String of arbitrary operators, e.g., a three-body term built from O1, O2, and O3 and (e) infinite
terms of two operatorsO1 andO2 with a distance depending on decaying coupling either as a gen-
eral function f(|j−i|) (InfiniteFunction) or as an exponential (Exponential). Any infinite function
is expressed as a sum of exponentials within OSMPS. The coupling function f(x) is extended to
all sites.

first and last site we define the MPO-matrix as vectors

M [1] =
(
A

[1]
1,1 A

[1]
1,2 A

[1]
1,3 A

[1]
1,4

)
, M [L] =


A

[L]
1,1

A
[L]
2,1

A
[L]
3,1

A
[L]
4,1

 , (18)

corresponding to the auxiliary rank-one structure for the MPO matrices at the
boundary in Eq. (16). Note that the first MPO matrix is a row vector and the last
is a column vector, resulting in the contracted MPO object Eq. (16) being a 1× 1
matrix in the auxiliary indices.

We now build the nearest neighbor Hamiltonian HNN from Eq. (15) for the
quantum Ising model to continue with our example. Figure 5 shows the possi-
ble rule sets provided through OSMPS. We need the local site term depicted in
Fig. 5(a) and the bond term from Fig. 5(b). In general these operators are filled
with identities on all other sites and act on each possible site. The corresponding

17

MPO-matrices depending on the site index k are then

M [1] =
(
−Jgσx1 −Jσz1 I

)
, M [k] =

 I 0 0
σzk 0 0
−Jgσxk −Jσzk I

 ,

M [L] =

 I
σzL
−JgσxL

 , (19)

where k = 2, 3, . . . , L − 1. To see how this MPO structure results in the proper
many-body operator, we will explicitly build the Hamiltonian for three sites, i.e.,
H = M [1]×M [2]×M [3], where× is understood to be ordinary matrix multiplica-
tion in the auxiliary indices together with tensor products on the physical indices.
We start by multiplying the row vector for the first site with the matrix for the
second site leading to the first line of the following equation. The multiplication
of this result with the column vector for the last and third site results then in the
Hamiltonian

M [1] ×M [2] ×M [3] =
(
(−Jgσx1 − Jσz1σz2 − Jgσx2) −Jσz2 I

)
×

 I
σz3
−Jgσx3


= −Jgσx1 − Jσz1σz2 − Jgσx2 − Jσz2σz3 − Jgσx3 . (20)

The MPO matrices have more entries for models beyond nearest neighbor inter-
actions. The local terms remain in the last row of the first column as the identities
stay in their places. The diagonal is set in the case of long-range interactions with
an identity times a decay factor. The larger the distance between two sites be-
comes, the higher the contribution of the decay multiplied at each site in between.
Elements in the lower triangular part of the matrix besides the first column and
last row are used e.g. in the FiniteTerm rule set.

Independent of the system, we first initialize an instance of the MPO class. The
different types of terms are specified via a string argument in the class function
AddObservable. Keyword arguments to any MPO terms are the weight and
Hamiltonian parameters hparam. Further arguments specific for the rule can be
found in the documentation, e.g. the infinite function can take the function as an
additional keyword argument.

Listing 2: Defining the Hamiltonian of the quantum Ising model.

18

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: OSMPS measurements can be selected from the following options: (a) Local terms.
(b) Two-site correlators including correlations for fermionic systems. (c) String operators of type
〈OAOBOB . . . OBOBOC〉. (d) MPO as used in the default measurement of the energy (Hamil-
tonian). (e) Single site density matrices tracing over the remaining system. (f) Two-site density
matrices tracing out everything but two sites as defined in Eq. (21). (g) Singular values between
left and right part of the MPS.

49 H = mps.MPO(Operators)
50 H.AddMPOTerm(’bond’, [’sz’,’sz’], hparam=’J’,
51 weight=-1.0)
52 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,
53 weight=-1.0)

In the code we have given a string variable name for the coupling of the bond
and site term. The energy scale (J=1) and the different values for h are specified
later in the Python setup script inside the dictionary representing the simulation
allowing for flexibility.

3.3. Observables
In order to evaluate the behavior of the system, we have to define the observ-

ables. Figure 6 shows the possible measurements: local site terms including site
and bond entropy, correlations, MPOs, string operators and one or two-site re-
duced density matrices where the reduced density matrices ρi and ρi,j are defined
as

ρi = Trk 6=i (ρ) , ρi,j = Trk 6=i,j (ρ) , (21)

where the density matrix on the complete system is defined as ρ = |ψ〉 〈ψ|. The
energy as an MPO measurement of the Hamiltonian, the bond dimension, the

19

variance within variational algorithms, or the overlap between the initial state and
the time evolved state (Loschmidt echo) are measured by default. For the Ising
example, we measure 〈σzi 〉 and 〈σzi σzj 〉. Due to the local observable we gain as well
the bond entropy shown in Fig. 2. The following Listing 3 shows the necessary
code for measuring these observables.

Listing 3: Defining the observables of the quantum Ising model.

71 # Initialize instance of observable class and
72 # add local observable
73 myObservables = mps.Observables(Operators)
74 myObservables.AddObservable(’site’, ’sz’, ’z’)
75

76 # add correlation functions
77 myObservables.AddObservable(’corr’, [’sz’,’sz’],
78 ’zz’)

3.4. Fundamentals of the library: Variational ground state search
The previous steps completed the setup of the physical system, and we con-

tinue with the specification of the convergence parameters. Therefore, we explain
the variational algorithm used to find the ground state which serves as input for
the algorithms for excited state search and real time evolution.

From exact diagonalization, we know how to find the ground state via solving
the eigenequation, which is optimally done with sparse methods such as the Lanc-
zos algorithm [64]. The same procedure cannot be used in the same way beyond a
few tens of particles due to the exponentially growing Hilbert space in the many-
body system, but the variational ground state search adapts the eigenvalue prob-
lem to an effective eigenvalue problem for a few neighboring sites. In principle,
the eigenequation H|ψ〉 = E|ψ〉 can be solved for the ground state on the com-
plete Hilbert space using imaginary time evolution, e.g. with the Krylov method
presented for the dynamics later, using the equation e−βH with β →∞. The ther-
modynamic beta approaches infinity as the system approaches the ground state at
zero temperature. Instead of searching for the global minimum, we seek for local
minima transferring the problem to an effective eigenequation for n neighboring
sites in the OSMPS algorithm. The other L − n sites are kept fixed while find-
ing the effective ground state of the n sites. This effective eigenproblem does not
grow exponentially with the system size, but depends on the local dimension and
the bond dimension of the constant parts of the system, i.e. dnχ2. The number

20

L

H H

R LHHR

ψ

ψ
∈ Cχ2d2×χ2d2

∈ Cχ2d2

Figure 7: Effective Hamiltonian for the Lanczos algorithm is built via the contractions of all MPO
matrices with tensors for the sites k′ 6= k, k + 1.

of these effective eigenvalue problems grows linearly with the system size. In the
following for simplicity we set n = 2, which corresponds to the value used in
OSMPS:

ε[|ψ〉] = 〈ψ|H|ψ〉 − E〈ψ|ψ〉 local

global
HeffA

[k,k+1] = EA[k,k+1] . (22)

The local minimization over n neighboring sites is done iteratively moving through
the neighboring pairs of sites until convergence is reached (see details in Ap-
pendix B). We point out the role of the effective Hamiltonian in more detail with
regards to the Lanczos algorithm. The Lanczos algorithm finds the eigenvalues
and vector of a problem using only matrix vector multiplications, in our case
H |v〉 for some vector |v〉. Because we restrict ourselves to the sites k, k + 1,
the tensors of the other sites remain constant and we can contract them with their
MPO matrices. These fixed sites form an environment which acts as part of the
total matrix vector multiplication. The contraction can be continued until we only
have one tensor L to the left and one tensor R to the right representing those con-
tractions.1 Together with the MPO matrices M [k] and M [k+1], the tensors L and
R build the effective Hamiltonian. We now find the minimum in energy for this
effective Hamiltonian with regards to sites k and k+1. This effective Hamiltonian
is resumed in Fig. 7. In the case of matrices, the Lanczos algorithm is ideal for
sparse problems and calculating only a few eigenvectors. In the tensor network
scenario it provides a considerable speedup in contrast to dense methods due to
the tensor network structure: contracting the tensors L, R, and the MPO matrices

1In this context the symbol L represents the left tensor and not the system size.

21

M [k], andM [k+1], step-by-step to |v〉 is more efficient than buildingHeff of dimen-
sion χ2d2 × χ2d2 and multiplying it with |v〉 or solving the eigenvalue problem,
i.e. O(χ3) versus O(χ6) [53]. The two-site eigenvalue problem corresponds to
finding the stationary point of the energy functional through the equation

∂

∂ (A[k,k+1])
(〈ψ|H|ψ〉 − E〈ψ|ψ〉) = 0 . (23)

whereE, the energy eigenvalue, is a Lagrange multiplier enforcing normalization,
and the derivative with respect to a tensor is defined to be a tensor of the same
shape whose elements are the derivatives with respect to the individual tensor
elements.

Listing 4: Defining the two sets of convergence parameters for the quantum Ising simulation.

84 conv = mps.MPSConvParam(max_bond_dimension=40,
85 variance_tol=1e-10,
86 local_tol=1e-10,
87 max_num_sweeps=4)
88 modparam = [’max_bond_dimension’, ’max_num_sweeps’]
89 conv.AddModifiedConvergenceParameters(0, modparam,
90 [80, 4])

The key to obtaining meaningful results are the convergence parameters of the
variational algorithm. The convergence parameters are stored in a corresponding
Python object which is shown in Listing 4 and the different parameters are defined
in the following. For example, the variance Vψ = 〈H2 − 〈H〉2〉 indicates the dis-
tance from an eigenstate. Table 1 presents out of the analysis in Appendix B the
parameters to obtain ground states with a variance tolerance εV = 10−12, effec-
tively L× 10−12 for the whole system, for different models. Here, we concentrate
on the values of the Lanczos tolerance εl and bond dimension where other param-
eters are kept constant. Those are especially interesting because the bond dimen-
sion defines the fraction of the Hilbert space which can be captured. On the other
hand, the Lanczos tolerance determines the accuracy of the eigenvector solved in
Eq. (23). The parameters kept constant are the number of Lanczos iterations. If
the number of Lanczos iterations is sufficiently high the accuracy of the Lanczos
tolerance is met, otherwise not. The local tolerance εlocal, defining the cutoff of
the singular values in the Schmidt decomposition of Eq. (1), guarantees that we
do not use the full bond dimension if the sum of the singular values squared are

22

below the local tolerance. It relates to the variance tolerance and defaults to

εlocal =
εV

4L
. (24)

The motivation to choose this value is that the local error made during one sweep
consists of the approximately 2L splittings, where the additional factor of two is
a safety factor to ensure good convergence. The number of sweeps through the
system, optimizing each pair of two sites twice, is specified with the number of
inner sweepsNi, which is bounded between min_num_sweeps and max_num_
sweeps, and No, the parameter for the outer sweeps max_outer_sweeps.
The maximal number of overall sweeps Nsweep is then

Nsweep = Ni ·No . (25)

Convergence is checked after every inner sweep. One outer sweep is completed
after the set of Ni inner sweeps followed by an adjustment of the local tolerances.
The new local tolerance ε′local is decreased according to

ε′local = εlocal
εV

Vψ
, (26)

where Vψ is the actual variance on the current MPS. Equation (26) assumes a
linear connection between the local tolerance and the variance fulfilled for small
local tolerances [65]. Moreover, we have two more parameters to grow the system
up to L sites with the same algorithm later explained in Sec. 4.2 for the infinite
system. The local tolerance (warmup_tol) and the maximal bond dimension
(warmup_bond_dimension) during that warmup phase can be tuned individu-
ally. These values provided in Table 1 provide a first overview of how models
behave within OSMPS. We choose points with high entanglement within each
model. The parameters are either close to a critical point or in a phase which has
high entanglement such as the superfluid phase of the Bose-Hubbard model.

Finally, we present arguments as to why the variance tolerance is a convenient
convergence criterion. In Appendix D we derive the bounds of multiple variables,
we provide a short summary of those bounds here. The variance of the ground
state Vψ determines a bound on ε, where ε is the contribution for |ψ⊥〉 of all states
orthogonal to the true ground state |ψ0〉 in the result |ψ〉 returned from OSMPS:

|ψ〉 = f |ψ0〉+ ε |ψ⊥〉 , |ε| ≤
√
Vψ

∆0,1

. (27)

23

Parameter QI LRQI Bose Fermi

χ 46 100 261 177
εl 2.6 · 10−9 2.15 · 10−8 1.1 · 10−10 5.1 · 10−7

Number of inner sweeps 2 2 2 4
Number of outer sweeps 1 1 1 1

System size L 128 128 32 65
Lanczos iterations 500 500 500 500

Table 1: Empirically Determined Convergence Parameters. The convergence parameters for the
bond dimension χ and Lanczos tolerance εl for four different models achieve a variance tolerance
10−12 using a state with high entropy. The quantum Ising model (QI) and quantum long-range
Ising model (LRQI) are evolved close to the critical point. The Bose-Hubbard model (Bose) is
considered in the superfluid phase and a spinless Fermi model (Fermi) with nearest neighbor re-
pulsive interactionW and nearest neighbor tunneling J is again in a region with high entanglement
with J = 1.04. Details on the study are in Appendix B.

The value of ∆0,1 is the energy gap between the ground state and the first excited
state. Starting from there, we derive in Appendix D bound on an observable O
acting on |ψ〉 as well as the bond entropy S:

| 〈ψ0|O |ψ0〉 − 〈ψ|O |ψ〉 | ≤ 3εM , M = max
|φ〉,|φ′〉

| 〈φ|O |φ′〉 , (28)

εS = |S(ρ0)− S(ρ)| ≤
√

2Vψ

∆0,1

log(D)−
√

2Vψ

∆0,1

log

(√
2Vψ

∆0,1

)
.(29)

In Eq. (29) the dimension of the density matrix, D, appears in addition to the
variance and the gap. We pick as an example for the error bounds the nearest
neighbor quantum Ising model with Z2 symmetry. Due to the symmetry, the first
excited states lies, in contrast to the ground state, in the odd sector. Therefore, the
relevant gap is the energy difference between the ground state and second excited
state. The value of the gap for different systems sizes and the upper error bound
for ε and εS are shown in Fig. 8.

3.5. Running the simulations
Finally, we discuss how to set up simulations and execute them on the com-

puter. Each simulation is contained in a dictionary and we can create a list of
dictionaries to run multiple simulations at the same time. While certain parame-
ters such as the measurement setup stay the same for a set of simulations, other
parameters may be varied. In this example we create an empty list params and

24

0.6 0.8 1.0 1.2 1.4
External Field g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
ne

rg
y

G
ap

∆
E

0,
2

L = 256

L = 128

L = 64

L = 32

L = 16

L = 8

(a)

0.6 0.8 1.0 1.2 1.4
External Field g

10−8

10−7

10−6

10−5

10−4

E
rr

or
E

st
im

at
es

ε

(b)

0.6 0.8 1.0 1.2 1.4
External Field g

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
B

ou
nd

E
nt

ro
py

ε S

(c)

Figure 8: Error bounds applied to the quantum Ising model. We consider the Ising model with Z2

symmetry for the demonstration of error bounds. (a) The energy gap ∆E0,2 between the ground
state and the second excited is shown, as the error depends on the inverse of the gap. The gap
decreases towards the critical points and in the thermodynamic limit L → ∞. The first excited
state is located in the odd symmetry sector and therefore not relevant for this calculation. (b) The
error bound for ε, where ε is the contribution orthogonal to the ground state. Observables such as
the spin measurements, e.g. σx with a maximum of 1, are bounded by 3ε. (c) The bound for the
error in the bond entropy εS depends furthermore on the dimension of bipartition, which increases
the bound especially for larger systems.

add the dictionaries to the list looping over the system size L and the external field
h. The dictionary is shown in Listing 5.

Listing 5: Appending different simulations looping over L and g.

102 params.append({
103 ’simtype’ : ’Finite’,
104 # Filenames and directories
105 ’job_ID’ : ’sim_01_ising_z2_’,
106 ’unique_ID’ : ’_L%04d’%ll \
107 + ’_g%3.6F’%gg,
108 ’Write_Directory’ : ’TMP_01_ISING/’

,
109 ’Output_Directory’ : ’

OUTPUTS_01_ISING/’,
110 # System size and Hamiltonian
111 # parameters
112 ’L’ : ll,
113 ’J’ : J,

25

114 ’g’ : gg,
115 # Other parameters
116 ’MPSConvergenceParameters’ : conv,
117 ’MPSObservables’ : myObservables,
118 # For error calculation (gap)
119 ’n_excited_states’ : 1,
120 ’eMPSConvergenceParameters’ : conv,
121 ’logfile’ : True,
122 ’verbose’ : 1,
123 # Z2 symmetry
124 ’Discrete_generators’ : [’gen’],
125 ’Discrete_quantum_numbers’ : [0]
126 })

In the following we generate a submit script for our simulations by writing the
files for Fortran with a call to
MainFiles = mps.WriteMPSParallelFiles(params, Operators, H,

hpcsetting,

PostProcess=False)

and the simulations are executed when submitted to the computing cluster. The
fourth argument hpcsetting is a dictionary with various settings such as the
number of nodes requested on the cluster. As an alternative, the user may call the
parallel executable on a local machine and can find the corresponding call inside
the submit script. We do not cover the post-processing itself here, but the sample
scripts presented in the supplemental materials in Appendix H provide guidance
on how to read the results with the corresponding OSMPS functions and access
the measurements inside the dictionaries.

4. Highlights of static algorithms

In the previous section we presented static simulations for the ground state,
which builds a basis for other algorithms within OSMPS. The next algorithm
searches for the excited state obtained through variational means. It can find se-
quentially ascending excited states above the ground state. In addition, we high-
light our infinite size statics as a method to calculate properties for the ground
state in the thermodynamic limit with an example.

26

4.1. Excited state search
The search for excited states, eMPS, is implemented in a successive fashion

after the ground state has been obtained. The algorithm is based on the variational
procedure now introducing additional Lagrange multipliers to Eq. (23) to enforce
orthogonality with previously obtained eigenstates. If the ground state is now
labeled as |ψ0〉 and the ith excited state as |ψi〉, we then need i additional Lagrange
multipliers µi corresponding to the number of states with lower energy. These
Lagrange multipliers enforce orthogonality between the eigenstates, 〈ψi|ψj〉 =
δi,j :

ε[|ψi〉] = 〈ψi|H|ψi〉 − E〈ψi|ψi〉 −
i−1∑
j=0

µj〈ψi|ψj〉 . (30)

We base our example for the excited state search on the previous study of the
quantum Ising model. We introduce long-range interactions following a power
law decay in this example. The corresponding Hamiltonian of the long-range
Ising model was presented in Eq. (14), and we recall that it was defined as

H = −J
∑
i<j≤L

σzi σ
z
j

(j − i)α − Jg
L∑
i=1

σxi .

The update to the Hamiltonian due to the long-range interaction is reflected in
Listing 6. Since we loop over different α, we generate the Hamiltonian as well
inside the loop over the different parameters and generate a list of them; in the pre-
vious example we could use a single MPO because only the couplings changed,
but not the function describing the coupling. For the complete file see the supple-
mental material, Appendix H.

Listing 6: Adapting the MPO for the long-range Ising model.

94 H = mps.MPO(Operators, PostProcess=PostProcess)
95 invalpha = lambda x: 1/(x**alpha)
96 H.AddMPOTerm(’InfiniteFunction’, [’sz’,’sz’],
97 hparam=’J’, weight=-1.0,
98 func=invalpha, L=ll, tol=1e-10)
99 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

100 weight=-1.0)

27

External field g

0.60.81.01.21.4 1.6 1.8

Power
law

dec
ay α

2.0
2.5

3.0
3.5

4.0
E

ne
rg

y
ga

p
∆
E

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

(a)

External field g

0.60.81.01.21.41.6 1.8

Power
law

dec
ay α

2.0
2.5

3.0
3.5

4.0

E
rr

or
lo

g 1
0
(ε
E
,2

)

−16
−14
−12
−10
−8
−6
−4

−14
−13
−12
−11
−10
−9
−8
−7
−6
−5

(b)

Figure 9: Energy gap for the long-range quantum Ising model as a function of the interaction
strength α and the external field g. (a) The energy gap between the ground state and the first
excited state is close to degeneracy in the ferromagnetic phase of the long-range quantum Ising
model. The gap between ground and second excited states closes toward the quantum critical
point, e.g. for α = 4 around g ≈ 1. The eigenenergies for the second excited state are compared
to the eigenenergies of the ground state and the second excited state of the combined odd and even
symmetry sector in (b) to estimate the error. (Same labels apply to color bar and z-axis.)

In order to calculate the excited states, we add the information showed in List-
ing 7 to the simulation dictionary. In general it is possible to define different
observables or convergence parameters for the ground state and the excited state,
although it is not possible to have different settings for each excited state. We
present the results of the excited states of the long-range Ising model in Fig. 9.
The excited states can reveal physical phenomena or support theory, e.g. we
deduct from Fig. 9 the close to degenerate ground and first excited state in the
ferromagnetic phase. Both the ground and second excited state in the ferromag-
netic phase belong to the even sector of the Z2 symmetry, and their closing gap
indicates the position of the quantum critical point. This closing gap can be seen
as valley starting around α = 4 and g = 1.0. We use the symmetry conserving
simulation to calculate the ground state and first excited state and show the errors
in energy in Fig. 9(b) and (c). In the latter one we see as well the growing error
around the critical point. Because the variational state can only guarantee to find
an eigenstate, but might end up in a minimum corresponding to a higher excited
state, it is useful to resort the energies and converge results with more excited

28

states than actually desired.

Listing 7: Specify the number of excited states to be calculated and the settings for convergence
and measurements.

124 # eMPS
125 ’n_excited_states’ : ne,
126 ’eMPSConvergenceParameters’ : conv,
127 ’eMPSObservables’ : myObservables

4.2. Infinite systems in the thermodynamic limit
The OSMPS library possesses another tool to obtain information about the

ground state of a quantum system, which is applicable in the thermodynamic limit.
The iMPS algorithm searches for the ground state of a translationally invariant
Hamiltonian [57]. The core idea of the algorithm is based on a unit cell of L
sites. The Hamiltonian is translationally invariant in the sense that we consider an
infinite sequence of these unit cells with the same Hamiltonian. Within the L sites,
the Hamiltonian can depend on the site, creating a sublattice or similar features.

The final state is obtained when the state of the unit cell is converged by pa-
rameters discussed in the following. Starting with the first unit cell the ground
state of the system is obtained. The system size is increased by inserting another
unit cell in the middle of the system and summarizing the previous result in an en-
vironment. The new ground state of the unit cell is computed under the action of
the environment. Subsequent steps of inserting cells while growing the environ-
ment lead to the result. The class iMPSConvParam comes with the convergence
parameters for the bond dimension χ, and the local tolerance and the settings for
the Lanczos algorithm keep their meaning in regard to previous algorithms. We
introduce the maximal number of iMPS iterations determining how often a new
unit cell is introduced into the iMPS state before stopping the algorithm. To break
out of the algorithm before reaching the maximal number of iMPS iterations we
consider the orthogonality fidelity F (variance_tol). In order to define this
orthogonality fidelity F , we introduce the density matrices ρn−1, i.e., the density
matrix of the previous step, and ρRn as the density matrix of the present step with-
out the new unit cell introduced in step n. The overlap or fidelity serves then as a
convergence criterion:

F(ρn−1, ρ
R
n) =

√√
ρRnρn−1

√
ρRn . (31)

29

0.6 0.8 1.0 1.2 1.4
External field g

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

B
on

d
en

tr
op

y
S

iMPS
MPS
MPSZ2

(a)

0.6 0.8 1.0 1.2 1.4
External field g

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
ti

za
ti

on
〈σ

z k
σ
z k
+

49
9
〉(b)

0.6 0.8 1.0 1.2 1.4
External field g

100

101

102

103

104

C
P

U
ti

m
e
T

C
P

U
/s

(c)

Figure 10: The quantum Ising model in the infinite MPS simulations. (a) The bond entropy of
the iMPS peaks at the critical point gc = 1.0 which reproduces the results of the finite size MPS
simulation for L = 2000 without Z2 symmetry. In general, the bond entropy of the iMPS in the
ferromagnetic phase can lie in between the results with and without the Z2 symmetry. (b) The
magnetization based on the correlation 〈σz

i σ
z
i+499〉 dies away at g = 1.0. (c) The compute times

of the iMPS simulations in comparison with the finite size algorithm at L = 2000. iMPS can give
a quick estimate of the behavior in the thermodynamic limit.

We can use the algorithm to compare the results of the first study of the near-
est neighbor limit with those of iMPS. In Fig. 10 we show the bond entropy of
the iMPS which peaks at the critical point. We point out that of all simulations,
three fail being the second, fifth data point and the bond entropy at the critical
point. In comparison we show the largest finite size system with L = 2000 with
and without using the Z2 symmetry. Both lines show good agreement. Possi-
ble disagreement in the bond entropy may arise from the actual ground state, i.e.
(| ↑ · · · ↑〉+ | ↓ · · · ↓〉) /

√
2. But any other superposition of all spins up plus all

spins down fulfills the minimization of the energy as well. Furthermore, the out-
put of the infinite system is partly different from the finite size algorithm, e.g. the
maximal distance for the correlation is specified. More of those differences are
described in detail in the manual.

5. Time evolution methods

The only missing piece to complete the library at this point is the time evo-
lution of quantum states. In total we provide four different algorithms: Krylov
time evolution [66] by default, the Time-Dependent Variational Principle algo-
rithm (TDVP) [67], a local Runge-Kutta method (LRK) [68], and a Sornborger-
Stewart decomposition [58, 69]. The Sornborger-Stewart decomposition is an al-
ternate decomposition to the Trotter decomposition and is used to implement the
Time-Evolving Block Decimation (TEBD) [7]. The first three methods support

30

long-range interactions, and align with our motivation to support such systems.

5.1. Computational error and convergence
We first provide an overview of each method’s behavior in terms of conver-

gence in Fig. 11. The figure compares the OSMPS algorithms to analogous exact
diagonalization time propagation schemes, focusing on four key measures:

1. The maximum trace distance of all local reduced density matrices,

εlocal = max
i∈{1,...L}

D(ρi, ρ
ED
i), D(ρA, ρB) ≡ 1

2
|ρA − ρB| ,

|A| ≡
√
A†A . (32)

The superscript ED refers to the results of exact diagonalization methods.
Equation (32) can be used to bound any local observable, as explained in
Appendix E.

2. The error of correlation measurements. We consider the maximal trace
distance εcorr, here on all two-site density matrices, to bound the error for
the correlation measurements:

εcorr = max
(i,j)
D(ρi,j, ρ

ED
i,j), i, j ∈ {1, . . . L | |i < j} . (33)

3. The energy of the system:

εE = |E − EED| . (34)

4. As the maximal bond dimension is one of the key parameters in MPS algo-
rithms, we finally compare the bond entropy defined over the von Neumann
entropy S of singular values squared obtained by cutting the system in half:

εS = |S(L/2)− SED(L/2)| . (35)

The maximal bond dimension necessary in small systems which can still
be studied in exact diagonalization is unfortunately limited. Therefore, we
cannot study the effects of truncation in comparison to exact diagonaliza-
tion.

31

We compare the OSMPS results with the data from exact diagonalization.
Therefore, we take the simulation with the smallest time step corresponding to
the most accurate result. In addition, we display the error from the static sim-
ulation as a lower bound for the error. The static simulation serves as an in-
put state for the dynamics and sets the lower bound for the error. Figure 11
shows the error at the end of the time evolution for a quench in the Ising model.
The quench starts at g(t = 0) = 5.0 and ends at g(t = 0.5) = 4.5 for a
system size of L = 10. The time is in units of ~/J . The exact diagonaliza-
tion method, which is always at time-ordering O(dt2), takes the whole Hamilto-
nian to the exponent evaluating the coupling at t + 0.5dt resulting in |ψ(T)〉 =
exp(−iH(0.5dt)dt) exp(−iH(1.5dt)dt) · · · exp(−iH(T−0.5dt)dt) |ψ(0)〉. In con-
trast, the MPS time evolution methods support higher order time ordering, which
is not used for the studies within this work. We briefly point out the trends within
this Fig. 11. We defined the first error as the maximal trace distance over all sin-
gle site density matrices εlocal, which is shown in Fig. 11(a). We see two major
trends for εlocal. First, there is a clear difference between the second and fourth
order methods in the case of TEBD and LRK algorithms, labeled as TEBD2 and
TEBD4 as well as LRK2 and LRK4, respectively. The fourth order algorithms
and the TDVP and Krylov algorithms nearly match the result of exact diagonal-
ization for dt ≥ 10−3 in comparison to the ED result with dt = 10−4. Figure 11(b)
analyzes the second error, i.e., the error in the reduced two site density matrices
εcorr. This error is much larger, which is already present in the ground and there-
fore initial state with an order of magnitude of 10−7. The third kind of error, the
error in energy εE, is shown in Fig. 11(c). εE decreases for all the methods with
the same overall trend. We recall that the Hamiltonian in this case contains single
site terms and nearest neighbor terms, so large errors in two site reduced density
matrices with sites far apart would not contribute to the error in the energy. The
error in the bond entropy εS, the fourth value considered for the estimate of the
error, follows the behavior of the previous measures, see Fig. 11(d). All methods
except TEBD2 and LRK2 do not improve from dt = 10−3 to dt = 10−4 as the
entropy is already close to the static result. In general in order to tackle a given
problem, we seek for the method which consumes the least resources to achieve a
certain error Fig. 11(e) answers this question. We take the error εlocal as example
and plot it as a function of the CPU time. This allows us for example to compare
the second order methods versus their fourth order algorithm. Both the TEBD and
LRK fourth order methods use less resources at a bigger dt to achieve the same
error in comparison to their second order equivalent. The error reported back
from OSMPS is analyzed in Fig. 11(f). We consider the Krylov method first: the

32

reported error is bigger for a smaller time step despite the results clearly getting
better in the previous plots. The reported Krylov error contains errors from state
fitting and cutting the bond dimension. Although it is not necessary to cut the
bond dimension, there still remains the possibility for truncation due to the local
tolerance criteria. Since the reported error is accumulated during the evolution,
the small contributions add up due to the multiple time steps. Considering the
error for dt = 0.0001 of the order 10−9 with 5000 time steps, each time step adds
about 10−13 to the total error. The other time evolutions report purely the error
from truncation of singular values restricted to the local tolerance in this evolu-
tion. Increasing errors for decreasing time steps follow the same arguments as for
the Krylov time evolution. In Appendix B we discuss in detail the sudden quench
and the following evolution under a time-independent Hamiltonian.

The conclusion drawn from this first study are that the total error is bounded
by of

ε ≤ εdt + εmethod + εχ , (36)

where εdt is due to evaluating a time-dependent Hamiltonian at discrete points in
time. The second error originates from the specific method used to evolve the
quantum system in time; an example for εmethod would be the approximation in
the Sornborger-Stewart decomposition. Finally, all methods have in common that
they truncate singular values to remain with a certain χ leading to εχ. This source
of error will dominate the error even for well-chosen settings, since the entangle-
ment grows over time and therefore saturates the bond dimension for long enough
evolution time. Figure B.17 in the appendix is one example for this behavior.
Equation (36) is an upper bound for the error. A detailed analysis of the error
goes beyond the scope of this work. We emphasize that all three kind of error
sources manifest in the four different error measures defined in Eqs. (32) to (35).
The scaling of the first error source εdt can be obtained through exact diagonal-
ization since there is neither an error depending on the method nor a truncation
of the Hilbert space. εdt appears in the same way for all MPS methods using the
same time-ordering as done in this error study. We remain with the estimate of the
errors due to the method εmethod and the truncation in the bond dimension εχ. The
Hilbert space for the MPS simulations with L = 10 is small enough to capture all
singular values and εχ is not present. Therefore, εmethod can be seen in Fig. 11 if at
the same order of magnitude as εdt. For example, the TEBD2 method has an ad-
ditional error introduced through the Sornborger-Stewart decomposition making
it less accurate than the exact diagonalization result with the same time step. We

33

KRYLOV
TDVP

LRK2
LRK4

TEBD2
TEBD4

ED
Static

10−4 10−3 10−2 10−1

Time step dt

10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

D
is

ta
nc

e
m

ax
(D

(ρ
i,
ρ

E
D

i
))

(a)

10−4 10−3 10−2 10−1

Time step dt

10−8

10−7

10−6

10−5

10−4

10−3

10−2

D
is

ta
nc

e
m

ax
(D

(ρ
ij
,ρ

E
D

ij
))

(b)

10−4 10−3 10−2 10−1

Time step dt

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
E

ne
rg

y
|E
−
E

E
D
| (c)

10−4 10−3 10−2 10−1

Time step dt

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
B

on
d

E
nt

ro
py
|S
−
S

E
D
| (d)

10−2 10−1 100 101 102 103

CPU time TCPU/s

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

D
is

ta
nc

e
m

ax
(D

(ρ
i,
ρ

E
D

i
))

(e)

10−4 10−3 10−2 10−1

Time step dt

10−13

10−12

10−11

10−10

10−9

10−8

R
ep

or
te

d
E

rr
or

ε

(f)

Figure 11: Scaling of the error in time evolution methods decreases as expected with the size of
the time step. This example shows a quench of the Ising model in the paramagnetic phase. The
error decreases as O(dt2), the leading order of the error due to time-slicing the time-dependent
Hamiltonian H(t) with a CFME. The error for the exact diagonalization method is not plotted for
dt = 10−4, because this is the result used as a reference and naturally leads to zero error. The time
step dt is in units of ~/J . Curves are a guide to the eye; points represent actual data.

discuss a time-independent Hamiltonian in Appendix B with εdt = 0. Therefore,

34

εmethod can be estimated independent of the other errors in this case.
Before we discuss particular time-propagation methods, we first discuss how

OSMPS accounts for time-ordering of propagators for time-dependent Hamiltoni-
ans. When considering time-ordering in MPS algorithms, we want to apply as few
operators as possible to avoid increasing the bond dimension, and would like all
operators to be easily and efficiently constructed from the MPO form of the Hamil-
tonian. Therefore, OSMPS uses Commutator-free Magnus expansions (CFMEs)
[70, 53]. CFMEs are advantageous over other expressions such as the Dyson se-
ries or the original formulation of the Magnus series due to explicit unitarity and
the avoidance of nested integrals and/or commutators. OSMPS implements a few
different CFMEs with orders of error N , defined such that the propagator is accu-
rate toO

(
δtN+1

)
, and numbers of exponentials s. The default settings are N = 2

and s = 1, where the CFME amounts to evaluating the Hamiltonian in [t, t + δt]
using the midpoint rule for integration. Having introduced the general conver-
gence of the methods, we now look at each method individually and discuss their
principles.

5.2. Krylov time evolution
The Krylov method [71, 72, 53] is the default option for real time evolution in

the OSMPS code. The main point of using this technique is the support of long-
range interactions. The Krylov method applies the exponential of an operator
expressed as an MPO to an MPS

|ψ(t+ dt)〉 ≈ exp(−iHdt) |ψ(t)〉 , (37)

using the method of Krylov subspace approximations [66, 73]. In the time-in-
dependent case H is the Hamiltonian, while in the time-dependent case it is an
operator constructed by the particular CFME used.

The Krylov algorithm is not limited to the MPS algorithm, but it is commonly
used to obtain the new vector of a matrix exponential acting on a vector. The idea
[74] is to change into a truncated basis (the Krylov subspace) V ′ = [v1, v

′
2, . . . , v

′
n]

in order to calculate the propagated state |ψ(t+ dt)〉 = exp(−iAdt) |ψ(t)〉. The
vectors v′j are chosen as Aj−1 |ψ〉 and are orthonormalized to the basis V =
[v1, v2, . . . , vn]. In particular, the first Krylov vector is v1 = |ψ〉 = V |e1〉 with
|e1〉 = (1, 0, 0, 0, . . . , 0)T . Approximating the dot product between the exponen-
tial and the state vector leads to

exp(−iAdt) |v1〉 ≈ V V † exp(−iAdt) |v1〉 = V V † exp(−iAdt)V |e1〉
= V exp(−iV †AV dt) |e1〉 . (38)

35

Calculating the exponential M of the matrix V †AV ∈ Rn×n is a numerically
feasible task as long as the number of basis vectors n is much smaller than the
dimension of the Hilbert space D. Furthermore, the relation simplifies to a real
tridiagonal matrix for Hermitian matrices, which is satisfied by the Hamiltonian.
This leads to

exp(−iAdt) |v1〉 ≈ VM |e1〉 =
n∑
i=1

M1,i |vi〉 . (39)

While in many applications where the state is represented as a vector this is
enough to obtain the approximation of |ψ(t+ dt)〉, the problem in the case of the
MPS is that the summation over |vi〉 can not be exactly carried out, as the set
of MPSs with fixed bond dimension do not form a vector space. Based on the
previous approaches using variational algorithms, we instead find |ψ(t+ dt)〉 by
variationally optimizing the overlap

|ψ(t+ dt)〉 =
n∑
i=1

m1,i |vi〉 ⇔ 1 = 〈ψ(t+ dt)|
(

n∑
i=1

m1,i |vi〉
)
. (40)

This procedure is done optimizing local tensors as in the ground state search.
However, instead of solving an eigenvalue problem at each iteration, this opti-
mization takes the form of a linear system of equations as shown on the left part
of Eq. (40). By exploiting the isometrization of MPSs (see Eq. (7)), this linear sys-
tem of equations is transformed into an inequality keeping the distance between
the new state |ψ(t+ dt)〉 and its Krylov representation

∑
m1,i |vi〉 below a spec-

ified tolerance. The interested reader can find further details on this algorithm in
Refs. [53, 8].

5.3. Sornborger-Stewart decomposition
This implementation inside the OSMPS library is suitable for nearest-neighbor

Hamiltonians. The Sornborger-Stewart decomposition [69] used in the OSMPS
algorithms sweeps through the system acting on every site, instead of every second
pair of sites as in a more common alternative Suzuki-Trotter decomposition [58].
The second order expansion takes the form

exp

(
−idt

L−1∑
i=1

Hi,i+1

)
=

L−1∏
i=1

exp

(
−i

dt

2
Hi,i+1

) L−1∏
i=1

exp

(
−i

dt

2
HL−i,L−i+1

)
.

(41)

36

We again follow the Krylov approach to propagate the quantum state under the
given MPO taking the exponential in the Krylov subspace. The essential dif-
ference is the local characteristics of the Hamiltonian in the Sornborger-Stewart
decomposition. With the orthogonality center at one of the sites i and j = i + 1
being acted on, the overlap from the left and right is the identity operator. If we
denote the two sites acted on with |C〉 and the parts to the left of i and right of j
with |Li〉 and |Rj〉, the actual state vector |ψ〉 can be derived from Eq. (39),

|ψ〉 =
∑
i,j

|Li〉 |Ci,j〉 |Rj〉 . (42)

Within the construction of the Krylov basis [v1, . . . , vn] the states |Li〉 and |Rj〉
remain unchanged as shown in Appendix F. The same applies to the sum of the
propagated state

|ψ(t+ dt)〉 =
∑
k

ckvk , (43)

leading to the following construction of the state in the MPS picture:

|ψ(t+ dt)〉 =
∑
i,j

|Ai〉
(∑

k

ck |Ci,j(vk)〉
)
|Bj〉 . (44)

That means that we can sum locally over the two site tensors, as they form a
vector space, in contrast to the long-range case where we had to variationally find
the MPS closest to the summation.

In order to specify the error due to the method, we have to consider the de-
composition of the exponential. By separating non-commuting terms in matrix
exponential, we get an error of order dt2 in the first order approximation for a
single time step:

exp [(A+B)dt] = exp(Adt) exp(Bdt) +O(dt2) . (45)

Having implemented the second and fourth order approximations we obtain me-
thodical errors εmethod for the whole time evolution as follows. εmethod is defined
as part of the total error in Eq. (36).

εTEBD2 = O(dt2) , εTEBD4 = O(dt4) . (46)

In addition to the error of the Sornborger-Stewart decomposition, we have as well
an error from the Krylov subspace approximation to the exponential for the local
two-site propagators. The error bound for a single step is derived in [73].

37

The convergence parameters necessary to set up time evolution with TEBD
methods reflect the simplicity of the approach. The parameter psi_local_tol
determines the local truncation on the singular values, while the pair (lanczos_
tol, max_num_lanczos_iter) provides the tolerance for the Krylov ap-
proximation and the maximal number of Krylov vectors. In addition, the max-
imum bond dimension χ can be defined.

With regards to the convergence study for the quench in the Ising model in
Fig. 11 we make two observations. The fourth order Sornborger-Stewart method
is better than second order implementation of Sornborger-Stewart, as expected
due to the smaller error at each time step. The rate of convergence as a function
of the time step dt, that is, the slope of the line, is equal for both implementations.
The error εdt from the time-ordering of the time-dependent Hamiltonian governs
both implementations with O(dt2) and the better convergence of the fourth order
Sornborger-Stewart cannot be observed. In contrast, if the Hamiltonian is time-
independent, there is no error from the time-ordering. Figure. B.16 in Appendix B
indicates that TEBD4 has a higher rate of convergence in this case. The total error
has to be considered in comparison to the Krylov time evolution in Sec. 5.2 or the
TDVP discussed in Sec. 5.4. We remark that the fourth order TEBD method has a
comparable error to the Krylov and TDVP method within one order of magnitude
for the smallest time step dt = 10−4. Larger time steps and the second order
method TEBD2 introduce errors which are sometimes two orders of magnitude
larger than the errors introduced through Krylov or TDVP, especially for large
time steps.

5.4. Time-dependent variational principle
As a third option for the time evolution of a quantum system, we provide

the time-dependent variational principle (TDVP) [67]. This is another method
supporting long-range interactions. In brief, all other previous methods apply the
propagator, which is an entangling many-body operator, to a state represented as
an MPS, and produces a new state obtained as an MPS. The updated MPS has a
larger bond dimension in general, so then we must variationally project this new
MPS onto the set of states with reduced computational resources. The approach of
the TDVP method is instead to project the time-dependent Schrödinger equation
onto the manifold of MPSs with fixed bond dimension, and then integrate this
equation directly within this manifold. OSMPS has implemented the two-site
version of this algorithm [67], in which the bond dimension is still allowed to
grow over the course of time evolution, but the propagator is determined from a
projection of the full many-body operator onto a more local subspace. We remark

38

that TDVP performs well on the convergence study against exact diagonalization
methods in the example of Fig. 11. All four estimates for the error defined in the
Eqs. (32) to (35) and shown in the four upper panels of Fig. 11 are close to exact
diagonalization result with the same time step used as reference. The maximal
distance of all reduced two-site density matrices does not reach the reference due
to initial errors in the static results for the ground state.

5.5. Local Runge-Kutta propagation
Another option for time evolution with long-range interactions available in

OSMPS is the local Runge-Kutta method proposed in [68]. The basic idea can be
summarized as using the Runge-Kutta method on the local MPO matrices instead
of the whole propagator. The new MPO representing the propagator ULRK has a
compact representation, i.e., it does not increase in bond dimension beyond that
of the Hamiltonian MPO. Since the method is defined on the MPO, it is the third
method supporting long-range interactions.

A detailed overview on how to build the MPO for the propagator, ULRK, as a
second order approximation is beyond the scope of this description; we suggest
[68] to the interested reader. But we do provide here a short description of how
the application of the MPO to the MPS is implemented in OSMPS. We fit the
product of the MPO and the MPS to a new MPS, where the new MPS represents
the propagated state,

min
|ψ(t+dt)〉

‖ |ψ(t+ dt)〉 − ULRK |ψ(t)〉 ‖. . (47)

This fit employs the same method used to fit the next Krylov vector |vi+1〉 =
H |vi〉 in the Krylov method. The four upper panels of Fig. 11 show a similar
behavior with regards to the convergence of the LRK method as for the TEBD
method. The higher order variant of the LRK method reduces the error, but the rate
of convergence is not better due to the time-dependent Hamiltonian and the par-
ticular choice of CFME. Within the implementation of this time evolution method
we use the EXPOKIT package [75, 76] to calculate matrix exponentials.

5.6. Time evolution case study: Bose-Hubbard model in a rotating saddle point
potential

We consider bosons in an optical lattice confined in a rotating potential as an
example of the setup of a time evolution in OSMPS. We consider the potential Vxy
with a saddle point at x = y = 0 and a weight c,

Vxy = c
(
x2 − y2

)
. (48)

39

Figure 12(a) shows this potential for a two dimensional lattice. We consider a
one-dimensional optical lattice in this potential marked by the red sites and start to
rotate Vxy; the one-dimensional system sees the following potential VS depending
on the angle of rotation φ and the distance r from the center of the potential and
integrate it into the Bose-Hubbard Hamiltonian:

VS = c (r cos(φ(t)))2 − c (r sin(φ(t)))2 , (49)

H = −J
L−1∑
i=1

bibi+1 + h.c.+
U

2

L∑
i=1

ni(ni − I) +
L∑
i=1

VS(t, i)ni . (50)

We slowly ramp up the frequency of the rotations with an acceleration α starting
with a flat potential

φ(t) =
π

4
+

1

2
αt2 . (51)

In order to estimate the stability of the system, we first calculate the standard
deviation of the number operator with regards to spatial dimension x for every
measurement in time, denoted by σx(n) 2. We calculate σt(σx(n, τ = 5)), that
is the standard deviation of σx(n) for time intervals t − τ to t for τ = 5, in
a second step. For fast enough frequencies the rotating potential stabilizes the
system, which can be seen in Fig. 12(b). The other trend is that towards the
superfluid regime, with higher tunneling, the stability decreases. The first peak
shows this trend.

The setup of the dynamics has many common steps with the statics. The defi-
nition of the operators, the MPO representing the Hamiltonian, and the observable
class do not change. In regard to the time-dependent potential VS in Eq. (49), we
define the weight c, the acceleration α (alpha), the system size L, and the func-
tion returning the corresponding potential at a point in time t. The latter step is
shown in Listing 8.

Listing 8: Define a time-dependent function for the rotating saddle potential.

76 def Vt(t, c=c, alpha=alpha, L=L):
77 # Grid with particles symmetric around 0
78 # at unit distance

2We emphasize that this is not the Pauli operator, but the standard derivation using in contrast
to the Pauli operators the subscript

40

(a)

x(t)y(t)

r

0 20 40 60 80 100
Time t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

St
an

da
rd

de
vi

at
io

n
σ
t

0.0

0.1

0.2

0.3

0.4

0.5

T
un

ne
li

ng
J

(b)

Figure 12: Bose-Hubbard model in a rotating saddle-point potential. The system shows an in-
creasing stability for faster frequencies. (a) In order to simulate a one dimensional system from
the two dimensional optical lattice, we consider one slice of sites marked in red with its coordinate
system r. The saddle point potential in green and yellow rotates under the system characterized
by the coordinates x(t), y(t). (b) The standard deviation over time intervals of τ = 5 is measured
for the spreading in x, i.e. the standard deviation of the number operator. This observable can be
expressed as σt(σx(n), τ = 5). The time t is in units of ~/U and the tunneling J is in units of the
on-site interaction U .

79 grid = np.linspace(-L / 2 + 0.5,
80 L / 2 - 0.5, L)
81

82 phit = np.pi / 4 + 0.5 * alpha * t**2
83

84 return c * ((grid * np.cos(phit))**2
85 - (grid * np.sin(phit))**2)

Next, we build the time evolution. As before with MPOs, observables, and
convergence parameters, the dynamics are contained in an instance of a Python
class: QuenchList. Once created, we can add multiple quenches which are
executed sequentially. We only add one quench in our example in Listing 9. Dif-
ferent convergence parameters are supported for each quench you add.

Listing 9: Creating the class object containing one or more quenches.

87 tconv = mps.TEBDConvParam(max_bond_dimension=60)
88 Quench = mps.QuenchList(H)

41

89 Quench.AddQuench([’Vt’], 100.0, 0.01, [Vt],
90 stepsforoutput=10,
91 ConvergenceParameters=tconv)

As a last step we have to specify the dynamics in the dictionary for the sim-
ulation, including the quenches and the observables to be measured during the
dynamics. The additional lines are shown in Listing 10. The initial state of the
time evolution is the ground state if not specified otherwise.

Listing 10: Additional dictionary entries for the time evolution.

114 ’Quenches’ : Quench,
115 ’DynamicsObservables’ : myObs,

The post processing works similar to the statics. A listed list contains the
dictionaries with the results of the simulation. The outer list contains the differ-
ent simulations, and the inner list contains the measurements for each time. The
complete Python code may be found in the supplemental material described in
Appendix H.

6. Future developments

The present OSMPS library has a wide field of possible applications includ-
ing two-component mixtures [42], topological phases [47], and complexity in the
quantum mutual information [52]. Still, we are planing to enhance the code to
solve other sets of problems. The need for enhancements is driven by our research
in atomic, molecular, and optical physics, macroscopic quantum phenomena, and
complexity, but we are open to suggestions from the community for extensions
to the OSMPS library. For instance, the feature to provide the singular values
of a bipartition in addition to its bond entropy began as suggestions made on
our developer’s site [77]. We already have a broad suite of tools for the current
MPS algorithms for finite systems; therefore, we are focusing on implementing
additional measurements or new MPO rule sets to target Hamiltonians which are
impossible or difficult to build with present rule sets. For the measurements, ob-
servables such as unequal time correlations are a possible add-on. A user-friendly
support for ladder systems or rectangular systems with Lx � Ly could be one
focus for new types of Hamiltonians, either as new rule sets or with convenient
interfaces in Python. In contrast, other tensor network structures such as PEPS are

42

not being considered as an extension to the library at this point. Periodic boundary
conditions are on the agenda for selected MPO rule sets.

On the other hand, we intend to extend OSMPS for a new set of problems in
the future, namely open quantum systems. We anticipate them to be key com-
ponent to establish a more realistic picture of simulations with regards to experi-
ments, for example, future quantum computers will suffer effects such as decoher-
ence from the coupling to the environment; including those effects in simulations
fosters the understanding and addresses problems induced by open systems. The
standard approach is the Lindblad master equation describing a system coupled
weakly to a Markovian environment. Several approaches have been proposed
to implement the Lindblad master equation, i.e. quantum trajectories, MPDOs,
and Locally Purified Tensor Networks (LPTNs) [78]. We are developing as well
techniques to evolve open quantum systems with a non-Markovian environment
within the tensor network algorithms.

Finally, small features are on the list of future developments, e.g. providing
optional support for results in HDF5 file format for more convenient data post pro-
cessing, improving the speedup when using shared-memory parallelization with
openMP, and a TEBD algorithm which is not based on the Krylov approximation.

7. Conclusions

In this paper we have presented a description of the MPS library OSMPS
containing a set of powerful tools to study static and dynamic properties of entan-
gled one-dimensional many body quantum systems, where the initial focus is on
a broad set of methods for quantum simulators based on atomic, molecular and
optical physics architectures. These algorithms and interfaces are widely gener-
alizable to other fields of quantum physics, e.g. condensed matter and materials
modeling. The usefulness of our methods is underscored by the rapid community
adaption and subsequent publications in various areas of quantum physics making
use of the OSMPS library or a derivative based on OSMPS [41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. OSMPS has been downloaded more
than 2300 times from over 55 countries since its initial release on SourceForge in
January 2014.

We combine a Fortran core with an easy to use Python front end. By intro-
ducing the Python interface we hide the complex structures of the core algorithms
from the end user. Moreover, Python is a simpler programming language lower-
ing the barrier to start simulations for non-specialists and students. OSMPS pro-
vides fast and easy-to-access numerical predictions for 1D quantum many-body

43

systems. We facilitate this learning process by the recent integration of a small
exact diagonalization package inside OSMPS written purely in Python [79]. On
the other hand, we also support sophisticated enough features to provide helpful
tools for quantum many-body theorists and specialists in quantum computational
physics. We presented these tools throughout the paper describing the features
of the library, which include ground states of infinite systems and ground states
plus low lying excited states in finite size systems. For the dynamics of finite
size systems, we provided four different tools starting from a nearest-neighbor
Sornborger-Stewart decomposition, a modified Trotter approach, to methods sup-
porting long-range interactions such as Krylov subspaces, local Runge-Kutta, and
the time dependent variational principle. We gave a detailed description of the
nuanced convergence properties of these methods.

We anticipate that many unexplored problems in quantum simulators, mate-
rials modeling, and other areas are suitable for OSMPS, starting with long-range
quantum physics and its still unexplored corners reaching to less studied models,
e.g. facets of the XYZ model, and the vast variety of untouched far from equi-
librium dynamics. The development of new features in OSMPS, as described in
Sec. 6, follows new emerging fields in quantum physics which come naturally
with explorations and requests by the community of both end users and develop-
ers.

Providing the library as an open source package including a dedicated fo-
rum fosters continued community development and research in many-body en-
tangled quantum physics with a transparent tool, much as density function the-
ory (DFT) was instrumental to the materials genome initiative. Especially the
aspect of modifying the core code to integrate tailored tools on top or integrate
modules into other open source packages strengthens the idea of cooperative re-
search. The version 2.0 of our library described in this paper is available un-
der the GNU General Public License (GPL3) [80] on our homepage http:
//sourceforge.net/projects/openmps/.

Acknowledgments

We gratefully appreciate contributions from and discussions with A. Dhar,
B. Gardas, A. Glick, W. Han, D. M. Larue, and D. Vargas during the development
of OSMPS. We are equally thankful to the ALPS collaboration [81, 25] and to
C. W. Clark, I. Danshita, R. Mishmash, B. I. Schneider, and J. E. Williams who
contributed heavily to the predecessor of OSMPS, OpenTEBD [34]. The calcula-
tions were carried out using the high performance computing resources provided

44

http://sourceforge.net/projects/openmps/
http://sourceforge.net/projects/openmps/

by the Golden Energy Computing Organization at the Colorado School of Mines.
This work has been supported by the NSF under the grants PHY-120881, PHY-
1520915, and OAC-1740130, and the AFOSR under grant FA9550-14-1-0287.

References

[1] S. R. White, Density matrix formulation for quantum renormaliza-
tion groups, Phys. Rev. Lett. 69 (1992) 2863–2866. doi:10.1103/
PhysRevLett.69.2863.

[2] S. R. White, Density-matrix algorithms for quantum renormalization
groups, Phys. Rev. B 48 (1993) 10345–10356. doi:10.1103/
PhysRevB.48.10345.

[3] N. V. Prokof’ev, B. V. Svistunov, I. S. Tupitsyn, Exact, complete, and uni-
versal continuous-time worldline Monte Carlo approach to the statistics of
discrete quantum systems, Journal of Experimental and Theoretical Physics
87 (2) (1998) 310–321. doi:10.1134/1.558661.

[4] A. W. Sandvik, J. Kurkijärvi, Quantum Monte Carlo simulation method
for spin systems, Phys. Rev. B 43 (1991) 5950–5961. doi:10.1103/
PhysRevB.43.5950.

[5] A. Polkovnikov, Phase space representation of quantum dynamics, Annals of
Physics 325 (8) (2010) 1790–1852. doi:10.1016/j.aop.2010.02.006.

[6] J. Schachenmayer, A. Pikovski, A. M. Rey, Many-Body Quantum Spin Dy-
namics with Monte Carlo Trajectories on a Discrete Phase Space, Phys. Rev.
X 5 (2015) 011022. doi:10.1103/PhysRevX.5.011022.

[7] G. Vidal, Efficient classical simulation of slightly entangled quantum
computations, Phys. Rev. Lett. 91 (2003) 147902. doi:10.1103/
PhysRevLett.91.147902.

[8] U. Schollwöck, The density-matrix renormalization group in the age of ma-
trix product states, Annals of Physics 326 (1) (2011) 96 – 192, january 2011
Special Issue. doi:10.1016/j.aop.2010.09.012.

[9] R. Orús, A practical introduction to tensor networks: Matrix product states
and projected entangled pair states, Annals of Physics 349 (2014) 117 – 158.
doi:10.1016/j.aop.2014.06.013.

45

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1103/PhysRevX.5.011022
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2014.06.013

[10] G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li, S. R. White, Matrix
Product Operators, Matrix Product States, and ab initio Density Matrix
Renormalization Group algorithms, ArXiv e-prints 1605.02611.
URL http://arxiv.org/abs/1605.02611

[11] S. Singh, R. N. C. Pfeifer, G. Vidal, Tensor network decompositions in the
presence of a global symmetry, Phys. Rev. A 82 (2010) 050301. doi:
10.1103/PhysRevA.82.050301.

[12] S. Singh, R. N. C. Pfeifer, G. Vidal, Tensor network states and algorithms
in the presence of a global U(1) symmetry, Phys. Rev. B 83 (2011) 115125.
doi:10.1103/PhysRevB.83.115125.

[13] F. Verstraete, V. Murg, J. Cirac, Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quan-
tum spin systems, Advances in Physics 57 (2) (2008) 143–224. doi:
10.1080/14789940801912366.

[14] Y.-Y. Shi, L.-M. Duan, G. Vidal, Classical simulation of quantum many-
body systems with a tree tensor network, Phys. Rev. A 74 (2006) 022320.
doi:10.1103/PhysRevA.74.022320.

[15] J. Dalibard, Y. Castin, K. Mølmer, Wave-function approach to dissipative
processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580–583. doi:
10.1103/PhysRevLett.68.580.

[16] R. Dum, P. Zoller, H. Ritsch, Monte carlo simulation of the atomic mas-
ter equation for spontaneous emission, Phys. Rev. A 45 (1992) 4879–4887.
doi:10.1103/PhysRevA.45.4879.

[17] F. Verstraete, J. García-Ripoll, J. Cirac, Matrix Product Density Operators:
Simulation of Finite-Temperature and Dissipative Systems, Phys. Rev. Lett.
93 (2004) 207204. doi:10.1103/PhysRevLett.93.207204.

[18] M. Zwolak, G. Vidal, Mixed-state dynamics in one-dimensional quan-
tum lattice systems: A time-dependent superoperator renormalization
algorithm, Phys. Rev. Lett. 93 (2004) 207205. doi:10.1103/
PhysRevLett.93.207205.

[19] L. D. Carr, Understanding Quantum Phase Transitions, Con-
densed Matter Physics, CRC Press, Boca Raton, FL, 2010.

46

http://arxiv.org/abs/1605.02611
http://arxiv.org/abs/1605.02611
http://arxiv.org/abs/1605.02611
http://arxiv.org/abs/1605.02611
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://www.crcpress.com/Understanding-Quantum-Phase-Transitions/Carr/p/book/9781439802519

doi:10.1080/00107514.2012.672462.
URL http://www.crcpress.com/Understanding-Quantum-
Phase-Transitions/Carr/p/book/9781439802519

[20] G. Vidal, Class of Quantum Many-Body States That Can Be Effi-
ciently Simulated, Phys. Rev. Lett. 101 (2008) 110501. doi:10.1103/
PhysRevLett.101.110501.

[21] E. M. Stoudenmire, S. R. White, Minimally entangled typical thermal state
algorithms, New Journal of Physics 12 (5) (2010) 055026.
URL http://stacks.iop.org/1367-2630/12/i=5/a=055026

[22] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, Dynamical mean-
field theory of strongly correlated fermion systems and the limit of infi-
nite dimensions, Rev. Mod. Phys. 68 (1996) 13–125. doi:10.1103/
RevModPhys.68.13.

[23] E. Runge, E. K. U. Gross, Density-functional theory for time-dependent
systems, Phys. Rev. Lett. 52 (1984) 997–1000. doi:10.1103/
PhysRevLett.52.997.

[24] This algorithm is not appropriate for capturing entanglement dynamics and
strong correlations.

[25] Algorithms and Libraries for Physics Simulations (ALPS), http://alps.comp-
phys.org, last visited Feb 27, 2017.
URL http://alps.comp-phys.org

[26] BLOCK − DMRG for quantum chemistry, http://sanshar.github.io/Block/,
last visited Feb 27, 2017.
URL http://sanshar.github.io/Block/

[27] S. Wouters, W. Poelmans, P. W. Ayers, D. V. Neck, CheMPS2: A free open-
source spin-adapted implementation of the density matrix renormalization
group for ab initio quantum chemistry, Computer Physics Communications
185 (6) (2014) 1501 – 1514. doi:10.1016/j.cpc.2014.01.019.

[28] DMRG++, https://web.ornl.gov/ gz1/dmrgPlusPlus/index.html, last visited
Feb 27, 2017.
URL https://web.ornl.gov/~gz1/dmrgPlusPlus/
index.html

47

http://dx.doi.org/10.1080/00107514.2012.672462
http://www.crcpress.com/Understanding-Quantum-Phase-Transitions/Carr/p/book/9781439802519
http://www.crcpress.com/Understanding-Quantum-Phase-Transitions/Carr/p/book/9781439802519
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://stacks.iop.org/1367-2630/12/i=5/a=055026
http://stacks.iop.org/1367-2630/12/i=5/a=055026
http://stacks.iop.org/1367-2630/12/i=5/a=055026
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://alps.comp-phys.org
http://alps.comp-phys.org
http://sanshar.github.io/Block/
http://sanshar.github.io/Block/
http://dx.doi.org/10.1016/j.cpc.2014.01.019
https://web.ornl.gov/~gz1/dmrgPlusPlus/index.html
https://web.ornl.gov/~gz1/dmrgPlusPlus/index.html
https://web.ornl.gov/~gz1/dmrgPlusPlus/index.html

[29] J. García-Ripoll, Matrix product states,
http://github.com/juanjosegarciaripoll/mps, last visited Feb 27, 2017.
URL http://github.com/juanjosegarciaripoll/mps

[30] ITensor − Intelligent Tensor, http://itensor.org/, last visited Feb 27, 2017.
URL http://itensor.org/

[31] P. Dargel, T. Köhler, MPS-DMRG Applet, http://www.theorie.physik.uni-
goettingen.de/ thomas.koehler/doku.php?id=en:start, last visited Feb 27,
2017.
URL http://www.theorie.physik.uni-goettingen.de/
~thomas.koehler/doku.php?id=en:start

[32] A. Milsted, evoMPS, http://github.com/amilsted/evoMPS, last visited Feb
27, 2017.
URL http://github.com/amilsted/evoMPS

[33] MPS Toolkit, http://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/, last
visited Mar 7, 2017.
URL http://people.smp.uq.edu.au/IanMcCulloch/
mptoolkit/

[34] OpenTEBD: Open Source Time-Evolving Block Decimation,
http://sourceforge.net/projects/opentebd/, last visited Feb 27, 2017.
URL http://sourceforge.net/projects/opentebd/

[35] J. R. Garrison, R. V. Mishmash, Simple DMRG, http://github.com/simple-
dmrg/simple-dmrg/, last visited Feb 27, 2017.
URL http://github.com/simple-dmrg/simple-dmrg/

[36] Snake DMRG, http://github.com/entron/snake-dmrg, last visited Feb 27,
2017.
URL http://github.com/entron/snake-dmrg

[37] G. De Chiara, M. Rizzi, D. Rossini, S. Montangero, Density Matrix Renor-
malization Group for Dummies, Journal of Computational and Theoretical
Nanoscience 5 (7) (2008) 1277–1288. doi:10.1166/jctn.2008.2564.

[38] M. Urbanek, P. Soldán, Parallel implementation of the time-evolving block
decimation algorithm for the Bose-Hubbard model, Computer Physics Com-
munications 199 (2016) 170 – 177. doi:10.1016/j.cpc.2015.10.016.

48

http://github.com/juanjosegarciaripoll/mps
http://github.com/juanjosegarciaripoll/mps
http://itensor.org/
http://itensor.org/
http://www.theorie.physik.uni-goettingen.de/~thomas.koehler/doku.php?id=en:start
http://www.theorie.physik.uni-goettingen.de/~thomas.koehler/doku.php?id=en:start
http://www.theorie.physik.uni-goettingen.de/~thomas.koehler/doku.php?id=en:start
http://github.com/amilsted/evoMPS
http://github.com/amilsted/evoMPS
http://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/
http://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/
http://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/
http://sourceforge.net/projects/opentebd/
http://sourceforge.net/projects/opentebd/
http://github.com/simple-dmrg/simple-dmrg/
http://github.com/simple-dmrg/simple-dmrg/
http://github.com/entron/snake-dmrg
http://github.com/entron/snake-dmrg
http://dx.doi.org/10.1166/jctn.2008.2564
http://dx.doi.org/10.1016/j.cpc.2015.10.016

[39] Uni10 − Universal Tensor Network Library,
http://yingjerkao.github.io/uni10/, last visited Feb 27, 2017.
URL http://yingjerkao.github.io/uni10/

[40] Open Source Matrix Product States (OpenMPS),
http://sourceforge.net/projects/openmps/, last visited Feb 27, 2017.
URL http://sourceforge.net/projects/openmps/

[41] E. Anisimovas, M. Račiūnas, C. Sträter, A. Eckardt, I. B. Spielman,
G. Juzeliūnas, Semisynthetic zigzag optical lattice for ultracold bosons,
Phys. Rev. A 94 (2016) 063632. doi:10.1103/PhysRevA.94.063632.

[42] F. F. Bellotti, A. S. Dehkharghani, N. T. Zinner, Comparing numerical and
analytical approaches to strongly interacting two-component mixtures in one
dimensional traps, The European Physical Journal D 71 (2) (2017) 37. doi:
10.1140/epjd/e2017-70650-8.

[43] A. Dhar, J. J. Kinnunen, P. Törmä, Population imbalance in the extended
Fermi-Hubbard model, Phys. Rev. B 94 (2016) 075116. doi:10.1103/
PhysRevB.94.075116.

[44] M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Gia-
marchi, M. Troyer, Matrix product state applications for the ALPS project,
Computer Physics Communications 185 (12) (2014) 3430 – 3440. doi:
10.1016/j.cpc.2014.08.019.

[45] B. Gardas, J. Dziarmaga, W. H. Zurek, Quench in the 1D Bose-Hubbard
model, ArXiv e-prints 1612.05084.
URL http://arxiv.org/abs/1612.05084

[46] Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Mon-
roe, A. V. Gorshkov, Kaleidoscope of quantum phases in a long-range in-
teracting spin-1 chain, Phys. Rev. B 93 (2016) 205115. doi:10.1103/
PhysRevB.93.205115.

[47] Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig, A. V. Gor-
shkov, Topological phases with long-range interactions, Phys. Rev. B 93
(2016) 041102. doi:10.1103/PhysRevB.93.041102.

[48] D. Jaschke, K. Maeda, J. D. Whalen, M. L. Wall, L. D. Carr, Critical Phe-
nomena and Kibble-Zurek Scaling in the Long-Range Quantum Ising Chain,

49

http://yingjerkao.github.io/uni10/
http://yingjerkao.github.io/uni10/
http://sourceforge.net/projects/openmps/
http://sourceforge.net/projects/openmps/
http://dx.doi.org/10.1103/PhysRevA.94.063632
http://dx.doi.org/10.1140/epjd/e2017-70650-8
http://dx.doi.org/10.1140/epjd/e2017-70650-8
http://dx.doi.org/10.1103/PhysRevB.94.075116
http://dx.doi.org/10.1103/PhysRevB.94.075116
http://dx.doi.org/10.1016/j.cpc.2014.08.019
http://dx.doi.org/10.1016/j.cpc.2014.08.019
http://arxiv.org/abs/1612.05084
http://arxiv.org/abs/1612.05084
http://arxiv.org/abs/1612.05084
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://dx.doi.org/10.1103/PhysRevB.93.041102
http://arxiv.org/abs/1612.07437
http://arxiv.org/abs/1612.07437

ArXiv e-prints 1612.07437.
URL http://arxiv.org/abs/1612.07437

[49] A. P. Koller, M. L. Wall, J. Mundinger, A. M. Rey, Dynamics of Interacting
Fermions in Spin-Dependent Potentials, Phys. Rev. Lett. 117 (2016) 195302.
doi:10.1103/PhysRevLett.117.195302.

[50] M. F. Maghrebi, Z.-X. Gong, A. V. Gorshkov, Continuous symmetry break-
ing and a new universality class in 1D long-range interacting quantum sys-
tems, ArXiv e-prints 1510.01325.
URL http://arxiv.org/abs/1510.01325

[51] A. Russomanno, E. G. D. Torre, Kibble-Zurek scaling in periodically driven
quantum systems, Europhysics Letters 115 (3) (2016) 30006.
URL http://stacks.iop.org/0295-5075/115/i=3/a=30006

[52] D. L. Vargas, L. D. Carr, Detecting Quantum Phase Transitions via Mutual
Information Complex Networks, ArXiv e-prints 1508.07041.
URL http://arxiv.org/abs/1508.07041

[53] M. L. Wall, L. D. Carr, Out-of-equilibrium dynamics with matrix product
states, New Journal of Physics 14 (12) (2012) 125015.
URL http://stacks.iop.org/1367-2630/14/i=12/a=
125015

[54] M. L. Wall, E. Bekaroglu, L. D. Carr, Molecular Hubbard Hamiltonian:
Field regimes and molecular species, Phys. Rev. A 88 (2013) 023605.
doi:10.1103/PhysRevA.88.023605.

[55] M. L. Wall, L. D. Carr, Dipole-dipole interactions in optical lattices do not
follow an inverse cube power law, New Journal of Physics 15 (12) (2013)
123005.
URL http://stacks.iop.org/1367-2630/15/i=12/a=
123005

[56] H. Weimer, String order in dipole-blockaded quantum liquids, New Journal
of Physics 16 (9) (2014) 093040.
URL http://stacks.iop.org/1367-2630/16/i=9/a=093040

50

http://arxiv.org/abs/1612.07437
http://dx.doi.org/10.1103/PhysRevLett.117.195302
http://arxiv.org/abs/1510.01325
http://arxiv.org/abs/1510.01325
http://arxiv.org/abs/1510.01325
http://arxiv.org/abs/1510.01325
http://stacks.iop.org/0295-5075/115/i=3/a=30006
http://stacks.iop.org/0295-5075/115/i=3/a=30006
http://stacks.iop.org/0295-5075/115/i=3/a=30006
http://arxiv.org/abs/1508.07041
http://arxiv.org/abs/1508.07041
http://arxiv.org/abs/1508.07041
http://stacks.iop.org/1367-2630/14/i=12/a=125015
http://stacks.iop.org/1367-2630/14/i=12/a=125015
http://stacks.iop.org/1367-2630/14/i=12/a=125015
http://stacks.iop.org/1367-2630/14/i=12/a=125015
http://dx.doi.org/10.1103/PhysRevA.88.023605
http://stacks.iop.org/1367-2630/15/i=12/a=123005
http://stacks.iop.org/1367-2630/15/i=12/a=123005
http://stacks.iop.org/1367-2630/15/i=12/a=123005
http://stacks.iop.org/1367-2630/15/i=12/a=123005
http://stacks.iop.org/1367-2630/16/i=9/a=093040
http://stacks.iop.org/1367-2630/16/i=9/a=093040

[57] I. P. McCulloch, Infinite size density matrix renormalization group, revisited,
ArXiv e-prints 0804.2509.
URL http://arxiv.org/abs/0804.2509

[58] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Infor-
mation, 9th Edition, Cambridge Univ. Press, Cambridge, United Kingdom,
2007. doi:10.1080/00107514.2011.587535.
URL http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521635035

[59] J. Eisert, M. Cramer, M. B. Plenio, Colloquium : Area laws for the entan-
glement entropy, Rev. Mod. Phys. 82 (2010) 277–306. doi:10.1103/
RevModPhys.82.277.

[60] F. Verstraete, D. Porras, J. I. Cirac, Density Matrix Renormaliza-
tion Group and Periodic Boundary Conditions: A Quantum Informa-
tion Perspective, Phys. Rev. Lett. 93 (2004) 227205. doi:10.1103/
PhysRevLett.93.227205.

[61] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik
31 (1) (1925) 253–258. doi:10.1007/BF02980577.

[62] A. Dutta, J. K. Bhattacharjee, Phase transitions in the quantum Ising and
rotor models with a long-range interaction, Phys. Rev. B 64 (2001) 184106.
doi:10.1103/PhysRevB.64.184106.

[63] G. M. Crosswhite, D. Bacon, Finite automata for caching in matrix
product algorithms, Phys. Rev. A 78 (2008) 012356. doi:10.1103/
PhysRevA.78.012356.

[64] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd Edition, Johns
Hopkins Studies in Mathematical Sciences, The Johns Hopkins University
Press, Baltimore, MD, 1996.
URL https://jhupbooks.press.jhu.edu/content/matrix-
computations

[65] I. P. McCulloch, From density-matrix renormalization group to matrix
product states, Journal of Statistical Mechanics: Theory and Experiment
2007 (10) (2007) P10014.
URL http://stacks.iop.org/1742-5468/2007/i=10/a=
P10014

51

http://arxiv.org/abs/0804.2509
http://arxiv.org/abs/0804.2509
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521635035
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521635035
http://dx.doi.org/10.1080/00107514.2011.587535
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521635035
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521635035
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1103/PhysRevB.64.184106
http://dx.doi.org/10.1103/PhysRevA.78.012356
http://dx.doi.org/10.1103/PhysRevA.78.012356
https://jhupbooks.press.jhu.edu/content/matrix-computations
https://jhupbooks.press.jhu.edu/content/matrix-computations
https://jhupbooks.press.jhu.edu/content/matrix-computations
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014

[66] Y. Saad, Analysis of Some Krylov Subspace Approximations to the Matrix
Exponential Operator, SIAM Journal on Numerical Analysis 29 (1) (1992)
209–228. doi:10.1137/0729014.

[67] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete, Uni-
fying time evolution and optimization with matrix product states, Phys. Rev.
B 94 (2016) 165116. doi:10.1103/PhysRevB.94.165116.

[68] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, F. Pollmann, Time-
evolving a matrix product state with long-ranged interactions, Phys. Rev. B
91 (2015) 165112. doi:10.1103/PhysRevB.91.165112.

[69] A. T. Sornborger, E. D. Stewart, Higher-order methods for simulations on
quantum computers, Phys. Rev. A 60 (1999) 1956–1965. doi:10.1103/
PhysRevA.60.1956.

[70] A. Alvermann, H. Fehske, High-order commutator-free exponential time-
propagation of driven quantum systems, Journal of Computational Physics
230 (15) (2011) 5930 – 5956. doi:10.1016/j.jcp.2011.04.006.

[71] S. R. Manmana, A. Muramatsu, R. M. Noack, Time evolution of one-
dimensional quantum many body systems, AIP Conference Proceedings
789 (1) (2005) 269–278. doi:10.1063/1.2080353.

[72] J. J. García-Ripoll, Time evolution of matrix product states, New Journal of
Physics 8 (12) (2006) 305.
URL http://stacks.iop.org/1367-2630/8/i=12/a=305

[73] E. Gallopoulos, Y. Saad, Efficient Solution of Parabolic Equations by Krylov
Approximation Methods, SIAM Journal on Scientific and Statistical Com-
puting 13 (5) (1992) 1236–1264. doi:10.1137/0913071.

[74] C. Moler, C. V. Loan, Nineteen Dubious Ways to Compute the Exponential
of a Matrix, Twenty-Five Years Later, SIAM Review 45 (1) (2003) 3–49.
doi:10.1137/S00361445024180.

[75] EXPOKIT, http://www.maths.uq.edu.au/expokit/, last visited Feb 27, 2017.
URL http://www.maths.uq.edu.au/expokit/

[76] R. B. Sidje, EXPOKIT. A Software Package for Computing Matrix Exponen-
tials, ACM Trans. Math. Softw. 24 (1) (1998) 130–156. doi:10.1145/
285861.285868.

52

http://dx.doi.org/10.1137/0729014
http://dx.doi.org/10.1103/PhysRevB.94.165116
http://dx.doi.org/10.1103/PhysRevB.91.165112
http://dx.doi.org/10.1103/PhysRevA.60.1956
http://dx.doi.org/10.1103/PhysRevA.60.1956
http://dx.doi.org/10.1016/j.jcp.2011.04.006
http://dx.doi.org/10.1063/1.2080353
http://stacks.iop.org/1367-2630/8/i=12/a=305
http://stacks.iop.org/1367-2630/8/i=12/a=305
http://dx.doi.org/10.1137/0913071
http://dx.doi.org/10.1137/S00361445024180
http://www.maths.uq.edu.au/expokit/
http://www.maths.uq.edu.au/expokit/
http://dx.doi.org/10.1145/285861.285868
http://dx.doi.org/10.1145/285861.285868

[77] The request were made in the questions on fermionic systems and MPS sim-
ulations.

[78] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert,
S. Montangero, Positive tensor network approach for simulating open
quantum many-body systems, Phys. Rev. Lett. 116 (2016) 237201.
doi:10.1103/PhysRevLett.116.237201.
URL http://link.aps.org/doi/10.1103/
PhysRevLett.116.237201

[79] D. Jaschke, L. D. Carr, Open source Matrix Product States: Exact diag-
onalization and other entanglement-accurate methods revisited in quantum
systems, in prep.

[80] GNU General Public License, http://www.gnu.org/licenses/gpl-3.0.en.html,
last visited Feb 27, 2017.
URL http://www.gnu.org/licenses/gpl-3.0.en.html

[81] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. L Gam-
per, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov,
D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawłowski, J. D.
Picon, L. Pollet, E. Santos, V. M. Scarola, U. Schollwöck, C. Silva, B. Surer,
S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, S. Wessel, The ALPS
project release 2.0: open source software for strongly correlated systems,
Journal of Statistical Mechanics: Theory and Experiment 2011 (05) (2011)
P05001.
URL http://stacks.iop.org/1742-5468/2011/i=05/a=
P05001

[82] P. Jordan, E. Wigner, Über das Paulische Äquivalenzverbot, Zeitschrift für
Physik 47 (9) (1928) 631–651. doi:10.1007/BF01331938.

[83] S. Sachdev, Quantum Phase Transitions, 2nd Edition, Cam-
bridge University Press, Cambridge, United Kingdom, 2011.
doi:10.1017/CBO9780511973765.
URL http://www.cambridge.org/us/academic/subjects/
physics/condensed-matter-physics-nanoscience-and-
mesoscopic-physics/quantum-phase-transitions-2nd-
edition?format=PB&isbn=9780521514682

53

http://sourceforge.net/p/openmps/discussion/tech/thread/7dd1fa40/
http://sourceforge.net/p/openmps/discussion/users/thread/5f12843c/
http://sourceforge.net/p/openmps/discussion/users/thread/5f12843c/
http://link.aps.org/doi/10.1103/PhysRevLett.116.237201
http://link.aps.org/doi/10.1103/PhysRevLett.116.237201
http://dx.doi.org/10.1103/PhysRevLett.116.237201
http://link.aps.org/doi/10.1103/PhysRevLett.116.237201
http://link.aps.org/doi/10.1103/PhysRevLett.116.237201
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://stacks.iop.org/1742-5468/2011/i=05/a=P05001
http://dx.doi.org/10.1007/BF01331938
http://www.cambridge.org/us/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=PB&isbn=9780521514682
http://dx.doi.org/10.1017/CBO9780511973765
http://www.cambridge.org/us/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=PB&isbn=9780521514682
http://www.cambridge.org/us/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=PB&isbn=9780521514682
http://www.cambridge.org/us/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=PB&isbn=9780521514682
http://www.cambridge.org/us/academic/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=PB&isbn=9780521514682

[84] J. Hubbard, Electron correlations in narrow energy bands, Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 276 (1365) (1963) 238–257. doi:10.1098/rspa.1963.0204.

[85] L. Wang, P. Corboz, M. Troyer, Fermionic quantum critical point of spinless
fermions on a honeycomb lattice, New Journal of Physics 16 (10) (2014)
103008.
URL http://stacks.iop.org/1367-2630/16/i=10/a=
103008

[86] D. Gobert, C. Kollath, U. Schollwöck, G. Schütz, Real-time dy-
namics in spin-1

2
chains with adaptive time-dependent density

matrix renormalization group, Phys. Rev. E 71 (2005) 036102.
doi:10.1103/PhysRevE.71.036102.
URL https://link.aps.org/doi/10.1103/
PhysRevE.71.036102

[87] S. R. White, A. L. Chernyshev, Neél order in square and triangular lattice
heisenberg models, Phys. Rev. Lett. 99 (2007) 127004. doi:10.1103/
PhysRevLett.99.127004.

[88] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys.
77 (2005) 259–315. doi:10.1103/RevModPhys.77.259.

[89] L. Michel, I. P. McCulloch, Schur Forms of Matrix Product Operators in the
Infinite Limit, ArXiv e-prints 1008.4667.
URL http://arxiv.org/abs/1008.4667

[90] L. Mirsky, A trace inequality of John von Neumann, Monatshefte für Math-
ematik 79 (4) (1975) 303–306. doi:10.1007/BF01647331.

[91] S. Geršgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Bulletin
de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques
et naturelles (1931) 749–754.

[92] L. Qi, Some simple estimates for singular values of a matrix, Linear Al-
gebra and its Applications 56 (1984) 105 – 119. doi:10.1016/0024-
3795(84)90117-4.

[93] Supplemental Material for this manuscript via SourceForge forum,
https://sourceforge.net/p/openmps/discussion/admin/thread/30452693/, last

54

http://dx.doi.org/10.1098/rspa.1963.0204
http://stacks.iop.org/1367-2630/16/i=10/a=103008
http://stacks.iop.org/1367-2630/16/i=10/a=103008
http://stacks.iop.org/1367-2630/16/i=10/a=103008
http://stacks.iop.org/1367-2630/16/i=10/a=103008
https://link.aps.org/doi/10.1103/PhysRevE.71.036102
https://link.aps.org/doi/10.1103/PhysRevE.71.036102
https://link.aps.org/doi/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102
https://link.aps.org/doi/10.1103/PhysRevE.71.036102
https://link.aps.org/doi/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/RevModPhys.77.259
http://arxiv.org/abs/1008.4667
http://arxiv.org/abs/1008.4667
http://arxiv.org/abs/1008.4667
http://dx.doi.org/10.1007/BF01647331
http://dx.doi.org/10.1016/0024-3795(84)90117-4
http://dx.doi.org/10.1016/0024-3795(84)90117-4
https://sourceforge.net/p/openmps/discussion/admin/thread/30452693/

visited Aug 14, 2017.
URL https://sourceforge.net/p/openmps/discussion/
admin/thread/30452693/

Appendices

A. Convenient features

OSMPS contains several features which exploit physical considerations to in-
crease the power and reach of the algorithms or are not intrinsically based on
physics but simplify the handling of simulations for the user. These convenient
features are covered in this part of the appendix.

• Symmetry conservation: OSMPS supports an arbitrary number of U(1)
symmetries. In order to employ symmetries, the user has to provide the
symmetry generator for each U(1) symmetry in a diagonal form. For the
convergence study on the Bose-Hubbard model in Appendix B, the sym-
metry generator is the number operator n (which is diagonal). Therefore,
simulations can be easily adapted to number conservation if possible. The
advantage of the U(1) symmetries is the ensuing numerical speedup. It
is comparable to the use of block-diagonal matrices versus the full ma-
trix with the block diagonal structure. Decompositions are carried out on
smaller subspaces. Taking advantage of the block diagonal structure leads
to a speedup of more than an order of magnitude for the example simulation
treated in Table A.2.

Consider the one-dimensional Bose Hubbard model

H = −J
L−1∑
i=1

bib
†
i+1 + h.c.+

1

2
U

L∑
i=1

ni(ni − I)− µ
L∑
i=1

ni , (A.1)

where the chemical potential µ regulates the average number of particles
n̄ = 1

L

∑L
i=1〈ni〉 in the non-number conserving case. We scan for unit

filling with n̄(µ = −0.22) ≈ 1 and use this chemical potential for the
comparison together with U = 1.0 and J = 0.5. The compute times are
determined from a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz
node. The Fortran library is compiled with ifort and optimization flag O3
and using mkl. We see that the unit filling case can improve the simulation
by an order of magnitude or more.

55

https://sourceforge.net/p/openmps/discussion/admin/thread/30452693/
https://sourceforge.net/p/openmps/discussion/admin/thread/30452693/

Settings TCPU/s (no U(1)) TCPU/s with U(1)

χ = 10, εV = 10−4, εl = 10−4 42 22
χ = 60, εV = 10−7, εl = 10−6 654 21
χ = 320, εV = 10−12, εl = 10−10 19838 150

Table A.2: Comparison of the CPU time TCPU in seconds for number conserving and
non-number conserving MPS algorithm in the case of the Bose Hubbard model with
local dimension d = 6 and L = 32 for different convergence parameters.

In addition, we study the Ising model defined in Eq. (15) where we can
make use of the Z2 symmetry, which reduces the dimension of the Hilbert
space by half. In the block diagonal structure, we never have more than two
blocks and we expect that using a symmetry-conserving MPS does not lead
to the same speedup as in the Bose-Hubbard model. In Table A.3 we find
that for small bond dimension the overhead due to symmetry conservation
is larger than the actual gain. This is in agreement with previous results
in [12]. Starting with χ = 320 in this table, the simulation with Z2 is
faster than the one without symmetry. The simulations were run with the
same setting as the Bose-Hubbard model simulations on a 2x(Intel Xeon E5-
2680 Dodeca-core) 24 Cores 2.50GHz node. The times include the ground
state calculation, one local measurement, and one correlation measurement
where the value of the external field g = 0.98 is close to the critical point.

Settings TCPU/s (no Z2) TCPU/s with Z2

χ = 10, εV = 10−4, εl = 10−4 0.15 0.79
χ = 60, εV = 10−7, εl = 10−6 0.57 1.94
χ = 320, εV = 10−12, εl = 10−10 6.31 5.81

Table A.3: Comparison of the CPU time TCPU in seconds for MPS ground states with
and without conservation of Z2 symmetry in the quantum Ising model. The system size
is L = 128, the interaction J = 1, the external field g = 0.98, and default convergence
parameters are used if not specified in the table.

• Support for fermionic systems: Fermionic systems obey nonlocal anti-
commutation relations different from the local commutation relations of
bosons. In order to represent fermionic operators in OSMPS, we use a

56

Jordan-Wigner transformation [82, 83] which uses locally anticommuting
operators together with strings of phase operators (−1)n, with n the num-
ber operator. The routines within MPS, for example, the measurement of
correlation functions and construction of Hamiltonian terms, have a flag
Phase for whether a string of phase operators is needed to enforce proper
fermionic anticommutation relations.

Such fermions can be described via the Fermi-Hubbard model [84]. We
consider in the following an example of spinless fermions using the Hamil-
tonian from [85] in a one-dimensional system

HF = W
L−1∑
i=1

(
ni −

1

2

)(
ni+1 −

1

2

)
− J

L−1∑
i=1

(
c†ici+1 + h.c.

)
.(A.2)

We briefly introduce the phase terms for fermionic systems and show that it
affects the system. Instead of comparing a single correlation measurement
or the single particle density matrix built from the correlations 〈c†icj〉, we
use the quantum depletion ξ from the eigenvalues Ξi of the single particle
density matrix, yielding a single value. Furthermore, the quantum depletion
ξ is constant for spinless fermions and errors can be detected more easily.
If Ξi are the eigenvalues of the single particle density matrix, the depletion
is defined as

ξ = 1− maxi Ξi∑
i Ξi

. (A.3)

Figure A.13 shows multiple aspects of the model with a system size of
L = 65 and approximately half-filling with 33 fermions in the system. The
deviation from the average filling at each site

δ =
1

65

65∑
i=1

∣∣∣∣ni − 33

65

∣∣∣∣ , (A.4)

and the bond entropy indicate the phase transition from a charge density
wave to a superfluid phase dominated by the tunneling term in the Hamil-
tonian. Those values are plotted in Figure A.13(a). In Figure A.13(b) we
show the quantum depletion in three different scenarios including calculat-
ing it correctly from the correlation with the phase terms, and incorrectly
from the correlation without phase terms and the reduced density matrices.

57

0.0 0.5 1.0 1.5 2.0
Tunneling parameter J

0.0

0.1

0.2

0.3

0.4

0.5

D
ev

ia
ti

on
fr

om
m

ea
n

fil
li

ng
δ

0.0

0.2

0.4

0.6

0.8

1.0

B
on

d
en

tr
op

y
S

(a)

0.0 0.5 1.0 1.5 2.0
Tunneling parameter J

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Q
ua

nt
um

de
pl

et
io

n
ξ

Fermi Corr.
Bose Corr.
Reduced ρ

(b)

Figure A.13: Spinless Fermions at half-filling. (a) The deviation from the mean-filling δ (blue
x’s) shows the two different phases. For small tunneling J < 1 there is an alternating order of
empty-occupied sites dominating. In contrast, the tunneling term with J > 1 leads to a superfluid-
like phase. The bond entropy S shows the same phase transition with a peak around J = 1.0.
We point out that the simulation for J = 0 fails because there are no fluctuations to feed the
variational minimization in the ground state search. The tunneling parameter J is in units of the
nearest-neighbor interaction W . The first point uses a small perturbation of J = 10−4. (b) The
quantum depletion ξ is calculated from the correlation matrix 〈c†i cj〉. The result from the boson-
type correlation without a phase term and the reduced density matrices are identical, corresponding
to the lower curve. Both results do not match the correct curve when accounting for the phase terms
of the Jordan-Wigner transformation.

We emphasize that the reduced density matrices never contain phase terms
and cannot be used to calculate correlation in fermionic systems which need
a phase term.

• MPI: Message Passing Interface (MPI) is the standard for distributed mem-
ory parallel high performance computing. OSMPS supports the setup of
data parallelism via MPI. Although data parallelism is the most basic imple-
mentation of a parallel algorithm, it represents the most efficient approach
when iterating over a set of parameters. For a large fraction of problems, we
can assume that iterations over a set of parameters are necessary as in the
case of phase diagrams, finite-size scalings, to analyze Kibble-Zurek scal-
ings, or to scan over a variety of initial conditions. We provide a Fortran
implementation with one master and (p − 1) workers where p is the total
number of cores. Furthermore, a Python implementation is available with p
workers where one of them is distributing jobs.

58

As an example for the scaling of the MPI implementation, we take a look
at the Fortran implementation and the simulations necessary to generate the
data for Fig. 2. We run the simulation on one or two nodes of the type
2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz with 12, 24, 36,
and 48 cores. The duration of the jobs can be found in Table A.4. We recall
that the set of simulations iterates over 30 data points for the system size L
and 51 data points for the external field g, i.e., 1530 data points in total. In
the case of 48 cores, the average workload are approximately 32 data points.
Since the master distributes the jobs to the workers one by one, each worker
might handle less (more) jobs if their jobs take more (less) than the average
time of one data point. In the setup of the simulation, we avoid getting stuck
in long simulations at the end having other cores running idle, because we
address the large system sizes first. The longest single data point takes
about 4.5 hours. This setup leads to a good scaling of the simulation time
when increasing the number of cores. In fact, when increasing the number
of cores from 12 by a factor of n, the speedup is greater than n. This is
related to the fact that the master distributing the jobs has less weight for
more cores. The parallel efficiency EP is calculated with the cumulative
CPU time of all simulations TΣ and the actual run time of the job TN on N
cores. We assume that the cumulative CPU time corresponds to the time of
the serial job:

EP =
TΣ

N · TN
. (A.5)

The initial increase of EP seen in Table A.4 is again explained with the
master running almost idle.

Cores (Workers) 12 (11) 24 (23) 36 (35) 48 (47) 72 (71) 96 (95)

TJob (hh:mm) 68:03 32:47 21:17 15:52 10:40 7:50
Efficiency EP 91.7% 95.9% 97.3% 97.9% 97.1% 97.5%

Table A.4: MPI scaling for OSMPS. As example for the MPI scaling of the duration
time TJob in hours and minutes of all simulations, we execute the simulations for Fig. 2
on different numbers of cores. In order to evaluate the scaling the number of workers
excluding the master job distributing the jobs has to be considered.

• Templates: The OSMPS library supports calculations with real and com-
plex numbers as well as standard MPS or symmetry conserving MPS algo-
rithms inside the Fortran modules. The different data types lead to many

59

redundant subroutines which we overcome by using templates. Subroutines
are written for a generic type, e.g. MPS_TYPE. When generating the mod-
ule the necessary types are plugged in, e.g. MPS, MPSc, qMPS, and qMPSc.
The corresponding call to such a subroutine is covered under an interface
(containing all the subroutines for the different types). These templates re-
duce errors copying from type to type and keep modules shorter.

B. Convergence studies

OSMPS can be tuned via multiple parameters modifying simulations with re-
gards to the convergence. Therefore, we provide some guidelines for the con-
vergence parameters along with examples. We divide this appendix in one part
looking at the details of the finite size statics followed by additional studies of the
time evolution methods.

B.1. Finite size variational algorithms
Due to the variational search we have several convergence parameters. We can

divide them into three categories:

• Lanczos: Lanczos tolerance, maximal number of Lanczos iterations

• Chi/bond dimension: maximal bond dimension, local tolerance, variance
tolerance

• Iteration: min/max num sweeps, max outer sweeps

Due to the number of convergence parameters, we present a simplified picture
of convergence issues with a single set of convergence parameters. We support
multiple subsequently executed sets of convergence parameters, which allow users
to refine their target state in multiple steps when increasing the bond dimension,
Lanczos iterations and number of sweeps while decreasing the Lanczos tolerance,
local tolerance, and variance tolerance. In general, the control of convergence
over the soft cutoffs defined via tolerances should be preferred over the hard cutoff
specified as the bond dimension or number of Lanczos iterations.

For the convergence study presented in Table 1 we concentrate on the Lanczos
tolerance εl, the variance tolerance εV and the bond dimension χ. The maximal
number of Lanczos iterations is set to a sufficiently high value to ensure con-
vergence (500, default is 100). The number of inner sweeps is set to exactly 2,
i.e. a minimum and maximum of 2, except for the spinless fermions with 4. We

60

consider exactly one outer sweep. Since every additional outer sweep lowers the
local tolerance εlocal for the cut-off of singular values, we prevent different εlocal

depending on the number of outer sweeps carried out. The warmup phase to grow
the system up to L sites has a warmup tolerance 100 times bigger than the vari-
ance tolerance and the warmup bond dimension is half of the bond dimension.
The local tolerance is then connected with the variance tolerance as specified in
the default settings:

εlocal =
εV

4L
. (B.1)

For the remaining three parameters εl, εV and χ the variance tolerance determines
if a simulation is converged according to the criterion

〈H2 − 〈H〉2〉 < εVL . (B.2)

The actual behavior may vary for different models. We study the convergence be-
havior of the Ising model, the Bose Hubbard model, and a spinless Fermi-Hubbard
model. Future possibilities for similar studies include spinful Fermi-Hubbard or
Bose-Hubbard models, XYZ models, quantum rotors, and disordered systems.
Starting with the Ising model, we show in Fig. B.14 (a) the boundary between
converging and non-converging simulations over a grid of εl and χ. In Fig. B.14
(b) the energy difference to the smallest value can be found. The point is close to
the quantum critical point (g = 0.98 with gc = 1.0) so the settings also serve as
an upper bound for points further away from the critical point.

In the next example we turn to the long-range quantum Ising model with the
Hamiltonian presented in Eq. (14). We evaluate the convergence behavior again
close to the critical point. For a power-law decay with α = 3.0 and a system size
of L = 128 we have a critical field of gc ≈ 1.35 [48]. We leave the remaining
parameter fixed in comparison to the nearest neighbor quantum Ising model. Fig-
ure B.15 (a) shows again the boundary between converging and non-converging
simulations based on the variance tolerance εV iterating over the bond dimension
χ and the Lanczos tolerance εl. We see that we need a much higher bond dimen-
sion in comparison to the nearest-neighbor Ising model.

For the Bose Hubbard model introduced in Eq. (A.1) the same type of plot is
shown in Fig. B.15(b). The algorithm includes number conservation at unit filling
and the system size is L = 32. We choose the point with U = 0.5, t = 0.5 and
µ = 0 in the superfluid regime exhibiting long-range correlations. In contrast,
the Mott insulator has less entanglement and therefore the superfluid parameters

61

log10(χ
)

1.0
1.5

2.0
2.5

3.0

log
10(1/εl)

4 6 8 10 12
14

16

log
10 (ε

V
)

−12

−11

−10

−9

−8

−7

−6

−5

−12.0

−11.2

−10.4

−9.6

−8.8

−8.0

−7.2

−6.4

−5.6

(a)

log10(χ
)

1.0
1.5

2.0
2.5

3.0

log
10(1/εl)

4 6 8 10 12
14

16

log
10 (E

−
E

m
in)

−14

−12

−10

−8

−6

−4

−2

−13.5

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

(b)

Figure B.14: Convergence study for the quantum Ising model. (a) The boundary between con-
verged and non-converged simulations as a function of the bond dimension and Lanczos toler-
ance. The surface shows the first converged simulations fulfilling the variance tolerance criteria.
Smaller variance tolerances will lead to non-convergence for fixed parameters. With this plot, we
can estimate the maximal variance tolerance that can be achieved using a given bond dimension
and Lanczos tolerance. (b) The energy difference as a function of bond dimension and Lanczos
tolerance for the first converged simulation in regard to the variance tolerance (see (a)) reproduces
the expectation that the energy difference decreases as the convergence criteria defined over the
variance decreasing tolerance is met. Same labels apply to color bar and z-axis.

can serve as upper bound. In the Figs. B.14 and B.15 we observe that the Bose-
Hubbard model needs, in comparison to the Ising model, stricter convergence
parameters to arrive at an equal variance tolerance.

Finally, we consider the spinless fermions introduced in Eq. (A.2) and present
the result on the convergence in Fig. B.15 (c). As with the Ising model, we choose
a point in the region with high entanglement judged by the bond entropy evaluated
in Fig. A.13, that is a tunneling energy of J = 1.04. Furthermore, we take L = 65,
and the system is filled with 33 fermions. In contrast to the other simulations we
increase the minimum and maximum number of inner sweeps to 4. Comparing
the Fermi-Hubbard model to the quantum Ising model since both have a local
dimension of d = 2 and are nearest-neighbor, we see that the fermionic system
needs a larger bond dimension χ in comparison.

B.2. Time evolution methods for finite size systems
In this part of the appendix we expand the convergence study of the time evolu-

tion methods with additional examples to demonstrate some key points. Figure 11

62

log 10
(χ)

1.01.5
2.0

2.5
log

10 (1/εl)

4
8

12
16

log
10 (ε

V
)

−5

−7

−9

−11

−12.0
−11.2
−10.4
−9.6
−8.8
−8.0
−7.2
−6.4
−5.6
−4.8

(a)

log 10
(χ)

1.01.5
2.0

2.5
log

10 (1/εl)

4
8

12
16

log
10 (ε

V
)

−5

−7

−9

−11

−12.0
−11.2
−10.4
−9.6
−8.8
−8.0
−7.2
−6.4
−5.6
−4.8
−4.0

(b)

log 10
(L)

1.01.5
2.0

2.5
log

10 (1/εl)

4
8

12
16

log
10 (ε

V
)

−5

−7

−9

−11

−12.0
−11.2
−10.4
−9.6
−8.8
−8.0
−7.2
−6.4
−5.6
−4.8
−4.0

(c)

Figure B.15: Convergence study. We study the variance tolerance achieved as a function of the
bond dimension and the Lanczos tolerance for (a) the long-range Ising model, (b) the Bose-
Hubbard model, and (c) a spinless Fermi-Hubbard model. (Same labels apply to color bar and
z-axis.)

in Sec. 5.1 shows aspects of a quench in the paramagnetic phase of the Ising model
for L = 10. Due to the time-dependence of the Hamiltonian, we already make an
error due to the evaluation of the Hamiltonian at discrete points in time. Now, we
study the convergence of the different algorithms under the evolution of a time-
independent Hamiltonian. Therefore, we use the same ground state of the Ising
model at an external field g = 5.0 and evolve it under the Hamiltonian with an
external field of g = 4.5, which corresponds to a sudden quench. The results are
shown in Fig. B.16.

We start the discussion with the maximal distance of the single site reduced
density matrices. For the Krylov and TDVP algorithms, the decrease of the time
step dt does not improve the result, but seems to make it worse. Since there is
no error in the method or from the time slicing of the Hamiltonian depending
on dt, the number of applications is the critical variable to estimate the error. In
contrast, TEBD and LRK have an error depending on dt in εmethod. Therefore
the second order methods are worse than the fourth order and smaller time steps
improve the result if it did not yet reach the lower bound. We recall that the
lower bound is considered to be error between the ground state results of MPS
and exact diagonalization. The two-site reduced density matrices, the energy, and
the bond entropy support this trend. Further the errors in energy give an indication
to judge on the rate of convergence for LRK and TEBD. If we consider the data
points for dt = 0.1 and dt = 0.01, the slope for the TEBD4 curve is bigger

63

KRYLOV
TDVP

LRK2
LRK4

TEBD2
TEBD4

ED
Static

10−4 10−3 10−2 10−1

Time step dt

10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

D
is

ta
nc

e
m

ax
(D

(ρ
i,
ρ

E
D

i
))

(a)

10−4 10−3 10−2 10−1

Time step dt

10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

D
is

ta
nc

e
m

ax
(D

(ρ
ij
,ρ

E
D

ij
))

(b)

10−4 10−3 10−2 10−1

Time step dt

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
E

ne
rg

y
|E
−
E

E
D
| (c)

10−4 10−3 10−2 10−1

Time step dt

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
B

on
d

E
nt

ro
py
|S
−
S

E
D
| (d)

10−2 10−1 100 101 102 103

CPU time TCPU/s

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

D
is

ta
nc

e
m

ax
(D

(ρ
i,
ρ

E
D

i
))

(e)

10−4 10−3 10−2 10−1

Time step dt

10−13

10−12

10−11

10−10

10−9

10−8

R
ep

or
te

d
E

rr
or

ε

(f)

Figure B.16: Scaling of the error in time evolution methods decreases as expected with the size
of the time step for methods where the error depends on the time step. This is the example of
a sudden quench of the Ising model in the paramagnetic phase evolving the ground state of an
external field g = 5.0 at constant g = 4.5 for L = 10. The time step dt is in units of ~/J . Curves
are a guide to the eye; points represent actual data.

than the one for TEBD2 indicating a better rate of convergence. Then TEBD4
reaches the lower bound induced by the error of the initial state or is at the level

64

2 4 6 8 10 12 14 16
Quench Time τ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
rr

or
1
−
|〈ψ

(0
)
|ψ

(2
τ

)〉| TEBD4
KRYLOV
LRK4
TDVP

(a)

2 4 6 8 10 12 14 16
Quench Time τ

10−8

10−6

10−4

10−2

100

102

104

E
rr

or
ε

0

50

100

150

200

250

B
on

d
di

m
en

si
on

χ

χ(TEBD4) χ(KRYLOV)

(b)

Figure B.17: Error with forth-back time evolution. Unitary time evolution is reversible and can
help to estimate the error of time evolution schemes. We quench for times τ with the Hamiltonian
H followed by the inverse direction, i.e., −H , again for τ . H is the Hamiltonian of the nearest
neighbor Ising model (a) The error defined over the Loschmidt echo shows that the precision of
the final state declines for longer evolution times τ . τ is in units of the interaction ~/J . (b) The
reason for this trend is the entanglement generated, which cannot be captured with χmax = 200,
and thus the cumulative error ε grows. ε includes truncation errors and, in the case of the Krylov
method, errors from fitting states and H |ψ〉. (Legend for TEBD2 and KRYLOV from (a) applies
for the errors ε.)

of the error of the TDVP and Krylov method. The LRK methods have the same
rate of convergence following this argumentation. The look at the CPU times
yields then a counterintuitive result. The most precise simulation with TDVP has
the biggest time step and one of the shortest run times. The reported error from
OSMPS follows the arguments from the time-dependent Hamiltonian. Without
any truncation besides the local tolerance, more time steps add up to more error
contributions.

A second approach to estimate the error for time evolution is the forth-back
scheme [86]. The unitary time evolution under the Hamiltonian H for a time
τ followed by the evolution under −H for another τ should return to the initial
state. We analyze this error for the nearest neighbor Ising model with L = 30
and quench times from τ = 3 to τ = 15 in units of ~/J . We choose the default
settings for the time evolution, except χmax = 200. The initial state is a product
state with all spins pointing in x-direction, except the spin on site 16 pointing
opposite to the x-direction: |ψ(0)〉 = |→1 · · · →15←16→17 · · · →30〉. The time
step is dt = 0.01. We observe the error grows with the quench time τ in Fig. B.17
(a), which is an effect of the growing entanglement during the time evolution.
One minus the absolute value of the Loschmidt echo corresponds to the infidelity

65

and is therefore a good error measure. This reasoning is supported by part (b)
of Fig. B.17: the maximal bond dimension is exhausted for the larger τ and the
cumulative error grows. The error includes the truncation for the TEBD, and
additional contribution from the fitting of wave function in the Krylov method.
Obviously, one can generalize this approach to any model and study this error
previous to simulating new or different Hamiltonians and initial conditions.

C. Scaling of computational resources

We consider the scaling of computational resources, especially computation
time and memory, as a function of common parameters of simulations. These
include the system size L and the maximal bond dimension χ. While the de-
fault parallelization is data parallelism using the MPI interface to OSMPS with a
straightforward scaling explained in Appendix A, we consider as well the openMP
(Open Multi Processing) algorithms used by the underlying libraries, namely LA-
PACK and BLAS.

First, we consider the scaling with the maximal bond dimension χ. We con-
sider in this scenario the quantum Ising model for a system size of L = 1063,
which corresponds to one data point from Fig. 2. The value of the external field
is the critical value for the thermodynamic limit, i.e., g = 1.0. The simulations
were run on a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz node and
the corresponding data is shown in Fig. C.18. In order to have a better under-
standing of the data we plot in each case the bond dimension. For the memory in
Fig. C.18(a) we see that the file size saturates once the bond dimension saturates.
The file contains the complete information about the state in binary format and
gives a good estimate of the memory needs for each simulation. For linear alge-
bra operations within LAPACK, the additional memory allocated as workspace is
on the order of the matrix size. The size of the matrices handled is bounded by
the local dimension and the maximal bond dimension leading to a maximum size
of dχmax × dχmax. Figure C.18(b) shows the CPU time for each simulation. It
naturally saturates with the bond dimension. Before the saturation point it grows
linearly with the bond dimension actually used.

For the scaling of the resources with the system size L we consider the set of
simulations generating Fig. 2 and pick the external field g = 1.0. The data is for
Penguin Relion 2x(Intel X5675) 12 cores 3.06GHz nodes. As previously, we show
the bond dimension utilized in addition to the file size or computation time. If the
bond dimension saturates starting at L > 500, the file size grows linearly with the
system size L as shown in Fig. C.18(c). In contrast, in the growth for L < 500 the

66

0 50 100 150 200 250 300 350
Max bond dimension χmax

0

10

20

30

40

50

60

70

80

90

F
il

e
si

ze
S

M
B
/M

B

20

40

60

80

100

120

140

B
on

d
di

m
en

si
on

χ

(a)

0 50 100 150 200 250 300 350
Max bond dimension χmax

0

200

400

600

800

1000

1200

1400

C
P

U
ti

m
e
T

C
P

U
/s

20

40

60

80

100

120

140

B
on

d
di

m
en

si
on

χ

(b)

0 500 1000 1500 2000
System size L

0

20

40

60

80

100

F
il

e
si

ze
S

M
B
/M

B

0

10

20

30

40

50

60

70

80

B
on

d
di

m
en

si
on

χ

(c)

0 500 1000 1500 2000
System size L

0

5000

10000

15000

20000

25000

30000

C
P

U
ti

m
e
T

C
P

U
/s

0

10

20

30

40

50

60

70

80

B
on

d
di

m
en

si
on

χ

(d)

Figure C.18: Scaling of computational resources. We consider the Ising model and vary the bond
dimension and the system size. (a) The file size of the ground state indicates the memory resources
necessary for the simulation. The parameters are L = 1063 and g = 1.0 for different maximal
bond dimensions χmax. (b) The scaling of the CPU time as a function of χmax. Parameters equal
to (a). (c) The file size of the ground state for χmax = 80 at g = 1.0 for a set of different system
sizes from the data of Fig. 2. (d) The scaling of the CPU time for different system sizes. Parameters
equal to (c).

file size increases faster than linear. In addition to the growing system size, the
fact that a larger system can have more entanglement leads to the increase in file
size. Figure C.18(d) shows the CPU times for the equivalent setup with a similar
result as for the file size. The scaling is linear as soon as the bond dimension
actually used saturates. Before the growth appears nonlinear with a jump.

We examine the use of openMP as the last part of the analysis of resources.
OpenMP allows for parallel computing with shared memory on one compute
node. In contrast, the tasks of MPI jobs never have access to the same memory and
have to send any data. In our type of implementation data is sent between the mas-

67

ter node and the workers. On current clusters this allows one to use parallelization
with up to 24 cores. We study the efficiency of openMP and what speedup can be
gained. OSMPS does not have implementations for openMP itself, but the LA-
PACK and BLAS or respectively mkl libraries can support openMP on the level of
the linear algebra operations within OSMPS. We find that openMP, implemented
in this form, does not increase the speed of the simulation, as described in Ta-
ble C.5. The simulation time shown is the duration of the job and not the CPU
time on a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz node.

Cores 1 2 4 8 16 24

TJob(χmax = 20)/s 150 154 154 155 154 168
TJob(χmax = 40)/s 270 273 271 274 275 302
TJob(χmax = 80)/s 699 780 789 734 749 739
TJob(χmax = 160)/s 1293 1273 1232 1188 1161 1396
TJob(χmax = 3200)/s 1368 1372 1259 1241 1237 1278

Table C.5: OpenMP scaling for OSMPS. As an example for the scaling we simulate the ground
state of the Ising model for L = 1063 at an external field of g = 1.0 for different numbers of
threads and different bond dimensions and list the duration of the simulation TJob in seconds.
This case corresponds to a data point of Fig 2. We see that openMP does not come with any real
speedup. The maximal bond dimension used is 124, which affects the last two rows.

D. Error bounds for static simulations

Ideally, numerical simulations yield a corresponding bound for the error of
their results. For DMRG there are calculations available discussing the behavior
of the error. Local observables in a two-dimensional Heisenberg models are dis-
cussed in terms of the truncation error in [87, 88, 8]. The error in variational MPS
methods is mentioned in [65, 89] and relates the variance to the squared norm of
the difference between the exact and the approximate quantum state. We present
an alternate approach using the variance as well to derive error expressions for
multiple observables.

In static MPS simulations the variance of the Hamiltonian, which bounds the
error of the energy, is returned as an error estimate for the result. Therefore, it
remains for us to show how other observables or measures are bounded by the
variance of the state, where we take the ground state as an example. The basic
idea is to assume we have a final state |ψ〉 as an MPS

|ψ〉 = f |ψ0〉+ ε|ψ⊥〉 , (D.1)

68

with f = 〈ψ|ψ0〉, |ε|2 = 1 − |f |2, and |ψ0〉 the true ground state, while |ψ⊥〉 is
orthogonal to the ground state and contains all errors. In this appendix we keep
the notation that |ψ〉 is the state from the OSMPS simulation with a variance Vψ,
|ψ0〉 is the true ground state and |ψ⊥〉 contains all contributions orthogonal to the
true ground state.

D.1. Bounding εwith the variance delivered by open source Matrix Product States
The first step is to bound ε from the information gathered in OSMPS, that

is the variance of H . Furthermore, in addition to the above orthogonality rela-
tion 〈ψ⊥|ψ0〉, any power Hn is subject to the relation 〈ψ⊥|Hn |ψ0〉 = 0, since
|ψ0〉 is an eigenstate of H . We recall that the Hamiltonian is represented with-
out errors except if an InfiniteFunction rule is fitted through a series of
Exponential rules. The error due to the fitting procedure is not covered in this
Appendix. Writing the variance in terms of this decomposition we obtain

Vψ = 〈ψ|H2 |ψ〉 − (〈ψ|H |ψ〉)2

= |f |2 〈ψ0|H2 |ψ0〉+f ∗ε 〈ψ0|H2 |ψ⊥〉+fε∗ 〈ψ⊥|H2 |ψ0〉+|ε|2 〈ψ⊥|H2 |ψ⊥〉
−
(
|f |2 〈ψ0|H |ψ0〉+f ∗ε 〈ψ0|H |ψ⊥〉+fε∗ 〈ψ⊥|H |ψ0〉+|ε|2 〈ψ⊥|H |ψ⊥〉

)2

= |f |2 〈ψ0|H2 |ψ0〉+ |ε|2 〈ψ⊥|H2 |ψ⊥〉 − |f |4 〈ψ0|H |ψ0〉2

−2|f |2|ε|2 〈ψ0|H |ψ0〉 〈ψ⊥|H |ψ⊥〉−|ε|4 〈ψ⊥|H |ψ⊥〉2 . (D.2)

We introduce the eigenenergy E0 = 〈ψ0|H |ψ0〉 of our true ground state and the
energy E⊥ = 〈ψ⊥|H |ψ⊥〉, which is not an eigenenergy of the system because
|ψ⊥〉 can be a linear combination of eigenstates. Next, we use the relation |f |2 =
1−|ε|2 and we add a zero in terms of±(|ε|2−|ε|4)E2

⊥ to simplify the expression:

Vψ = (1− |ε|2) 〈ψ0|H2 |ψ0〉+ |ε|2 〈ψ⊥|H2 |ψ⊥〉
−(1− 2|ε|2 + |ε|4)E2

0 − 2(|ε|2 − |ε|4)E0E⊥ − |ε|4E2
⊥

+(|ε|2 − |ε|4)E2
⊥ − (|ε|2 − |ε|4)E2

⊥

= (1− |ε|2)V0 + |ε|2V⊥ + (|ε|2 − |ε|4)(E⊥ − E0)2 . (D.3)

We abbreviate the energy difference as ∆ = E⊥−E0, define the variance of |ψ⊥〉
as V⊥, and the variance of |ψ0〉 as V0 = 0. We introduce ε̃ = |ε|2 leading to the
following quadratic equation:

∆2ε̃2 − (V⊥ + ∆2)ε̃+ Vψ = 0 . (D.4)

69

We remark that the variance of an eigenstate of H is zero, applied to V0 = 0. The
equation has two solutions returning the values for |ε|2:

|ε1|2 =
1

2

1 +
V⊥
∆2
−
√(

1 +
V⊥
∆2

)2

− 4
Vψ
∆2

 (D.5)

|ε2|2 =
1

2

1 +
V⊥
∆2

+

√(
1 +

V⊥
∆2

)2

− 4
Vψ
∆2

 . (D.6)

Plugging |ε|2 = 1 − |f |2 into Eq. (D.4), we get another quadratic equation and
two solutions for |f |2:

∆2|f |4 − (∆2 − V⊥)|f |2 + (Vψ − V⊥) = 0 , (D.7)

|f1|2 =
1

2

1− V⊥
∆2

+

√(
1 +

V⊥
∆2

)2

− 4Vψ
∆2

 , (D.8)

|f2|2 =
1

2

1− V⊥
∆2
−
√(

1 +
V⊥
∆2

)2

− 4Vψ
∆2

 . (D.9)

According to the normalization condition we recognize that f1 and ε1 build one
solution, as well as f2 and ε2:

|fi|2 + |εi|2 = 1 , i ∈ {1, 2} . (D.10)

Under the assumption that the major part of our state is in the ground state, we
choose the smaller ε1. This is the first assumption in the calculation and we pro-
ceed to bound ε2 using the fact that 0 ≤ V⊥ ≤ Vψ and then implementing a Taylor
expansion in Vψ/∆, which is small if the variance of the ground state has suffi-
ciently converged targeting in the default setup a value of L× 10−10 and we have
an energy gap in the system. We point out the role of the gap ∆ in the following
steps in detail:

|ε|2 ≤ 1

2

(
1 +

Vψ
∆2
−
√

1− 4
Vψ
∆2

)

≈ 1

2

(
1 +

Vψ
∆2
−
(

1− 2
Vψ
∆2
−O

(
V 2
ψ

∆4

)))
=

1

2

(
3Vψ
2∆2

+O
(
V 2
ψ

∆4

))
. (D.11)

70

Finally, we use the minimal gap between the ground state and the first excited
state ∆0,1 = E1 − E0 to approximate ∆. The inverse energy difference between
the ground state and a superposition of all excited states can be bound with the
smallest gap:

|ε|2 ≤ 3Vψ
4∆2

0,1

+O
(
V 2
ψ

∆4
0,1

)
=⇒ |ε| ≤

√
Vψ

∆0,1

+O
(
Vψ

∆2
0,1

)
. (D.12)

This bound shows that the variance can be a good approximation for the error as
long as the gap to the next eigenstate is finite. This gap refers to the next accessible
eigenstate in case symmetries are used. For simulations around the critical point
with a closing gap the bound becomes less precise due to the closing gap. But for
finite systems considered in this calculation, the gap remains.

In addition, we list the implicit and explicit assumptions during the derivation
of the bound

• We converged mainly to the ground state. The solutions in Eqs. (D.5) and
(D.7) and in the Eqs. (D.6) and (D.9) are in general true for any eigenstate
of H .

• By taking the solution represented by the pair of Eqs. (D.5) and (D.7) we
assume that the main part of the solution is in the eigenstate.

• The energy gap to the first state above the ground state used in the Taylor
expansion is assumed not to be small. This approximation may fail around
quantum critical points with a closing energy gap.

• V⊥ ≤ Vψ: the variance of the subset of states is smaller if the minimal
energy is canceled from the set of states. This is true because one end of the
distribution is cut.

D.2. Bounding observables
The ε derived above is only useful if bounds for other measures can be ob-

tained. For a local Hermitian observable O with a maximal absolute value M
defined as

M = max
|φ〉,|φ′〉

| 〈φ|O |φ′〉 | (D.13)

71

we obtain the following bound between the measurement on the true ground state
|ψ0〉 and the state |ψ〉 resulting from the OSMPS simulation:

| 〈ψ0|O |ψ0〉 − 〈ψ|O |ψ〉 |
=
∣∣(1− |f |2) 〈ψ0|O |ψ0〉 − εf ∗ 〈ψ0|O |ψ⊥〉 − ε∗f 〈ψ⊥|O |ψ0〉

−|ε|2 〈ψ⊥|O |ψ⊥〉
∣∣

≤ (1− |f |2) |〈ψ0|O |ψ0〉|+ 2|εf | |〈ψ0|O |ψ⊥〉|+ |ε|2 |〈ψ⊥|O |ψ⊥〉|
≤ 2|ε|(|f |+ |ε|)M≤ 2

√
2|ε|M ≤ 3|ε|M . (D.14)

Here in, |f | + |ε| is always smaller than
√

2, which originates in the normaliza-
tion of the state and can be derived from the maximizing the constraint problem
L(f, ε, γ) = |f | + |ε| + γ(|f |2 + |ε|2 − 1), where γ is a Lagrange multiplier for
the normalization constraint. So in general it is possible to bound values of an
observable.

D.3. Density matrices and their bounds
In the following, we derive an expression for the complete density matrix, any

reduced density matrix of the system, and a bound for the trace distance between
the MPS result and the (reduced) density matrix of the ground state. We start by
expressing the mixed contribution of the form |ψ0〉 〈ψ⊥| in a more convenient way.

Lemma 1 (Mixed contributions |ψ0〉 〈ψ⊥|). A mixed contribution of the form
e−iφ |ψ0〉 〈ψ⊥| + eiφ |ψ⊥〉 〈ψ0| with an arbitrary phase φ can be decomposed into
positive matrices σ± with one non-zero eigenvalue of value 1 as

|ψ0〉 〈ψ⊥|+ |ψ⊥〉 〈ψ0| = σ+ − σ− , (D.15)

where σ± fulfill all characteristics of a density matrix (and are not the spin low-
ering/raising operators).

Proof. We take the pure states |ψ±〉 = (|ψ0〉 ± eiφ |ψ⊥〉)/
√

2, where φ is an
arbitrary phase. These pure states define the density matrices σ±:

σ±= |ψ±〉 〈ψ±|
=

1

2
|ψ0〉 〈ψ0|+

1

2
|ψ⊥〉 〈ψ⊥|±

1

2

(
e−iφ |ψ0〉 〈ψ⊥|+eiφ |ψ⊥〉 〈ψ0|

)
.(D.16)

Therefore, the difference σ+ − σ− leads to the term we need while canceling out
the contributions from |ψ⊥〉 〈ψ⊥| and |ψ0〉 〈ψ0|:

σ+ − σ− = e−iφ |ψ0〉 〈ψ⊥|+ eiφ |ψ⊥〉 〈ψ0| . (D.17)

72

Lemma 2 (Error bound on density matrix). Knowing ε in |ψ〉 = f |ψ0〉 + ε |ψ⊥〉,
we can express the (reduced) density matrix ρ representing the OSMPS result as

ρ = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− , ε̃± < 2|ε| , (D.18)

where ρ0 is the density matrix of the exact ground state and ρ± are density matrices
containing the error.

Proof. We build the density matrix ρ on the complete Hilbert space as

ρ = |ψ〉 〈ψ| = |f |2 |ψ0〉 〈ψ0|+ fε∗ |ψ0〉 〈ψ⊥|+ f ∗ε |ψ⊥〉 〈ψ0|+ |ε|2 |ψ⊥〉 〈ψ⊥|
= |f |2 |ψ0〉 〈ψ0|+ |fε|

(
e−iφ |ψ0〉 〈ψ⊥|+ eiφ |ψ⊥〉 〈ψ0|

)
+ |ε|2 |ψ⊥〉 〈ψ⊥| ,

(D.19)

where we have chosen the phase φ such that fε∗ = |fε|e−iφ. From Lemma 1 we
obtain

ρ = |f |2ρ0 + |εf |(σ+ − σ−) + |ε|2ρ⊥ = |f |2ρ0 + |ε| ((|f |σ+ + |ε|ρ⊥)− |f |σ−)

= |f |2ρ0 + |ε|
(

(|f |+ |ε|) |f |σ+ + |ε|ρ⊥
|f |+ |ε| − |f |σ−

)
. (D.20)

Defining the density matrices with positive and negative sign, we obtain

ρ = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− , ε̃+ = |ε|(|f |+ |ε|) ≤ 2|ε| , ε̃− = |εf | ≤ |ε| ,

ρ+ =
|f |σ+ + |ε|ρ⊥
|f |+ |ε| , ρ− = σ− , (D.21)

where all matrices ρ0,± are density matrices with trace 1 and fulfilling positivity.

Lemma 3 (Bound on reduced density matrices). The bound on the reduced density
matrices ρA of the OSMPS result is equal to the bound on the complete density
matrix, which is

ρA = TrBρ = |f |2ρ0,A + ε̃+ρ+,A − ε̃−ρ−,A , (D.22)

where we consider an arbitrary bipartition of our system in partsA andB, tracing
out over the bipartition B.

Proof. In order to obtain a reduced density matrix, we define subsystem A and
B and take the partial trace over subsystem B:

ρA = TrBρ = TrB

(
|f |2ρ0 + ε̃+ρ+ − ε̃−ρ−

)
. (D.23)

As a linear operation the previous expression can be rewritten as

ρA = |f |2TrBρ0 + ε̃+TrBρ+ − ε̃−TrBρ−

= |f |2ρ0,A + ε̃+ρ+,A − ε̃−ρ−,A . (D.24)

73

D.4. Bound for the trace distance
Now that we are able to bound the density matrices with regards to the density

matrix of the exact ground state, we can continue to prove a bound expressed in
the trace distance D.

Lemma 4 (Bound on the trace distance). The trace distance between the density
matrix ρ from OSMPS and the density matrix of the true ground state ρ0 can be
bounded with

D(ρ, ρ0) ≤
√

2Vψ

∆0,1

. (D.25)

Proof. We continue with a bound on the trace distance defined as

D(ρ, ρ0) =
1

2
Tr
√

(ρ− ρ0)†(ρ− ρ0) =
1

2
|ρ− ρ0| , (D.26)

where the simplification can be made due to the Hermitian property of the density
matrices. We first concentrate on expressing the difference between the density
matrices in a convenient way using the expressions for ε̃± in Eq. (D.21):

ρ− ρ0 = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− − ρ0 = ε̃+ρ+ − ε̃−ρ− − |ε|2ρ0

= ε̃+ρ+ − |ε| (|f |ρ− + |ε|ρ0) = ε̃+(P −M) ,

P ≡ ρ+ , M ≡ |f |ρ− + |ε|ρ0

|f |+ |ε| . (D.27)

The new matrices P and M are again defined so that they fulfill the requirements
for a density matrix (Hermitian, positive, trace equal to 1). In the next step we
make use of the triangular inequality of the trace norm:

D(ρ, ρ0) =
1

2
Tr |ρ− ρ0| =

|ε|(|f |+ |ε|)
2

Tr |P −M |

≤ |ε|(|f |+ |ε|)
2

(Tr|P |+ Tr|M |) = |ε|(|f |+ |ε|)

≤
√

2|ε| ≤
√

2Vψ

∆0,1

. (D.28)

D.5. Bound on the bond entropy
In order to get the bound on the bond entropy, we use Fannes’ inequality [58]

stating that the difference of the entropy S of two density matrices of dimension
D ×D is bounded by the trace distance D between those two density matrices:

|S(ρ)− S(σ)| ≤ D loga(D)−D loga(D) , ∀D ≤ 1

e
≈ 0.36 , (D.29)

74

with the logarithm for the von Neumann entropy base a and D the dimension of
the Hilbert space for the density matrices ρ and σ. The inequality was derived for
logarithm base two, a = 2, but holds for any basis. Therefore, the bound for the
bond entropy is

εS ≡ |S(ρ0)− S(ρ)| ≤
√

2Vψ

∆0,1

log(D)−
√

2Vψ

∆0,1

log

(√
2Vψ

∆0,1

)
. (D.30)

E. Bounding measurement with the trace distance

We have used the trace distance of reduced density matrices to judge the con-
vergence of our results. We now show that the trace distance bounds from above
any observable defined on the reduced density matrix. As a preliminary result we
need that the absolute value of the eigenvalues of a Hermitian matrix correspond
to the singular values of the matrix. Therefore, we use the fact that the matrix can
be decomposed via an eigenvalue decomposition A = UΛU † and a singular value
decomposition A = ŨλṼ †. Both decompositions are unique up to a permutation
of the orthonormal basis vectors and basis transformations within degenerate sets
of eigenvalues and singular values, respectively. Calculating AA†, which is by
definition positive semi-definite even for a general A, with both expressions leads
to

AA† = UΛ2U † = Ũλ2Ũ † , (E.1)

which shows that the absolute values of the eigenvalues Λ are equal to the sin-
gular values λ. In the case where the observable is positive semi-definite and
the the ordering of the eigenvalues and singular values is equal, e.g. descending,
the decompositions are equal, except for rotations within degenerate subsets. In
contrast, for observables with at least one negative eigenvalue and sorting in de-
scending order by the absolute value, the decompositions are not equal as negative
signs are contained in the unitary matrices of the singular value decomposition.
We use the fact that the absolute values of the eigenvalues of a Hermitian matrix
are the singular values in the following when estimating the difference between
the measurement of an observable Q for two different density matrices ρ and σ
defined as

ε(ρ, σ,Q) = |Tr(Qρ)− Tr(Qσ)| = |Tr (Q(ρ− σ))| . (E.2)

75

In order to bound this with the trace distance of ρ and σ we use the von Neumann
trace inequality [90] on the matrices Q and (ρ− σ) leading to

ε(ρ, σ,Q) ≤
D∑
i

κi|Λi| , (E.3)

where κi are the singular values of Q sorted in descending order with κi > κi+1.
The Λi are the eigenvalues of (ρ−σ) sorted in descending order with |Λi| > |Λi+1|.
D is the dimension of the density matrix and the corresponding Hilbert space. We
derived the relation Eq. (E.1) for this purpose. We approximate Eq. (E.3) by
choosing the maximal singular values κmax from all κi:

ε(ρ, σ,Q) ≤ κmax

∑
i

|Λi| = κmaxTr |Λi| = κmax2D(ρ, σ) . (E.4)

For further convenience we estimate κmax as a function of the observable Q. In
the case of a Hermitian observable Q = Q† we use again the connection between
eigenvalues and singular values from Eq. (E.1). The eigenvalues of a square ma-
trix can be estimated with Geršgorin circles [91, 92, 64]. Each Geršgorin circle
has its origin in the diagonal element of the matrix; the radius is the sum of the
absolute values of the non-diagonal of the corresponding row (or column). In this
case we are only interested in the absolute values and the expression for κmax in
terms of the Geršgorin circles simplifies to

κmax ≤ max
i

(∑
j

|Qi,j|
)
. (E.5)

In the case of a non-Hermitian Q, i.e., the correlation measurement 〈bib†j〉, we
can obtain an estimate using the fact that the singular values are connected to the
eigenvalues of QQ†. If Q has the singular value decomposition Q = USV †, then
QQ† has the eigenvalue decomposition QQ† = US2U †. Therefore, the square
root of the non-negative eigenvalues of QQ† are the singular values of Q. For the
non-Hermitian Q we can estimate κmax with the Geršgorin circles over QQ† as

κmax ≤ max
i

√√√√(∑
j

∣∣∣[QQ†]i,j∣∣∣
)
. (E.6)

In conclusion, these bounds show that the trace distance is a meaningful quantity
to bound the error on any other observable.

76

F. Details of the Krylov method

For the real-time TEBD algorithm we used the Krylov approximation to the
propagated state for a local propagator on two sites. In this appendix, we clar-
ify why sums throughout the algorithm can be done locally without involving the
other parts of the subsystem. As an example we take the first step of the Gram-
Schmidt orthogonalization procedure which can be generalized to sums. We de-
note the two local sites i and j = i+ 1 acted on with |C〉 and the other parts of the
system to left and right with |Li〉 and |Rj〉. Moreover, the orthogonality center is
in |C〉 which could be either site i or j. Using the Schmidt decomposition within
the MPS, |ψ〉 can be written as

|v1〉 = |ψ〉 =
∑
i,j

|Li〉 |Ci,j〉 |Rj〉 (F.1)

where the indices i and j run to the corresponding bond dimension at the splitting.
In order to find the second basis vector |v2〉 we calculate

|v2〉 ∝ HC |v1〉 − 〈v1|H†C |v1〉 |v1〉 , (F.2)

with HC the local Hamiltonian acting on the two sites of |C〉. Using Eq. (F.1) to
expand the second basis vector, we obtain the local summation:

|v2〉 ∝ HC

∑
i,j

|Li〉 |Ci,j〉 |Rj〉

−
[∑
i,i′,j,j′

〈Li′ | 〈Ci′,j′ | 〈Rj′ |H†C |Li〉 |Ci,j〉 |Rj〉
]∑

i,j

(|Li〉 |Ci,j〉 |Rj〉) .

(F.3)

The expression in brackets in Eq. (F.3) is simplified due to the canonical form of
the MPS. We obtain Kronecker deltas for 〈Li′|Li〉 = δi,i′ and 〈Rj′ |Rj〉 = δj,j′ .
We point out that the expression HC |Li〉 |Ci,j〉 |Rj〉 is a short hand notation for
(IL⊗HC ⊗ IR) |Li〉 ⊗ |Ci,j〉 ⊗ |Rj〉 = IL |Li〉 ⊗HC |Ci,j〉 ⊗ IR |Rj〉. These steps
lead us to:

|v2〉 =
∑
i,j

|Li〉 (HC |Ci,j〉) |Rj〉 −
∑
i,j

(|Li〉 |Ci,j〉 |Rj〉)
∑
i,j

〈Ci,j|HC |Ci,j〉

=
∑
i,j

|Li〉 (HC |Ci,j〉) |Rj〉 −
∑
i,j

h1,1 |Li〉 |Ci,j〉 |Rj〉 , (F.4)

77

where we introduced the overlap h1,1 ≡
∑

i,j 〈Ci,j|HC |Ci,j〉 representing a scal-
ing of the MPS. For readers familiar with the Krylov method, we point out that
h1,1 is the corresponding entry in the upper Hessenberg matrix used to build the
exponential in the Krylov subspace. In order to scale the MPS with a scalar the
orthogonality center is modified. The identity operator is acting |Li〉 and |Rj〉
leaving them unchanged. Knowing that the orthogonalization procedure does not
change any |Li〉 and |Rj〉, a similar arguments apply to show that we can sum
locally over the scaled Krylov basis |vk〉.

We consider now the scaling of TEBD-Krylov in comparison to a usual TEBD
taking the matrix exponential. In the usual TEBD implementation we can consider
four steps: 1) Build two-site tensor, 2) calculate local propagator with Hamilto-
nian, 3) contract propagator to two site tensor, and 4) split two site tensor. Without
considering speedup due to symmetries, a basic computational complexity analy-
sis yields

OTEBD = O(χ3d2) +O(d6) +O(χ2d4) +O(χ3d3) , (F.5)

where we assume cubic scaling for the matrix exponential and the splitting. In
case of the Krylov-TEBD (KTEBD) we have the following steps: 1) contract the
single site tensors to a two site tensor, 2) build nKrylov vectors, 3)m′ calculations
of overlap to previous vectors and m′′ subtraction for orthogonalization (m =
m′ + m′′), 4) taking the matrix exponential in the Krylov basis, 5) adding the
weighted Krylov vectors to the solution, and 6) finally splitting the two site tensor.
All the scalings are chronological, resulting in

OKTEBD = O(χ3d2) +O(nχ2d4) +O(mχ2d2)

+O(n3) +O(nχ2d2) +O(χ3d3) . (F.6)

We again assumed cubic scaling for matrix exponential and splitting, which is an
upper bound in the case of the matrix exponential being tridiagonal and symmet-
ric. The overall scaling seems to be dominated by the splitting with O(χ3d3), but
we calculate the difference to see which algorithm is favorable is which cases:

OKTEBD −OTEBD = O(n3)−O(d6) +O((n− 1)χ2d4)

+O((m+ n)χ2d2) , (F.7)

where TEBD is faster when the expression is greater than zero. If we assume in
favor of KTEBD d = χ and n = 2, the second and the third term cancel each
other. Thus, the remaining terms show that TEBD is always faster than KTEBD

78

according to this scaling. These equations do not include quantum numbers. A
careful study is contemplated to proof or disproof the scaling equations once both
methods are implemented as pointed out in the future developments in Sec. 6.

G. Auxiliary calculations

The overlap between the truncated state |ψ′〉 and the untruncated normalized
state |ψ〉 is defined over the singular values λ′i of the truncated state and the singu-
lar values λi of the untruncated state. In the following χ is the number of singular
values in |ψ′〉 and χmax is the untruncated number of singular values. The singular
values for the truncated state are calculated via a normalization

λ′i =
λi√∑χ
j=1 λ

2
j

. (G.1)

This expression leads us directly to the overlap between the two states

〈ψ′|ψ〉 =

χmax∑
i=1

λ′iλi =

χ∑
i=1

λ′iλi =
1√∑χ
i=1 λ

2
i

χ∑
i=1

λ2
i =

√√√√ χ∑
i=1

λ2
i . (G.2)

For the error we calculate 1− 〈ψ′|ψ〉 and abbreviate with x ≡ 〈ψ′|ψ〉:

1− 〈ψ′|ψ〉 = 1− x
=

1

2

(
1− 2x+ x2

)
+

1

2

(
1− x2

)
=

1

2
(1− x)2 +

1

2

(
1− x2

)
≤ (1− x2) (G.3)

where the inequality is based on x ≤ 1. By definition via Eq. (G.2), x is real
and bounded as 0 ≤ x ≤ 1. This is based on the normalization constraint and
knowing that the singular values λi are positive. The following inequality is only
valid for x ≤ 1: Equation (G.3) is further simplified to the sum over the truncated
singular values using the fact that the original state with χmax singular values was
normalized:

1− 〈ψ′|ψ〉 ≤ 1−
χ∑
i=1

λ2
i = 1−

(
1−

χmax∑
i=χ+1

λ2
i

)
=

χmax∑
i=χ+1

λ2
i . (G.4)

79

H. Supplemental Material

We provide further, supplemental, material in our forum [93] and our package
with version 2.1. This material includes:

• Building and installing the open source Matrix Product States library: in-
structions for minimalists who do not want to read the full manual.

• User support and contributions to the code.

• Code for selected examples to reproduce plots in this paper, i.e., the nearest-
neighbor Ising model, the long-range Ising model, and the dynamics of the
Bose-Hubbard model.

80

Building and installing the open source Matrix Product States library

In order to install OSMPS, one needs to provide at a minimum the following
packages covering the Fortran and Python installation and linear algebra tools:

• Python (at least 2.6 or 2.7 recommended, 3.x tested successfully)

• numpy and scipy

• Fortran2003 compiler, e.g. gfortran for Linux.

• BLAS and LAPACK

• ARPACK

More packages might be convenient e.g. for plotting with Python, but are
not mandatory. The remaining part of the installation is covered by Python. We
distinguish between a global and a local installation where the local installation
can only be accessed in the same directory or through providing the path. For
global installation only one must execute on the command line

sudo python setup.py install

The Fortran library is compiled then with the command

python BuildOSMPS.py -os=unixmpi

with prefix sudo for the global installation in order to provide the admin privi-
leges. Some default settings are available via command line options as shown for
compiling with unix and MPI. Similarly, a local installation can be specified with
the option --local=’./’. More specific settings can be made inside the Python
script, which builds the makefile for the Fortran libraries.

User support and contributing to the code

Being an open source project we welcome anyone willing to help improve
OSMPS or share her knowledge with the library. On the project website http:
//sourceforge.net/projects/openmps/ on SourceForge we maintain
a forum for discussions about OSMPS. These discussions include questions about
the installation and use of the algorithms for new users, suggestions for future
implementations, and help requests for implementing new features on your own.

The current version of OSMPS is organized via the svn version control system
via SourceForge. It is possible without a user account to fetch the newest ver-
sion of the library via svn. In order to contribute to OSMPS, a user account on
SourceForge is necessary so that we can add you to the developers team.

http://sourceforge.net/projects/openmps/
http://sourceforge.net/projects/openmps/

Files to reproduce plots in this work

We provide the files for the quantum Ising model, the long-range quantum
Ising model and the dynamics of the Bose-Hubbard model as examples how
Python scripts for OSMPS are designed from the definition of the model to post-
processing.

Listing 11: Example of nearest neighbor Ising model

1 import MPSPyLib as mps
2 import numpy as np
3 import sys
4 import os
5 import matplotlib.pyplot as plt
6 from mpl_toolkits.mplot3d.axes3d import Axes3D
7 from matplotlib import cm
8 from scipy.optimize import curve_fit
9 from copy import deepcopy

10

11

12 def main(PostProcess):
13 """
14 Main method running simulation for the following
15 plots in the OSMPS paper:
16

17 1) Bond entropy of the Ising model as function of
18 the external field and the system size (see
19 Figure 2).
20

21 2) Finite size scaling to find the critical value
22 in the thermodynamic limit (see Figure 4).
23 3) The scaling of resources in Figures 16(c) and
24 (d).
25

26 **Arguments**
27

28 PostProcess : Boolean (here)
29 When PostProcess is ‘‘True‘‘, then data for
30 the level is evaluated. Otherwise simulation
31 is executed (with MPI). In order to pass
32 arguments on the command line use ‘‘T‘‘ for

83

33 ‘‘True‘‘ and ‘‘F‘‘ for ‘‘False‘‘.
34 """
35 # Build spin operators
36 # --------------------
37

38 # These are rotated Pauli operators to obtain a
39 # diagonal generator for Z2
40 Operators = mps.BuildSpinOperators(spin=0.5)
41 Operators[’sx’] = 2 * Operators[’sz’]
42 Operators[’sz’] = - (Operators[’splus’]
43 + Operators[’sminus’])
44 Operators[’gen’] = np.array([[0, 0], [0, 1.]])
45

46 # Define Hamiltonian / system settings
47 # ------------------------------------
48

49 H = mps.MPO(Operators)
50 H.AddMPOTerm(’bond’, [’sz’,’sz’], hparam=’J’,
51 weight=-1.0)
52 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,
53 weight=-1.0)
54

55 # overall energy
56 J = 1.0
57

58 # Choose length of the systems for equal spacing
59 # in log-plot (reverse order to submit long
60 # simulations first)
61 nl = 30
62 Llist = list(map(int, 10**(np.linspace(0.65,

3.30103, nl))))[::-1]
63

64 # Grid of the external field
65 ng = 51
66 glist = np.linspace(0.5, 1.5, ng)
67

68 # Define Observables
69 # ------------------
70

71 # Initialize instance of observable class and

84

72 # add local observable
73 myObservables = mps.Observables(Operators)
74 myObservables.AddObservable(’site’, ’sz’, ’z’)
75

76 # add correlation functions
77 myObservables.AddObservable(’corr’, [’sz’,’sz’],
78 ’zz’)
79

80 # Specify convergence parameters
81 # ------------------------------
82

83 nc = 2
84 conv = mps.MPSConvParam(max_bond_dimension=40,
85 variance_tol=1e-10,
86 local_tol=1e-10,
87 max_num_sweeps=4)
88 modparam = [’max_bond_dimension’, ’max_num_sweeps’]
89 conv.AddModifiedConvergenceParameters(0, modparam,
90 [80, 4])
91

92 # Create list of simulations
93 # --------------------------
94

95 params = []
96

97 for jj in range(nl):
98 ll = Llist[jj]
99

100 for gg in glist:
101

102 params.append({
103 ’simtype’ : ’Finite’,
104 # Filenames and directories
105 ’job_ID’ : ’sim_01_ising_z2_’,
106 ’unique_ID’ : ’_L%04d’%ll \
107 + ’_g%3.6F’%gg,
108 ’Write_Directory’ : ’TMP_01_ISING/’

,
109 ’Output_Directory’ : ’

OUTPUTS_01_ISING/’,

85

110 # System size and Hamiltonian
111 # parameters
112 ’L’ : ll,
113 ’J’ : J,
114 ’g’ : gg,
115 # Other parameters
116 ’MPSConvergenceParameters’ : conv,
117 ’MPSObservables’ : myObservables,
118 # For error calculation (gap)
119 ’n_excited_states’ : 1,
120 ’eMPSConvergenceParameters’ : conv,
121 ’logfile’ : True,
122 ’verbose’ : 1,
123 # Z2 symmetry
124 ’Discrete_generators’ : [’gen’],
125 ’Discrete_quantum_numbers’ : [0]
126 })
127

128 if(not PostProcess):
129 # Run simulations
130 # ---------------
131

132 hpcdic = {’queueing’ : ’slurm’,
133 ’partition’ : ’lcarr’,
134 ’time’ : ’143:59:59’,
135 ’nodes’ : [’062’, ’063’, ’064’],
136 ’ThisFileName’ : ’01_Ising.py’,
137 ’mpi’ : ’srun’}
138

139 # Generate sbatch script for CSM cluster
140 MainFiles = mps.WriteMPSParallelFiles(
141 params, Operators, H, hpcdic,
142 PostProcess=PostProcess)
143

144 return
145

146 # Evaluation of the simulations
147 # =============================
148

149 base = ’OUTPUTS_01_ISING/’

86

150

151 if(os.path.isfile(base + "01_Ising_BondEntropy.npy"
)):

152 # Read from previous PostProcess
153 bond_entropy = np.load(base + "01

_Ising_BondEntropy.npy")
154 err_bentropy = np.load(base + "01

_Ising_BondEntropyError.npy")
155 converged = np.load(base + "01_Ising_converged.

npy")
156 variance = np.load(base + "01_Ising_variance.

npy")
157 runtimes = np.load(base + "01_Ising_runtimes.

npy")
158 filesize = np.load(base + "01_Ising_filesize.

npy")
159 bonddim2 = np.load(base + "01_Ising_bonddim2.

npy")
160 else:
161 # Read from Fortran output
162 MainFiles = mps.WriteFiles(params, Operators, H

,
163 PostProcess=True)
164 Outputs = mps.ReadStaticObservables(params)
165

166 # Create array for values of bond entropy
167 bond_entropy = np.zeros((nl, ng, nc), dtype=

float)
168 err_bentropy = np.zeros((nl, ng, nc), dtype=

float)
169 converged = np.zeros((nl, ng, nc))
170 variance = np.zeros((nl, ng, nc))
171 runtimes = np.zeros((nl, ng, nc))
172 filesize = np.zeros((nl, ng))
173 bonddim2 = np.zeros((nl, ng))
174

175 # Get mapping from simulation to hashes
176 hdic = read_hashes(params[0])
177

178 # index for Outputs-list

87

179 idx = 0
180

181 # Looping over the results
182 for ii in range(nl):
183 for jj in range(ng):
184 # idx : ground state, convergence

parameters 0
185 # idx + 1 : ground state, convergence

parameters 1
186 # idx + 2 : excited state, convergence

parameters 0
187 # idx + 3 : excited state, convergence

parameters 1
188

189 for kk in range(nc):
190 Output = Outputs[idx + kk]
191 eOutput = Outputs[idx + kk + 2]
192

193 bond_entropy[ii, jj, kk] = Output[’
BondEntropy’][Llist[ii] // 2]

194 err_bentropy[ii, jj, kk] =
error_entropy(Output, eOutput)

195 converged[ii, jj, kk] = int(Output[
"converged"] == "T")

196 variance[ii, jj, kk] = Output["
variance"]

197 runtimes[ii, jj, kk] = mps.
get_runtime(Output)

198

199 out = Outputs[idx][’Output_Directory’]
200 key = out + Outputs[idx][’job_ID’] +

Outputs[idx][’unique_ID’]
201 thishash = hdic[key]
202

203 filesize[ii, jj] = os.path.getsize(out
+ thishash + ’_002.bin’) / 1024.**2

204 bonddim2[ii, jj] = Outputs[idx + 1][’
bond_dimension’]

205

206 idx += 4

88

207

208 np.save(base + "01_Ising_BondEntropy.npy",
bond_entropy)

209 np.save(base + "01_Ising_BondEntropyError.npy",
err_bentropy)

210 np.save(base + "01_Ising_converged.npy",
converged)

211 np.save(base + "01_Ising_variance.npy",
variance)

212 np.save(base + "01_Ising_runtimes.npy",
runtimes)

213 np.save(base + "01_Ising_filesize.npy",
filesize)

214 np.save(base + "01_Ising_bonddim2.npy",
bonddim2)

215

216 # Use tex fonts throughout
217 plt.rc(’text’, usetex=True)
218 plt.rc(’font’, family=’serif’, size=22)
219

220 # Surface plot for bond entropy
221 # -----------------------------
222

223 # specify which convergence parameter
224 ncp = 1
225 surface_plot_bond_entropy(np.array(Llist), glist,

bond_entropy[:, :, ncp])
226

227 # Set upper and lower bound for plotting manually
228 err_bentropy[np.isnan(err_bentropy)] = 1.0
229 err_bentropy[err_bentropy < 1e-7] = 1e-7
230 err_bentropy[err_bentropy > 1.0] = 1.0
231 #surface_errplot_bond_entropy(np.array(Llist),

glist, err_bentropy[:, :, ncp])
232

233 # Plot scaling resources
234 # ----------------------
235

236 plot_scaling_filesize(np.array(Llist), filesize[:,
25], bonddim2[:, 25])

89

237 plot_scaling_runtimes(np.array(Llist), runtimes[:,
25, 0], bonddim2[:, 25])

238

239 # Finite size scaling for bond entropy (exclude
very small systems)

240 # ------------------------------------
241

242 # Find the maximum for each systems size
243 gc = np.zeros((nl), dtype=float)
244

245 for ii in range(nl):
246 pos = np.argmax(bond_entropy[ii, :, ncp])
247 gc[ii] = glist[pos]
248

249 p0 = [1.0, 1.0]
250 [gci, nu], covar = curve_fit(fit_func, Llist[:20],

gc[:20], p0=p0)
251

252 fig = plt.figure()
253 ax = fig.add_subplot(111)
254 ax.plot(Llist[:20], gc[:20], ’go-’, label=r’$g_c(L)

$’)
255 ax.plot(Llist[:20], [gci] * len(gc[:20]), ’b-’,

label=r’$g_c = %3.4f$ (FSS)’%(gci))
256 ax.plot(Llist[:20], [gci - covar[0,0]] * len(gc

[:20]), ’b--’)
257 ax.plot(Llist[:20], [gci + covar[0,0]] * len(gc

[:20]), ’b--’)
258 ax.set_xlabel(r’\textbf{System size} L’)
259 ax.set_ylabel(r’\textbf{Critical field} g_c’)
260 ax.set_xscale(’log’)
261

262 plt.legend(loc=’lower right’)
263 plt.savefig("01_Ising_FSS.pdf")
264

265 return
266

267

268 def fit_func(ll, gc, nu):
269 """

90

270 Fitting functions for the finite size scaling.
271

272 **Arguments**
273

274 ll : int
275 System size.
276

277 gc : float
278 Value for the critical point to be fitted.
279

280 nu : float
281 Value of the critical exponent to be fitted.
282 """
283 return gc - ll**(-1 / nu)
284

285

286 def error_entropy(Out0, Out1):
287 """
288 Calculate the error of the bond entropy of the

ground state with the
289 results of the ground state and first excited state

.
290

291 **Arguments**
292

293 Out0 : dictionary
294 containing the results of the ground state as

dictionary.
295

296 Out1 : dictionary
297 containing the results of the first excited

state as dictionary.
298 """
299 gap = Out1[’energy’] - Out0[’energy’]
300 coeff = np.sqrt(2 * Out0[’variance’]) / gap
301 dim = Out0[’L’] // 2
302

303 if(coeff > 1 / np.exp(1)): return np.nan
304

305 return coeff * (dim * np.log(2) - np.log(coeff))

91

306

307

308 def surface_plot_bond_entropy(xgrid, ygrid, data):
309 """
310 A general 3d plot used to plot the bond entropy.
311

312 **Arguments**
313

314 xgrid : numpy array (1D)
315 Contains the data points for the first axis.
316 Log10 is applied to this axis.
317

318 ygrid : numpy array (1D)
319 Contains the data points for the second axis.
320

321 data : numpy 2d array
322 Contains the values of the z-axis.
323 """
324 # Meshgrid (logrithmic over system size)
325 xm, ym = np.meshgrid(np.log10(xgrid), ygrid)
326

327 fig = plt.figure()
328 ax = fig.add_subplot(111, projection=’3d’)
329 surf = ax.plot_surface(xm, ym, np.transpose(data),
330 rstride=1, cstride=1,
331 cmap=cm.jet,
332 linewidth=0, antialiased=

False)
333

334 ax.set_xlabel(r’\textbf{Size} $\log_{10}(L)$’,
labelpad=20.0)

335 ax.set_ylabel(r’\textbf{External field} g’,
labelpad=15.0)

336 ax.set_zlabel(r’\textbf{Bond entropy} S’,
labelpad=10.0)

337 ax.view_init(elev=35, azim=-160)
338

339 cbar = plt.colorbar(surf, shrink=0.8)
340 cbar.set_label(r’\textbf{Bond entropy} S’)
341

92

342 plt.tight_layout(pad=1.5)
343 plt.savefig(’01_Ising_BondEntropy.pdf’)
344

345 return
346

347

348 def surface_errplot_bond_entropy(xgrid, ygrid, data):
349 """
350 A general 3d plot used to plot the error of the

bond entropy.
351

352 **Arguments**
353

354 xgrid : numpy array (1D)
355 Contains the data points for the first axis.
356 Log10 is applied to this axis.
357

358 ygrid : numpy array (1D)
359 Contains the data points for the second axis.
360

361 data : numpy 2d array
362 Contains the values of the z-axis. Log10 is

applied
363 to these values.
364 """
365 # Meshgrid (logrithmic over system size)
366 xm, ym = np.meshgrid(np.log10(xgrid), ygrid)
367

368 fig = plt.figure()
369 ax = fig.add_subplot(111, projection=’3d’)
370 surf = ax.plot_surface(xm, ym, np.transpose(np.

log10(data)),
371 rstride=1, cstride=1,
372 cmap=cm.jet,
373 linewidth=0, antialiased=

False)
374

375 ax.set_xlabel(r’\textbf{System size} $\log_{10}(L)$
’, labelpad=20.0)

376 ax.set_ylabel(r’\textbf{External field} g’,

93

labelpad=15.0)
377 ax.set_zlabel(r’\textbf{Error bound bond entropy} $

\log_{10}(\epsilon_{S})$’, labelpad=10.0)
378

379 cbar = plt.colorbar(surf)
380 cbar.set_label(r’\textbf{Error bound bond entropy}

$\log_{10}(\epsilon_{S})$’)
381

382 plt.savefig("01_Ising_ErrBondEntropy.pdf",
bbobx_inches="tight")

383

384 return
385

386

387 def plot_scaling_filesize(Ls, filesize, bonddims):
388 """
389 Plot the filesize of a ground state as a function

of the
390 system size.
391

392 **Arguments**
393

394 Ls : list
395 Contains the list of different system sizes.
396

397 filesize : list
398 Contains the corresponding filesize at each
399 system size.
400

401 bonddims : list
402 Contains the information about the maximal
403 bond dimension used for a simulation.
404 """
405

406 fig = plt.figure()
407 ax = fig.add_subplot(111)
408 ax.plot(Ls, filesize, ’bo-’)
409 for elem in ax.get_yticklabels():
410 elem.set_color(’b’)
411

94

412 axo = ax.twinx()
413 axo.plot(Ls, bonddims, ’ro--’)
414 for elem in axo.get_yticklabels():
415 elem.set_color(’r’)
416 axo.set_ylim([0, 82])
417

418 ax.set_xlabel(r’\textbf{System size} L’)
419 ax.tick_params(direction=’out’, pad=2)
420

421 ax.set_ylabel(r’\textbf{File size} $S_{\mathrm{MB}}
$’, color=’b’)

422 axo.set_ylabel(r’\textbf{Bond dimension} χ’,
color=’r’)

423

424 plt.tight_layout(pad=0.2)
425 plt.savefig(’C2_ScalingFile.pdf’)
426

427 return
428

429

430 def plot_scaling_runtimes(Ls, runtimes, bonddims):
431 """
432 Plot the runtimes as a function of the system size.
433

434 **Arguments**
435

436 Ls : list
437 Contains the list of different system sizes.
438

439 runtimes : list
440 Contains the corresponding runtimes at each
441 system size.
442

443 bonddims : list
444 Contains the information about the maximal
445 bond dimension used for a simulation.
446 """
447 fig = plt.figure()
448 ax = fig.add_subplot(111)
449 ax.plot(Ls, runtimes, ’bo-’)

95

450 for elem in ax.get_yticklabels():
451 elem.set_color(’b’)
452

453 axo = ax.twinx()
454 axo.plot(Ls, bonddims, ’ro--’)
455 for elem in axo.get_yticklabels():
456 elem.set_color(’r’)
457 axo.set_ylim([0, 82])
458

459 ax.set_xlabel(r’\textbf{System size} L’)
460 ax.tick_params(direction=’out’, pad=2)
461

462 ax.set_ylabel(r’\textbf{CPU time} $T_{\mathrm{CPU}}
/ \mathrm{s}$’, color=’b’)

463 axo.set_ylabel(r’\textbf{Bond dimension} χ’,
color=’r’)

464

465 plt.tight_layout(pad=0.2)
466 plt.savefig(’C2_ScalingTime.pdf’)
467

468 return
469

470

471 def read_hashes(param):
472 """
473 Return mapping from names to hash to read file size

.
474

475 **Arguments**
476

477 param : dict
478 example dictionary to get name of output folder

etc.
479 """
480 out = param[’Output_Directory’]
481 jobid = param[’job_ID’]
482

483 fh = open(out + jobid + ’_static_mapping.dat’, ’r’)
484 dic = {}
485

96

486 for line in fh:
487 key, val = line.replace(’\n’, ’’).split()
488 dic[key] = val
489

490 return dic
491

492

493 if(__name__ == "__main__"):
494 args = {"PostProcess" : "F"}
495

496 for elem in sys.argv[1:]:
497 try:
498 key, val = elem.replace("--", "").split("="

)
499 args[key] = val
500 except:
501 pass
502

503 args["PostProcess"] = ((args["PostProcess"] == "T")
or

504 (args["PostProcess"] == "
True"))

505 main(args["PostProcess"])

Listing 12: Example of the long-range Ising model

1 import MPSPyLib as mps
2 import numpy as np
3 import sys
4 import os
5 import matplotlib.pyplot as plt
6 from mpl_toolkits.mplot3d.axes3d import Axes3D
7 from matplotlib import cm
8 from copy import deepcopy
9

10

11 def main(PostProcess):
12 """
13 Main method running simulation to find excited
14 states for the long range quantum Ising model.
15 Either running simulations with MPI or doing

97

16 evaluation on a single core. It produces the
17 following plot, but does not contain the
18 plots for the error analysis agains the
19 simulations with Z2 symmetry.
20

21 1) Energy gap for the long-range Ising model, see
22 Figure 8(a).
23

24 **Arguments**
25

26 PostProcess : Boolean (here)
27 When PostProcess is ‘‘True‘‘, then data for
28 the level is evaluated. Otherwise simulation
29 is executed (with MPI). In order to pass
30 arguments on the command line use ‘‘T‘‘ for
31 ‘‘True‘‘ and ‘‘F‘‘ for ‘‘False‘‘.
32 """
33 # overall energy
34 J = 1.0
35

36 # Length of the systems / number of excited states
37 ll = 128
38 nl = 1
39 ne = 4
40

41 # Grid external field, interaction strength/decay
42 ng = 25
43 glist = np.linspace(0.7, 1.7, ng)
44

45 nalpha = 25
46 alphalist = np.linspace(2.0, 4.0, nalpha)
47

48 # Build operators (start with spin operators,
49 # get sigma_{x,z})
50 # ---------------
51

52 Operators = mps.BuildSpinOperators(spin=0.5)
53 Operators[’sx’] = Operators[’splus’] \
54 + Operators[’sminus’]
55 Operators[’sz’] *= 2

98

56

57 # Define Observables
58 # ------------------
59

60 myObservables = mps.Observables(Operators)
61

62 # Site terms
63 myObservables.AddObservable(’site’, ’sz’, ’z’)
64

65 # correlation functions
66 myObservables.AddObservable(’corr’, [’sz’, ’sz’],
67 ’zz’)
68 myObservables.SpecifyCorrelationRange(1000)
69

70 # Specify convergence parameters
71 # ------------------------------
72

73 nc = 2
74 conv = mps.MPSConvParam(max_bond_dimension=40,
75 variance_tol=1e-10,
76 local_tol=1e-10,
77 max_num_sweeps=4)
78 modparam = [’max_bond_dimension’, ’max_num_sweeps’]
79 conv.AddModifiedConvergenceParameters(0, modparam,
80 [80, 4])
81

82 # Create list of simulations and Hamitlonians
83 # ---
84

85 params = []
86 Hlist = []
87

88 for jj in range(nalpha):
89 alpha = alphalist[jj]
90

91 # Define the Hamitlonian
92 # ----------------------
93

94 H = mps.MPO(Operators, PostProcess=PostProcess)
95 invalpha = lambda x: 1/(x**alpha)

99

96 H.AddMPOTerm(’InfiniteFunction’, [’sz’,’sz’],
97 hparam=’J’, weight=-1.0,
98 func=invalpha, L=ll, tol=1e-10)
99 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

100 weight=-1.0)
101

102 for gg in glist:
103

104 Hlist.append(deepcopy(H))
105

106 params.append({
107 ’simtype’ : ’Finite’,
108 # Filenames and directories
109 ’job_ID’ : ’sim_02_lrising_L%04d’%

ll,
110 ’unique_ID’ : ’_alpha%3.6F’%alpha \
111 + ’_g%3.6F’%gg,
112

113 ’Write_Directory’ : ’TMP_02_LRISING
/’,

114 ’Output_Directory’ : ’
OUTPUTS_02_LRISING/’,

115 # System size and Hamiltonian
116 # parameters
117 ’L’ : ll,
118 ’J’ : J,
119 ’g’ : gg,
120 ’alpha’ : alpha,
121 # Other parameters
122 ’MPSConvergenceParameters’ : conv,
123 ’MPSObservables’ : myObservables,
124 # eMPS
125 ’n_excited_states’ : ne,
126 ’eMPSConvergenceParameters’ : conv,
127 ’eMPSObservables’ : myObservables
128 })
129

130 if(not PostProcess):
131 # Generate sbatch script for CSM cluster
132 # --------------------------------------

100

133

134 hpcdic = {’queueing’ : ’slurm’,
135 ’partition’ : ’lcarr’,
136 ’time’ : ’143:59:59’,
137 ’nodes’ : [’084’, ’085’, ’086’],
138 ’ThisFileName’ : ’02_LRIsing.py’,
139 ’mpi’ : ’srun’},
140

141 MainFiles = mps.WriteMPSParallelFiles(
142 params, Operators, Hlist, hpcdic
143 PostProcess=PostProcess)
144

145 return
146

147 # Evaluation of the simulations
148 # =============================
149

150 base = ’OUTPUTS_02_LRISING/’
151

152 if(os.path.isfile(base + "02_LRIsing_Energies.npy")
):

153 energies = np.load(base + "02_LRIsing_Energies.
npy")

154 else:
155 MainFiles = mps.WriteFiles(params, Operators,

Hlist,
156 PostProcess=True)
157 Outputs = mps.ReadStaticObservables(params)
158

159 # Create array for values of bond entropy
160 energies = np.zeros((nl, ng, nalpha, ne + 1, nc

), dtype=float)
161

162 def unravel_idx(nl, ng, nalpha, ne, nc):
163 idx = -1
164 for ii in range(nl):
165 for jj in range(ng):
166 for kk in range(nalpha):
167 for ee in range(ne + 1):
168 for cc in range(nc):

101

169 idx += 1
170 yield idx, ii, jj, \
171 kk, ee, cc
172

173 for idx, ii, jj, kk, ee, cc in unravel_idx(nl,
ng, nalpha, ne, nc):

174 Output = Outputs[idx]
175 if(cc == 0):
176 print(Output[’energy’], ee,
177 Output[’state’],
178 Output[’convergence_parameter’])
179 energies[ii, jj, kk, ee, cc] = Output[’

energy’]
180

181 np.save(base + "02_LRIsing_Energies.npy",
energies)

182

183 # Sort energies if flag
184 sort = True
185 if(sort):
186 for ii in range(nl):
187 for jj in range(ng):
188 for kk in range(nalpha):
189 for cc in range(nc):
190 idx = energies[ii, jj, kk, :,

cc].argsort()
191 energies[ii, jj, kk, :, cc] =

energies[ii, jj, kk, idx, cc
]

192

193 # Specify plotted convergence parameters
194 pnc = nc - 1
195

196 diff01 = energies[0, :, :, 1, pnc] - energies[0, :,
:, 0, pnc]

197 diff02 = energies[0, :, :, 2, pnc] - energies[0, :,
:, 0, pnc]

198 diff12 = energies[0, :, :, 2, pnc] - energies[0, :,
:, 1, pnc]

199

102

200 # Surface plot for bond entropy
201 # -----------------------------
202

203 # Meshgrid (logrithmic over system size)
204 xm, ym = np.meshgrid(glist, alphalist)
205

206 # Use tex fonts
207 plt.rc(’text’, usetex=True)
208 plt.rc(’font’, family=’serif’, size=22)
209

210 plot_gaps_surface(xm, ym, diff01, diff02)
211

212 return
213

214

215 def plot_gaps_surface(xm, ym, diff01, diff02):
216 fig = plt.figure()
217 ax = fig.add_subplot(111, projection=’3d’)
218

219 vmin = min(np.min(diff01), np.min(diff02))
220 vmax = max(np.max(diff01), np.max(diff02))
221

222 surf01 = ax.plot_surface(xm, ym, np.transpose(
diff01),

223 rstride=1, cstride=1, vmin
=vmin, vmax=vmax,

224 cmap=cm.jet,#coolwarm,
225 linewidth=0, antialiased=

False)
226 surf02 = ax.plot_surface(xm, ym, np.transpose(

diff02),
227 rstride=1, cstride=1, vmin

=vmin, vmax=vmax,
228 cmap=cm.jet,#coolwarm,
229 linewidth=0, antialiased=

False)
230

231 ax.set_xlabel(r’\textbf{External field} g’,
labelpad=15.0)

232 ax.set_ylabel(r’\textbf{Power law decay} α’,

103

labelpad=15.0)
233 ax.set_zlabel(r’\textbf{Energy gap} ΔE’,

labelpad=10.0)
234

235 cbar = plt.colorbar(surf01, shrink=0.8, pad=0.07)
236

237 plt.tight_layout(pad=2.5)
238 plt.savefig(’02_LRIsing_Gaps.pdf’)
239

240 return
241

242

243 if(__name__ == "__main__"):
244 args = {"PostProcess" : "F"}
245

246 for elem in sys.argv[1:]:
247 try:
248 key, val = elem.replace("--", "").split("="

)
249 args[key] = val
250 except:
251 pass
252

253 args["PostProcess"] = ((args["PostProcess"] == "T")
or

254 (args["PostProcess"] == "
True"))

255 main(args["PostProcess"])

Listing 13: Example of dynamics in the Bose-Hubbard model

1 import MPSPyLib as mps
2 import numpy as np
3 import sys
4 import os.path
5 import matplotlib.pyplot as plt
6 from matplotlib import cm
7

8

9 def main(PostProcess):
10 """

104

11 Main method to simulate the Bose-Hubbard model in
12 a rotating saddle point potential. The script
13 reproduces Figure 11(b).
14

15 **Arguments**
16

17 PostProcess : Boolean (here)
18 When PostProcess is ‘‘True‘‘, then data for
19 the level is evaluated. Otherwise simulation
20 is executed (with MPI). In order to pass
21 arguments on the command line use ‘‘T‘‘ for
22 ‘‘True‘‘ and ‘‘F‘‘ for ‘‘False‘‘.
23 """
24 # Build operators
25 # ---------------
26

27 Operators = mps.BuildBoseOperators(6)
28 Operators[’interaction’] = \
29 0.5 * (np.dot(Operators[’nbtotal’],
30 Operators[’nbtotal’])
31 - Operators[’nbtotal’])
32

33 # Define Hamiltonian / system settings
34 # ------------------------------------
35

36 # system size and filling
37 L = 30
38 fill = 20
39

40 H = mps.MPO(Operators)
41 H.AddMPOTerm(’bond’, [’bdagger’, ’b’],
42 hparam=’t’, weight=-1.0)
43 H.AddMPOTerm(’site’, ’interaction’,
44 hparam=’U’, weight=1.0)
45 H.AddMPOTerm(’site’, ’nbtotal’,
46 hparam=’Vt’, weight=1.0)
47

48 # accelaration of rotating potential
49 # (t=100 39.8 rotations, t=101: 40.6 rotations)
50 alpha = 0.05

105

51

52 # and scaling prefactor c * (x**2 - y**2)
53 c = 0.01
54

55 # overall energy scale
56 U = 1.0
57

58 # choose different tunneling strengths
59 nt = 11
60 ts = np.linspace(0.0, 0.5, nt)
61

62 # Define observables
63 # ------------------
64

65 myObs = mps.Observables(Operators)
66 myObs.AddObservable(’site’, ’nbtotal’, ’n’)
67 myObs.AddObservable(’corr’, [’b’, ’bdagger’],
68 ’spdm’)
69

70 # Specify convergence parameters
71 # ------------------------------
72

73 conv = mps.MPSConvParam(max_bond_dimension=60)
74

75 # Define quench function
76 def Vt(t, c=c, alpha=alpha, L=L):
77 # Grid with particles symmetric around 0
78 # at unit distance
79 grid = np.linspace(-L / 2 + 0.5,
80 L / 2 - 0.5, L)
81

82 phit = np.pi / 4 + 0.5 * alpha * t**2
83

84 return c * ((grid * np.cos(phit))**2
85 - (grid * np.sin(phit))**2)
86

87 tconv = mps.TEBDConvParam(max_bond_dimension=60)
88 Quench = mps.QuenchList(H)
89 Quench.AddQuench([’Vt’], 100.0, 0.01, [Vt],
90 stepsforoutput=10,

106

91 ConvergenceParameters=tconv)
92

93 params = []
94 for ii in range(nt):
95 # Get tunneling parameters
96 tt = ts[ii]
97

98 params.append({
99 ’simtype’ : ’Finite’,

100 # Directories
101 ’job_ID’ : ’BoseHubbard_RotSaddle’,
102 ’unique_ID’ : ’_tau%3.6f’%(tt),
103 ’Write_Directory’ : ’TMP_03_Hubbard/’,
104 ’Output_Directory’ : ’OUTPUTS_03_Hubbard/’,
105 # System parameters
106 ’L’ : L,
107 ’U’ : U,
108 ’t’ : tt,
109 ’Vt’ : np.zeros((L)),
110 ’MPSConvergenceParameters’ : conv,
111 ’Abelian_generators’ : [’nbtotal’],
112 ’Abelian_quantum_numbers’ : [fill],
113 ’MPSObservables’ : myObs,
114 ’Quenches’ : Quench,
115 ’DynamicsObservables’ : myObs,
116 # Other settings
117 ’logfile’ : True
118 })
119

120 if(not PostProcess):
121 # Run simulations
122 # ---------------
123

124 hpcdic = {’queueing’ : ’slurm’,
125 ’partition’ : ’lcarr’,
126 ’time’ : ’143:59:59’,
127 ’nodes’ : [’026’, ’027’],
128 ’ThisFileName’ : ’05_RotSaddle.py’,
129 ’mpi’ : ’srun’}
130

107

131 MainFiles = mps.WriteMPSParallelFiles(
132 params, Operators, H, hpcdic,
133 PostProcess=PostProcess)
134

135 return
136

137 # Post Process
138 # ------------
139

140 # Number of measurements in time evolution
141 nm = 1000
142

143 if(os.path.isfile("OUTPUTS_03_Hubbard/nstdxt.npy"))
:

144 # Data has been saved in a previous post-
processing

145 nstdxt = np.load("OUTPUTS_03_Hubbard/nstdxt.npy
")

146 else:
147 # Read data from Fortran output
148 MainFiles = mps.WriteFiles(params, Operators, H

,
149 PostProcess=

PostProcess)
150 Outputs = mps.ReadDynamicObservables(params)
151

152 # Array to save standard deviation on particle
number over space for each t

153 nstdx = np.zeros((nt, nm))
154

155 for ii in range(nt):
156 for tt in range(nm):
157 nstdx[ii, tt] = np.std(Outputs[ii][tt][

’n’])
158

159 # Get a std deviation in time for 50 subsequent
measurements

160 nstdxt = np.zeros((nt, nm - 50))
161

162 for ii in range(nt):

108

163 for jj in range(50, nm):
164 nstdxt[ii, jj - 50] = np.std(nstdx[ii,

jj - 50:jj])
165

166 np.save("OUTPUTS_03_Hubbard/nstdxt.npy", nstdxt
)

167

168 # Plotting
169 # --------
170

171 plt.rc(’text’, usetex=True)
172 plt.rc(’font’, family=’serif’, size=22)
173

174 color = cm.rainbow(np.linspace(0, 1, ts.shape[0]))
175 mi = np.min(np.array(ts))
176 ma = np.max(np.array(ts))
177 clabel = r’\textbf{Tunneling} J’
178 cticks = np.linspace(mi, ma, 6)
179 cbarinfo = plt.contourf([[0, 0], [0, 0]],
180 np.linspace(mi, ma, 101),

cmap=cm.rainbow)
181 plt.clf()
182

183 fig = plt.figure()
184 ax = fig.add_subplot(111)
185

186 for ii in range(nt):
187 ax.plot(np.linspace(0.5, 100.0, nm - 50),

nstdxt[ii], c=color[ii])
188

189 cbar = plt.colorbar(cbarinfo)
190 cbar.set_ticks(cticks)
191 cbar.set_label(clabel)
192

193 ax.set_xlabel(r’\textbf{Time} t’)
194 ax.set_ylabel(r’\textbf{Standard deviation} $\

sigma_{t}$’)
195

196 plt.tight_layout(pad=0.2)
197 plt.savefig(’05_RotSaddle_std_txn.pdf’)

109

198

199 return
200

201

202 if(__name__ == "__main__"):
203 args = {"PostProcess" : "F"}
204

205 for elem in sys.argv[1:]:
206 try:
207 key, val = elem.replace("--", "").split("="

)
208 args[key] = val
209 except:
210 pass
211

212 args["PostProcess"] = ((args["PostProcess"] == "T")
or

213 (args["PostProcess"] == "
True"))

214 main(args["PostProcess"])

110

	1 Introduction
	2 Basic concepts in tensor network techniques
	3 Defining systems and variational ground state search
	3.1 Operators
	3.2 Hamiltonians
	3.3 Observables
	3.4 Fundamentals of the library: Variational ground state search
	3.5 Running the simulations

	4 Highlights of static algorithms
	4.1 Excited state search
	4.2 Infinite systems in the thermodynamic limit

	5 Time evolution methods
	5.1 Computational error and convergence
	5.2 Krylov time evolution
	5.3 Sornborger-Stewart decomposition
	5.4 Time-dependent variational principle
	5.5 Local Runge-Kutta propagation
	5.6 Time evolution case study: Bose-Hubbard model in a rotating saddle point potential

	6 Future developments
	7 Conclusions
	A Convenient features
	B Convergence studies
	B.1 Finite size variational algorithms
	B.2 Time evolution methods for finite size systems

	C Scaling of computational resources
	D Error bounds for static simulations
	D.1 Bounding with the variance delivered by open source Matrix Product States
	D.2 Bounding observables
	D.3 Density matrices and their bounds
	D.4 Bound for the trace distance
	D.5 Bound on the bond entropy

	E Bounding measurement with the trace distance
	F Details of the Krylov method
	G Auxiliary calculations
	H Supplemental Material

